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Abstract: We address the problem of frequency independent solvability of high-frequency scattering problems in the

exterior of two-dimensional smooth, compact, strictly convex obstacles. Precisely, we show that if the leading term in

the asymptotic expansion of the surface current is incorporated into the integral equation formulations of the scattering

problem, then appropriate modifications of both the “frequency-adapted Galerkin boundary element methods” and the

“Galerkin boundary element methods based on frequency dependent changes of variables” we have recently developed

yield frequency independent approximations. Moreover, for any direct integral equation formulation of the scattering

problem, we show that the error can be tuned to decrease at any desired rate with increasing frequency, if sufficiently

many terms in the aforementioned asymptotic expansion are incorporated into the solution strategy.
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1. Introduction

In this manuscript, we address the problem of frequency independent solvability of exterior sound-soft scattering

problems 
∆u+ k2u = 0, in R2\K
u = −uinc, on ∂K
lim

|x|→∞
|x|1/2

(
∂|x| − ik

)
u(x, k) = 0

(1)

for compact strictly convex obstacles K with smooth boundary ∂K , and plane-wave incidences uinc(x, k) =

eikα·x with unit direction α .

Indeed, it is well known that the number of degrees of freedom (NDF) associated with classical numerical

schemes for the solution of problem (1) increases at least linearly with increasing wavenumber k and this,

in return, limits their applicability in high-frequency simulations (cf. the survey [3]). The recent practice

is therefore to resort to integral equation reformulations of the scattering problem (1) as they allow the

incorporation of asymptotic behavior of the unknown into the problem formulation, and thereby provide

significant savings in computational times. In more detail, when the integral equation reformulation is based

on the direct approach, the scattered field u is expressed as a single-layer potential

u(x, k) = −
∫
∂K

Φk(x, y) η(y, k) dσ(y)

∗Correspondence: fatih.ecevit@boun.edu.tr

2010 AMS Mathematics Subject Classification: 65N12, 65R20, 65N38

407
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(where Φk(x, y) = i
4 H

(1)
0 (k|x − y|) is the fundamental solution of the Helmholtz equation and H

(1)
0 is the

Hankel function of the first kind and order zero), and this shifts the problem to the determination of the normal

derivative of the total field

η(x, k) = ∂n(x)(u(x, k) + uinc(x, k)),

which is known as the surface current in electromagnetism [5]. Therefore, in single-scattering simulations (such

as those associated with convex obstacles), η naturally inherits the oscillations present in the incident field of

radiation, which gives rise to the ansatz

η(x, k) = eikα·x ηslow(x, k), x ∈ ∂K (2)

that represents η as a highly oscillatory exponential weighed by the amplitude ηslow . Previous attempts [2, 6–

8, 12, 13, 15] geared towards the frequency independent computation of the surface current η (for compact

strictly convex obstacles) were all based on different interpretations of the Melrose–Taylor asymptotics [17]

ηslow(x, k) ∼
∑
p,q≥0

ap,q(x, k) =
∑
p,q≥0

k2/3−2p/3−q bp,q(x)Ψ
(p)(k1/3Z(x)) (3)

(see Theorem 5 below for details on this expansion) for the efficient numerical discretization of uniquely solvable

linear integral equations for η that take the form of an operator equation

Rkη = f (4)

in L2(∂K). To date, however, no rigorous method exists that displays the capability of producing frequency

independent solutions to integral equations (4) in the sense that η can be approximated within any prescribed

numerical accuracy utilizing an NDF independent of k . In this paper, we prove that appropriate modifications

of the Galerkin boundary element methods we have recently developed [7, 8] display this capability provided

sufficiently many terms (depending on the operator Rk ; e.g., only the leading term) in the Melrose–Taylor

asymptotics (3) are incorporated into the integral equations (4).

The very first algorithm concerning the frequency independent solution of integral equations (4) is due to

Bruno et al. [2], which was based on Nyström discretizations together with extensions of the method of stationary

phase along with frequency dependent changes of variables in regions where ηslow possesses boundary layers.

In the same spirit, collocation methods were later developed by Giladi [13] based on (nonrigorous) geometrical

theory of diffraction and Huybrechs and Vandewalle [15] utilizing the method of steepest descents for the

evaluation of highly oscillatory integrals. The first numerical analysis associated with a p -version Galerkin

boundary element implementation of these algorithms was presented by Domı́nguez et al. [6], which has provided

an upper of O(k1/9) in NDF necessary to attain any prescribed numerical accuracy independently of k . We

note, however, that the methods in [2, 6, 15] are asymptotic rather than convergent as they approximate the

solution in the deep shadow regions ∂KDS = {x ∈ ∂K : α · n(x) ≫ k−1/3} simply by zero.

It is worth mentioning that, for the related (but distinct) problem of high-frequency scattering by

polygons, the methods of [4, 14] provide almost frequency-independent solvability, with the error in the Galerkin

solution uniformly bounded in k if the NDF grows like log k as k → ∞ .

Motivated with these observations, we have recently demonstrated [7, 8] that representation (2) when

combined with the Melrose–Taylor asymptotics (3) allows the generation of Galerkin approximation spaces for
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the almost frequency independent solution of integral equations (4). Specifically, in connection with the Galerkin

boundary element methods developed in [7, 8], we proved that it is sufficient to increase the NDF as O(kϵ) (for

any ϵ > 0) with increasing k to maintain any prescribed accuracy independently of k . These results, however,

are based on a fine balance between the NDF and the parameter ϵ as the former has to increase linearly with

decreasing ϵ .

In this paper, we show that this restriction can be completely eliminated once the leading term a0,0 in

the asymptotic expansion (3) is incorporated into the integral equation (4) when Rk is either the combined

field integral operator (CFIO) or the star combined integral operator (SCIO) [3, 18] (definitions of these integral

operators and the associated integral equations are provided in Appendix A). More precisely, in this case, we

show that appropriate modifications of our Galerkin boundary element methods [7, 8] reduce the aforementioned

need for O(kϵ) increase to O(1). Thus the developments herein address the long standing theoretical problem

of frequency independent solvability of integral equation (4) for CFIO and SCIO.

More generally, given an integral operator Rk for which the stability constant Ck/ck (the ratio of the

continuity and coercivity constants) of the associated sesquilinear form Bk(µ, η) = ⟨µ,Rkη⟩ on L2(∂K)×L2(∂K)

behaves like kδ as k → ∞ for some δ > 0, we address the following question:

Question 1 Given r > 0 , what is the least number of terms ap,q in the Melrose–Taylor asymptotics (3) that

needs to be incorporated into the integral equation (4) so as to guarantee that the numerical error associated

with any given NDF behaves like O(k−r) as k → ∞?

Thus the theoretical developments in this paper go beyond the frequency independent, i.e. O(1),

solvability of integral equations (4). Indeed, as we shall see in §3, the answer to Question 1 lies in the

determination of the slowest increasing sequence of finite sets {Fℓ}ℓ∈Z+ ⊂ Z+ × Z+ having the property that

the derivatives of the remainder ρslowℓ = ηslow − σslow
ℓ associated with σslow

ℓ =
∑

(p,q)∈Fℓ
ap,q has the mildest

blow up with increasing wavenumber k (cf. Remark 11).

The paper is organized as follows. In §2, we first present the details underlying the Melrose–Taylor

asymptotics (3), and characterize Hörmander classes and provide sharp estimates on the derivatives of the

terms ap,q in (3). We then use these estimates to construct the aforementioned sequence {Fℓ}ℓ∈Z+ , and also

clarify the recursive relations among the remainders ρslowℓ . In §3, we use these results to provide the rigorous

answer to Question 1 (cf. Corollary 12).

2. Asymptotic analysis and derivative estimates

Let us begin with considering a compact strictly convex set K ⊂ R2 with a smooth boundary ∂K , in which

case, any arc length parametrization γ of ∂K is naturally periodic with period P = |∂K| . For definiteness,

we assume that γ is directed in the counterclockwise orientation and α · n (γ(0)) = 1, where n is the outward

unit normal. These choices guarantee that if 0 < t1 < t2 < P are the preimages of the shadow boundary points

γ ({t1, t2}) = ∂KSB = {x ∈ ∂K : α · n(x) = 0},

then the illuminated and shadow regions are given by

γ ((t1, t2)) = ∂KIL = {x ∈ ∂K : α · n(x) < 0}
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and

γ ((t2, t1 + P )) = ∂KSR = {x ∈ ∂K : α · n(x) > 0}.

In what follows, we write η(s, k) for η(x, k) = η(γ(s), k) etc. so that, in particular, the factorization (2) takes

on the form

η(s, k) = eikα·γ(s)ηslow(s, k). (5)

To present the details of the Melrose–Taylor asymptotics (3) in this setting, we recall the definitions

of Hörmander classes and asymptotic expansions of functions defined on [0, P ] × (0,∞) (see e.g. [9] and the

references therein).

Notation 2 Throughout the paper we write A ≲a,b,... B to mean 0 ≤ A ≤ CB for a positive constant

C = C(a, b, . . .) .

Definition 3 (Hörmander classes) The Hörmander class Sθξ,ζ([0, P ] × (0,∞)) of order θ ∈ R and type

ξ, ζ ∈ [0, 1] is the collection of all complex-valued functions a(s, k) ∈ C∞([0, P ] × (0,∞)) having the property

that, for all n,m ∈ Z+ and all k0 > 0 , there holds

|Dn
sD

m
k a(s, k)| ≲n,m,k0 (1 + k)θ−ξm+ζn, (s, k) ∈ [0, P ]× [k0,∞).

Definition 4 (asymptotic expansions) Suppose aj(s, k) ∈ S
ϑj

ξ,ζ([0, P ]×(0,∞)) for j ∈ Z+ and limj→∞ ϑj =

−∞ , and set θj = maxi≥j ϑi . In this case, a function a(s, k) ∈ Sθ0ξ,ζ([0, P ]× (0,∞)) is said to have the asymp-

totic expansion

a(s, k) ∼
∑
j≥0

aj(s, k)

provided that, for every j ∈ Z+ ,

a(s, k)−
∑
i<j

ai(s, k) ∈ S
θj
ξ,ζ([0, P ]× (0,∞)).

Note that this definition is invariant under rearrangements of the sequence {aj} .

With these definitions the exact sense of asymptotic expansion (3), shown to hold in a vicinity of the

shadow boundary points by Melrose and Taylor [17], which we later extended to the entire boundary [9], reads

as follows:

Theorem 5 [9, Corollary 2.1] The amplitude ηslow(s, k) in (5) belongs to the Hörmander class S1
2/3,1/3 ([0, P ]× (0,∞))

and admits the asymptotic expansion

ηslow(s, k) ∼
∑
p,q≥0

ap,q(s, k) =
∑
p,q≥0

k2/3−2p/3−q bp,q(s)Ψ
(p)(k1/3Z(s)),

where bp,q are P -periodic complex-valued C∞ functions, Z is a P -periodic real-valued C∞ function that is

positive on (t1, t2) = γ−1(∂KIL) , negative on (t2, t1 + P ) = γ−1(∂KSR) , and vanishes precisely to first order

410
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on {t1, t2} = γ−1(∂KSB) . Finally, Ψ is a complex-valued C∞ function such that, for all N,n ∈ Z+ ,

Dn
τ

{
Ψ(τ)−

N−1∑
j=0

cjτ
1−3j

}
= O(τ1−3N−n) as τ → ∞ (6)

and

Dn
τΨ(τ) = O(τ−N ) as τ → −∞. (7)

The Hörmander classes of ap,q that remain implicit in Theorem 5 are clarified in the next Lemma, which

also provides sharp estimates on their derivatives. These estimates will be used in the constructions that follow.

Lemma 6 For any (p, q) ∈ Z+ × Z+ , we have ap,q ∈ S
ϑ(p,q)
2/3,1/3([0, P ]× (0,∞)) with

ϑ(p, q) =

{
1− q, p = 0,
2
3 − 2p

3 − q, p ≥ 1.

Moreover, given k0 > 0 and n, p, q ∈ Z+ , the estimate

|Dn
s ap,q(s, k)| ≲n,p,q,k0 k2/3−2p/3−q

(
k1/3 +

n∑
j=2

kj/3(1 + k1/3|ω(s)|)−j−2
)

(8)

holds for all (s, k) ∈ [0, P ]× [k0,∞) with ω(s) = (s− t1)(t2 − s) .

Proof Given n,m, p, q ∈ Z+ , an appeal to Lemma 14 in Appendix B entails

|Dn
sD

m
k ap,q(s, k)| ≲n,m,p,q k2/3−2p/3−q−m

n+m∑
j=0

kj/3|Ψ(j+p)(k1/3Z(s))| (9)

for all (s, k) ∈ [0, P ]× (0,∞). On the other hand, equations (6) and (7) imply that

|Ψ(n)(τ)| ≲n

 (1 + |τ |), n = 0,
1, n = 1,

(1 + |τ |)−n−2, n ≥ 2
(10)

holds for all τ ∈ R .

When p = 0, use of (10) in (9) entails

|Dn
sD

m
k a0,q(s, k)| ≲n,m,q k2/3−q−m


k1/3, n+m = 0, 1

k1/3 +
∑n+m
j=2 kj/3(1 + k1/3|Z(s)|)−j−2, n+m ≥ 2

≲n,m,q k1−q−m


1, n+m = 0, 1

1 +
∑n+m
j=2 k(j−1)/3, n+m ≥ 2

for all (s, k) ∈ [0, P ]× (0,∞). Therefore, given k0 > 0, we have

|Dn
sD

m
k a0,q(s, k)| ≲n,m,q,k0 (1 + k)(1−q)−2m/3+n/3
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for all (s, k) ∈ [0, P ]× [k0,∞). This shows that a0,q ∈ S
ϑ(0,q)
2/3,1/3 .

When p ≥ 1, using (10) in (9), we get

|Dn
sD

m
k ap,q(s, k)| ≲n,m,p,q k2/3−2p/3−q−m

(
Ap +

n+m∑
j=jp

kj/3(1 + k1/3|Z(s)|)−j−p−2
)

for all (s, k) ∈ [0, P ]× (0,∞), where A1 = 1, j1 = 1, and Ap = 0, jp = 0 (p ≥ 2). Given k0 > 0, we therefore

have

|Dn
sD

m
k ap,q(s, k)| ≲n,m,p,q k2/3−2p/3−q−m

n+m∑
j=0

kj/3

≲n,m,p,q,k0 (1 + k)(2/3−2p/3−q)−2m/3+n/3

for all (s, k) ∈ [0, P ]× [k0,∞). This establishes ap,q ∈ S
ϑ(p,q)
2/3,1/3 for p ≥ 1.

Finally, given k0 > 0, careful use of (10) in (9) shows that

|Dn
s ap,q(s, k)| ≲n,p,q,k0 k2/3−2p/3−q


k1/3 +

∑n
j=2 k

j/3(1 + k1/3|Z(s)|)−j−2, p = 0,

1 +
∑n
j=1 k

j/3(1 + k1/3|Z(s)|)−(j+1)−2, p = 1,∑n
j=0 k

j/3(1 + k1/3|Z(s)|)−(j+p)−2, p ≥ 2,

holds for all (s, k) ∈ [0, P ]× [k0,∞] and this, in return, implies

|Dn
s ap,q(s, k)| ≲n,p,q,k0 k2/3−2p/3−q

(
k1/3 +

n∑
j=2

kj/3(1 + k1/3|Z(s)|)−j−2
)
.

Since Z vanishes precisely to first order (as stated in Theorem 5) at the points t1 and t2 , we therefore get the

estimate (8). 2

We note on account of estimate (8) that if σslow
F =

∑
(p,q)∈F ap,q for a finite set F ⊂ Z+ ×Z+ , then part

of the derivatives Dn
s ρ

slow
F of the remainder ρslowF = ηslow − σslow

F that depends on F is dominated by k−µ(F) ,

where

µ(F) = min{2p/3 + q : (p, q) ∈ (Z+ × Z+)\F}.

In order to maximize this minimum with the choice of the smallest set F ⊂ Z+ × Z+ , upon noting that

{2p/3 + q : p, q ∈ Z+} = {0} ∪ {ℓ/3 : ℓ = 2, 3, . . .},

which follows from considering the three different cases (j = 0, 1, 2) p = 3r + j for r ∈ Z+ , we introduce the

following definition.

Definition 7 Set

ν(0) = 0 and ν(ℓ) =
ℓ+ 1

3
(ℓ ≥ 1)
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and, for ℓ ∈ Z+ , define

σslow
ℓ =

∑
(p,q)∈Fℓ

ap,q

with
Fℓ = {(p, q) ∈ Z+ × Z+ : 2p/3 + q < ν(ℓ)}.

As we just clarified, the choice of the set Fℓ relates to the least number of terms ap,q that needs

to be known in the Melrose–Taylor asymptotics so as to guarantee that the derivatives of the remainder

ρslowℓ = ηslow − σslow
ℓ have the mildest dependency on the increase in the wavenumber k . In this connection,

the first main result of the paper reads as follows:

Theorem 8 For any ℓ ∈ Z+ , the remainder ρslowℓ (s, k) belongs to S
1−ν(ℓ)
2/3,1/3([0, P ] × (0,∞)) . Moreover, given

k0 > 0 and n ∈ Z+ , there holds

|Dn
s ρ

slow
ℓ (s, k)| ≲ℓ,n,k0 k−ν(ℓ)

(
k +

n+2∑
j=4

W (s, k)−j
)

(11)

for all (s, k) ∈ [0, P ]× [k0,∞] , where W (s, k) = k−1/3 + |ω(s)| and ω(s) = (s− t1)(t2 − s) .

Proof Since ηslow ∈ S1
2/3,1/3 and ap,q ∈ S

ϑ(p,q)
2/3,1/3 , given ℓ ∈ Z+ , Definition 4 entails ρslowℓ = ηslow − σslow

ℓ =

ηslow−
∑

(p,q)∈Fℓ
ap,q ∈ Sθℓ2/3,1/3 with θℓ = max{ϑ(p, q) : (p, q) ∈ (Z+×Z+)\Fℓ} . Since θℓ ≤ max{1−2p/3− q :

(p, q) ∈ (Z+ × Z+)\Fℓ} ≤ 1− ν(ℓ), we thus get ρslowℓ ∈ S
1−ν(ℓ)
2/3,1/3 .

As for the estimate (11), given n ∈ Z+ , let m = max {1, n} . Since

ρslowℓ = ρslowℓ+m +
∑

(p,q)∈Fℓ+m\Fℓ

ap,q

and ρslowℓ+m ∈ S
1−ν(ℓ+m)
2/3,1/3 , an appeal to Lemma 6 entails

|Dn
s ρ

slow
ℓ (s, k)| ≲ℓ,n,k0 (1 + k)1−ν(ℓ+m)+n/3 +

∑
(p,q)∈Fℓ+m\Fℓ

k2/3−2p/3−q
(
k1/3 +

n∑
j=2

kj/3(1 + k1/3|ω(s)|)−j−2
)
.

Since ν(ℓ+m)− n/3 = ℓ+1
3 + m−n

3 ≥ ν(ℓ), and 2p/3 + q ≥ ν(ℓ) for (p, q) ∈ Fℓ+m\Fℓ , this yields

|Dn
s ρ

slow
ℓ (s, k)| ≲ℓ,n,k0 (1 + k)1−ν(ℓ) + k2/3−ν(ℓ)

∑
(p,q)∈Fℓ+m\Fℓ

(
k1/3 +

n∑
j=2

kj/3(1 + k1/3|ω(s)|)−j−2
)

≲ℓ,n,k0 k2/3−ν(ℓ)
(
k1/3 +

n∑
j=2

kj/3(1 + k1/3|ω(s)|)−j−2
)
,

which is equivalent to (11). 2

We end this section by exploiting the recursive relations among the remainders ρslowℓ .
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Theorem 9 While ρslow0 = ηslow and ρslow1 = ρslow0 − a0,0, for ℓ ≥ 1 , we have

ρslow2ℓ = ρslow2ℓ−1 −
⌊ ℓ
3 ⌋∑

r=0

aℓ−3r,2r and ρslow2ℓ+1 = ρslow2ℓ −
⌊ ℓ−1

3 ⌋∑
r=0

aℓ−1−3r,2r+1.

Proof The identities for ℓ = 0 and ℓ = 1 are obvious. For ℓ′ ≥ 2, we have

ρslowℓ′ = ρslowℓ′−1 −
∑

(p,q)∈Fℓ′\Fℓ′−1

ap,q

with

Fℓ′\Fℓ′−1 = {(p, q) ∈ Z2
+ : ν(ℓ′ − 1) ≤ 2p/3 + q < ν(ℓ′)} = {(p, q) ∈ Z2

+ : 2p+ 3q = ℓ′}.

Accordingly, if (p, q) ∈ F2ℓ\F2ℓ−1 with ℓ ≥ 1, then q must be even, say q = 2r with r ∈ Z+ , in which case

p = ℓ−3r ; since p, r ∈ Z+ , we get 0 ≤ r ≤ ⌊ℓ/3⌋ as the range of r . This shows that F2ℓ\F2ℓ−1 ⊂ {(ℓ−3r, 2r) :

0 ≤ r ≤ ⌊ℓ/3⌋} ; the reverse inclusion is obvious. If (p, q) ∈ F2ℓ+1\F2ℓ with ℓ ≥ 1, then q must be odd, say

q = 2r+1 with r ∈ Z+ , in which case p = ℓ− 1− 3r ; since p, r ∈ Z+ , we get 0 ≤ r ≤ ⌊(ℓ− 1)/3⌋ as the range

of r . Therefore, we similarly obtain F2ℓ+1\F2ℓ = {(ℓ− 1− 3r, 2r + 1) : 0 ≤ r ≤ ⌊(ℓ− 1)/3⌋} . 2

3. Applications to Galerkin boundary element methods

In this section, assuming that σslow
ℓ in Definition 7 is available for some ℓ ∈ Z+ , we consider the numerical

approximation of the surface current η through appropriate modifications of the Galerkin boundary element

methods we have recently developed [7, 8]. To this end, given d ∈ Z+ , we construct approximations η̂ℓ,d to η

in the form

η̂ℓ,d = σℓ + ρ̂ℓ,d,

where σℓ(s, k) = eikα·γ(s)σslow
ℓ (s, k) and ρ̂ℓ,d is the solution of the Galerkin equation

⟨µ̂,Rkρ̂ℓ,d⟩ = ⟨µ̂, fℓ⟩, for all µ̂ ∈ X̂ (12)

with fℓ = f −Rkσℓ , Rk is the integral operator in equation (4), and the finite dimensional Galerkin approxi-

mation space X̂ ⊂ L2([0, P ]) is either Am
d (frequency-adapted Galerkin approximation space based on algebraic

polynomials) as developed in [8] or AC
d (Galerkin approximation space based on algebraic polynomials and fre-

quency dependent changes of variables) as proposed in [7] (the definitions of these spaces are given in Appendix

C). In this connection, the second main result of the paper reads as follows.

Theorem 10 Suppose there exists k0 ≥ 1 such that the sesquilinear form Bk(µ, η) = ⟨µ,Rkη⟩ on L2([0, P ])×
L2([0, P ]) associated with the integral operator Rk is continuous with a continuity constant Ck and coercive

with a coercivity constant ck for all k > k0 . Then, given d ∈ Z+ , we have

∥η − η̂ℓ,d∥
∥η∥

≲ℓ,n,m
Ck
ck

1

kν(ℓ)
m (1 + k

n
6m+3−

1
2 )

dn
if X̂ = Am

d (13)
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and

∥η − η̂ℓ,d∥
∥η∥

≲ℓ,n
Ck
ck

1

kν(ℓ)
(log k)n+1/2

dn
if X̂ = AC

d (14)

for all n ∈ {0, . . . , d+ 1} and all k > k0 .

Proof Note that if ρℓ(s, k) = eikα·γ(s)ρslowℓ (s, k), then, by construction, we have ρℓ = η − σℓ . Since the

operator Rk : L2([0, P ]) → L2([0, P ]) is linear and invertible, ρℓ is the unique solution of the equation

Rkρℓ = Rkη −Rkσℓ = f −Rkσℓ = fℓ

or equivalently the associated weak formulation

⟨µ,Rkρℓ⟩ = ⟨µ, fℓ⟩, for all µ ∈ L2([0, P ]).

Since Bk is continuous and coercive, it follows from Céa’s lemma [3] that the Galerkin equation (12) possesses

a unique solution ρ̂ℓ,d and (note that η − η̂ℓ,d = ρℓ − ρ̂ℓ,d )

∥η − η̂ℓ,d∥ = ∥ρℓ − ρ̂ℓ,d∥ ≤ Ck
ck

inf
µ̂∈X̂

∥ρℓ − µ̂∥.

Since the spaces X̂ = Am
d and X̂ = AC

d are of the form X̂ = eikα·γ(s)X̃ (see Appendix C), the preceding

estimate implies

∥η − η̂ℓ,d∥ ≤ Ck
ck

inf
µ̃∈X̃

∥ρslowℓ − µ̃∥. (15)

When ℓ = 0, aside from highly nontrivial additional technicalities, the estimation of the infimum on the right-

hand side of this inequality was based on bounds on the derivatives of ρslow0 = ηslow (see e.g. [8, Theorem 5],

which provides estimate (11) above only for ℓ = 0) for X̂ = Am
d in [8, Theorem 1 & Corollary 1] and X̂ = AC

d

in [7, Theorem 3 & Corollary 4]. Use of the more general estimate (11) above (that is valid for all ℓ ∈ Z+) in

the proofs of these theorems delivers the estimates in (13) and (14). 2

Remark 11 The importance of the bounds on the derivatives of ρslowℓ derived in Theorem 8 is their essential

role in estimating the infimum on the right-hand-side of inequality (15). For details, we refer to [7, 8].

The relevance of Theorem 10 stems from the fact that while, in general, the stability constant Ck/ck is

unbounded as k → ∞ , the term k−ν(ℓ) in estimates (13) and (14) can be chosen to balance it so as to yield

frequency independent numerical approximations to the surface current η . Indeed, in this connection, if Rk

is CFIO (respectively SCIO), then the sesquilinear form Bk is continuous for k > 0 and coercive for k ≫ 1

(respectively for k > 0) with Ck/ck = O(k1/3) as k → ∞ (for the CFIO this is a consequence of the bounds on

the single- and double-layer potentials in [10, Theorems 4.29 and 4.32]—see also [11, Theorem 1.4]—and for the

SCIO this is a consequence of [10, Theorems 4.29 and 4.32] combined with the bounds in [11, Theorem 1.9]—see

also [11, Remark 4.2]—). In regards to integral operators with similar properties, it is therefore relevant to

record the following consequence of Theorem 10, which also provides the answer to Question 1.
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Corollary 12 Under the assumptions of Theorem 10, if Ck/ck = O(kδ) as k → ∞ , then

(a) Given n ≥ 2 , if X̂ = Am
d with m = ⌊n+1

3 ⌋ , then for d ∈ N and k > k0

∥η − η̂ℓ,d∥
∥η∥

≲ℓ,n kδ−ν(ℓ)
1

dn
. (16)

(b) Given n ∈ N , if X̂ = AC
d , then, for any ϵ > 0 , d ∈ N and k > k0

∥η − η̂ℓ,d∥
∥η∥

≲ℓ,n,ϵ kδ−ν(ℓ)+ϵ
1

dn
. (17)

Proof That (16) holds for d ≥ n − 1 follows from (13) upon noting that m = ⌊(n + 1)/3⌋ can be incorpo-

rated into the constant of the inequality, and (Ck/ck)k
−ν(ℓ) = O(kδ−ν(ℓ)) as k → ∞ , and n

6m+3 − 1
2 ≤ 0 for

m ≥ ⌊n+1
3 ⌋ ; choosing a larger constant, if necessary, it follows that (16) holds for all d ∈ N . Similarly, (17)

follows from (14) upon noting that (Ck/ck)k
−ν(ℓ)+ϵ = O(kδ−ν(ℓ)+ϵ) and k−ϵ(log k)n+1/2 = o(1) as k → ∞ . 2

For any fixed k > k0 , while Corollary 12(a) demonstrates that the approximations η̂ℓ,d based upon Am
d

can be tuned to converge to the surface current η at any order n ≥ 2 simply by choosing m = ⌊n+1
3 ⌋ , Corollary

12(b) displays that those based on AC
d converge spectrally (i.e. at any order n ∈ N). Moreover, in both cases,

given r > 0, the relative error decreases as O(k−r) with increasing k when δ − ν(ℓ) < −r , and this provides

the rigorous answer to Question 1. In particular, the condition δ − ν(ℓ) < 0 guarantees the rigorous frequency

independent solvability of integral equations (4).

Remark 13 As noted above, if Rk is CFIO or SCIO, then Ck/ck = O(kδ) with δ = 1/3 as k → ∞ so that

δ − ν(1) = −1/3 < 0 . Therefore, in these cases, the knowledge of σslow
1 = a0,0 is sufficient to ensure the

frequency independent solvability of the integral equation (4). Indeed, if 0 < ε1, ε2 ≪ 1 , then [17, Equation

(9.30)]

a0,0(s, k) = 2ik α · n(γ(s)), s ∈ (t1 + ε1, t2 − ε1) (18)

and, for j = 1, 2 [17, Corollary 9.31],

a0,0(s, k) = k2/3
α · n(γ(s))
Z(s)

Ψ(k1/3Z(s)) s ∈ (tj − ε2, tj + ε2). (19)

(see [17] for definitions of Ψ and Z , and [1] for practical approximations of these functions). As noted

in [6], employing any C∞ continuation of the function b0,0(s, k) = α·n(γ(s))
Z(s) into the shadow region (i.e.

s ∈ (t2 + ε2/2, P + t1 − ε2/2)), it can be assumed that expression (19) is valid in (t2 − ε2, P + t1 + ε2) (note

here that we are using periodicity), and a C∞ representation of a0,0 in [0, P ] can then be obtained by matching

expressions (18) and (19) using a standard C∞ partition of unity argument.

4. Conclusions

In this paper, we addressed the problem of rigorous frequency independent solvability of integral equations

(4) based on appropriate modifications of the Galerkin boundary element methods we have recently developed
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in [7, 8]. Moreover, for any direct integral equation formulation of the scattering problem, we demonstrated

how the least number of terms ap,q in the Melrose–Taylor asymptotics (3) must be chosen to be incorporated

into integral equations (4) so as to guarantee the decay of the relative error with increasing k as O(k−r) for

any positive r . The derivation of explicit expressions of ap,q for (p, q) ∈ Z+ × Z+\{(0, 0)} in the asymptotic

expansions of the amplitude and related numerical implementations are left for future work.
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Appendix

A. Integral operators and associated integral equations

If K ⊂ R2 is a compact domain with Lipschitz boundary and connected complement, then the combined field

integral operator (CFIO) Rk and the associated right-hand side fk in equation (4) are given by [3, 18]

Rk =
1

2
I +D′

k − iδkSk and fk =
∂uinc

∂ν
− iδku

inc,

where

Skη(x) =
∫
∂K

Φk(x, y) η(y) ds(y), x ∈ ∂K

is the acoustic single-layer integral operator,

D′
kη(x) =

∫
∂K

∂Φk(x, y)

∂n(x)
η(y) ds(y), x ∈ ∂K

is its normal derivative, δk ∈ R\{0} is the coupling parameter usually taken to be equal to k , and the incident

field uinc is assumed to satisfy the Helmholtz equation in R2 .

On the other hand, if K ⊂ R2 is a bounded, star-shaped Lipschitz domain, and β is the position of the

vector relative to an origin from which K is star-shaped, then the star combined integral operator (SCIO) Rk

and the associated right-hand side fk in equation (4) are given by [3, 18]

Rk = (β · n)
(1
2
I +D′

k

)
+ β · ∇ΓSk − iδkSk and fk = β · ∇uinc − iδku

inc,

where δk = k|x|+ i
2 is the coupling parameter, ∇ΓSk is the operator specified by

∇ΓSkη(x) =
∫
∂K

(
∇xΦk(x, y)− n(x)

∂Φk(x, y)

∂n(x)

)
η(y) ds(y), x ∈ ∂K,

and the incident field uinc is assumed to satisfy the Helmholtz equation in R2 .

B. Derivative estimates

Lemma 14 Let a(s, k) = kθ b(s)φ(kωZ(s)) , where b, φ , and Z are smooth functions, b and Z are periodic,

and θ ∈ R\N and ω ∈ R\Z+ . Then

|Dn
sD

m
k a(s, k)| ≲n,m kθ−m

n+m∑
j=0

kjω|φ(j)(kωZ(s))|

for all n,m ∈ Z+ and all k > 0 .

Proof We first suppose that θ, ω ∈ R\Z+ ; in which case, Leibniz’s rule applied twice yields

Dn
sD

m
k a(s, k) =

n∑
n′=0

m∑
m′=0

(
n

n′

)(
m

m′

)
(Dn−n′

s b(s))(Dm−m′

k kθ)(Dn′

s D
m′

k φ(kωZ(s))

1
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for all n,m ∈ Z+ . It follows that

|Dn
sD

m
k a(s, k)| ≲n,m

n∑
n′=0

m∑
m′=0

kθ+m
′−m|Dn′

s D
m′

k φ(kωZ(s))|

holds for all k > 0. Next we recall Faa di Bruno’s formula [16] for the derivatives of a composition

Dnf(g(t)) =
∑ (Dn′

f)(g(t))
n∏
j=1

j

n′j !

(
Djg(t)

j!

)n′
j

∣∣∣∣∣∣n′ =
n∑
j=1

n′j , n =
n∑
j=1

jn′j , n
′
j ≥ 0

 ,

which, for convenience, we shall write as

Dnf(g(t)) =
∑
{n′}

(Dn′
f)(g(t))

n∏
j=1

j

n′j !

(
Djg(t)

j!

)n′
j

.

Therefore, with Cj =
∏j−1
ℓ=0(ω − ℓ), we have

Dm′

k φ(kωZ) =
∑
{m′′}

φ(m′′)(kωZ)
m′∏
j=1

j

m′′
j !

(
Dj
k (k

ωZ)

j!

)m′′
j

=
∑
{m′′}

φ(m′′)(kωZ)
m′∏
j=1

j Zm
′′
j

m′′
j !

(
Cj k

ω−j

j!

)m′′
j

=
∑
{m′′}

φ(m′′)(kωZ)Zm
′′
kωm

′′−m′
m′∏
j=1

j

m′′
j !

(
Cj
j!

)m′′
j

,

which, on account of Leibniz’s rule, entails

Dn′

s D
m′

k φ(kωZ) =
n′∑

n′′=0

(
n′

n′′

) ∑
{m′′}

(Dn′′

s φ(m′′)(kωZ))(Dn′−n′′

s (Zm
′′
))kωm

′′−m′
m′∏
j=1

j

m′′
j !

(
Cj
j!

)m′′
j

.

This gives

|Dn′

s D
m′

k φ(kωZ)| ≲n′,m′

n′∑
n′′=0

∑
{m′′}

kωm
′′−m′

|Dn′′

s φ(m′′)(kωZ)|, (20)

which, in return, implies

|Dn
sD

m
k a(s, k)| ≲n,m

n∑
n′=0

m∑
m′=0

kθ+m
′−m

n′∑
n′′=0

∑
{m′′}

kωm
′′−m′

|Dn′′

s φ(m′′)(kωZ)|

≲n,m kθ−m
n∑

n′=0

m∑
m′=0

n′∑
n′′=0

∑
{m′′}

kωm
′′
|Dn′′

s φ(m′′)(kωZ)|. (21)

2
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Similar calculations using Faa di Bruno’s formula entails

Dn′′

s φ(m′′)(kωZ) =
∑
{n′′′}

φ(n′′′+m′′)(kωZ)
n′′∏
j=1

j

n′′′j !

(
Dj
s (k

ωZ)

j!

)n′′′
j

=
∑
{n′′′}

φ(n′′′+m′′)(kωZ)
n′′∏
j=1

j kωn
′′′
j

n′′′j !

(
Dj
sZ

j!

)n′′′
j

=
∑
{n′′′}

φ(n′′′+m′′)(kωZ) kωn
′′′

n′′∏
j=1

j

n′′′j !

(
Dj
sZ

j!

)n′′′
j

and thus

|Dn′′

s φ(m′′)(kωZ)| ≲n′′

∑
{n′′′}

kωn
′′′
|φ(n′′′+m′′)(kωZ)|. (22)

Using this in (21), we finally obtain

|Dn
sD

m
k a(s, k)| ≲n,m kθ−m

n∑
n′=0

m∑
m′=0

n′∑
n′′=0

∑
{m′′}

∑
{n′′′}

kω(n
′′′+m′′)|φ(n′′′+m′′)(kωZ)|

≲n,m kθ−m
n∑

n′=0

m∑
m′=0

kω(n
′+m′)|φ(n′+m′)(kωZ)|

≲n,m kθ−m
n+m∑
j=0

kjω|φ(j)(kωZ)|

as claimed.

In case θ = 0, by Leibniz’s rule we have

Dn
sD

m
k a(s, k) =

n∑
n′=0

(
n

n′

)
(Dn−n′

s b(s))(Dn′

s D
m
k φ(k

ωZ(s)))

for all n,m ∈ Z+ so that

|Dn
sD

m
k a(s, k)| ≲n

n∑
n′=0

|Dn′

s D
m
k φ(k

ωZ(s))|

holds for all k > 0. Using (20), we therefore get

|Dn
sD

m
k a(s, k)| ≲n,m

n∑
n′=0

n′∑
n′′=0

∑
{m′}

kωm
′−m|Dn′′

s φ(m′)(kωZ(s))|

which, on account of (22), yields

|Dn
sD

m
k a(s, k)| ≲n,m

n∑
n′=0

n′∑
n′′=0

∑
{m′}

∑
{n′′′}

kω(n
′′′+m′)−m|φ(n′′′+m′)(kωZ(s))|.

3
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Therefore

|Dn
sD

m
k a(s, k)| ≲n,m

n∑
n′=0

m∑
m′=0

kω(n
′+m′)−m|φ(n′+m′)(kωZ(s))|

≲n,m k−m
n+m∑
j=0

kjω|φ(j)(kωZ(s))|

completing the proof. 2

C. Galerkin approximation spaces

C.1. Frequency-adapted Galerkin approximation spaces

Given m ∈ N , set

ϵj =
1

3

2m− 2j + 1

2m+ 1
, j = 1, . . . ,m.

For j = 1, . . . ,m− 1, define the illuminated transition and shadow transition intervals as

IjIT1
= [t1 + ξ1k

−1/3+ϵj+1 , t1 + ξ1k
−1/3+ϵj ]

IjIT2
= [t2 − ξ2k

−1/3+ϵj , t2 − ξ2k
−1/3+ϵj+1 ]

IjST1
= [t1 − ζ1k

−1/3+ϵj , t1 − ζ1k
−1/3+ϵj+1 ]

IjST2
= [t2 + ζ2k

−1/3+ϵj+1 , t2 + ζ2k
−1/3+ϵj ];

note that these intervals are redundant if m = 1. Further define the shadow boundary and illuminated/shadow

regions as

ISB1 = [t1 − ζ1k
−1/3+ϵm , t1 + ξ1k

−1/3+ϵm ]

ISB2 = [t2 − ξ1k
−1/3+ϵm , t2 + ζ2k

−1/3+ϵm ]

IIL = [t1 + ξ1k
−1/3+ϵ1 , t2 − ξ2k

−1/3+ϵ1 ]

IDS = [t2 + ζ2k
−1/3+ϵ1 , P + t1 − ζ1k

−1/3+ϵ1 ].

Here ξ1, ξ2, ζ1, ζ2 > 0, t1−ξ1 < t2−ξ2 , t2+ζ2 < P + t1−ζ1 , and they are chosen so that the above intervals are

nondegenerate for all k > 1. Denoting these 4m intervals as [aj , bj ] , given d ∈ Z+ , the 4m(d+1) dimensional

frequency-adapted Galerkin approximation space based on algebraic polynomials is then defined as [8]

Am
d =

4m⊕
j=1

1[aj ,bj ] e
ik α·γ Pd,

where Pd is the space of algebraic polynomials of degree at most d .

4
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C.2. Galerkin approximation spaces based on changes of variables

For j = 1, 2, let ξj , ξ
′
j , ζj , ζ

′
j > 0 be such that

t1 + ξ1 ≤ t1 + ξ′1 = t2 − ξ′2 ≤ t2 − ξ2

and

t2 + ζ2 ≤ t2 + ζ ′2 = P + t1 − ζ ′1 ≤ P + t1 − ζ1.

For k > 1, define the illuminated transition and shadow transition intervals as

IIT1 = [t1 + ξ1k
−1/3, t1 + ξ′1] IIT2 = [t2 − ξ′2, t2 − ξ2k

−1/3]

IST1 = [t1 − ζ ′1, t1 − ζ1k
−1/3] IST2 = [t2 + ζ2k

−1/3, t2 + ζ ′2]

and the shadow boundary intervals as

ISB1 = [t1 − ζ1k
−1/3, t1 + ξ1k

−1/3] ISB2 = [t2 − ξ2k
−1/3, t2 + ζ2k

−1/3].

Given d ∈ Z+ , the 6(d + 1) dimensional Galerkin approximation space based on algebraic polynomials and

frequency dependent changes of variables is then defined as [7]

AC
d =

6⊕
j=1

1[aj ,bj ] e
ik α·γ P̂C

j ,

where

P̂C
j =

{
Pd ◦ ϕ−1, if [aj , bj ] is a transition region,

Pd, otherwise.

Here ϕ is the change of variables on the transition intervals given by

ϕ (s) =


t1 + φ (s) kψ(s), s ∈ IIT1 ,

t2 − φ (s) kψ(s), s ∈ IIT2 ,

t1 − φ (s) kψ(s), s ∈ IST1 ,

t2 + φ (s) kψ(s), s ∈ IST2 ,

with

φ(s) =



ξ1 + (ξ′1 − ξ1)
s− a1
b1 − a1

, s ∈ IIT1 ,

ξ′2 + (ξ2 − ξ′2)
s− a2
b2 − a2

, s ∈ IIT2
,

ζ ′1 + (ζ1 − ζ ′1)
s− a3
b3 − a3

, s ∈ IST1 ,

ζ2 + (ζ ′2 − ζ2)
s− a4
b4 − a4

, s ∈ IST2 ,

and ψ(s) = −1

3



b1 − s

b1 − a1
, s ∈ IIT1 ,

s− a2
b2 − a2

, s ∈ IIT2
,

s− a3
b3 − a3

, s ∈ IST1 ,

b4 − s

b4 − a4
, s ∈ IST2 .

5
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