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Abstract: Let β > 1 be a real number. For any x ∈ [0, 1] , let rn(x, β) be the maximal length of consecutive zero digits

in the first n digits of the β -expansion of x . In this note, it is proved that for any 0 < a < b < +∞ , the set

Ea,b = {x ∈ [0, 1] : lim inf
n→∞

rn(x, β)

logβ n
= a, lim sup

n→∞

rn(x, β)

logβ n
= b}

has the full Hausdorff dimension.
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1. Introduction

For any real number β > 1, let

Tβ : [0, 1] → [0, 1]

be the β-transformation defined by

Tβ(x) = βx− ⌊βx⌋,

where ⌊ξ⌋ means the largest integer no more than ξ . Then for any x ∈ [0, 1], Tβ leads to the following series

representation of x :

x =
ε1(x, β)

β
+

ε2(x, β)

β2
+ · · ·+ εn(x, β)

βn
+ · · · ,

where εn(x, β) = ⌊βTn−1
β (x)⌋ is said to be the n-th digit of x with base β . The infinite digit sequence

ε1(x, β)ε2(x, β) · · · εn(x, β) · · ·

is said to be the β-expansion of x .

For n ≥ 1, we denote by rn(x, β) the maximal length of consecutive 0 digits in ε1(x, β) · · · εn(x, β), i.e.

rn(x, β) = max{k ≥ 1 : εi+1(x, β) = · · · = εi+k(x, β) = 0 for some 0 ≤ i ≤ n− k}.

Here we agree to define rn(x, β)=0 if there is no 0 digit in ε1(x, β) · · · εn(x, β). Of course, rn(x, β) is

monotonically nondecreasing with respect to n . There are many results about the growth speed of rn(x, β).
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For β = 2, Erdös and Rényi [3] proved that for Lebesgue almost all x ∈ [0, 1],

lim
n→∞

rn(x, 2)

log2 n
= 1, (1.1)

in 1970. See also [12] for a proof of (1.1). Furthermore, Ma et al. [9] showed that the set of points that violate

(1.1) is of Hausdorff dimension one. Recently, Sun and Xu [13] determined the Hausdorff dimension of the set

Da,b =

{
x ∈ [0, 1] : lim inf

n→∞

rn(x, 2)

log2 n
= a, lim sup

n→∞

rn(x, 2)

log2 n
= b

}
with 0 < a < b < +∞ . They proved that the exceptional set Da,b has Hausdorff dimension one. In 2016,

Li and Wu [8] replaced log2 n in (1.1) by a general function φ(n), where φ : N → R+ is a monotonically

increasing function with lim
n→∞

φ(n) = +∞ . They considered the following set:

Dφ =

{
x ∈ [0, 1] : lim inf

n→∞

rn(x, 2)

φ(n)
= 0, lim sup

n→∞

rn(x, 2)

φ(n)
= +∞

}
.

Li and Wu [8] showed that the exceptional set Dφ has Hausdorff dimension 1 if lim sup
n→∞

n
φ(n) = +∞ ; otherwise

Dφ has Hausdorff dimension 0. Naturally, for any β > 1, what is the growth rate of rn(x, β)? It is known

that for β = 2, Tβ is a finite expanding Markov map. However, when Tβ without the Markov property, things

become more difficult. Recently, Tong et al. [14] gave the answer to this question as follows.

Theorem 1.1 ([14]) Let β > 1 be a real number.

(i) For Lebesgue almost all x ∈ [0, 1] , we have

lim
n→∞

rn(x, β)

logβ n
= 1.

(ii) Let α > 0 and

Eα =

{
x ∈ [0, 1] : lim

n→∞

rn(x, β)

logβ n
= α

}
.

Then the set Eα has Hausdorff dimension 1 .

In this note, we consider the following kind of exceptional set for rn(x, β). For any 0 < a < b < +∞ , let

Ea,b =

{
x ∈ [0, 1] : lim inf

n→∞

rn(x, β)

logβ n
= a, lim sup

n→∞

rn(x, β)

logβ n
= b

}
.

Intuitively, the set Ea,b is small because it consists of points that cannot satisfy the above law in Theorem 1.1.

However, we prove the following dimensional result of the set Ea,b .

Theorem 1.2 For any real numbers 0 < a < b < +∞ , the Hausdorff dimension of the set Ea,b is full.

For other results about rn(x, β), see [2, 4]. Along another direction, when T is the Gauss map inducing

continued fraction expansions, a result similar to (1.1) was proved by Wang and Wu [15]. Moreover, they got

the Hausdorff dimension of a class of related exceptional sets in [15].
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2. Preliminary

In this section, we list some basic properties of β -expansions and give some notations. We write uv for the

concatenation of words u and v . In particular, ui denotes the i times self-concatenation of u for i ≥ 1. Denote

by |u| the length of the word u .

Definition 2.1 We say that a finite word ε1ε2 · · · εn or an infinite word ε1ε2 · · · is β -admissible , if there

exists x ∈ [0, 1) such that εi(x, β) = εi for all 1 ≤ i ≤ n or i ≥ 1 , respectively.

Let us denote by Σn
β the set of admissible words of length n and Σβ the set of all admissible words of

infinite length. We define the lexicographical order <lex between two infinite words as follows:

ε1ε2 · · · <lex ε′1ε
′
2 · · ·

if there exists some integer k ≥ 1 satisfying εj = ε′j for all 1 ≤ j < k and εk < ε′k . In fact, we can extend the

order <lex to finite words by identifying a finite word ε1ε2 · · · εn with the infinite word ε1ε2 · · · εn0∞ where

ξ∞ means the periodic sequence ξξ · · · . Now we define an infinite word ε∗1ε
∗
2 · · · from the β -expansions of 1.

If there exists an integer m ≥ 1 such that εm(1, β) ≥ 1 but εn(1, β) = 0 for all n > m , then we write

ε∗1(1, β)ε
∗
2(1, β) · · · = (ε1(1, β) · · · (εm(1, β)− 1))∞.

Otherwise, we write

ε∗1(1, β)ε
∗
2(1, β) · · · = ε1(1, β)ε2(1, β) · · · .

We list some basic properties about admissible words in the following lemma.

Lemma 2.1 ([10, 11]) (i) An infinite word ϵ1ϵ2 · · · ∈ Σβ if and only if

∀k ≥ 1, ϵkϵk+1 · · · <lex ε∗1(1, β)ε
∗
2(1, β) · · · .

(ii) For any x, y ∈ [0, 1] , x < y if and only if ε1(x, β)ε2(x, β) · · · <lex ε1(y, β)ε2(y, β) · · · . Moreover, if

1 < β < β′ , then

Σβ ⊂ Σβ′ .

(iii) For any β > 1 ,

βn ≤ ♯Σn
β ≤ βn+1/(β − 1),

where ♯ means the number of elements of a finite set.

(iv) An infinite word ε1ε2 · · · is the β -expansion of 1 for some β > 1 if and only if for all k ≥ 2 ,

εkεk+1 · · · <lex ε1ε2 · · · .

For any admissible word ε1ε2 · · · εn , define

In(ε1ε2 · · · εn) = {x ∈ [0, 1] : ε1(x, β)ε2(x, β) · · · εn(x, β) = ε1ε2 · · · εn},

which is called an n-th order cylinder . We define the n-th order cylinder containing x for x ∈ [0, 1], denoted

by In(x, β), which is the set of points y ∈ [0, 1] with the property that εi(y, β) = εi(x, β) for all 1 ≤ i ≤ n .

We write |In(x, β)| for the length of In(x, β). The following basic properties of cylinders are proved in [6] and

[7].
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Lemma 2.2 ([6, 7]) The cylinder In(ε1ε2 · · · εn) is an interval whose left endpoint is ε1
β + ε2

β2 + · · ·+ εn
βn and

| In(ε1ε2 · · · εn) |≤
1

βn
.

Here we consider a kind of cylinders with maximal lengths, which are known as full cylinders.

Definition 2.2 For any ε1ε2 · · · εn ∈ Σn
β , we say that the cylinder In(ε1ε2 · · · εn) is full if its length satisfies

| In(ε1ε2 · · · εn) |=
1

βn
.

The characterization of full cylinders was obtained by Fan and Wang [6] as follows.

Lemma 2.3 ([6]) Let ε1ε2 · · · εn be an admissible word. The following conditions are equivalent:

(i) The cylinder In(ε1ε2 · · · εn) is full;

(ii) Tn
β (In(ε1ε2 · · · εn)) = [0, 1) ;

(iii) For any w1w2 · · ·wm ∈ Σm
β , the concatenation ε1ε2 · · · εnw1w2 · · ·wm is still β -admissible.

We shall make use of the following two lemmas from Bugeaud and Wang [1] to construct new full cylinders

and estimate the number of full cylinders.

Lemma 2.4 ([1]) If In(ε1ε2 · · · εn) and Im(w1w2 · · ·wm) are two full cylinders, then the concatenation In+m(ε1ε2 · · · εnw1w2 · · ·wm)

is still a full cylinder.

Lemma 2.5 ([1]) For any n+ 1 consecutive cylinders of order n , there is at least one full cylinder.

3. Proof of Theorem 1.2

3.1. The construction of a Cantor subset of Ea,b

Let us recall that for any 0 < a < b < +∞ ,

Ea,b =

{
x ∈ [0, 1] : lim inf

n→∞

rn(x, β)

logβ n
= a, lim sup

n→∞

rn(x, β)

logβ n
= b

}
.

The main idea of the proof is to construct a Cantor subset of Ea,b denoted by E∗
a,b with dimH E∗

a,b = 1.

Here we denote by dimH the Hausdorff dimension. For convenience, we shall make use of full cylinders repeatedly

in the construction of E∗
a,b . The construction is divided into four steps.

Step 1. Let h be the smallest integer such that Ih+1(10
h) is full. Take an integer N ≥ 1 large enough

with the property that

⌊b logβ m⌋ ≥ h+ 1 and
⌊mb/a⌋ −m

b logβ m
≥ 2,
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0
N · · · 10

dk−1 1 ∗ · · · 1 ∗ · · · · · · 1 ∗ · · · v
(k) · · ·

1 n1 nk nk+1full full full

dk dk dk dk < dk

Figure. Construction of Cantor subset.

for all m ≥ N . Let n1 = N . For any k ≥ 2, we define nk and dk−1 by the following recursive formulae:

nk = ⌊n
b
a

k−1⌋, dk−1 = ⌊b logβ nk−1⌋.

Step 2. For any k ≥ 1, we set

Wk = {ε1 · · · εdk
∈ Σdk

β : Idk
(ε1 · · · εdk

) is full with ε1 = 1}. (3.1)

Let

tk = ⌊nk+1 − nk

dk
⌋ − 1. (3.2)

Set

Uk = {w(1)w(2) · · ·w(tk) : w(j) ∈ Wk, for all 1 ≤ j ≤ tk}.

In other words, Uk consists of finite words that are possible concatenations of any tk words from Wk .

Step 3. For any k ≥ 1, we first define a finite word v(k) as follows:

v(k) =

{
0δk , if 0 ≤ δk ≤ h

10δk−1, if h+ 1 ≤ δk < dk,

where δk = nk+1 − nk − ⌊nk+1−nk

dk
⌋dk . Next, we define

Dk = {10dk−1u(k)v(k) : u(k) ∈ Uk}. (3.3)

Note that for each word in Dk , the maximal length of consecutive 0 digits is at least dk − 1 and at most

dk − 1 + h by our construction.

Step 4. The desired Cantor set is defined as

E∗
a,b = {x ∈ [0, 1] : ε1(x, β)ε2(x, β) · · · = 0Nσ(1)σ(2) · · · , σ(k) ∈ Dk, k ≥ 1},

which will be shown to be a subset of Ea,b with Hausdorff dimension 1. By the properties of full cylinders, the

construction is well defined (see the Figure).

The following results are obtained by direct calculations. For convenience, we list them as a lemma.

Lemma 3.1 Let {nk}k≥1 and {dk}k≥1 be defined as above. Then:

(1) lim
k→∞

dk

nk
= 0, lim

k→∞

logβ nk

logβ nk+1
= a

b ;

(2) lim
k→∞

dk

logβ nk+1
= a, lim

k→∞
dk

logβ nk
= b.
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Proposition 3.1 E∗
a,b is a Cantor subset of Ea,b .

Proof We first show

a ≤ lim inf
n→∞

rn(x, β)

logβ n
≤ lim sup

n→∞

rn(x, β)

logβ n
≤ b. (3.4)

By the definition of di , there exists some K ≥ 1 such that di > N for any i ≥ K . Then for any n > nK+1 ,

there exists some k ≥ K + 1, such that nk < n ≤ nk+1. We distinguish two cases.

Case 1: If nk < n ≤ nk + dk , then dk−1 − 1 ≤ rn(x, β) ≤ max{dk − 1, dk−1 − 1 + h}. Thus, for all k

large enough,

dk−1 − 1

logβ(nk + dk)
≤ rn(x, β)

logβ n
≤ dk − 1

logβ nk
. (3.5)

Case 2: If nk + dk < n ≤ nk+1 , then we have dk − 1 ≤ rn(x, β) ≤ dk − 1 + h . Thus,

dk − 1

logβ nk+1
≤ rn(x, β)

logβ n
≤ dk − 1 + h

logβ nk
. (3.6)

By (3.5), (3.6), and Lemma 3.1, (3.4) holds.

It remains to prove that there exist subsequences {mk}k≥1 and {m′
k}k≥1 such that lim

k→∞

rmk
(x,β)

logβ mk
= a

and lim
k→∞

rm′
k
(x,β)

logβ m′
k

= b , respectively. Let mk = nk+1 + dk . Then dk − 1 ≤ rmk
(x, β) ≤ dk − 1+h for all k large

enough. Thus, by Lemma 3.1, we have

lim
k→∞

rmk
(x, β)

logβ mk
= lim

k→∞

dk
logβ(nk+1 + dk)

= a.

Let m′
k = nk + dk. Similarly, we have lim

k→∞

rm′
k
(x,β)

logβ m′
k

= b . 2

3.2. Hausdorff dimension of E∗
a,b

Our next goal is to get a lower bound of dimH E∗
a,b . For any β∗ < β , we shall prove that dimH E∗

a,b ≥
log β∗
log β .

We first introduce the following modified mass distribution principle, which is helpful for the estimate of lower

bounds of Hausdorff dimensions. The usual mass distribution principle can be found in [5].

Proposition 3.2 ([1]) Let E be a Borel measurable set in [0, 1] and µ be a Borel measure with µ(E) > 0 .

For some s > 0 , there exist a constant C > 0 and an integer M with the property that for any n > M and

any n-th order cylinder In ,

µ(In) ≤ C | In |s .

Then dimH E ≥ s.

For any k ≥ 1, let Wk and Dk be defined by (3.1) and (3.3), respectively. We set

pk := ♯Wk
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and

qk+1 := ♯{0Nσ(1)σ(2) · · ·σ(k), σ(j) ∈ Dj , 1 ≤ j ≤ k}.

The following lemma gives lower bounds of pk and qk for k large enough.

Lemma 3.2 For any β∗ < β , there exists an integer K(β∗) ≥ 1 such that for any k > K(β∗) ,

pk ≥ βdk
∗

and
qk ≥ C(β∗)β

γk
∗ ,

where γk = nk − n1 − 2
k−1∑
j=1

dj and C(β∗) is a constant depending only on β∗ .

Proof We first estimate pk . For any k ≥ 1, write

W ′
k = {ε1 · · · εdk

∈ Σdk

β : Idk−h−1(εh+2 · · · εdk
) is full and ε1 · · · εh+1 = 10h}

and

p′k := ♯W ′
k.

Then W ′
k ⊂ Wk by the properties of full cylinders. Therefore, pk ≥ p′k . From Lemma 2.1 we obtain that the

number of admissible words with length dk − h− 1 is at least βdk−h−1 . According to Lemma 2.5, we have

p′k ≥ ⌊β
dk−h−1

dk − h
⌋

for any k ≥ 1. It is easy to check that there exists K(β∗) > 1 such that for any k > K(β∗),

⌊β
dk−h−1

dk − h
⌋ ≥ βdk

∗ .

Thus,

pk ≥ p′k ≥ βdk
∗ . (3.7)

We conclude from (3.7) that

♯Uk = ptkk ≥ (βdk
∗ )

⌊
nk+1−nk

dk
⌋−1 ≥ β

nk+1−nk−2dk
∗ ,

and hence that

♯Dk = ♯Uk ≥ β
nk+1−nk−2dk
∗ ,

for any k > K(β∗). Thus, there exists a constant C(β∗) > 0 depending only on β∗ such that

qk =
k−1∏
j=1

♯Dj ≥ C(β∗)β
γk
∗ ,

where γk = nk − n1 − 2
k−1∑
j=1

dj . 2
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Proposition 3.3 The set E∗
a,b has Hausdorff dimension 1.

Proof It suffices to show that dimH E∗
a,b ≥ log β∗

log β for any β∗ < β . We first define a probability measure

µ on E∗
a,b by induction. Set µ[0, 1] = 1 and µ(Ii(0

i)) = 1, for all 1 ≤ i ≤ N . For any k ≥ 1 and any

σ(j) ∈ Dj , 1 ≤ j ≤ k , we define

µ(Ink+1
(0Nσ(1)σ(2) · · ·σ(k)) =

µ(Ink
(0Nσ(1)σ(2) · · ·σ(k−1)))

♯Dk
. (3.8)

Now we define µ(In(x, β)) for any nk ≤ n < nk+1 and any x ∈ E∗
a,b . Let

µ(In(x, β)) = Σµ(Ink+1
(ξ)),

where the sum is taken over all ξ = 0Nσ(1)σ(2) · · ·σ(k) with Ink+1
(ξ) ⊆ In(x, β) and σ(j) ∈ Dj for 1 ≤ j ≤ k .

Then we can extend µ to a Borel probability measure uniquely on E∗
a,b by Kolmogorov’s consistency theorem.

By (3.8) and Lemma 3.2, we have

µ(Ink
(x, β)) =

1

qk
≤ C−1(β∗)β

−γk
∗ ,

for all k > K(β∗), where K(β∗) is the integer defined as in Lemma 3.2. For any nk ≤ n < nk+1 with

k > K(β∗), either there exists integer l such that

nk + ldk ≤ n < nk + (l + 1)dk, 0 ≤ l ≤ tk

or
nk + (tk + 1)dk ≤ n < nk+1,

where tk is defined in (3.2).

Next we distinguish three cases.

Case 1: nk ≤ n < nk + 2dk . Then

µ(In(x, β)) ≤ µ(Ink
(x, β)) ≤ C−1(β∗)β

−γk
∗ .

By the definition of a full cylinder, we have

| In(x, β) |≥| Ink+2dk
(x, β) |= β−(nk+2dk).

Combing the two inequalities above, we have

logµ(In(x, β))

log | In(x, β) |
≥ log β−γk

∗ − logC(β∗)

log β−(nk+2dk)
.

It follows that

lim
k→∞

log β−γk
∗

log β−(nk+2dk)
= lim

k→∞

(nk − n1 − 2
k−1∑
j=1

dj) log β∗

(nk + 2dk) log β
=

log β∗

log β
(3.9)

by Lemma 3.1.
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Case 2: nk + ldk ≤ n < nk + (l + 1)dk for some 2 ≤ l ≤ tk . Then

µ(In(x, β)) ≤ µ(Ink+ldk
(x, β))

= µ(Ink
(x, β)) · p−(l−1)

k

≤ C−1(β∗)β
−γk
∗ · β−dk(l−1)

∗

by Lemma 3.2 and (3.8). By the definition of a full cylinder and Lemma 2.4, we have

| In(x, β) |≥| Ink+(l+1)dk
(x, β) |= β−(nk+(l+1)dk).

Hence,

logµ(In(x, β))

log | In(x, β) |
≥ log β

−γk−dk(l−1)
∗ − logC(β∗)

log β−(nk+(l+1)dk)
.

Similarly,

lim
k→∞

log β
−γk−dk(l−1)
∗

log β−(nk+(l+1)dk)
=

log β∗

log β
. (3.10)

Case 3: nk + (tk + 1)dk ≤ n < nk+1 . Note that

µ(In(x, β)) = µ(Ink+1
(x, β)) ≤ C−1(β∗)β

−γk+1
∗

and

| In(x, β) |≥| Ink+1
(x, β) |= β−nk+1 .

Then

logµ(In(x, β))

log | In(x, β) |
≥ log β

−γk+1
∗ − logC(β∗)

log β−nk+1
and lim

k→∞

log β
−γk+1
∗

log β−nk+1
=

log β∗

log β
. (3.11)

By (3.9), (3.10), and (3.11), it follows that for any ε > 0, there exists an integer K ′ such that for any

n ≥ nK′ and any x ∈ E∗
a,b

µ(In(x, β)) ≤| In(x, β) |log β∗/ log β−ε .

Using Proposition 3.2, we conclude that

dimH E∗
a,b ≥ log β∗/ log β − ε.

Since ε is arbitrary, it follows that dimH E∗
a,b ≥ log β∗/ log β . 2

Proof [Proof of Theorem 1.2] With the help of Proposition 3.1 and Proposition 3.3, the conclusion is obtained

immediately. 2
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[4] Erdös P, Révész P. On the length of the longest head-run. In: Csiszr I, Elias P, editors. Topics in Information

Theory. Amsterdam, the Netherlamds: North-Holland Publishing Co., 1977, pp. 219-228.

[5] Falconer K. Fractal Geometry. Mathematical Foundations and Applications. 2nd ed. Hoboken, NJ, USA: Wiley,

2003.

[6] Fan AH, Wang BW. On the lengths of basic intervals in beta expansions. Nonlinearity 2012; 25: 1329-1343.

[7] Li B, Wu J. Beta-expansion and continued fraction expansion. J Math Anal Appl 2008; 339: 1322-1331.
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