Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2022) 46: 1674 - 1690
© TÜBİTAK
doi:10.55730/1300-0098.3225

Symmetric polynomials in free associative algebras

Silvia BOUMOVA ${ }^{1, *}{ }^{(1)}$, Vesselin DRENSKY ${ }^{2}$ (1), Deyan DZHUNDREKOV ${ }^{3}{ }^{\bullet}$, Martin KASSABOV ${ }^{4}{ }^{(1)}$
${ }^{1}$ Faculty of Mathematics and Informatics, Sofia University, Sofia, Bulgaria and Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria
${ }^{2}$ Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria
${ }^{3}$ Faculty of Mathematics and Informatics, Sofia University, Sofia, Bulgaria
${ }^{4}$ Department of Mathematics, Cornell University, Ithaca, USA

Received: 29.12.2021 • Accepted/Published Online: 26.01.2022 • Final Version: 20.06 .2022

Abstract

By a result of Margarete Wolf in 1936, we know that the algebra $K\left\langle X_{d}\right\rangle^{\operatorname{Sym}(d)}$ of symmetric polynomials in noncommuting variables is not finitely generated. In 1984, Koryukin proved that if we equip the homogeneous component of degree n with the additional action of $\operatorname{Sym}(n)$ by permuting the positions of the variables, then the algebra of invariants $K\left\langle X_{d}\right\rangle^{G}$ of every reductive group G is finitely generated. First, we make a short comparison between classical invariant theory of finite groups and its noncommutative counterpart. Then, we expose briefly the results of Wolf. Finally, we present the main result of our paper, which is, over a field of characteristic 0 or of characteristic $p>d$, the algebra $K\left\langle X_{d}\right\rangle^{\operatorname{Sym}(d)}$ with the action of Koryukin is generated by the elementary symmetric polynomials.

Key words: Free associative algebra, noncommutative invariant theory, symmetric polynomials, finite generation

1. Introduction

Following Rota [39, 40] "Invariant theory is the great romantic story of mathematics." Its origin can be found in the work of Lagrange in the 1770s and of Gauss (in his "Disquititiones Arithmeticae" in 1801) who studied the representation of integers by quadratic binary forms and used the discriminant to distinguish nonequivalent forms. But the real invariant theory began in the 1840s with the works by George Boole in England and by Otto Hesse in Germany. The early years of invariant theory continued in the work of a pleiad of distinguished mathematicians, among which are Cayley, Sylvester, Clebsch, Gordan, and Hilbert. "Seldom in history has an international community of scholars felt so united by a common scientific ideal for so long a stretch of time" ([39, 40]). See, respectively, [22] and [45] for the contributions of Hesse and Boole and [12] for those of Cayley. See also $[15,39,40]$ for the history of invariant theory.

The purpose of our paper is threefold. First, we compare three cornerstone results of invariant theory of finite groups and their noncommutative counterparts. Then, we summarize and translate in the modern language the pioneering results by Margarete Wolf [44] on the symmetric polynomials in the free associative algebra $K\left\langle X_{d}\right\rangle=K\left\langle x_{1}, \ldots, x_{d}\right\rangle$. Finally, we present our main result. Following Koryukin [31], we equip the homogeneous component of degree n of $K\left\langle X_{d}\right\rangle$ with the additional action of the symmetric group $\operatorname{Sym}(n)$ of

[^0]degree n by permuting the positions of the variables. We show that if the ground field K is of characteristic 0 or of characteristic $p>d$, then the subalgebra $K\left\langle X_{d}\right\rangle^{\operatorname{Sym}(d)}$ of symmetric polynomials in $K\left\langle X_{d}\right\rangle$ with the additional action of Koryukin is generated by the elementary symmetric polynomials.

2. Commutative and noncommutative invariant theory

Traditionally in classical invariant theory the considerations are over the complex field \mathbb{C} although many of the results hold over any field K of characteristic 0 . The general linear group $\mathrm{GL}_{d}(\mathbb{C})$ acts on the d-dimensional vector space V_{d} with basis $\left\{v_{1}, \ldots, v_{d}\right\}$ and $\mathbb{C}\left[X_{d}\right]=\mathbb{C}\left[x_{1}, \ldots, x_{d}\right]$ is the algebra of polynomial functions, where

$$
x_{i}: V_{d} \rightarrow \mathbb{C}, \quad i=1, \ldots, d,
$$

is defined by

$$
x_{i}\left(\xi_{1} v_{1}+\cdots+\xi_{d} v_{d}\right)=\xi_{i}, \quad \xi_{1}, \ldots, \xi_{d} \in \mathbb{C}
$$

The action of $\mathrm{GL}_{d}(\mathbb{C})$ on V_{d} induces an action on $\mathbb{C}\left[X_{d}\right]$ by

$$
g(f): v \rightarrow f\left(g^{-1}(v)\right), \quad g \in \mathrm{GL}_{d}(\mathbb{C}), f\left(X_{d}\right) \in \mathbb{C}\left[X_{d}\right], v \in V_{d}
$$

If G is a subgroup of $\mathrm{GL}_{d}(\mathbb{C})$, then the algebra of G-invariants is

$$
\mathbb{C}\left[X_{d}\right]^{G}=\left\{f \in \mathbb{C}\left[X_{d}\right] \mid g(f)=f \text { for all } g \in G\right\} .
$$

For our purposes, it is more convenient to assume that $\mathrm{GL}_{d}(\mathbb{C})$ acts canonically on the vector space $K X_{d}$ with basis X_{d} and to extend its action diagonally on $\mathbb{C}\left[X_{d}\right]$ by

$$
g\left(f\left(x_{1}, \ldots, x_{d}\right)\right)=f\left(g\left(x_{1}\right), \ldots, g\left(x_{d}\right)\right), \quad g \in \mathrm{GL}_{d}(\mathbb{C}), f \in \mathbb{C}\left[X_{d}\right]
$$

The action of $\mathrm{GL}_{d}(\mathbb{C})$ on the polynomial functions $\mathbb{C}\left[X_{d}\right]$ in the former case is the same as the diagonal action of its opposite group $\mathrm{GL}_{d}^{\mathrm{op}}(\mathbb{C})$ induced by the canonical action of $\mathrm{GL}_{d}^{\mathrm{op}}(\mathbb{C})$ on the vector space $K X_{d}$ in the latter case. Both actions of $\mathrm{GL}_{d}(\mathbb{C})$ on $\mathbb{C}\left[X_{d}\right]$ give the same algebras of invariants because the mapping $g \rightarrow g^{-1}$ defines an isomorphism of $\mathrm{GL}_{d}(\mathbb{C})$ and $\mathrm{GL}_{d}^{\mathrm{op}}(\mathbb{C})$.

Every mathematics student knows at least one theorem from invariant theory - the Fundamental theorem of symmetric polynomials:

Every symmetric polynomial can be expressed in a unique way as a polynomial of the elementary symmetric polynomials.

Translated in the language of invariant theory, K is an arbitrary field of any characteristic and the symmetric group $\operatorname{Sym}(d)$ of degree d acts on the vector space $K X_{d}$ by

$$
\sigma\left(x_{i}\right)=x_{\sigma(i)}, \quad \sigma \in \operatorname{Sym}(d), i=1, \ldots, d .
$$

Theorem 2.1 (Fundamental theorem of symmetric polynomials) (i) The algebra of symmetric polynomials $K\left[X_{d}\right]^{\operatorname{Sym}(d)}$ is generated by the elementary symmetric polynomials

$$
e_{1}=x_{1}+\cdots+x_{d}=\sum_{i=1}^{d} x_{i},
$$

$$
\begin{gathered}
e_{2}=x_{1} x_{2}+x_{1} x_{3}+\cdots+x_{d-1} x_{d}=\sum_{i<j} x_{i} x_{j} \\
\cdots \\
e_{d}=x_{1} \cdots x_{d}
\end{gathered}
$$

(ii) If $f \in K\left[X_{d}\right]^{\operatorname{Sym}(d)}$, then there exists a unique polynomial $p \in K\left[y_{1}, \ldots, y_{d}\right]$ such that $f=p\left(e_{1}, \ldots, e_{d}\right)$. In other words, the elementary symmetric polynomials are algebraically independent.

Even more well known are the Vieta formulas:
If the algebraic equation

$$
f(x)=a_{0} x^{d}+a_{1} x^{d-1}+\cdots+a_{d-1} x+a_{d}=0
$$

has roots $\alpha_{1}, \ldots, \alpha_{d}$ (in some extension of the ground field K), then

$$
a_{i}=(-1)^{i} a_{0} e_{i}\left(\alpha_{1}, \ldots, \alpha_{d}\right), \quad i=1, \ldots, d
$$

But not so many people know the history of these theorems. Details can be found in [19] and [8].
If not explicitly stated, in the sequel, we shall work over an arbitrary field K. From the very beginning of invariant theory, one of the main problems has been the description of the algebra $K\left[X_{d}\right]^{G}$ in terms of generators and defining relations. In particular, the following problem was the main motivation for the 14-th problem of Hilbert [25] in his famous lecture "Mathematische Probleme" given at the International Congress of Mathematicians held in Paris in 1900.

Problem 2.2 Is the algebra $K\left[X_{d}\right]^{G}$ finitely generated for all subgroups G of $\mathrm{GL}_{d}(K)$?

For finite groups, G the answer into affirmative was given by Emmy Noether [35] in 1916 when the ground field is of characteristic 0 and in 1926 for fields of any characteristic [36]. Although not stated in this generality, the (nonconstructive) proof for the finite representability of the algebra $K\left[X_{d}\right]^{G}$ for reductive groups G in characteristic 0 is contained in the work of Hilbert [24] in 1890-1893. In the general case, Nagata [34] in the 1950s gave a counterexample to Problem 2.2.

The invariant theory of finite groups acting on free associative algebras is quite different from the invariant theory of finite groups acting on $K\left[X_{d}\right]$. Below, we state three of the cornerstones of the theory in the commutative case and compare them with the corresponding results in the noncommutative case.

Theorem 2.3 (Endlichkeitssatz of Emmy Noether [35]) Let char $(K)=0$ and let G be a finite subgroup of $\mathrm{GL}_{d}(K)$. Then, the algebra of invariants $K\left[X_{d}\right]^{G}$ is finitely generated. It has a system of generators $f_{1}\left(X_{d}\right), \ldots, f_{m}\left(X_{d}\right)$ where every $f_{i}\left(X_{d}\right)$ is a homogeneous polynomial of degree bounded by the order $|G|$ of the group G.

Hence, the mapping $K\left[Y_{m}\right] \rightarrow K\left[X_{d}\right]^{G}$ defined by $y_{i} \rightarrow f_{i}\left(X_{d}\right)$ defines an isomorphism $K\left[X_{d}\right]^{G} \cong$ $K\left[Y_{m}\right] / I$ for some ideal I of $K\left[Y_{d}\right]$. Together with the Basissatz of Hilbert [23] that every ideal of $K\left[Y_{m}\right]$ is finitely generated, $K[X]^{G}$ is finitely presented, i.e., it can be defined by a finite system of relations, for any finite group G.

Theorem 2.4 (Chevalley-Shephard-Todd [11, 41]) For G finite and in characteristic 0 the algebra of invariants $K\left[X_{d}\right]^{G}$ is isomorphic to a polynomial algebra, i.e., $K\left[X_{d}\right]^{G}$ has a system of algebraically independent generators and $K\left[X_{d}\right]^{G} \cong K\left[Y_{d}\right]$ if and only if $G<\mathrm{GL}_{d}(K)$ is generated by pseudo-reflections (matrices of finite multiplicative order with all eigenvalues except one equal to 1).

The third cornerstone theorem answers the question "how many invariants are there?". The algebra $K\left[X_{d}\right]^{G}$ is graded for any group G and

$$
K\left[X_{d}\right]^{G}=K \oplus\left(K\left[X_{d}\right]^{G}\right)^{(1)} \oplus\left(K\left[X_{d}\right]^{G}\right)^{(2)} \oplus \cdots
$$

where $\left(K\left[X_{d}\right]^{G}\right)^{(n)}$ is the vector space of the homogeneous invariants of degree n. The formal power series

$$
H\left(K\left[X_{d}\right]^{G}, t\right)=\sum_{n \geq 0} \operatorname{dim}\left(K\left[X_{d}\right]^{G}\right)^{(n)} \cdot t^{n}
$$

is called the Hilbert (or Poincaré) series of $K\left[X_{d}\right]^{G}$. Since $K\left[X_{d}\right]^{G}$ is finitely generated for finite groups G, the Hilbert-Serre theorem for the rationality of the Hilbert series of finitely generated commutative algebras gives that

$$
H\left(K\left[X_{d}\right]^{G}, t\right)=p(t) \prod_{i=1}^{m} \frac{1}{1-t^{a_{i}}}, \quad p(t) \in \mathbb{Z}[t]
$$

The explicit form of $H\left(K\left[X_{d}\right]^{G}, t\right)$ is given in 1897 by the Molien formula [33].
Theorem 2.5 Let $\operatorname{char}(K)=0$. For a finite group G

$$
H\left(K\left[X_{d}\right]^{G}, t\right)=\frac{1}{|G|} \sum_{g \in G} \frac{1}{\operatorname{det}(1-g t)}
$$

Going to noncommutative generalizations of invariant theory, the first problem is to find a candidate to replace the polynomial algebra $K\left[X_{d}\right]$ with a noncommutative algebra, which shares many of the properties of $K\left[X_{d}\right]$. The most natural candidate is the free unitary associative algebra $K\left\langle X_{d}\right\rangle$ (or the algebra of polynomials in d noncommuting variables). This algebra has the same universal property as $K\left[X_{d}\right]$:

- If R is a unitary commutative algebra, then every mapping $X_{d} \rightarrow R$ can be extended in a unique way to a homomorphism $K\left[X_{d}\right] \rightarrow R$.
- If R is a unitary associative algebra, then every mapping $X_{d} \rightarrow R$ can be extended in a unique way to a homomorphism $K\left\langle X_{d}\right\rangle \rightarrow R$.

In our paper, we consider invariant theory of groups acting on $K\left\langle X_{d}\right\rangle$ only. We assume that $\mathrm{GL}_{d}(K)$ acts canonically on the vector space $K X_{d}$ and extend this action diagonally on $K\left\langle X_{d}\right\rangle$:

$$
g\left(f\left(x_{1}, \ldots, x_{d}\right)\right)=f\left(g\left(x_{1}\right), \ldots, g\left(x_{d}\right)\right), \quad g \in \mathrm{GL}_{d}(K), f \in K\left\langle X_{d}\right\rangle
$$

For a subgroup G of $\mathrm{GL}_{d}(K)$ the algebra of G-invariants $K\left\langle X_{d}\right\rangle^{G}$ consists of all polynomials in $K\left\langle X_{d}\right\rangle$, which are fixed under the action of G.

As in the case of polynomial algebras, the first results of invariant theory are for the algebra $K\left\langle X_{d}\right\rangle^{\operatorname{Sym}(d)}$ of the symmetric polynomials in $K\left\langle X_{d}\right\rangle$. They are in the paper [44] of Margarete Wolf in 1936. We shall discuss them in detail in the next section.

Going back to invariant theory of $K\left\langle X_{d}\right\rangle, d \geq 2$, the following three theorems show the differences and the similarity with Theorems 2.3, 2.4 and 2.5 from invariant theory of $K\left[X_{d}\right]$.

The first theorem is obtained independently by Dicks and Formanek [14] and Kharchenko [29] for finite groups and by Koryukin [31] in the general case. It shows that $K\left[X_{d}\right]^{G}$ and $K\left\langle X_{d}\right\rangle^{G}$ behave in a completely different way concerning the finite generation.

Theorem 2.6 [31] Let G be an arbitrary subgroup of $\mathrm{GL}_{d}(K)$ over a field K of any characteristic and let $K Y_{m}$ be the minimal subspace of $K X_{d}$ such that $K\left\langle X_{d}\right\rangle^{G} \subseteq K\left\langle Y_{m}\right\rangle$. Then $K\left\langle X_{d}\right\rangle^{G}$ is finitely generated if and only if G acts on $K Y_{m}$ by scalar multiplication.

Corollary 2.7 [14, 29] If G is a finite subgroup of $\mathrm{GL}_{d}(K)$, then $K\left\langle X_{d}\right\rangle^{G}$ is finitely generated if and only if G is a finite cyclic group consisting of scalar matrices.

Corollary 2.8 [31] If G acts irreducibly on $K X_{d}$, i.e. $K X_{d}$ does not have nontrivial subspaces W such that $G(W)=W$, then $K\left\langle X_{d}\right\rangle^{G}$ is either trivial or not finitely generated.

It has turned out that the analogue of the Chevalley-Shephard-Todd theorem also sounds differently for $K\left\langle X_{d}\right\rangle$.

Theorem 2.9 (i) (Lane [32] and Kharchenko [28]) The algebra $K\left\langle X_{d}\right\rangle^{G}$ is free for any subgroup G of $\mathrm{GL}_{d}(K)$ and for any field K.
(ii) (Kharchenko [28]) When G is finite, there is a Galois correspondence between the free subalgebras of $K\left\langle X_{d}\right\rangle$ containing $K\left\langle X_{d}\right\rangle^{G}$ and the subgroups of G : The subalgebra F of $K\left\langle X_{d}\right\rangle$ with $K\left\langle X_{d}\right\rangle^{G} \subseteq F$ is free if and only if $F=K\left\langle X_{d}\right\rangle^{H}$ for a subgroup H of G.

Concerning the Molien formula, there is a complete analogue for $K\left\langle X_{d}\right\rangle$, but the determinants are replaced by the traces of the matrices.

Theorem 2.10 (Dicks and Formanek [14]) If $G \subset \mathrm{GL}_{d}(K)$ is a finite group and char $(K)=0$, then

$$
H\left(K\left\langle X_{d}\right\rangle^{G}, t\right)=\frac{1}{|G|} \sum_{g \in G} \frac{1}{1-\operatorname{tr}(g) t}
$$

We conclude this section with a result of Koryukin [31], which was the motivation for the original result in our paper. Let $\left(K\left\langle X_{d}\right\rangle\right)^{(n)}$ be the vector space of the homogeneous elements of degree n in $K\left\langle X_{d}\right\rangle$. The symmetric group $\operatorname{Sym}(n)$ acts from the right on $\left(K\left\langle X_{d}\right\rangle\right)^{(n)}$ by the rule

$$
\left(x_{i_{1}} \cdots x_{i_{n}}\right) \circ \sigma=x_{i_{\sigma^{-1}(1)}} \cdots x_{i_{\sigma^{-1}(n)}}, \quad \sigma \in \operatorname{Sym}(n)
$$

We call this action the S-action. We denote by $\left(K\left\langle X_{d}\right\rangle, \circ\right)$ the algebra $K\left\langle X_{d}\right\rangle$ with the additional action of $\operatorname{Sym}(n)$ on $\left(K\left\langle X_{d}\right\rangle\right)^{(n)}, n=0,1,2, \ldots$. If F is a graded subalgebra of $K\left\langle X_{d}\right\rangle$ and $F^{(n)} \circ \operatorname{Sym}(n)=F^{(n)}$,
then F inherits the S-action. We denote it by (F, \circ) and call (F, \circ) an S-algebra. We say that (F, \circ) is finitely generated as an S-algebra if there exists a finite subset U of F consisting of homogeneous polynomials such that (F, \circ) is the minimal S-subalgebra of $\left(K\left\langle X_{d}\right\rangle, \circ\right)$ containing U. Since the left action of $\mathrm{GL}_{d}(K)$ on $\left(K\left\langle X_{d}\right\rangle\right)^{(n)}$ commutes with the right action of $\operatorname{Sym}(n)$, if G is an arbitrary subgroup of $\mathrm{GL}_{d}(K)$, then $\left(K\left\langle X_{d}\right\rangle^{G}, \circ\right)$ is an S-algebra.

Theorem 2.11 ([31]) Let the field K be arbitrary and let G be a reductive subgroup of $\mathrm{GL}_{d}(K)$ (i.e., all rational representations of G are completely reducible). Then, the S-algebra $\left(K\left\langle X_{d}\right\rangle^{G}, \circ\right)$ is finitely generated.

This theorem immediately inspires the following problem.

Problem 2.12 Let char $(K)=0$ and let G be a finite subgroup of $\mathrm{GL}_{d}(K)$.
(i) Consider a minimal homogeneous system of generators of the S-algebra $\left(K\left\langle X_{d}\right\rangle^{G}, \mathrm{o}\right)$. Is there a bound of the degree of the generators in terms of the order $|G|$ of G and the rank d of $K\left\langle X_{d}\right\rangle$?
(ii) Find a finite system of generators of $\left(K\left\langle X_{d}\right\rangle^{G}, \circ\right)$ for concrete groups G.
(iii) If the commutative algebra $K\left[X_{d}\right]^{G}$ is generated by a homogeneous system $\left\{f_{1}, \ldots, f_{m}\right\}$, can this system be lifted to a system of generators of $\left(K\left\langle X_{d}\right\rangle^{G}, \circ\right)$?

We shall answer the cases (ii) and (iii) of Problem 2.12 when G is the symmetric group of degree d.
In this section, we considered invariant theory of groups acting on $K\left\langle X_{d}\right\rangle$ only. There are also other algebras which share the same universal properties as $K\left[X_{d}\right]$ and $K\left\langle X_{d}\right\rangle$, e.g., free Lie algebras or relatively free algebras in varieties of associative or Lie algebras. We refer to the survey articles by Formanek [18] and by one of the authors [16] to get some idea about invariant theory for such algebras.

3. The results of Margarete Wolf

In this section, we summarize and translate in the modern language some of the results of Margarete Wolf in [44].

The free associative algebra $K\left\langle X_{d}\right\rangle=K\left\langle x_{1}, \ldots, x_{d}\right\rangle$ has a basis consisting of the set $\left\langle X_{d}\right\rangle$ of all monomials $x_{i_{1}} \cdots x_{i_{n}}$ in the noncommutative variables X_{d}. We consider the deglex order in $\left\langle X_{d}\right\rangle$, ordering the monomials $u \in\left\langle X_{d}\right\rangle$ first by degree and then lexicographically assuming that $\left.x_{1}>\cdots\right\rangle x_{d}$. We denote the leading monomial of $f \in K\left\langle X_{d}\right\rangle, f \neq 0$, by \bar{f}. Since the deglex order is admissible, the leading monomial $\overline{f_{1} f_{2}}$ of the product of two nonzero polynomials f_{1} and f_{2} in $K\left\langle X_{d}\right\rangle$ is equal to the product of their leading monomials $\overline{f_{1}}$ and $\overline{f_{2}}$.

The symmetric group $\operatorname{Sym}(d)$ acts on the set of monomials $\left\langle X_{d}\right\rangle$ and splits it in orbits. If $u \in\left\langle X_{d}\right\rangle$, then we denote by $\sum u$ the sum of all monomials in the orbit generated by u. If we choose one monomial u from each orbit, then $K\left\langle X_{d}\right\rangle^{\operatorname{Sym}(d)}$ has a basis consisting of all such $\sum u$.

Theorem 3.1 [44] (i) The algebra of symmetric polynomials $K\left\langle X_{d}\right\rangle^{\operatorname{Sym}(d)}, d \geq 2$, is a free associative algebra over any field K.
(ii) It has a homogeneous system of free generators $\left\{f_{j} \mid j \in J\right\}$ such that for any $n \geq 1$, there is at least one generator of degree n.
(iii) The number of homogeneous polynomials of degree n is the same in every homogeneous free generating system.
(iv) If $f \in K\left\langle X_{d}\right\rangle^{\operatorname{Sym}(d)}$ has the presentation

$$
f=\sum_{j=\left(j_{1}, \ldots, j_{m}\right)} \alpha_{j} f_{j_{1}} \cdots f_{j_{m}}, \quad \alpha_{j} \in K
$$

then the coefficients α_{j} are linear combinations with integer coefficients of the coefficients of $f\left(X_{d}\right)$.
Proof (i) The leading monomial $u=x_{i_{1}} \cdots x_{i_{n}}$ of the symmetric polynomial $\sum v, v \in\left\langle X_{d}\right\rangle, \operatorname{deg}(v)=n>0$, has the following properties:
(i) $i_{1}=1$;
(ii) If u has the form $u=x_{i_{1}} \cdots x_{i_{k}} x_{i_{k+1}} w$, where $v=x_{i_{1}} \cdots x_{i_{k}} \in\left\langle X_{d}\right\rangle$ depends essentially on all x_{1}, \ldots, x_{p} and if $i_{k+1} \neq 1, \ldots, p$, then $i_{k+1}=p+1$.
(iii) Every monomial $u \in\left\langle X_{d}\right\rangle$ satisfying (i) and (ii) is the leading monomial of $\sum u$.

We apply induction on the leading monomials in the basis of the vector space $K\left\langle X_{d}\right\rangle^{\text {Sym(d) }}$ constructed above. The basis of the induction is $\sum x_{1}$ and we add it as the first element to the generating set of the algebra $K\left\langle X_{d}\right\rangle^{\operatorname{Sym}(d)}$ which we shall construct.

If the leading monomial of $f \in K\left\langle X_{d}\right\rangle^{\operatorname{Sym}(d)}$ is of the form $\bar{f}=v x_{1}, \operatorname{deg}(v)>0$, then v is the leading monomial of $\sum v$ and $\bar{f}=\left(\overline{\sum v}\right)\left(\overline{\sum x_{1}}\right)$. Hence, the leading monomial \bar{h} of the symmetric polynomial $h=f-\sum v \sum x_{1}$ is smaller than \bar{f} and by the inductive assumption h can be expressed as a polynomial of the already constructed polynomials in the generating set of $K\left\langle X_{d}\right\rangle^{\operatorname{Sym}(d)}$.

Similarly, if the leading monomial of $f \in K\left\langle X_{d}\right\rangle^{\operatorname{Sym}(d)}$ is of the form $\bar{f}=v_{1} x_{1} x_{2} v_{2}, \operatorname{deg}\left(v_{1}\right)>0$, then v_{1} is the leading monomial of $\sum v_{1}$ and $x_{1} x_{2} v_{2}$ is the leading monomial of $\sum x_{1} x_{2} v_{2}$. Hence, $\bar{f}=$ $\left(\overline{\sum v_{1}}\right)\left(\overline{\sum x_{1} x_{2} v_{2}}\right)$ and again we apply the inductive assumption for $h=f-\sum v_{1} \sum x_{1} x_{2} v_{2}$.

It is easy to see that the leading monomial u of a symmetric polynomial $f, \operatorname{deg}(u)>1$, cannot be presented as a product of two leading monomials of symmetric polynomials of lower degree if u is neither of the form $u=v x_{1}$ nor of the form $u=v_{1} x_{1} x_{2} v_{2}, \operatorname{deg}\left(v_{1}\right)>0$. Then, we add the symmetric polynomial $\sum u$ to the generating system of $K\left\langle X_{d}\right\rangle^{S_{d}}$. The polynomials of the constructed generating system of $K\left\langle X_{d}\right\rangle^{\text {Sym(d) }}$ are free generators of $K\left\langle X_{d}\right\rangle^{\operatorname{Sym}(d)}$ because the leading monomial of every $f \in K\left\langle X_{d}\right\rangle^{\operatorname{Sym}(d)}$ can be presented in a unique way as a product of the leading monomials of the system. It follows from the proof that the symmetric polynomials $\sum u, u \in\left\langle X_{d}\right\rangle$, are presented as linear combinations with integer coefficients of the constructed free generating system, and this proves also (iv).
(ii) For the proof, it is sufficient to see that the symmetric polynomials

$$
u_{1}=\sum x_{1} \text { and } u_{n}=\sum x_{1} x_{2}^{n-1}, n=2,3, \ldots
$$

participate in the free generating system of $K\left\langle X_{d}\right\rangle^{\operatorname{Sym}(d)}$ constructed in (i).
(iii) The statement is true for any free graded subalgebra F of $K\left\langle X_{d}\right\rangle$. Let Y be a homogeneous free generating set of F and let g_{n} be the number of polynomials of degree n in Y. Then it is well known that the Hilbert series of F is

$$
H(F, t)=\frac{1}{1-g(t)}, \text { where } g(t)=\sum_{n \geq 1} g_{n} t^{n}
$$

is the generating function of the sequence g_{1}, g_{2}, \ldots. Since the Hilbert series of F does not depend on the choice of the system of free generators, the same holds for the generating function $g(t)$, and this completes the proof of (iii).

Example 3.2 (i) The leading monomials u of the symmetric polynomials $\sum v, v \in\left\langle X_{d}\right\rangle$, of degree $n \leq 4$ are the following:

$$
\begin{array}{llllll}
n=1: & x_{1} ; & & & \\
n=2: & x_{1} x_{1}, & x_{1} x_{2} ; & & & \\
n=3: & x_{1} x_{1} x_{1}, & x_{1} x_{1} x_{2}, & x_{1} x_{2} x_{1}, & x_{1} x_{2} x_{2}, & x_{1} x_{2} x_{3} ; \\
n=4: & x_{1} x_{1} x_{1} x_{1}, & x_{1} x_{1} x_{1} x_{2}, & x_{1} x_{1} x_{2} x_{1}, & x_{1} x_{1} x_{2} x_{2}, & x_{1} x_{1} x_{2} x_{3}, \\
& x_{1} x_{2} x_{1} x_{1}, & x_{1} x_{2} x_{1} x_{2}, & x_{1} x_{2} x_{1} x_{3}, & x_{1} x_{2} x_{2} x_{1}, & x_{1} x_{2} x_{2} x_{2}, \\
& x_{1} x_{2} x_{2} x_{3}, & x_{1} x_{2} x_{3} x_{1}, & x_{1} x_{2} x_{3} x_{2}, & x_{1} x_{2} x_{3} x_{3}, & x_{1} x_{2} x_{3} x_{4}
\end{array}
$$

(ii) The leading monomials of the system of free generators of $K\left\langle X_{d}\right\rangle^{\operatorname{Sym}(d)}$ constructed in Theorem 3.1 for degrees $n \leq 4$ and $d \geq 4$ are

$$
\begin{array}{lllll}
n=1: & x_{1} ; & \\
n=2: & x_{1} x_{2} ; & & \\
n=3: & x_{1} x_{2} x_{2}, & x_{1} x_{2} x_{3} ; \\
n=4: & x_{1} x_{2} x_{1} x_{3}, & x_{1} x_{2} x_{2} x_{2}, & x_{1} x_{2} x_{2} x_{3}, & x_{1} x_{2} x_{3} x_{2}, \\
x_{1} x_{2} x_{3} x_{3}, & x_{1} x_{2} x_{3} x_{4}
\end{array}
$$

The paper [44] contains also a detailed description of the free generating set of the algebra $K\left\langle X_{2}\right\rangle^{\operatorname{Sym}(2)}$ of symmetric polynomials in two variables.

Theorem 3.3 [44] In every homogeneous free generating set of $K\left\langle X_{2}\right\rangle^{\operatorname{Sym}(2)}$ there is precisely one element of degree n for each $n \geq 1$.

Proof First proof. It follows immediately from the proof of Theorem 3.1 that $K\left\langle X_{2}\right\rangle^{\operatorname{Sym}(2)}$ is freely generated by the symmetric polynomials

$$
\sum x_{1} x_{2}^{n-1}=x_{1} x_{2}^{n-1}+x_{2} x_{1}^{n-1}, \quad n \geq 1
$$

Second proof. We divide the monomials of degree $n \geq 1$ in $\left\langle X_{2}\right\rangle$ in two groups. The fist group $x_{1}\left\langle X_{2}\right\rangle$ consists of the monomials starting with x_{1} and similarly for the second group $x_{2}\left\langle X_{2}\right\rangle$. Then the vector space $K\left\langle X_{2}\right\rangle^{\operatorname{Sym}(2)}$ has a basis

$$
\{1\} \cup\left\{u\left(x_{1}, x_{2}\right)+u\left(x_{2}, x_{1}\right) \mid u\left(x_{1}, x_{2}\right) \in x_{1}\left\langle X_{2}\right\rangle\right\}
$$

and the number of homogeneous elements of degree n in this basis is 2^{n-1}. (The above counting arguments were used also in the original proof of the theorem in [44].) Hence the Hilbert series of $K\left\langle X_{2}\right\rangle^{\operatorname{Sym}(2)}$ is

$$
H\left(K\left\langle X_{2}\right\rangle^{\operatorname{Sym}(2)}, t\right)=1+\sum_{n \geq 1} 2^{n-1} t^{n}=1+\frac{t}{1-2 t}=\frac{1-t}{1-2 t}=\frac{1}{1-g(t)}
$$

where $g(t)$ is the generating function counting the elements of degree $n=1,2, \ldots$ in the homogeneous free generating system of $K\left\langle X_{2}\right\rangle^{\operatorname{Sym}(2)}$. Hence

$$
g(t)=\frac{t}{1-t}=t+t^{2}+t^{3}+\cdots
$$

i.e. there is exactly one generator of each degree n.

In characteristic 0 the Hilbert series of $K\left\langle X_{2}\right\rangle^{\operatorname{Sym}(2)}$ can be computed also using the formula of Dicks and Formanek in Theorem 2.10 because the matrices of the elements of $\operatorname{Sym}(2)$ with respect to the basis X_{2} are

$$
\begin{gathered}
\mathrm{id}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad(12)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
H\left(K\left\langle X_{2}\right\rangle^{\operatorname{Sym}(2)}, t\right)=\frac{1}{2}\left(\frac{1}{1-\operatorname{tr}(\mathrm{id}) t}+\frac{1}{1-\operatorname{tr}((12)) t}\right)=\frac{1}{2}\left(\frac{1}{1-2 t}+\frac{1}{1-0 t}\right)=\frac{1-t}{1-2 t} .
\end{gathered}
$$

Third proof. Let char $(K) \neq 2$. We change linearly the free generators of $K\left\langle X_{2}\right\rangle$ by

$$
y_{1}=\frac{1}{2}\left(x_{1}+x_{2}\right), y_{2}=\frac{1}{2}\left(x_{1}-x_{2}\right)
$$

Then $\sigma=(12) \in \operatorname{Sym}(2)$ acts on X_{2} and $Y_{2}=\left\{y_{1}, y_{2}\right\}$ by

$$
x_{1} \rightarrow x_{2}, x_{2} \rightarrow x_{1} \text { and } y_{1} \rightarrow y_{1}, y_{2} \rightarrow-y_{2}
$$

Hence $K\left\langle Y_{2}\right\rangle^{\operatorname{Sym}(2)}=K\left\langle X_{2}\right\rangle^{\operatorname{Sym}(2)}$ is spanned by the monomials $u \in\left\langle Y_{2}\right\rangle$ which are of even degree in y_{2}. Such monomials are written as

$$
u=y_{1}^{m_{0}}\left(y_{2} y_{1}^{n_{1}} y_{2}\right) y_{1}^{m_{1}} \cdots y_{1}^{m_{k-1}}\left(y_{2} y_{1}^{n_{k}} y_{2}\right) y_{1}^{m_{k}}
$$

and $K\left\langle Y_{2}\right\rangle^{\operatorname{Sym}(2)}$ is freely generated by

$$
y_{1}, \quad y_{2} y_{1}^{n} y_{2}, \quad n \geq 0
$$

The original proof of Margarete Wolf. The proof goes by induction. Let $n \geq 1$. We assume that all symmetric polynomials of degree $\leq n-1$ can be expressed as polynomials in a set of symmetric polynomials $f_{1}, \ldots, f_{n-1}, \operatorname{deg}\left(f_{k}\right)=k, k=1, \ldots, n-1$. As in the second proof of the theorem given above, $\operatorname{dim}\left(\left(K\left\langle X_{2}\right\rangle^{\operatorname{Sym}(2)}\right)^{(n)}\right)=2^{n-1}$ for $n \geq 1$. Let $f_{k_{1}} f_{k_{2}} \cdots f_{k_{p}}=\sum \alpha_{j} x_{j_{1}} \cdots x_{j_{n}}$ be a product of degree n. There is a 1-1 correspondence between such products and the ($p-1$)-tuples $\left(k_{1}+1, k_{1}+k_{2}+1, \ldots, k_{1}+\cdots+k_{p-1}+1\right)$. The $(p-1)$-tuple indicates the positions in the monomials $x_{j_{1}} \cdots x_{j_{n}}$ where the monomials in f_{2}, \ldots, f_{p} start, respectively. For example, the product

$$
f_{2} f_{4} f_{1}=\left(\sum \alpha x_{a_{1}} x_{a_{2}}\right)\left(\sum \beta x_{b_{1}} x_{b_{2}} x_{b_{3}} x_{b_{4}}\right)\left(\sum \gamma x_{c}\right)
$$

corresponds to $(3,7)$. There are $\binom{n-1}{p-1}$ possibilities to choose $f_{k_{1}} \cdots f_{k_{p}}$ but one of them corresponds to the case $p=1$ and has to be excluded. Hence all possibilities are

$$
\sum_{p=2}^{n}\binom{n-1}{p-1}=2^{n-1}-1
$$

The products $f_{k_{1}} \cdots f_{k_{p}}$ of degree n are linearly independent and span a vector subspace of codimension 1 of $\left(K\left\langle X_{2}\right\rangle^{(n)}\right)^{S_{2}}$. Hence, we need one more symmetric polynomial f_{n} of degree n to express all homogeneous symmetric polynomials of degree n.

Symmetric functions in commuting variables have been studied from different points of view. The same has happened in the noncommutative case. In [44] Margarete Wolf studied the algebraic properties of $K\left\langle X_{d}\right\rangle^{S_{d}}$. The next result in this direction appeared more than 30 years later in $[7]$ where Bergman and Cohn generalized the main result in [44]. There is an enormous literature devoted to different aspects of the theory, see for example $[1-6,9,13,17,20,26,27,30,37,38,42,43]$.

Biographical data for Margarete Wolf can be found in the Companion website of [21].*

4. The S-algebra of symmetric polynomials in noncommutative variables

This section contains our new result on the generation of $K\left\langle X_{d}\right\rangle^{\operatorname{Sym}(d)}$ as an S-algebra.
As a vector space the homogeneous component $\left(K\left\langle X_{d}\right\rangle^{\operatorname{Sym}(d)}\right)^{(n)}$ of degree n has a basis consisting of symmetric polynomials of the form $\sum v$ where $v \in\left(\left\langle X_{d}\right\rangle\right)^{(n)}$. We may choose v to be such that

$$
\operatorname{deg}_{x_{1}}(v) \geq \cdots \geq \operatorname{deg}_{x_{d}}(v)
$$

and attach to it the partition of n

$$
\lambda=\left(\lambda_{1}, \ldots, \lambda_{d}\right)=\left(\operatorname{deg}_{x_{1}}(v), \ldots, \operatorname{deg}_{x_{d}}(v)\right) .
$$

There is a permutation $\sigma \in \operatorname{Sym}(n)$ such that $\sum v=p_{\lambda} \circ \sigma$, where

$$
p_{\lambda}=\sum x_{1}^{\lambda_{1}} \cdots x_{d}^{\lambda_{d}} .
$$

In particular,

$$
p_{(n)}=x_{1}^{n}+\cdots+x_{d}^{n}, \quad n=1,2, \ldots
$$

are the power sums and

$$
p_{\left(1^{n}\right)}=\sum_{\sigma \in \operatorname{Sym}(d)} x_{\sigma(1)} \cdots x_{\sigma(n)}, \quad n \leq d,
$$

are the noncommutative analogues of the elementary symmetric polynomials.
Lemma 4.1 Over any field K of arbitrary characteristic the S-algebra $\left(K\left\langle X_{d}\right\rangle^{\operatorname{Sym}(d)}, \circ\right)$ is generated by the power sums $p_{(m)}, m=1,2 \ldots$.

Proof It is sufficient to show that for any partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ of $n>0, \lambda_{1} \geq \cdots \geq \lambda_{k}>0$ the polynomial p_{λ} can be expressed as a linear combination of products $p_{\left(m_{1}\right)} \cdots p_{\left(m_{j}\right)} \circ \sigma, m_{1}+\cdots+m_{j}=n$, $\sigma \in \operatorname{Sym}(n)$. We apply induction on the number k of parts of the partition λ. If $k=1$, then $\lambda=(n)$ and $p_{\lambda}=p_{(n)}$. If $k=2$, then $\lambda=\left(\lambda_{1}, \lambda_{2}\right)$,

$$
p_{\left(\lambda_{1}, \lambda_{2}\right)}=p_{\left(\lambda_{1}\right)} p_{\left(\lambda_{2}\right)}-p_{\left(\lambda_{1}+\lambda_{2}\right)}
$$

[^1]In the general case we use that the difference $f_{\lambda}=p_{\left(\lambda_{1}, \ldots, \lambda_{k}\right)}-p_{\left(\lambda_{1}\right)} p_{\left(\lambda_{2}\right)} \cdots p_{\left(\lambda_{k}\right)}$ is a sum of monomials $x_{i_{1}}^{n_{1}} \cdots x_{i_{l}}^{n_{l}} \circ \sigma, l<k$. Hence, f_{λ} is a linear combination of polynomials $p_{\mu} \circ \sigma$ where $\mu=\left(\mu_{1}, \ldots, \mu_{j}\right)$ is a partition of n in less than k parts. By the inductive assumption, f_{λ} belongs to the S-algebra generated by $p_{(m)}, m=1,2 \ldots, n$, and hence the same holds for p_{λ}.

Remark 4.2 If we project the polynomials $p_{\left(1^{n}\right)} \in K\left\langle X_{d}\right\rangle$ to the polynomial algebra $K\left[X_{d}\right]$, we shall not obtain the elementary symmetric functions $e_{n} \in K\left[X_{d}\right]$ but integer multiples of them. This explains why Lemma 4.1 works in the noncommutative case for $K\left\langle X_{d}\right\rangle$ and does not work in the commutative case for $K\left[X_{d}\right]$.

We shall need a noncommutative analogue of the Newton formulas

$$
k e_{k}=\sum_{i=1}^{k}(-1)^{i-1} e_{k-i} p_{i}
$$

which relate the elementary symmetric polynomials and the power sums in $K\left[X_{d}\right]$. In order to state our version of the Newton formulas for $k \leq d$, we denote by $S h_{i}, i=0,1, \ldots, k$, the set of all "shuffles" $\sigma \in \operatorname{Sym}(k)$ with the property that σ^{-1} preserves the orders both of $1, \ldots, k-i$ and of $k-i+1, \ldots, k$. For $k>d$ the set $S h_{i}$, $i=0,1, \ldots, d$, consists of all permutations $\sigma \in \operatorname{Sym}(k)$, which fix $d+1, \ldots, k$ and σ^{-1} preserve the orders both of $1, \ldots, d-i$ and of $d-i+1, \ldots, d$.

Lemma 4.3 In $K\left\langle X_{d}\right\rangle$

$$
\begin{gathered}
k!p_{(k)}+(-1)^{k} k p_{\left(1^{k}\right)}+\sum_{i=1}^{k-1}(-1)^{k-i} i!\left(p_{\left(1^{k-i}\right)} p_{(i)} \circ \sum_{\sigma \in S h_{i}} \sigma\right)=0, \quad k \leq d \\
d!p_{(k)}+(-1)^{d} d p_{\left(1^{d}\right)} p_{(k-d)}+\sum_{i=1}^{d-1}(-1)^{d-i} i!\left(p_{\left(1^{d-i}\right)} p_{(k-d+i)} \circ \sum_{\sigma \in S h_{i}} \sigma\right)=0, \quad k>d .
\end{gathered}
$$

Proof We mimic the proof in the classical case for polynomial algebras, see e.g. the page for Newton identities in Wikipedia ${ }^{\dagger}$. First we handle the case $k=d$. We start with the polynomial

$$
f\left(z, X_{d}\right)=\sum_{\sigma \in \operatorname{Sym}(d)}\left(z-x_{\sigma(1)}\right)\left(z-x_{\sigma(2)}\right) \cdots\left(z-x_{\sigma(d)}\right) \in K\left\langle X_{d}, z\right\rangle
$$

and expand it in the form

$$
f\left(z, X_{d}\right)=\sum_{i=0}^{d} f_{i}\left(z, X_{d}\right)
$$

where $f_{i}\left(z, X_{d}\right)$ is homogeneous of degree i in z. In the notation of S-algebras f_{i} has the form

$$
f_{i}=(-1)^{d-i} i!p_{\left(1^{d-i}\right)} z^{i} \circ \sum_{\sigma \in S h_{i}} \sigma
$$

[^2]The easiest way to see that the coefficients of f_{i} are correct is to evaluate f_{i} in the polynomial algebra $K\left[X_{d}\right]$. Then, $p_{\left(1^{i}\right)}$ becomes $i!e_{i}$, and the S-action by permuting the positions of the variables in the monomials of degree d is trivial. There are $\binom{d}{i}=\frac{d!}{i!(d-i)!}$ shuffles, so we obtain the usual Vieta expansion of the product $\left(z-x_{1}\right) \cdots\left(z-x_{d}\right) \in K\left[X_{d}, z\right]$ multiplied by $d!$.

For example, for $d=3$

$$
f\left(z, X_{3}\right)=3!z^{3}-2!\sum_{i=1}^{3}\left(x_{i} z^{2}+z x_{i} z+z^{2} x_{i}\right)+1!\sum_{\substack{i, j=1 \\ i \neq j}}^{3}\left(x_{i} x_{j} z+x_{i} z x_{j}+z x_{i} x_{j}\right)-\sum_{\sigma \in \operatorname{Sym}(3)} x_{\sigma(1)} x_{\sigma(2)} x_{\sigma(3)}
$$

Since $f\left(x_{j}, X_{d}\right)=0$ for $j=1, \ldots, d$, we obtain that

$$
0=\sum_{j=1}^{d} f\left(x_{j}, X_{d}\right)=d!p_{(d)}+(-1)^{d} d p_{\left(1^{d}\right)}+\sum_{i=1}^{d-1}(-1)^{d-i} i!\left(p_{\left(1^{d-i}\right)} p_{(i)} \circ \sum_{\sigma \in S h_{i}} \sigma\right)
$$

which gives the proof for $k=d$. (Again, going from $K\left\langle X_{d}\right\rangle^{\operatorname{Sym}(d)}$ to $K\left[X_{d}\right]^{\operatorname{Sym}(d)}$ this is the usual Newton identity multiplied by $d!$.)

Now let $k>d$. As in the case $k=d$ we start with the polynomial $f\left(z, X_{d}\right)$ but replace it by

$$
f\left(z, X_{d}\right) z^{k-d}=\left(\sum_{\sigma \in \operatorname{Sym}(d)}\left(z-x_{\sigma(1)}\right)\left(z-x_{\sigma(2)}\right) \cdots\left(z-x_{\sigma(d)}\right)\right) z^{k-d}
$$

Repeating the arguments for $k=d$, we obtain

$$
0=\sum_{j=1}^{d} f\left(x_{j}, X_{d}\right)=d!p_{(k)}+(-1)^{d} p_{\left(1^{d}\right)} p_{(k-d)}+\sum_{i=1}^{d-1}(-1)^{d-i} i!\left(p_{\left(1^{d-i}\right)} p_{(k-d+i)} \circ \sum_{\sigma \in S h_{i}} \sigma\right)
$$

Finally, let $k<d$. We consider the expression

$$
h\left(x_{1}, \ldots, x_{d}\right)=k!p_{(k)}+(-1)^{k} k p_{\left(1^{k}\right)}+\sum_{i=1}^{k-1}(-1)^{k-i} i!\left(p_{\left(1^{k-i}\right)} p_{(i)} \circ \sum_{\sigma \in S h_{i}} \sigma\right)
$$

If we replace x_{k+1}, \ldots, x_{d} by 0 , then we obtain that $h\left(x_{1}, \ldots, x_{k}, 0, \ldots, 0\right)=0$ in $K\left\langle X_{k}\right\rangle^{\operatorname{Sym}(k)}$. The symmetric polynomial $h\left(x_{1}, \ldots, x_{d}\right)$ is of degree k. Every symmetric polynomial of degree k is completely determined by its component which depends on k variables only. Hence $h\left(x_{1}, \ldots, x_{d}\right)=0$ and this completes also the proof for $k<d$.

We give examples for small $d=3,4,5$.

$$
\begin{aligned}
6 p_{(3)}= & 3 p_{(1,1,1)}-p_{(1,1)} p_{(1)} \circ(\mathrm{id}+(321)+(23))+2 p_{(1)} p_{(2)} \circ(\mathrm{id}+(12)+(123)) \\
24 p_{(4)}= & -4 p_{(1,1,1,1)}+p_{(1,1,1)} p_{(1)} \circ(\mathrm{id}+(34)+(432)+(4321)) \\
& -2 p_{(1,1)} p_{(2)} \circ(\mathrm{id}+(23)+(321)+(13)(24)+(234)+(2134))+ \\
& +6 p_{(1)} p_{(3)} \circ(\mathrm{id}+(12)+(123)+(1234))
\end{aligned}
$$

$$
\begin{aligned}
120 p_{(5)}= & 5 p_{\left(1^{5}\right)}-p_{\left(1^{4}\right)} p_{(1)} \circ(\mathrm{id}+(45)+(543)+(5432)+(54321)) \\
& +2 p_{\left(1^{3}\right)} p_{(2)} \circ(\mathrm{id}+(34)+(432)+(4321)+(345)+(3245)+(32145)+(24)(35)+(142)(35)) \\
& -6 p_{\left(1^{2}\right)} p_{(3)} \circ(\mathrm{id}+(23)+(234)+(2345)+(132)+(1342)+(13452)+(13)(24)+(13)(245)+(35241)) \\
& +24 p_{(1)} p_{(4)} \circ(\mathrm{id}+(12)+(123)+(1234)+(12345))
\end{aligned}
$$

Problem 4.4 By the Newton formulas, the elementary symmetric polynomial e_{k} is expressed in terms of elementary symmetric polynomials of lower degree and power sums. Chamberlin and Rafizadeh [10] found an analogue of the Newton formulas where the monomial symmetric polynomials

$$
m_{\lambda}=\sum x_{1}^{\lambda_{1}} \cdots x_{d}^{\lambda_{d}} \in K\left[X_{d}\right], \quad \lambda \vdash k,
$$

are expressed in terms of monomial symmetric polynomials of lower degree and power sums. It would be interesting to find similar formulas for the symmetric polynomials $p_{\lambda} \in\left(K\left\langle X_{d}\right\rangle^{\operatorname{Sym}(d)}, \circ\right)$.

Now, we go to the main new result of our paper.
Theorem 4.5 Let char $(K)=0$ or char $(K)=p>d$. Then the algebra $\left(K\left\langle X_{d}\right\rangle^{\operatorname{Sym}(d)}, \circ\right)$ of the symmetric polynomials in d variables is generated as an S-algebra by the elementary symmetric polynomials $p_{\left(1^{i}\right)}$, $i=1, \ldots, d$.

Proof By Lemma 4.1 the S-algebra $\left(K\left\langle X_{d}\right\rangle^{\operatorname{Sym}(d)}, \circ\right)$ is generated by the power sums $p_{(m)}, m=1,2 \ldots$ By Lemma 4.3 the power sums $p_{(n)}$ multiplied by a suitable $k!, k \leq d$, belong to the S-algebra generated by $p_{(m)}, m<n$ and $p_{\left(1^{i}\right)}, i=1, \ldots, d$. Since $k!$ is invertible in the ground field K and the first power sum $p_{(1)}$ coincides with the first elementary symmetric polynomial, the proof follows immediately by induction on n.

Remark 4.6 We have also several direct proofs of Theorem 4.5 for small d. For char $(K) \neq 2$ we present two proofs for $d=2$.

First proof. As we have mentioned in the first proof of Theorem 3.3 it follows immediately from the proof of Theorem 3.1 that $K\left\langle X_{2}\right\rangle^{\operatorname{Sym}(2)}$ is freely generated by the symmetric polynomials

$$
u_{n}=\sum x_{1} x_{2}^{n-1}=x_{1} x_{2}^{n-1}+x_{2} x_{1}^{n-1}, \quad n \geq 1,
$$

which for $n=1$ and $n=2$ are equal to $p_{(1)}$ and $p_{\left(1^{2}\right)}$, respectively. Further we apply induction on $n \geq 3$. By the inductive assumption $f=p_{\left(1^{2}\right)} p_{(n-2)}$ belongs to the S-algebra generated by $p_{(1)}$ and $p_{\left(1^{2}\right)}$. Then

$$
\begin{gathered}
f=\left(x_{1} x_{2}+x_{2} x_{1}\right)\left(x_{1}^{n-2}+x_{2}^{n-2}\right)=\left(x_{1} x_{2}^{n-1}+x_{2} x_{1}^{n-1}\right)+\left(x_{2} x_{1} x_{2}^{n-2}+x_{1} x_{2} x_{1}^{n-2}\right), \\
f \circ(13)=\left(x_{2}^{2} x_{1} x_{2}^{n-3}+x_{1}^{2} x_{2} x_{1}^{n-3}\right)+\left(x_{2} x_{1} x_{2}^{n-2}+x_{1} x_{2} x_{1}^{n-2}\right), \\
f \circ(23)=\left(x_{1} x_{2}+x_{2} x_{1}\right)\left(x_{1}^{n-2}+x_{2}^{n-2}\right)=\left(x_{1} x_{2}^{n-1}+x_{2} x_{1}^{n-1}\right)+\left(x_{2}^{2} x_{1} x_{2}^{n-3}+x_{1}^{2} x_{2} x_{1}^{n-3}\right), \\
u_{n}=\frac{1}{2}(f-f \circ(13)+f \circ(23)) .
\end{gathered}
$$

Second proof. In the third proof of Theorem 3.3 we have changed the free generating system of $K\left\langle X_{2}\right\rangle$ to

$$
y_{1}=\frac{1}{2}\left(x_{1}+x_{2}\right), y_{2}=\frac{1}{2}\left(x_{1}-x_{2}\right)
$$

and have shown that $K\left\langle Y_{2}\right\rangle^{\operatorname{Sym}(2)}$ is freely generated by

$$
y_{1} \text { and } v_{n}=y_{2} y_{1}^{n-2} y_{2}, \quad n \geq 2 .
$$

Since

$$
v_{n} \circ(2 n)=y_{2}^{2} y_{1}^{n-2}=v_{2} y_{1}^{n-2}
$$

we immediately obtain that the S-algebra $\left(K\left\langle Y_{2}\right\rangle^{\operatorname{Sym}(2)}, \circ\right)$ is generated by y_{1} and v_{2}. This completes the proof because

$$
p_{(1)}=y_{1} \text { and } p_{\left(1^{2}\right)}=\frac{1}{2}\left(y_{1}^{2}-v_{2}\right)
$$

Conjecture 4.7 Let char $(K)=p \leq d$. Then the S-algebra $\left(K\left[X_{d}\right]^{\operatorname{Sym}(d)}\right.$, \circ) of symmetric polynomials in d variables is not finitely generated.

5. Conclusion

We start our paper with a brief historical picture on the origins of classical invariant theory. Our first goal then is to present several important theorems in invariant theory of finite groups acting on polynomial algebras and to state their counterparts when finite groups act on free associative algebras. In the end of this part of the paper we give a result of Koryukin in 1984 who equipped the free associative algebra with an additional action of symmetric groups (which we call an S-action) and showed that the algebras of noncommutative invariants of reductive groups are S-finitely generated.

The second goal of the paper is to present from a modern point of view the results of Margarete Wolf in 1936 about symmetric polynomials in noncommuting variables. These results are the first steps in noncommutative invariant theory, and we think that they deserve to be made more popular.

Finally, we present our main new result which states that the algebra of symmetric polynomials in noncommuting variables is S-generated by the elementary symmetric polynomials under a natural restriction on the characteristic of the ground field.

We give several proofs of some of the results in the paper to show that the problems in consideration can be attacked from different points of view.

Acknowledgment

The research of the first author was partially supported by Grant KP-06-N-32/1 of the Bulgarian National Science Fund. The research of the third author was supported in part by Sofia University contract 80-10$64 / 2021$ and its continuation. The research of the fourth author was supported in part by Simons Foundation Grant 713557.

References

[1] Abduvalieva GK. Fixed-point and implicit/inverse function theorems for free noncommutative functions. PhD, Drexel University, Philadelphia, PA, USA, 2015.
[2] Abduvalieva G, Kaliuzhnyi-Verbovetskyi DS. Fixed point theorems for noncommutative functions. Journal of Mathematical Analysis and Applications 2013; 401 (1): 436-446. doi: 10.1016/j.jmaa.2012.12.038
[3] Abduvalieva G, Kaliuzhnyi-Verbovetskyi DS. Implicit/inverse function theorems for free noncommutative functions. Journal of Functional Analysis 2015; 269 (9): 2813-2844. doi: 10.1016/j.jfa.2015.07.011
[4] Agler J, Mccarthy JE, Young NJ. Non-commutative manifolds, the free square root and symmetric functions in two non-commuting variables. The Transactions of the London Mathematical Society 2018; 5 (1): 132-183. doi: 10.1112/tlm3.12015
[5] Agler J, Young NJ. Symmetric functions of two noncommuting variables. Journal of Functional Analysis 2014; 266 (9): 5709-5732. doi: 10.1016/j.jfa.2014.02.026
[6] Bergeron N, Reutenauer C, Rosas M, Zabrocki M. Invariants and coinvariants of the symmetric groups in noncommuting variables. Canadian Journal of Mathematics 2008; 60 (2): 266-296. doi:10.4153/CJM-2008-013-4
[7] Bergman GM, Cohn PM. Symmetric elements in free powers of rings. Journal of the London Mathematical Society 1969; s2-1 (1): 525-534. doi: 10.1112/jlms/s2-1.1.525
[8] Blum-Smith B, Coskey S. The fundamental theorem on symmetric polynomials: history's first whiff of Galois theory. The College Mathematics Journal 2017; 48 (1): 18-29. doi: 10.4169/college.math.j.48.1.18
[9] Can MB, Sagan BE. Partitions, rooks, and symmetric functions in noncommuting variables. The Electronic Journal of Combinatorics 2011; 18 (2): Research Paper P3, 7 p.
[10] Chamberlin S, Rafizadeh A. A generalized Newton-Girard formula for monomial symmetric polynomials. Rocky Mountain Journal of Mathematics 2020; 50 (3): 941-946. doi: 10.1216/rmj.2020.50.941
[11] Chevalley C. Invariants of finite groups generated by reflections. American Journal of Mathematics 1955; 77 (4): 778-782. doi: 10.2307/2372597
[12] Crilly T. The rise of Cayley's invariant theory (1841-1862). Historia Mathematica 1986; 13 (3): 241-254. doi: 10.1016/0315-0860(88)90025-0
[13] Cushing D, Pascoe JE, Tully-Doyle R. Free functions with symmetry. Mathematische Zeitschrift 2018; 289 (3-4): 837-857. doi: 10.1007/s00209-017-1977-x
[14] Dicks W, Formanek E. Poincaré series and a problem of S. Montgomery. Linear and Multilinear Algebra 1982 (1); 12: 21-30. doi: 10.1080/03081088208817467
[15] Dieudonné JA, Carrell JB. Invariant theory, old and new. Advances in Mathematics 1970; 4 (1): 1-80. (Reprinted in Invariant Theory, Old and New. New York-London Academic Press, 1971.) doi: 10.1016/0001-8708(70)90015-0
[16] Drensky V. Commutative and noncommutative invariant theory. In: Mathematics and Education in Mathematics, Proceedings of the 24 -th Spring Conference of the Union of Bulgarian Mathematicians; Svishtov, Bulgaria; 1995, pp. 14-50.
[17] Fomin S, Greene C. Noncommutative Schur functions and their applications. Discrete Mathematics 1998; 193 (1-3): 179-200. doi: 10.1016/j.disc.2006.03.028
[18] Formanek E. Noncommutative invariant theory. Contemporary Mathematics 1985; 43: 87-119.
[19] Funkhouser HG. A short account of the history of symmetric functions of roots of equations. The American Mathematical Monthly 1930; 37 (7): 357-365. doi: 10.1080/00029890.1930.11987092
[20] Gelfand IM, Krob D, Lascoux A, Leclerc B, Retakh VS, Thibon J-Y. Noncommutative symmetric functions. Advances in Mathematics 1995; 112 (2): 218-348. doi: 10.1006/aima.1995.1032
[21] Green J, LaDuke J. Pioneering Women in American Mathematics. The Pre-1940 PhD's. History of Mathematics, vol. 34, Providence, RI, USA: American Mathematical Society, 2008.
[22] Hawkins T. Hesse's principle of transfer and the representation of Lie algebras. Archive for History of Exact Sciences 1988; 39 (1): 41-73. doi: 10.1007/BF00329985
[23] Hilbert D. Über die Theorie der algebraischen Formen. Mathematische Annalen 1890; 36: 473-534 (in German). (Reprinted in "Gesammelte Abhandlungen, Band II, Algebra, Invariantentheorie, Geometrie", Zweite Auflage, Springer-Verlag, Berlin-Heidelberg-New York, 1970, pp. 199-257.) doi: 10.1007/BF01208503
[24] Hilbert D. Über die vollen Invariantensysteme. Mathematische Annalen 1893; 42: 313-373 (in German). (Reprinted in "Gesammelte Abhandlungen, Band II, Algebra, Invariantentheorie, Geometrie", Zweite Auflage, Springer-Verlag, Berlin-Heidelberg-New York, 1970, pp. 287-344.) doi: 10.1007/BF01444162
[25] Hilbert D. Mathematische Probleme. Archiv der Mathematik und Physik 1901; 1: 44-63, 213-237 (in German). Reprinted in "Gesammelte Abhandlungen, Band III, Analysis, Grundlagen der Mathematik, Physik, Verschiedenes, Lebensgeschichte", Zweite Auflage, Springer-Verlag, Berlin-Heidelberg-New York, 1970, pp. 290-329.)
[26] Hu J, Wang M. Free holomorphic functions on the noncommutative polydomains and universal models. Results in Mathematics 2018; 73 (3) Paper No. 99, 33 p. doi: 10.1007/s00025-018-0861-2
[27] Kaliuzhnyi-Verbovetskyi DS, Vinnikov V. Foundations of Free Noncommutative Function Theory. Mathematical Surveys and Monographs, 199. Providence, RI: American Mathematical Society, 2014.
[28] Kharchenko VK. Algebra of invariants of free algebras. Algebra Logika 1978; 17 (4): 478-487 (in Russian). Translation: Algebra and Logic 1978; 17 (4): 316-321. doi: 10.1007/BF01674783
[29] Kharchenko VK. Noncommutative invariants of finite groups and Noetherian varieties. Journal of Pure and Applied Algebra 1984; 31 (1-3): 83-90. doi: 10.1016/0022-4049(84)90079-3
[30] Klep I, Spenko S. Free function theory through matrix invariants. Canadian Journal of Mathematics 2017; 69 (2): 408-433. doi: 10.4153/CJM-2015-055-7
[31] Koryukin AN. Noncommutative invariants of reductive groups. Algebra Logika 1984; 23 (4): 419-429 (in Russian). Translation: Algebra and Logic 1984; 23 (4): 290-296. doi: 10.1007/BF02071789
[32] Lane DR. Free algebras of rank two and their automorphisms. PhD, Bedford College, London, UK, 1976.
[33] Molien T. Über die Invarianten der linearen Substitutionsgruppen. Sitzungsberichte der Koniglich Preussischen Akademie der Wissenschaften 1897; 52: 1152-1156 (in German).
[34] Nagata M. On the 14th problem of Hilbert. American Journal of Mathematics 1959; 81 (3): 766-772. doi: 10.2307/2372927
[35] Noether E. Der Endlichkeitssatz der Invarianten endlicher Gruppen. Mathematische Annalen 1915; 77: 89-92 (in German). (Reprinted in Gesammelte Abhandlungen. Collected Papers. Springer-Verlag, Berlin-Heidelberg-New York-Tokyo 1983; 181-184.) doi: 10.1007/BF01456821
[36] Noether E. Der Endlichkeitssatz der Invarianten endlicher linearer Gruppen der Charakteristik p. Nachrichten Göttingen 1926; 28-35 (in German).
[37] Pascoe JE. Noncommutative free universal monodromy, pluriharmonic conjugates, and plurisubharmonicity. arXiv:2002.07801 [math.FA].
[38] Rosas MH, Sagan BE. Symmetric functions in noncommuting variables. Transactions of the American Mathematical Society 2006; 358 (1): 215-232. doi: 10.1090/S0002-9947-04-03623-2
[39] Rota G-C. Two turning points in invariant theory. The Mathematical Intelligencer 1999; 21 (1): 20-27. doi: 10.1007/BF03024826
[40] Rota G-C. What is invariant theory, really? In: Crapo H, Senato D. (editors), Algebraic Combinatorics and Computer Science. A Tribute to Gian-Carlo Rota. Milano, Italy: Springer. pp. 41-56, 2001.
[41] Shephard GC, Todd JA. Finite unitary reflection groups. Canadian Journal of Mathematics 1954; 6: 274-304. doi: 10.4153/CJM-1954-028-3
[42] Spenko S. Modifying the structure of associative algebras. PhD, University of Ljubljana, Slovenia, 2015.
[43] Stevenson LC. Calculus of higher order noncommutative functions. PhD, Drexel University, Philadelphia, PA, USA, 2018.
[44] Wolf MC. Symmetric functions of non-commutative elements. Duke Mathematical Journal 1936; 2 (4): 626-637. doi: 10.1215/S0012-7094-36-00253-3
[45] Wolfson PR. George Boole and the origins of invariant theory. Historia Mathematica 2008; 35 (1): 37-46. doi: 10.1016/j.hm.2007.06.004

[^0]: *Correspondence: boumova@fmi.uni-sofia.bg
 2010 AMS Mathematics Subject Classification: 16S50; 15A72; 16W20; 16W22; 16W50; 15A72

[^1]: *http://www.ams.org/publications/authors/books/postpub/hmath-34-PioneeringWomen.pdf

[^2]: ${ }^{\dagger}$ https://en.wikipedia.org/wiki/Newton\%27s_identities

