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Abstract: In this paper, the notion of the pseudofield of values of matrices is introduced and studied. The relationship

between quantum states and the field of values of matrices is mentioned. The notion of the pseudopolynomial numerical

hull, as a generalization of the pseudofield of values, of matrices is introduced and some properties of this notion are

investigated.
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1. Introduction and preliminaries

Let Mn be the algebra of all n × n complex matrices equipped with the operator norm ∥.∥ induced by the

Euclidean vector norm ∥x∥ = (x∗x)1/2 on Cn , i.e. ∥A∥ = max{∥Ax∥ : x ∈ S1}, where A ∈ Mn and

S1 = {x ∈ Cn : ∥x∥ = 1} is the unit sphere. In our discussion, we assume that D(a, r) = {µ ∈ C : |µ− a| ≤ r} ,
which is the closed disk at centered a ∈ C with radius r > 0. We also use the convention that if z is an

eigenvalue of A ∈ Mn , then ∥(A− zI)−1∥ := ∞ . The motivation of our study comes from two branches. The

first one concerns the study of pseudospectra. The theory of pseudospectra provides an analytical and graphical

alternative for investigating nonnormal matrices and operators, gives a quantitative estimate of departure from

nonnormality, and also gives information about the stability of the solution of a system of linear differential

equations. To see the other applications of pseudospectra of matrices in the physical sciences, we refer the reader

to [12] and its references. For a given ϵ > 0 and a matrix A ∈ Mn , the ϵ-pseudospectrum (pseudospectrum

for short) of A is defined and denoted by σϵ(A) = {z ∈ C : ∥(A − zI)−1∥ ≥ 1/ϵ}, where I denotes the n × n

identity matrix. It is known that

σϵ(A) =
∪

E∈Mn,∥E∥≤ϵ

σ(A+ E), (1)

where the matrix A+ E is a perturbation of A , and σ(.) denotes the spectrum, i.e. the set of all eigenvalues.

Note that in the physical sciences, the eigenvalues have many applications; for instance:

• In quantum mechanics, they help us to find atomic energy levels and the frequency of a laser;
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• In electrical engineering, they determine the frequency response of an amplifier and the reliability of a

power system.

The following properties of the pseudospectrum of matrices are useful in our discussion. For more details,

see [6, 12].

Proposition 1.1 Let A ∈ Mn and ϵ > 0. Then the following assertions are true:

(i) σϵ(αA+ βI) = ασϵ/|α|(A) + β , where α, β ∈ C and α ̸= 0;

(ii) σϵ(A) = D(µ, ϵ) if and only if A = µI , where µ ∈ C ;

(iii) If A =

(
A1 B
0 A2

)
, where A1 and A2 are square matrices, then σϵ(A1)∪σϵ(A2) ⊆ σϵ(A) . The equality

holds if B = 0; i.e. σϵ(A1 ⊕A2) = σϵ(A1) ∪ σϵ(A2).

Proposition 1.2 Let A ∈ Mn . Then:

(i) for every ϵ > 0 , σ(A) +D(0, ϵ) ⊆ σϵ(A);

(ii) A is normal (i.e. A∗A = AA∗ , where A∗ = A
T
) if and only if σϵ(A) = σ(A) +D(0, ϵ) for every ϵ > 0.

Our second motivation concerns the study of fields of values, which is useful in studying and understanding

matrices and has many applications in numerical analysis, differential equations, systems theory, etc.; e.g., see

[3, 8, 9] and the references cited there. For A ∈ Mn , the field of values of A is defined and denoted by

W (A) = {x∗Ax : x ∈ S1}.

It is known that σ(A) ⊆ W (A). Moreover, in the following proposition, we list some important properties of

the field of values of matrices. For more information, see [8, 9].

Proposition 1.3 Let A ∈ Mn . Then the following assertions are true:

(i) W (A) is a compact convex set in C ;

(ii) W (A) ⊆ R if and only if A is Hermitian (i.e. A = A∗) ;

(iii) W (A) ⊆ [0,∞) if and only if A is positive semidefinite (i.e. A = A∗ and x∗Ax ≥ 0 for all x ∈ Cn).

In this paper, we are going to introduce and study the notions of the pseudofield of values and pseu-

dopolynomial numerical hulls of matrices. For this, in Section 2, we state the relationship between quantum

states and the field of values of matrices. Also, for a given ϵ > 0, we introduce the notion of the ϵ-pseudofield

of values of matrices and then we investigate some algebraic and geometrical properties of this notion. In

Section 3, we introduce and study the notion of the ϵ-pseudopolynomial numerical hull, as a generalization of

the ϵ-pseudofield of values of matrices.
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2. Quantum states and the field of values

In quantum physics, quantum states are represented by density matrices, i.e. positive semidefinite matrices that

have trace one. If a quantum state P ∈ Mn has rank one, i.e. P = xx∗ for some x ∈ Cn with x∗x = 1, then

P is called a pure quantum state; otherwise, P is said to be a mixed quantum state, which can be written as a

convex combination of pure quantum states; see [11]. By these facts, we state the following result for the field

of values of matrices.

Proposition 2.1 Let A ∈ Mn . Then:

W (A) = {tr(AP ) : P ∈ Mn is a pure quantum state}.

Proof By the fact that tr(XY ) = tr(Y X) for appropriate X,Y, and also from the details at the beginning

of this section, we have

W (A) = {x∗Ax : x ∈ S1}

= {tr(x∗Ax) : x ∈ S1}

= {tr(A(xx∗)) : x ∈ S1}

= {tr(AP ) : P ∈ Mn is a pure quantum state}.

Thus, the proof is complete. 2

In view of Proposition 2.1, quantum states are useful in the study of the field of values of matrices, and

vice versa. We introduce the notion of the pseudofield of values of matrices, which is related to the field of

values of perturbed matrices.

Definition 2.2 Let ϵ > 0 and A ∈ Mn. The ϵ-pseudofield of values (pseudofield of values for short) of A is

defined and denoted by

Wϵ(A) = {λ ∈ C : λ ∈ W (A+ E) for some E ∈ Mn with ∥E∥≤ ϵ}.

Note that in Definition 2.2, the matrix A + E , where ∥E∥≤ ϵ , is considered as a perturbation of A . In the

following theorem, we show that the ϵ-pseudofield of values of a matrix as A ∈ Mn coincides with the augmented

field of values of A , which is defined, e.g., see [8, p. 103], as W (A) + D(0, ϵ). Note, by Definition 2.2, that

Wϵ(A) =
∪

E∈Mn,∥E∥≤ϵ W (A+E). In the following theorem, we also show that the union can be taken over all

the rank-one matrices E ∈ Mn with norm at most ϵ .

Theorem 2.3 Let A ∈ Mn and ϵ > 0. Then the following assertions are true:

(i) Wϵ(A) = W (A) +D(0, ϵ);

(ii) If n ≥ 2 , then
∪

x,y∈Cn\{0},∥x∥∥y∥≤ϵ W (A+ xy∗) = Wϵ(A).

Proof To prove (i), let z ∈ Wϵ(A) be given. Then there exist a matrix E ∈ Mn and a vector x ∈ S1 such

that ∥E∥ ≤ ϵ and z = x∗(A+E)x = x∗Ax+x∗Ex . Since |x∗Ex| ≤ ϵ , z ∈ W (A)+D(0, ϵ). Thus, the inclusion

⊆ holds. For the converse, let z = λ + ξ ∈ W (A) + D(0, ϵ) be such that λ ∈ W (A) and ξ ∈ D(0, ϵ). Since
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∥ξI∥ ≤ ϵ , using Proposition 3.1((ii) and (iii)), we have z = λ + ξ ∈ W (A) + ξ = W (A + ξI). By Definition

2.2, z ∈ Wϵ(A); this completes the proof of (i).

To prove (ii), since for every rank-one matrix as E := xy∗ ∈ Mn , where x, y ∈ Cn \{0} , ∥E∥ = ∥x∥∥y∥ ,
the inclusion

∪
x,y∈Cn\{0},∥x∥∥y∥≤ϵ W (A + xy∗) ⊆ Wϵ(A) follows from Definition 2.2. To prove the opposite

inclusion, it is enough, by (i), to show that:

W (A) +D(0, ϵ) ⊆
∪

x,y∈Cn\{0},∥x∥∥y∥≤ϵ

W (A+ xy∗).

For this, let λ ∈ W (A) + D(0, ϵ) be given. Then there exist a vector x ∈ S1 and a complex number ξ with

|ξ| ≤ ϵ such that λ = x∗Ax+ ξ . If ξ = 0, then using the fact that n ≥ 2, we can find a nonzero vector y ∈ Cn

such that ∥y∥ ≤ ϵ and y∗x = 0 = ξ. Thus, λ = x∗(A+ xy∗)x ∈ W (A+ xy∗).

For the case ξ ̸= 0, by setting y = ξx , we see that ∥y∥ = |ξ| ≤ ϵ , y∗x = ξ and λ = x∗(A + xy∗)x ∈
W (A+ xy∗). This completes the proof of (ii). Thus, the proof is complete. 2

By setting A = 0 ∈ Mn , where n ≥ 2, in Theorem 2.3, we have the following result in which we find the

union of the field of values of perturbed rank-one matrices.

Corollary 2.4 Let n ≥ 2 . Then ∪
x,y∈Cn\{0},∥x∥∥y∥≤ϵ

W (xy∗) = D(0, ϵ).

The following example shows that the result in Theorem 2.3(ii) does not hold for the case n = 1.

Example 2.5 Let A = [a] ∈ M1 . Then we have∪
e∈C\{0},|e|≤ϵ

W (A+ [e]) = D(a, ϵ) \ {a} ̸= D(a, ϵ) = Wϵ(A).

3. Generalized field of values of perturbed matrices

In this section, we are going to introduce the notion of pseudopolynomial numerical hulls of matrices as a

generalization of the pseudofield of values. The polynomial numerical hull of order k , where k is a positive

integer, is a set of complex numbers naturally associated with a given A ∈ Mn , defined and denoted by

V k(A) = {λ ∈ C : |p(λ)| ≤ ∥p(A)∥ for all p ∈ Pk},

where Pk is the set of all scalar polynomials of degree k or less. This is a set designed to give more information

than the spectrum alone can provide about the behavior of the matrix A under the action of polynomials and

other functions; e.g., see [5, 7] and references therein. The sets V k(A), where k ≥ 1, are generally called

the polynomial numerical hulls of A. For the case k = 1, V k(A) reduces to the field of values of A ; namely,

V 1(A) = W (A). This shows that the notion of polynomial numerical hulls is a generalization of the field of

values of matrices.

In the following proposition, we list some useful properties of the polynomial numerical hulls of matrices,

which will be useful in our discussion.
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Proposition 3.1 ([1, 2]); Let A ∈ Mn and 1 ≤ k ≤ n be a positive integer. Then the following assertions are

true:

(i) V k(A) is a compact set in C ;

(ii) σ(A) = V m(A) ⊆ · · · ⊆ V k+1(A) ⊆ V k(A) ⊆ · · · ⊆ V 1(A) = W (A), where m ≥ n;

(iii) V k(αA+ βI) = αV k(A) + β , where α, β ∈ C ;

(iv) V k(U∗AU) = V k(A), where U ∈ Mn is unitary;

(v) V k(AT ) = V k(A) and V k(A∗) = V k(A) := {λ : λ ∈ V k(A)};

(vi) V k(A) = {z ∈ C : (z, z2, ..., zk) ∈ conv(W (A,A2, ..., Ak))} , where conv(.) denotes the convex hull and

W (A1, A2, ..., Am) := {(x∗A1x, x
∗A2x, ..., x

∗Amx) : x ∈ S1} is the joint field of values of (A1, A2, ..., Am) ∈
Mm

n .

Now we introduce the notion of pseudopolynomial numerical hulls of square complex matrices, which is

related to the polynomial numerical hulls of perturbed matrices.

Definition 3.2 Let ϵ > 0 and A ∈ Mn. The ϵ-pseudopolynomial numerical hull (pseudopolynomial numerical

hull for short) of order k of A is defined and denoted by

V k
ϵ (A) = {λ ∈ C : λ ∈ V k(A+ E) for some E ∈ Mn with ∥E∥≤ ϵ}.

The sets V k
ϵ (A) , where k ∈ N , are generally called the ϵ-pseudopolynomial numerical hulls of A .

Using Definition 3.2, for every matrix A ∈ Mn , we have the following useful observation:

V k
ϵ (A) =

∪
E∈Mn,∥E∥≤ϵ

V k(A+ E). (2)

Moreover, we have the following result.

Proposition 3.3 Let A ∈ Mn. Then

V k(A) =
∩
ϵ>0

V k
ϵ (A).

Proof The inclusion ⊆ follows from (2). To prove the converse, let λ ∈
∩

ϵ>0 V
k
ϵ (A) be given. We will show

that λ ∈ V k(A). By Definition 3.2, we have that for every m ∈ N , there exists a matrix Em ∈ Mn such that

∥Em∥ ≤ 1

m
and λ ∈ V k(A + Em). Now, let p ∈ Pk be given. Then |p(λ)| ≤ ∥p(A + Em)∥. Since Em −→ 0

as m −→ ∞ , and p(.) and ∥.∥ are continuous functions, |p(λ)| ≤ ∥p(A)∥ . Therefore, λ ∈ V k(A), and so the

proof is complete. 2

In the following theorem, we state some basic and essential properties of the pseudopolynomial numerical

hulls of matrices. Part (ii) of this theorem shows that the notion of pseudopolynomial numerical hulls is a

generalization of the pseudofield of values of matrices.

651



KHAKSHOUR et al./Turk J Math

Theorem 3.4 Let ϵ > 0 and A ∈ Mn . Then the following assertions are true:

(i) V k
ϵ (U∗AU) = V k

ϵ (A) , where U ∈ Mn is unitary;

(ii) σϵ(A) = V m
ϵ (A) ⊆ · · · ⊆ V k+1

ϵ (A) ⊆ V k
ϵ (A) ⊆ · · · ⊆ V 1

ϵ (A) = Wϵ(A), where m ≥ n;

(iii) V k
ϵ (αA+ βI) = αV k

ϵ/|α|(A) + β , where α ̸= 0 and β are complex scalars;

(iv) V k
ϵ (A) is a nonempty and compact set in C ;

(v) V k
ϵ (AT ) = V k

ϵ (A) and V k
ϵ (A∗) = V k

ϵ (A), and consequently, if A is Hermitian, then V k
ϵ (A) is symmetric

with respect to the real axis;

(vi) V k
ϵ (A) = D(µ, ϵ) if and only if A = µI , where µ ∈ C ;

(vii) If A = A1 ⊕A2, where Ai ∈ Mni (n1 + n2 = n), then V k
ϵ (A1) ∪ V k

ϵ (A2) ⊆ V k
ϵ (A). The set equality holds

if k = n .

Proof The assertions in (i)–(v) follow easily from Proposition 3.1, Definitions 3.2 and 2.2, and relations (1) and

(2). To prove (vi), let V k
ϵ (A) = D(µ, ϵ). By Proposition 1.2(i) and part (ii), we have σ(A)+D(0, ϵ) ⊆ D(µ, ϵ),

and hence, σ(A) = {µ}. Therefore, σϵ(A) = D(µ, ϵ), and so, by Proposition 1.1(ii), A = µI. The converse

also easily follows from part (ii), Proposition 1.1(ii), and Theorem 2.3(i). Finally, to prove (vii), it is enough

to show that V k
ϵ (A1) ⊆ V k

ϵ (A). For this, let z ∈ V k
ϵ (A1) be given. By Definition 3.2, there exists a matrix

E ∈ Mn1 such that ∥E∥ ≤ ϵ and z ∈ V k(A1 + E). Hence, for all p ∈ Pk , we have:

|p(z)| ≤ ∥p(A1 + E)∥

≤ ∥p((A1 + E)⊕A2)∥

= ∥p((A1 ⊕A2) + (E ⊕ 0))∥

= ∥p(A+ E′)∥,

where E′ = E ⊕ o . So, z ∈ V k(A + E′). Since ∥E′∥ = ∥E∥ ≤ ϵ , by (2), we see that z ∈ V k
ϵ (A), and hence

the inclusion holds. For the case k = n , the set equality also holds by part (ii) and Proposition 1.1(iii). The

proof is complete. 2

The following theorem states one property of V n
ϵ (.).

Theorem 3.5 Let ϵ > 0 , and A,B ∈ Mn be such that AB = BA . If A or A+B is normal, then

σϵ(A+B) ⊆ σ(A) + σϵ(B).

Proof At first, we assume that A is normal, so there exists a unitary matrix U ∈ Mn such that U∗AU =

λ1In1 ⊕ · · · ⊕ λkInk
. The commutativity of A and B implies that U∗BU = T1 ⊕ · · · ⊕Tk, where Ti ∈ Mni . By
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Proposition 1.1((i) and (iii)) and Theorem 3.4((i) and (ii)), we have:

σϵ(A+B) = σϵ(U
∗AU + U∗BU)

= σϵ((λ1In1 + T1)⊕ · · · ⊕ (λkInk
+ Tk))

=
k∪

i=1

σϵ(λiI + Ti)

=
k∪

i=1

(λi + σϵ(Ti))

⊆ σ(A) + σϵ(B).

The result in the case that A+B is normal follows from Proposition 1.2(ii). The proof is thus complete. 2

The following example shows that the condition “A or A+B is normal” in Theorem 3.5 is necessary.

Example 3.6 Let ϵ > 0 , and A = B =

(
0 1
0 0

)
. Clearly, A and A+B are not normal. By [6, Proposition

3.1] and Proposition 1.1(ii), we have

σϵ(A+B) = 2σϵ/2(A) = D(0,
√
2ϵ+ ϵ2) ⊈ D(0,

√
ϵ+ ϵ2) = σ(A) + σϵ(B).

Corollary 3.7 Let ϵ > 0, and let A be a normal matrix such that its spectrum is symmetric with respect to

the origin. Then

2σϵ/2(ReA⊕ iImA) ⊆ σ(A) + σϵ(A
∗),

where ReA =
1

2
(A+A∗) and ImA = 1

2i (A−A∗) .

Proof By setting B := A∗ in Theorem 3.5 and using Proposition 1.1(ii), we see that:

2σϵ/2(ReA) ⊆ σ(A) + σϵ(A
∗).

By the same manner as in the above, we also have:

2σϵ/2(iImA) ⊆ σ(A)− σϵ(A
∗).

Since σ(A) is symmetric with respect to the origin and A is normal, −σϵ(A
∗) = σϵ(A

∗). Hence, the result

follows from Proposition 1.1(iii). 2

Remark 3.8 Recently, in [10], the authors defined for ϵ > 0 the ϵ-pseudospectral radius of A ∈ Mn as

rϵ(A) = sup{|λ| : λ ∈ σϵ(A)},

and they showed that for all commutative matrices A,B :

rϵ(A+B) ⩽ rϵ(A) + rϵ(B).
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Using Theorem 3.5, we obtain the following inequality, which is a refinement of the inequality above:

rϵ(A+B) ⩽ r(A) + rϵ(B),

where A or A+B is normal, AB = BA , and r(A) is the spectral radius of A , i.e. r(A) = maxz∈σ(A)|z|.

In the following theorem, we give a connection between the augmented polynomial numerical hulls and

the pseudopolynomial numerical hulls of matrices.

Theorem 3.9 Let A ∈ Mn and ϵ > 0 . Then

V k(A) +D(0, ϵ) ⊆ V k
ϵ (A).

The set equality holds if one of the following conditions is satisfied:

(i) A is normal and k = n ;

(ii) A is arbitrary and k = 1 ;

(iii) A is a scalar matrix and k is arbitrary.

Proof Let µ = λ+ ξ ∈ V k(A)+D(0, ϵ) be such that λ ∈ V k(A) and ξ ∈ D(0, ϵ). Since ∥ξI∥ ≤ ϵ , Proposition

3.1(iii) and relation (2) imply that

µ = λ+ ξ ∈ V k(A+ ξI) ⊆
∪

∥E∥≤ϵ

V k(A+ E) = V k
ϵ (A).

Thus, the inclusion holds. To investigate the second assertion, if condition (i) or (ii) holds, then the set equality

follows from Theorem 3.4(ii), Proposition 1.2(ii), and Theorem 2.3(i). Finally, if condition (iii) holds, then

the set equality follows from Theorem 3.4(vi). Thus, the proof is complete. 2

The following example illustrates that the set equality in Theorem 3.9 does not hold in general.

Example 3.10 Let ϵ = 1 and A = A1 ⊕ A2 ⊕ A3, where A1 =

(
1 0
0 0

)
, A2 =

(
i 0
0 i

)
, and A3 =(

2 i
i −2

)
. By setting E = E1⊕E2⊕E3, where E1 =

(
0 0
0 − 1

2

)
, E2 =

(
0 0
0 0

)
, and E3 =

(
1 0
0 −1

)
,

we see that ∥E∥≤ 1 . Since A2 and (A + E)2 are Hermitian, by [1, Theorem 4.2], we obtain that V 4(A) =

σ(A) = {1, 0, i,
√
3,−

√
3} and V 4(A+E) = σ(A+E) = {1,− 1

2 , i, 2
√
2,−2

√
2} . Therefore, 2

√
2 ∈ V 4(A+E) ⊆

V 4
1 (A), but 2

√
2 /∈ V 4(A) +D(0, 1) . Thus, V 4(A) +D(0, 1) ̸= V 4

1 (A).

Let S ⊆ C be a compact set and k be a positive integer. The polynomially convex hull of degree k of

S , e.g., see [4], is defined as

pconvk(S) = {λ ∈ C : |p(λ)| ≤ max
z∈S

|p(z)| for all p ∈ Pk}.

It is clear that S ⊆ pconvk(S). If S = pconvk(S), then S is said to be a polynomially convex set. Now we

state the following proposition.
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Proposition 3.11 Let A ∈ Mn , ϵ > 0 , and S be a compact set in the complex plane such that S ⊆ V k
ϵ (A) .

Then pconvk(S) ⊆ V k
ϵ (A). Consequently, V k

ϵ (A) is a polynomially convex set.

Proof Let z ∈ pconvk(S) and p ∈ Pk be given. Then |p(z)| ≤ max
t∈S

|p(t)| =: |p(z1)| for some z1 ∈ S .

Since z1 ∈ S ⊆ V k
ϵ (A), Definition 3.2 implies that there exists a matrix E ∈ Mn such that ∥E∥ ≤ ϵ and

|p(z1)| ≤ ∥p(A + E)∥ . Thus, |p(z)| ≤ ∥p(A + E)∥ , and hence, z ∈ V k
ϵ (A). The second assertion follows from

the first assertion and Theorem 3.4(iv). Therefore, the proof is complete. 2
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