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Abstract: In this paper, we discuss the lower bound for the dcsl index δk of a k -uniform dcsl of even cycle C2n, n ≥ 2,

in terms of the dimension of a poset and prove that dim(F ) ≤ δk(C2n) , where F is the range of any k -uniform dcsl f

of C2n, n ≥ 2.
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1. Introduction

Acharya [1] introduced the notion of vertex set-valuation as a set-analogue of number valuation. For a graph

G = (V,E) and a nonempty set X , he defined a set-valuation of G as an injective set-valued function

f : V (G) → 2X , and defined a set-indexer f⊕ : E(G) → 2X \ {ϕ}as a set-valuation such that the induced edge

labeling f⊕(uv) = f(u) ⊕ f(v) for every uv ∈ E(G) is also injective, where 2X is the set of all the subsets of

X and ⊕ is the binary operation of taking the symmetric difference of subsets of X .

Acharya and Germina [2] introduced a particular kind of set-valuation for which a metric, especially the

cardinality of the symmetric difference, associated with each pair of vertices is k (where k is a nonnegative

constant) times that of the distance between them in the graph [2]. In other words, determine those graphs

G = (V,E) that admit an injective set-valued function f : V (G) → 2X , where 2X is the power set of a

nonempty set X, such that, for each pair of distinct vertices u and v in G, the cardinality of the symmetric

difference f(u) ⊕ f(v) is k times that of the usual path distance dG(u, v) between u and v in G . They [2]

called such a set-valuation f of G a k -uniform distance compatible set labeling (k -uniform dcsl) of G , and the

graph G that admits k -uniform dcsl a k -uniform distance compatible set labeled graph (k -uniform dcsl graph),

and the nonempty set X corresponding to f a k -uniform dcsl-set. The k -uniform dcsl index [13] of a graph

G, denoted by δk(G), is the minimum of the cardinalities of X, with respect to which G is a k -uniform dcsl.

A hypercube H(X) on a set X is a graph whose vertices are the finite subsets of X , and two vertices are

joined by an edge if and only if they differ by a singleton. A partial cube is a graph that can be isometrically

embedded into a hypercube [22].

A family of sets F is well graded if any two sets in F can be connected by a sequence of sets formed

by single element insertion and deletion, without redundant operations, such that all intermediate sets in the

sequence belong to F . Well-graded families are of interest in several different areas of combinatorics, as various
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families of sets or relations are well graded. Using representation theorems, well-graded families are applied

to the partial cubes [7, 22, 25], and to the oriented media, which are semigroups of transformations satisfying

certain axioms (see [10, 11]).

Definition 1.1 [8] Let F be a family of subsets of a set X . A tight path between two distinct sets P and Q

(or from P to Q) in F is a sequence P0 = P, P1, P2 . . . Pn = Q in F such that d(P,Q) =| P ⊕Q |= n and

d(Pi, Pi+1) = 1 for 0 ≤ i ≤ n− 1 .

The family F is a well-graded family (or wg-family) if there is a tight path between any two of its distinct

sets.

Any family F of subsets of X defines a graph GF = (F , EF ) , where EF = {{P,Q} ⊆ F :| P⊕Q |= 1} ,
and we call GF an F -induced graph.

One may recall a partially ordered set (or a poset) P as a structure (P , ⪯) where P is a nonempty set

and ‘⪯ ’ is a partial order relation on P such that ‘⪯ ’ is reflexive, antisymmetric, and transitive. We denote

(x, y) ∈ P by x ⪯ y . Given a poset P, the dual of P is a new poset Pd on the same set P with the new

relation x ⪯Pd y , if and only if y ⪯P x . Two elements x, y of P are comparable if either x ⪯ y or y ⪯ x ;

otherwise x, y are incomparable. We denote the incomparable elements x and y of P by x || y . A poset is a

chain if it contains no incomparable pair of elements. In this case, the partial order is a linear order . A poset

is an antichain if all of its pairs are incomparable.

The size of a largest chain in a poset P is called the height of the poset, denoted by height(P) (or h(P)),

and the size of a largest antichain is called its width, denoted by width(P) (or w(P)). The greatest element I

of a poset P is I ⪰ x for all x ∈ P , and the least element 0 is 0 ⪯ x for all x ∈ P .

We say that z covers y if and only if y ≺ z and y ⪯ x ⪯ z implies either x = y or x = z . A Hasse

diagram of a poset (P , ⪯) is a drawing in which the points of P are placed so that if y covers x , then y is

placed at a higher level than x and joined to x by a line segment. A poset P is connected if its Hasse diagram

is connected as a graph.

A cover graph (or Hasse graph) of a poset (P , ⪯) is the graph with vertex set P such that x, y ∈ P

are adjacent if and only if one of them covers the other. All posets depicted in this paper are shown by their

Hasse diagrams. A planar drawing of a poset P is a representation of the Hasse diagram of P such that no

edges of the Hasse diagram cross each other. A planar poset is a poset that has a planar drawing; otherwise, it

is called a nonplanar poset. A graph is outer planar if it has a crossing-free embedding in the plane such that

all vertices are on the same face.

A poset Q is a subposet of P if Q ⊆ P , and for each pair x, y ∈ Q , x ⪯ y in Q exactly if x ⪯ y in

P . Two posets P and Q are called isomorphic if there is a one-to-one correspondence Φ : P → Q such that

x ⪯ y in P if and only if Φ(x) ⪯ Φ(y) in Q . The poset Q is said to be embedded in P , denoted by Q ⊆ P , if

Q is isomorphic to a subposet of P .

A linear extension L of P is a linear order on the elements of P , such that x ⪯ y in P implies x ⪯ y

in L for all x, y ∈ P .

Definition 1.2 [9] A set R = {L1,L2, . . . ,Lk} of linear extensions of P is a realizer of P if P = ∩L∈R .

The dimension of P , denoted by dim(P) , is the minimum cardinality of a realizer.

Hiraguchi [18] proved that the dimension cannot exceed the width, and for antichains dimension can be
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much less than the width. He also proved that the dimension cannot exceed half the number of elements of the

poset, even though there are posets of arbitrarily large dimension.

The following definition is due to Hiraguchi [18], and later Bogart [5]:

Definition 1.3 The standard example (also called standard n-dimensional poset) Sn(n ≥ 2) is the poset of

height two consisting of n minimal elements a1, . . . , an and n maximal elements b1, . . . , bn such that ai ⪯ bj

in Sn exactly if i ̸= j .

A poset (L,⪯) is a lattice if every pair of elements x, y ∈ L has a least upper bound as join of x, y ,

denoted by x∨ y , and a greatest lower bound as meet of x, y , denoted by x∧ y . In general, a lattice is denoted

by (L,⪯). A lattice (L,⪯) is planar if its Hasse diagram drawing is planar.

Throughout this paper, by a lattice we mean a poset under set inclusion ⊆ . Unless otherwise mentioned,

for all the terminology in graph theory and lattice theory, one may refer, respectively, to [4, 17]. Throughout

this article, by a graph we mean a simple and connected graph. By dimension of vertex labeling of a k -uniform

dcsl graph, we mean the dimension of the poset F whose elements are the vertex labeling of the k -uniform

dcsl graph. Throughout this paper, by a poset we mean a planar poset.

We need the following existing results.

Theorem 1.1 [6] Suppose that the largest antichain in the poset P has size r . Then P can be partitioned into

r chains, but not fewer.

Theorem 1.2 [20] Suppose that the largest chain in the poset P has size r . Then P can be partitioned into

r antichains, but not fewer.

Theorem 1.3 [23] For n ≥ 2 , Sn , the standard n-dimensional poset, dim(Sn) = n .

Theorem 1.4 [19] For every n ≥ 5 , the standard example Sn is nonplanar, but it is a subposet of a planar

poset.

The following theorem is due to Felsner, Trotter, and Wiechert.

Theorem 1.5 [12] If the cover graph of a poset P is outer planar, then dim(P) ≤ 4 . If P is a poset with an

outer planar cover graph and the height of P is 2, then dim(P) ≤ 3 .

Proposition 1.1 [13] For a k -uniform dcsl graph G , δk(G) ≥ k. diam(G) .

Theorem 1.6 [13] If G is k -uniform dcsl, and m is a positive integer, then G is mk -uniform dcsl.

Theorem 1.7 [14] The cycle Cn, n ≥ 3 , with chords is a dcsl graph if and only if n is even and the maximum

number of chords is n
2 − 2 .

Germina and Jinto [15] proved that the vertex labeling of any 1-uniform dcsl graph forms a wg-family,

and for any wg-family F , the F -induced graph GF admits a 1-uniform distance compatible set labeling.

Germina and Nageswara Rao [16] proved that if F is a well-graded family of subsets of X whose F -induced

graph is GF and if CF is the cover graph of F with respect to set inclusion ‘⊆ ’, then CF
∼= GF .
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It is known that if P is a poset with a least element and a greatest element, and if P is planar, then

dim(P) ≤ 2 [3]. Also, if P is a poset with a least element (or a greatest element), and if P is planar, then

dim(P) ≤ 3 [24].

Analogously, we have:

Theorem 1.8 A 1-uniform dcsl graph whose collection of vertex labeling, F , forms a planar lattice. Then

dim(F ) ≤ 2 .

Theorem 1.9 A 1-uniform dcsl graph whose collection of vertex labeling, F , forms a planar poset, which has

a least element (or a greatest element). Then dim(F ) ≤ 3 .

Invoking Theorem 1.8 and Theorem 1.9:

Theorem 1.10 If the collection of vertex labeling F of a 1-uniform dcsl even cycle C2n, (n ≥ 2) , is a planar

lattice, then dim(F ) ≤ 2 .

Theorem 1.11 If the collection of vertex labeling F of a 1-uniform dcsl even cycle C2n, (n ≥ 2) , is a planar

poset, which has a least element (or a greatest element), then dim(F ) ≤ 3 .

2. Main results

[21] Since the assignment of vertex labeling of a 1-uniform dcsl graph is not unique, the problem of determining

posets obtained by embedding the vertex labeling of a 1-uniform dcsl graph is same as determining the existence

of different vertex labels f of a 1-uniform dcsl graph whose corresponding range Range(f) = F , say, forms

a poset under set inclusion ⊆ . Thus, there is a one to one correspondence between the 1-uniform dcsl f of a

graph and its corresponding poset F . Thus, it is always possible to find a 1-uniform dcsl f of a graph G so

that F = Range(f) forms a poset under set inclusion ⊆ . Hence, F contains the collection of vertex labeling

f of a 1-uniform dcsl graph G as an embedding of itself. Hence, the problem of determining the 1-uniform

dcsl labeling f of a graph G is equivalent in determining the poset F that embeds the 1-uniform dcsl vertex

labeling f of the same graph G .

Let F be the collection of vertex labeling of a 1-uniform dcsl graph G that forms a lattice. Then it is

noticed that all the maximal chains of the poset F have the same length, and hence F is graded.

Theorem 2.1 If the collection of vertex labeling F of a 1-uniform dcsl graph G forms a lattice, then it is

graded.

Proof Let G be a 1-uniform dcsl graph and f be its 1-uniform dcsl.

Suppose F is the collection of vertex labeling of a 1-uniform dcsl graph G that forms a lattice under ⊆ .

Suppose Inf F = P and Sup F = Q . That is, there exist unique vertices p, q ∈ G such that f(p) = P

and f(q) = Q .
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Suppose M1,M2, . . . ,Mt are the maximal chains of F , where

M1 : f(a0) ⊆ f(a1) ⊆ · · · ⊆ f(aM1),

M2 : f(b0) ⊆ f(b1) ⊆ · · · ⊆ f(bM2),

...

Mt : f(t0) ⊆ f(t1) ⊆ · · · ⊆ f(tMt).

Claim: l(M1) = l(M2) = · · · = l(Mt).

Since F is a lattice and P and Q are the infimum and supremum of F , the infimum and supremum of

each maximal chain Mi, 1 ≤ i ≤ t , is P and Q , respectively.

That is,

P (= f(p)) = f(a0) = f(b0) = · · · = f(t0)

and

Q(= f(q)) = f(aM1
) = f(bM2

) = · · · = f(tMt
).

Hence, since f is injective,

p = a0 = b0 = · · · = t0

and,

q = aM1 = bM2 = · · · = tMt .

Also, corresponding to each Mi (1 ≤ i ≤ t), there exists a path, say Pi , which connects both p and q

such that d(p, q) = l(Mi).

Hence, all the paths Pi (1 ≤ i ≤ t) have initial vertex p and end vertex q .

Since f is a 1-uniform dcsl that is injective, and f(a0), f(aM1) ∈ M1 such that p = a0, q = aM1 , and

d(p, q) = l(M1),

| f(a0)⊕ f(aM1) |=| f(p)⊕ f(q) |= d(p, q) = l(M1).

Similarly,

| f(b0)⊕ f(bM2) | =| f(p)⊕ f(q) |= d(p, q) = l(M2),

...
...

| f(t0)⊕ f(tMt) | =| f(p)⊕ f(q) |= d(p, q) = l(Mt).

Therefore, for each 1 ≤ i ≤ t , l(Mi) = d(p, q), and hence

l(M1) = l(M2) = · · · = l(Mt).

This completes the proof. 2

Let F be a collection of vertex labeling of 1-uniform dcsl even cycle C2n (n ≥ 2) that has minimum

width. By minimum width, we mean the smallest among all the widths. It can be observed that the minimum

width of F is 2 when F is a lattice.
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Proposition 2.1 Let F be the collection of vertex labeling of a 1-uniform dcsl even cycle C2n (n ≥ 2) that

forms a lattice. Then width(F ) = 2 .

Proof Let V (C2n) = {v1, v2, . . . , v2n} , and let f be a 1-uniform dcsl of C2n (n ≥ 2), such that F =

{f(v) : v ∈ V (C2n)} is a lattice.

Supposing width(F ) < 2, then all the members of F are comparable; hence, F is a chain, and hence,

the graph associated with F is a path, a contradiction. Hence, width(F ) ≥ 2.

By Theorem 1.8, dim(F ) ≥ 2, and also the dimension of a poset is at most the width of the poset;

hence, width(F ) ≥ 2. Hence, we conclude that width(F ) = 2. 2

From Theorem 2.1 and Proposition 2.1, one may notice that the collection of vertex labeling F of a

1-uniform dcsl even cycle that forms a lattice is always graded and width(F ) = 2. Hence, F is obtained as an

embedding of the collection of vertex labeling of 1-uniform dcsl of C2n, n ≥ 2, and we necessarily need a poset

that has exactly two maximal chains of length n each. This lead us to define “cyclic width-2 poset”.

Definition 2.1 The cyclic width-2 poset Cn on 2n elements a1, . . . , an, b1, . . . , bn is defined as the poset of

width 2 consisting of two chains A = {a1, . . . , an} and B = {b1, . . . , bn} such that, for 2 ≤ i ≤ n , ai−1 ⪯ ai

and bi−1 ⪯ bi , for 1 ≤ i ≤ n , a1 ⪯ bi , an ⪯ bn , and for 2 ≤ i ≤ n and 1 ≤ j ≤ n− 1 , ai || bj .

Proposition 2.2 The cyclic width-2 poset Cn on 2n elements is a lattice.

Proof The proof follows from the fact that the least and greatest elements in Cn are a1 and bn , respectively.
2

Proposition 2.3 For n ≥ 2 , the cyclic width-2 poset Cn on 2n elements, dim(Cn) = 2 .

Proof Since all the elements of Cn are not comparable, dim(Cn) > 1. Also, by Proposition 2.2, Cn is a

lattice with least element a1 and greatest element bn .

Hence, by Theorem 1.8, dim(Cn) = 2. 2

Proposition 2.4 There exists a 1-uniform dcsl f of even cycle C2n (n ≥ 2) , whose range

Range(f) = F , say, can be embedded in Cn , the cyclic width-2 poset on 2n elements.

Proof Let V (C2n) = {v1, v2, . . . , v2n} .
Let f be a 1-uniform dcsl cycle C2n (n ≥ 2) with X = {1, 2, . . . , n} .

Define f : V (C2n) → 2X by

f(v1) = ∅,

f(vj) = f(vj−1) ∪ {j − 1}, 2 ≤ j ≤ n,

f(vn+1) = X,

f(vn+j) = f(vn+j−1) \ {j − 1}, 2 ≤ j ≤ n.

Then:
|f(v1)⊕ f(vi)| = i− 1 = 1. d(v1, vi), 2 ≤ i ≤ n+ 1,
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|f(vn+1)⊕ f(vi)| = i− n− 1 = 1. d(vn+1, vi), n+ 2 ≤ i ≤ 2n.

In general, for 1 ≤ i < j ≤ 2n ,

|f(vi)⊕ f(vj)| =

{
1 = d(vi, vj), if vivj ∈ E(C2n)

l = d(vi, vj), otherwise;

where 2 ≤ l ≤ n .

Thus, f is a 1-uniform dcsl of C2n .

Let F = {f(vi) : vi ∈ V (C2n)} .
We prove that F is embedded in Cn , the cyclic width-2 poset on 2n elements a1, . . . , an, b1, . . . , bn of

width two consisting of two chains A = {a1, . . . , an} and B = {b1, . . . , bn} such that, for 2 ≤ i ≤ n , ai−1 ⪯ ai

and bi−1 ⪯ bi , for 1 ≤ i ≤ n , a1 ⪯ bi , an ⪯ bn , and for 2 ≤ i ≤ n and 1 ≤ j ≤ n− 1, ai || bj .

Define Φ : F → Cn defined by

Φ(f(vi)) =

{
ai, if 1 ≤ i ≤ n,

b2n+1−i, if n+ 1 ≤ i ≤ 2n.

Clearly,

f(vl−1) ⊆ f(vl) if and only if al−1 ⪯ al , for 2 ≤ l ≤ n .

Also, for n+ 2 ≤ l ≤ 2n ,

f(vl) ⊆ f(vl−1) if and only if b2n+1−l ⪯ b2n+2−l .

Further, for n+ 1 ≤ l ≤ 2n ,

f(v1) ⊆ f(vl) if and only if a1 ⪯ bl .

Furthermore, for 2 ≤ i ≤ n and n+ 2 ≤ j ≤ 2n ,

f(vi) || f(vj) if and only if ai || bj . Hence, F ∼= Cn .

Therefore, F is embedded in Cn . 2

Example 2.1 Figure 1 depicts the 1-uniform dcsl vertex labeling of C2n (n ≥ 2) , which forms a lattice and is

embedded in Cn .

Figure 1. Vertex labeling of C2n (n ≥ 2) that forms a lattice.
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Proposition 2.5 If the collection vertex labeling F of a 1-uniform dcsl even cycle C2n (n ≥ 2) is embedded

in Cn , then dim(F ) = 2 .

Proof Let f be the 1-uniform dcsl as in Proposition 2.4. Then F = {f(vi) : vi ∈ V (C2n)} , which is embedded

in Cn , the cyclic width-2 poset on 2n elements. Then dim(F ) ≤ dim(Cn) = 2. If dim(F ) < 2, then every

element of F is comparable and hence the graph associated with F is a path. Hence, there is no F whose

dimension is less than that of the dimension of Cn . Hence, we conclude that dim(F ) = dim(Cn) = 2. 2

Remark 2.1 One can notice that there are posets that do not form a lattice and have width 2. Consider the

following poset, W2 = {a, b, x, y} , whose Hasse diagram is given in Figure 2. Clearly, W2 is not a lattice. It

is interesting to see that the poset W2 is the smallest poset, which does not form a 1-uniform dcsl for an even

cycle on 4 vertices.

Figure 2. Hasse diagram of W2 = {a, b, x, y} .

Remark 2.2 It is quite interesting to see whether the converse of the Proposition 2.1 is true. That is, given a

poset of width 2 forming a lattice only if the elements of the poset will be the elements of the vertex labeling of

the 1-uniform dcsl of an even cycle C2n (n ≥ 2) .

Remark 2.3 If a poset P contains W2 as an isomorphic subposet, then P does not form a 1-uniform dcsl

even cycle since the existence of such a poset implies the noninjectivity of 1-uniform dcsl f . Hence, if F is a

poset whose members are vertex labeling of a 1-uniform dcsl even cycle, then F does not contain any subposet

that is isomorphic to W2 .

Proposition 2.6 Let F be a poset of width 2 whose members are vertex labeling of 1-uniform dcsl even cycle

C2n (n ≥ 2) . Then F is a lattice.

Proof Suppose, if possible, that F does not form a lattice, which means the poset F , which is not lattice, of

width 2, whose members are vertex labeling of 1-uniform dcsl even cycle C2n (n ≥ 2). That is, F is isomorphic

to W2 , which is a contradiction by Remark 2.3. 2

From Proposition 2.1 and Proposition 2.6, we get the following result.

Theorem 2.2 Let F be a collection of vertex labeling of a 1-uniform dcsl even cycle C2n (n ≥ 2) , which forms

a poset. Then width(F ) = 2 if and only if (F ,⊆) is a (planar) lattice.
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It is observed that there are lattices that have width 2, but to embed the vertex labeling of a 1-uniform dcsl

even cycle C2n (n ≥ 2), by Theorem 2.1, it should contain all the maximal chains of equal length. Thus, all

width 2 lattices that contain equal length of maximal chains form a 1-uniform dcsl even cycle. Furthermore,

the maximum height of such lattices is always |V (C2n)|
2 + 1.

Proposition 2.7 Let F be a lattice whose members are vertex labeling of 1-uniform dcsl even cycle C2n (n ≥

2) . Then the maximum height of F is |V (C2n)|
2 + 1 .

It has been proved that there are planar posets that are of higher dimension. For example, as proved in

Theorem 1.4 and Theorem 1.3, the n -dimensional poset Sn is a planar poset for 2 ≤ n ≤ 4 and dim(Sn) = n

for n ≥ 2. Now we prove that the vertex labeling F for a 1-uniform dcsl even cycle C2n (n ≥ 2) is isomorphic

to Sn if and only if n = 3.

Theorem 2.3 The collection of vertex labeling F of a 1-uniform dcsl even cycle C2n (n ≥ 2) is isomorphic

to n-dimensional poset Sn if and only if n = 3 .

Proof The collection of vertex labeling of 1-uniform dcsl even cycle C2n (n ≥ 2), forming a poset that is

isomorphic to Sn , when n = 3, is given in Figure 3.

Conversely, suppose, if possible, that there exists a 1-uniform dcsl, f of C2n (n ≥ 2), such that

F = {f(v) : v ∈ V (C2n)} forms a poset that is isomorphic to Sn , when n ̸= 3.

Case 1: When n < 3. By definition of Sn , the (Hasse) graph associated to poset Sn is disconnected,

which is a contradiction.

Case 2: When n > 3. In this case, the (Hasse) graph associated to a poset Sn is isomorphic to a chordal

graph. Note that the maximum number of chords in Sn is n(n − 3), and due to Theorem 1.7, the maximum

number of chords in a 1-uniform dcsl even cycle C2n is n− 2. We arrive a contradiction as n(n− 3) > n− 2.

Hence, F ∼= Sn if and only if n = 3. 2

Figure 3. Vertex labeling of 1-uniform dcsl even cycle C2n (n ≥ 2), which is isomorphic to the 3-dimensional poset S3 .

Theorem 2.4 If the collection of vertex labeling F of a 1-uniform dcsl even cycle C2n (n ≥ 2) is isomorphic

to n-dimensional poset Sn , then dim(F ) = 3 .

Proof Suppose F is the collection of vertex labeling of a 1-uniform dcsl even cycle C2n (n ≥ 2) forming an

n -dimensional poset Sn for n = 3. That is, F ∼= S3 . By Theorem 1.3, dim(Sn) = n for n ≥ 2 and hence

dim(F ) = 3. 2
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Remark 2.4 One may note that the collection of vertex labeling of a 1-uniform dcsl even cycle C2n (n ≥ 2)

forms a poset, but the converse need not be true. That is, there exists a poset whose elements do not form the

vertex labeling of any 1-uniform dcsl even cycle C2n (n ≥ 2) . Also, there exists a 3-dimensional poset (but not

lattice) whose Hasse graph is isomorphic to even cycle C2n when n = 3 , but their elements do not form the

vertex labeling of any 1-uniform dcsl even cycle C2n .

Remark 2.5 As remarked in Remark 2.3, the members of the 3-dimensional Chevron poset V6 [3] (see Figure

4), and its dual, do not exhibit the vertex labeling of any 1-uniform dcsl even cycle C2n , when n = 3.

Figure 4. The Hasse diagram of the Chevron.

Remark 2.6 Let GF be an F -induced graph of F , and CF the cover graph of F whose vertex set is F .

Two vertices, say P, Q ∈ F , are adjacent if and only if either P covers Q or Q covers P . From Theorem

2.3, the poset F ∼= Sn , when n = 3 , and the vertex labeling of any 1-uniform dcsl graph forms a wg-family, and

for any wg-family F , the F -induced graph GF admits a 1- uniform distance compatible set labeling. Hence,

CF
∼= GF , and hence the cover graph of Sn for n = 3 is a 1-uniform dcsl.

As an immediate consequence of the Theorem 2.3 and Remark 2.6:

Proposition 2.8 The cover graph of an n-dimensional poset Sn admits 1-uniform dcsl if and only if n = 3 .

Remark 2.7 From Theorem 2.3, it is noticed that the poset F , whose elements are the vertex labeling of 1-

uniform dcsl even cycle C2n (n ≥ 2) , has height(F ) = 2 and width(F ) = |V (C2n)|
2 . For, example consider the

poset, H8 , whose Hasse diagram is given in Figure 5. The (Hasse) graph of it is isomorphic to even cycle C8 ,

and the vertex labeling constitutes a 1-uniform dcsl of height(F ) = 2 and width(F ) = 4 = |V (C8)|
2 .

Figure 5. The Hasse diagram of H8 .

Proposition 2.9 Let F be a collection of vertex labeling of a 1-uniform dcsl even cycle C2n (n ≥ 2) , which

forms a poset (but not lattice). Then height(F ) = 2 if and only if width(F ) = |V (C2n)|
2 , which is maximum.

Proof Let V (C2n) = {v1, v2, . . . , vn, . . . , v2n} .

642



KARREY and AUGUSTINE/Turk J Math

Let X = {1, 2, . . . , n, . . . , 2n} , where n = |V (C2n)|
2 , and let f be a 1-uniform dcsl of C2n (n ≥ 2), such

that F = {f(v) : v ∈ V (C2n)} forms a poset (but not lattice).

Supposing height(F ) = 2, then, by Mirsky’s theorem 1.2, F can be partitioned into 2 antichains, but

not fewer, say Ŵ1 , and Ŵ2 , and both Ŵ1 and Ŵ2 are of same length, say n . Thus, both Ŵ1 and Ŵ2 are of

maximum length n . Hence, width(F ) = |V (C2n)|
2 (= 2), and hence width(F ) is maximum.

Conversely, supposing width(F ) = |V (C2n)|
2 (= w), then, by Dilworth’s theorem 1.1, F can be partitioned

into w chains, but not fewer, letting the partition be L1, L2, . . . , Lw ; hence, for 1 ≤ i ≤ w , |Li| ≤ 2 and hence,

height(F ) = 2. 2

Since the cover graph of a poset F whose elements are the vertex labeling of 1-uniform dcsl even cycle

C2n (n ≥ 2), which has height(F ) = 2, is an outer planar graph, by Theorem 1.5, dim(F ) ≤ 3.

Thus:

Theorem 2.5 If there exists any vertex labeling f of a 1-uniform dcsl even cycle C2n (n ≥ 2) , whose range

Range(f) = F , say, forms a poset (but not lattice) of height(F ) = 2 , then dim(F ) ≤ 3 .

Theorem 2.6 If there exists any vertex labeling f of a 1-uniform dcsl even cycle C2n (n ≥ 2) whose range

Range(f) = F , say, forms a poset, then dim(F ) ≤ 4.

Proof Since the cover graph of a poset F of vertex labeling of a dcsl even cycle C2n (n ≥ 2) is outer planar,

and by Theorem 1.5, dim(F ) ≤ 4. 2

Next, we find the dcsl index of a 1-uniform dcsl even cycle C2n (n ≥ 2). Recall that the minimum

cardinality of the underlying set X such that G admits a 1-uniform dcsl is called the 1-uniform dcsl index

δd(G) of G .

Lemma 2.1 The 1-uniform dcsl index of C2n (n ≥ 2) is n.

Proof Let V (C2n) = {v1, v2, . . . , vn, . . . , v2n} and f be a dcsl labeling of C2n with the underlying set as X.

First, we prove that | X |≥ n .

If possible, assume that C2n (n ≥ 2) is 1-uniform dcsl with | X |= n− 1.

Without loss of generality, assuming f(v1) = X1 = ∅ and f(vn+1) = Xn = X , then | X1 ⊕Xn |≤ n− 1,

whereas d(v1, vn+1) = n , a contradiction. Therefore, δd(C2n) ≥ n .

Since, by Proposition 2.4, there exists a vertex labeling f of a 1-uniform dcsl even cycle C2n(n ≥ 2)

whose dcsl set X is of cardinality n , δd(C2n) = n . 2

By Proposition 2.5 and Lemma 2.1, we have the following theorem.

Theorem 2.7 Let F be a collection of vertex labeling of a 1-uniform dcsl even cycle C2n (n ≥ 2) , which forms

a lattice under set inclusion ‘⊆ ’. Then dim(F ) ≤ δd(C2n) .

Theorem 2.8 Let the poset F be a set of vertex labeling of 1-uniform dcsl even cycle C2n (n ≥ 2) , which does

not form a lattice with respect to set inclusion ‘⊆ ’. Then dim(F ) ≤ δd(C2n) .
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Proof Let f be a 1-uniform dcsl of C2n (n ≥ 2), such that F = {f(v) : v ∈ V (C2n)} is the poset that does

not form a lattice with respect to set inclusion ‘⊆ ’.

We divide the proof into three parts.

Part 1: First, we prove that no such poset F exists when n = 2.

If, suppose, there exists such a poset F , then it has width(F ) = 2 and height(F ) = 2. Since F is not

a lattice and the width(F ) = 2, F ≃ W2 , which do not give 1-uniform dcsl for the respective graph, we arrive

at a contradiction.

Part 2: When n = 3, if we prove that F ∼= Sn , then dim(F ) = δd(C2n).

When n = 3, the poset F has either height(F ) = 3 and width(F ) = 3, or height(F ) = 2 and

width(F ) = 3.

Case 1: Supposing that F has height(F ) = 3 and width(F ) = 3, then F ∼= V6 . Then, by Proposition

2.5, the poset F , whose elements do not form the vertex labeling of a 1-uniform dcsl even cycle C2n (n ≥ 2),

is a contradiction.

Thus, F does not possess height(F ) = 3 and width(F ) = 3.

Case 2: Now, supposing F has height(F ) = 2 and width(F ) = 3, then F ∼= Sn , and hence by

Theorem 2.4, dim(F ) = 3, and by Lemma 2.1, δd(C6) = 3. Hence, dim(F ) = δd(C6).

Part 3: When n > 3, if we prove that dim(F ) ≤ 4, then dim(F ) ≤ δd(C2n).

When n > 3, by Theorem 2.6, dim(F ) ≤ 4, and by Lemma 2.1, δd(C2n) = n .

Hence, dim(F ) ≤ δd(C2n). 2

Theorem 2.9 Let the poset F be the collection of vertex labeling for 1-uniform dcsl even cycle C2n (n ≥ 2)

whether or not it forms a lattice with respect to set inclusion ‘⊆ ’. Then dim(F ) ≤ δd(C2n) .

Since, by Theorem 1.6, 1-uniform dcsl implies k -uniform dcsl and even cycles always admit 1-uniform

dcsl, thus:

Theorem 2.10 Even cycle C2n (n ≥ 2) is k -uniform dcsl.

In view of Theorem 2.10, it is interesting to find the dcsl index of a k -uniform even cycle C2n (n ≥ 2).

Lemma 2.2 For n ≥ 2 , δk(C2n) = kn .

Proof By proposition 1.1, for any k -uniform dcsl-graph G , δk(G) ≥ k. diam(G).

Hence, δk(C2n) ≥ k. diam(C2n) = kn ; that is, δk(C2n) ≥ kn .

We claim that there exists k-uniform dcsl of even cycle C2n, n ≥ 2, with underlying set X whose

cardinality is kn .

Let X = {1, 2, . . . , kn} .
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Define the dcsl labeling f : V (C2n) → 2X , defined by

f(v1) = ∅,

f(v2) = f(v1) ∪ {1, 2, . . . , k} = {1, 2, . . . , k},

f(v3) = f(v2) ∪ {k + 1, k + 2, . . . , k + k = 2k}

= {1, 2, . . . , k, k + 1, . . . , 2k}.

For 2 ≤ j ≤ n,

f(vj) = f(vj−1) ∪ {(j − 2)k + 1, (j − 2)k + 2, . . . , (j − 1)k},

and f(vn+1) = X = {1, 2, . . . , (n− 1)k, nk},

f(vn+2) = f(vn+1) \ {1, 2, . . . , k}

= {k + 1, k + 2, . . . , 2k, . . . , nk},

f(vn+3) = f(vn+2) \ {k + 1, k + 2, . . . , 2k}

= {2k + 1, 2k + 2, . . . , 3k, . . . , nk}.

For 2 ≤ j ≤ n,

f(vn+j) = f(vn+j−1) \ {(j − 2)k + 1, (j − 2)k + 2, . . . , (j − 1)k}.

Thus,

|f(v1)⊕ f(v2)| = |{1, 2, . . . , k}| = k = k. d(v1, v2),

|f(v2)⊕ f(v3)| = |{k + 1, k + 2, . . . , k + k = 2k}| = k = k. d(v2, v3),

|f(v1)⊕ f(v3)| = |{1, 2, . . . , 2k}| = 2k = k. d(v1, v3).

Hence, in general, for 1 ≤ i < j ≤ 2n ,

|f(vi)⊕ f(vj)| =

{
k, if vivj ∈ E(G)

lk, if vivj /∈ E(G),

where l = d(vi, vj) and 2 ≤ l ≤ n .

Hence, there exists k -uniform dcsl for C2n (n ≥ 2), with | X |= kn .

Therefore, δk(C2n) = kn . 2

By Theorem 1.6, note that every 1-uniform dcsl of C2n (n ≥ 2) is a k -uniform dcsl. However, every

vertex labeling of a k -uniform dcsl even cycle C2n (n ≥ 2) need not form a connected poset, but there always

exists a k -uniform dcsl of C2n (n ≥ 2), which forms a connected poset. Hence, the Hasse diagram (poset)

that embeds the vertex labeling of the 1-uniform dcsl even cycle could also embed the vertex labeling of the

k -uniform dcsl even cycle when that poset is connected.

The following theorem is a consequence of Theorem 1.6, Lemma 2.2, and Theorem 2.9.

Theorem 2.11 If the poset F of the collection of vertex labeling of a k -uniform dcsl even cycle C2n (n ≥ 2)

under set inclusion ‘⊆ ’ is connected, then dim(F ) ≤ δk(C2n) .

645



KARREY and AUGUSTINE/Turk J Math

Acknowledgments

The work reported in this note is a part of the research work done under the Major Research Project No.

SR/S4/MS : 760/12, funded by Department of Science and Technology, Government of India, New Delhi. The

authors express their sincere gratitude to the referee and Shaini P for the incisive suggestions and encouragement

to finalize this paper in this present form.

References

[1] Acharya BD. Set-valuations of graphs and their applications. MRI Lecture Notes in Applied Mathematics 1983; 2:

1-25.

[2] Acharya BD, Germina KA. Distance compatible set-labeling of graphs. Indian Journal of Mathematics and Com-

puter Science 2011; 1: 49-54.

[3] Baker K, Fishburn P, Roberts F. Partial orders of dimension 2, interval orders and interval graphs. Networks 1971;

2: 11-28.

[4] Birkhoff G. Lattice Theory. Providence, RI, USA: AMS, 1967.

[5] Bogart KP. Maximal dimensional partially ordered sets I Hiraguchi’s theorem. Discrete Math 1973; 5: 21-31.

[6] Dilworth RP. A decomposition theorem for partially ordered sets. Ann Math 1950; 51: 161-166.

[7] Djokovic DZ. Distance preserving subgraphs of hypercubes. J Combin Theory Ser B 1973; 14: 263-267.

[8] Doignon JP, Falmagne JCl. Well graded families of relations. Discrete Math 1997; 173: 35-44.

[9] Dushnik B, Miller EW. Partially ordered sets. Am J Math 1941; 63: 600-610.

[10] Eppstein D, Falmagne JCl, Ovchinnikov S. Media theory. Discrete Applied Mathematics 2002; 121: 83-101.

[11] Falmagne JCl. Stochastic token theory. J Math Psychol 1997; 41: 129-143.

[12] Felsner S, Trotter WT, Wiechert V. The dimension of posets with planar cover graphs. Graph Combinator 2014;

1-13.

[13] Germina KA. Uniform distance-compatible set-labelings of graphs. Journal of Combinatorics, Information and

System Sciences 2012; 37: 169-178.

[14] Germina KA, Thomas BK. Distance compatible set-labeling index of graphs. Int J Contemp Math Sciences 2010;

5: 911-919.

[15] Germina KA, James J. Characterization of 1-uniform dcsl graphs using well-graded family of sets. Advances and

Applications in Discrete Mathematics 2015; 15: 113-123.

[16] Germina KA, Nageswararao K. Characterization of vertex labeling of 1-uniform dcsl graph which form a lattice.

Journal of Fuzzy Set Valued Analysis 2015; 2015: 166-170.

[17] Harary F. Graph Theory. Boston, MA, United States: Addison-Wesley, 1969.

[18] Hiraguchi T. On the dimension of orders. Sci Rep Kanazawa Univ 1955; 4: 1-20.

[19] Kelly D. On the dimension of partially ordered sets. Discrete Math 1981; 35: 135-156.

[20] Mirsky L. A dual of Dilworth’s decomposition theorem. Am Math Mon 1971; 78: 876-877.

[21] Nageswara Rao K, Germina KA, Shaini P. On the dimension of vertex labeling of k-uniform dcsl of k-uniform

caterpillar. Carpathian Math Publ 2016; 8: 134-149.

[22] Ovchinnikov S. Partial cubes: Structures, characterizations, and constructions. Discrete Math 2008; 308: 5597-5621.

[23] Trotter WT. Dimension of the crown Sk
n . Discrete Math 1974; 8: 85-103.

[24] Trotter WT, Moore J. The dimension of planar posets. J Combin Theory B 1977; 22: 54-67.

[25] Winkler PM. Isometric embedding in products of complete graphs. Discrete Appl Math 1984; 7: 221-225.

646


	Introduction
	Main results

