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1. Introduction

The isotropic plane is a real projective metric plane whose absolute figure is a pair consisting of an absolute

point Ω and an absolute line ω incident to it. If T = (x0 : x1 : x2) denotes any point in the plane presented

in homogeneous coordinates then usually a projective coordinate system where Ω = (0 : 1 : 0) and the line ω

with the equation x2 = 0 is chosen.

Isotropic points are the points incident with the absolute line ω and the isotropic lines are the lines

passing through the absolute point Ω.

Metric quantities and all the notions related to the geometry of the isotropic plane can be found in [8]

and [7]. Now we recall a few facts that will be used further on, wherein we assume that x =
x0

x2
and y =

x1

x2
.

Two lines are parallel if they have the same isotropic point, and two points are parallel if they are incident

with the same isotropic line.

For T1 = (x1, y1) and T2 = (x2, y2), two nonparallel points, a distance between them is defined as

d(T1, T2) := x2 − x1 . In the case of parallel points T1 = (x, y1) and T2 = (x, y2), a span is defined by

s(T1, T2) := y2 − y1 . Both quantities are directed.

Two nonisotropic lines p1 and p2 in the isotropic plane can be given by y = kix+ li, ki, li ∈ R, i = 1, 2,

labeled by pi = (ki, li), i = 1, 2 in line coordinates. Therefore, the angle formed by p1 and p2 is defined by

φ = ∠(p1, p2) := k2 − k1 , being directed as well. Any two points T1 = (x1, y1) and T2 = (x2, y2) have the

midpoint M =

(
1

2
(x1 + x2),

1

2
(y1 + y2)

)
and any two lines with the equations y = kix + li (i = 1, 2) have

the bisector with the equation y =
1

2
(k1 + k2)x+

1

2
(l1 + l2).
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A triangle in the isotropic plane is called allowable if none of its sides are isotropic (see [4]).

The classification of conics in the isotropic plane can be found in [1] and [7]. Recall that the circle in the

isotropic plane is the conic touching the absolute line ω at the absolute point Ω. The equation of such a circle

is given by y = ux2 + vx+ w, u ̸= 0, u, v, w ∈ R .

As the principle of duality is valid in the projective plane, it is preserved in the isotropic plane as well.

2. Cyclic quadrangle in isotropic plane

The geometry of the cyclic quadrangle in the isotropic plane appeared first in [9]. The diagonal triangle and

diagonal points were introduced, and several properties concerning them were discussed.

Let ABCD be the cyclic quadrangle with

y = x2 (1)

as its circumscribed circle ([9], p. 267). Choosing

A = (a, a2), B = (b, b2), C = (c, c2), D = (d, d2), (2)

with a, b, c, d being mutually different real numbers, where a < b < c < d , the next lemma is obtained.

Lemma 1 ([9], p. 267) For any cyclic quadrangle ABCD there exist four distinct real numbers a, b, c, d such

that, in the defined canonical affine coordinate system, the vertices have the form (2), the circumscribed circle

has the equation (1), and the sides are given by

AB . . . y = (a+ b)x− ab, DA . . . y = (a+ d)x− ad,

BC . . . y = (b+ c)x− bc, AC . . . y = (a+ c)x− ac,

CD . . . y = (c+ d)x− cd, BD . . . y = (b+ d)x− bd.

(3)

Tangents A,B, C,D of the circle (1) at the points (2) are of the form

A . . . y = 2ax− a2, B . . . y = 2bx− b2,

C . . . y = 2cx− c2, D . . . y = 2dx− d2.
(4)

The points of intersection of the tangents in (4) are

TAB = A ∩ B = (a+b
2 , ab), TBC = B ∩ C = ( b+c

2 , bc),

TAC = A ∩ C = (a+c
2 , ac), TBD = B ∩ D = ( b+d

2 , bd),

TAD = A ∩D = (a+d
2 , ad), TCD = C ∩ D = ( c+d

2 , cd).

(5)

The diagonal triangle of the cyclic quadrangle is formed by the intersection points of the opposite sides

of the quadrangle: U = AC ∩ BD , V = AB ∩ CD , and W = AD ∩ BC . An allowable triangle introduced in

[4] concerns each triangle whose sides are nonisotropic lines. According to [9] the allowable cyclic quadrangle is

the cyclic quadrangle having the allowable diagonal triangle. Hence:
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Lemma 2 The diagonal points U, V,W of the allowable cyclic quadrangle ABCD are of the form

U =

(
ac− bd

a+ c− b− d
,
ac(b+ d)− bd(a+ c)

a+ c− b− d

)
,

V =

(
ab− cd

a+ b− c− d
,
ab(c+ d)− cd(a+ b)

a+ b− c− d

)
,

W =

(
ad− bc

a+ d− b− c
,
ad(b+ c)− bc(a+ d)

a+ d− b− c

)
,

(6)

and the sides of the diagonal triangle are given with

UV . . . y =
2(ad− bc)

a+ d− b− c
x− ad(b+ c)− bc(a+ d)

a+ d− b− c
,

UW . . . y =
2(ab− cd)

a+ b− c− d
x− ab(c+ d)− cd(a+ b)

a+ b− c− d
,

V W . . . y =
2(ac− bd)

a+ c− b− d
x− ac(b+ d)− bd(a+ c)

a+ c− b− d
,

(7)

where a+ c− b− d ̸= 0, a+ b− c− d ̸= 0, a+ d− b− c ̸= 0 .

Note 1 Conditions a + c − b − d ̸= 0, a + b − c − d ̸= 0 , and a + d − b − c ̸= 0 are the conditions for the

cyclic quadrangle ABCD to be allowable.

3. On the harmonic quadrangle in the isotropic plane

In this section we investigate the cyclic quadrangle with a special property.

Theorem 1 Let ABCD be an allowable cyclic quadrangle with vertices given by (2), sides by (3), and tangents

of its circumscribed circle (1) at its vertices given by (4). These are the equivalent statements:

1. the point TAC = A ∩ C is incident with the diagonal BD ;

2. the point TBD = B ∩ D is incident with the diagonal AC ;

3. the equality

d(A,B) · d(C,D) = −d(B,C) · d(D,A) (8)

holds;

4. the equality

2(ac+ bd) = (a+ c)(b+ d) (9)

holds.
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Proof Let us first prove the equivalence of statements 1 and 4.

The point TAC = (a+c
2 , ac) is obviously incident with the tangents A and C from (4), and therefore

TAC = A ∩ C . On the other hand, TAC is incident with the line BD from (3) providing

ac = (b+ d)
a+ c

2
− bd,

being statement 4.

The equivalence of statements 2 and 4 can be proved in an analogous way. The following equality,

d(A,B) · d(C,D)− d(B,C) · d(A,D) = (b− a)(d− c)− (c− b)(d− a) = 2(ac+ bd)− (a+ c)(b+ d),

proves the equivalency between 3 and 4. 2

A cyclic quadrangle will be referred to as a harmonic quadrangle if it satisfies one and hence all of the

equivalent conditions presented in Theorem 1.

Since properties 1–3 have completely geometrical sense, property 4 does not depend on the choice of the

affine coordinate system.

Choosing the y -axis to be incident with the diagonal point U , because of (6), ac = bd follows. Since

ac < 0 and bd < 0, we can use the notation

ac = bd = −k2. (10)

Thus, the diagonal point U turns into

U = (0, k2). (11)

Statement 4 yields

(a+ c)(b+ d) = −4k2. (12)

Next, we will show that

(a− c)2(b− d)2

(a+ c− b− d)2
= 4k2, (13)

i.e.

(a− c)2(b− d)2 − 4k2(a+ c− b− d)2 = 0.

Indeed, the left side of the equality given above, owing to (10) and (12), is equal to

[(a+ c)2 − 4ac][(b+ d)2 − 4bd]− 4k2[(a+ c)2 + (b+ d)2 − 2(a+ c)(b+ d)]

= [(a+ c)2 + 4k2][(b+ d)2 + 4k2]− 4k2[(a+ c)2 + (b+ d)2 + 8k2]

= (a+ c)2(b+ d)2 − 16k4 = 0.

Hence,

(a− c)(b− d)

a+ c− b− d
= ±2k.

As the fraction of the left side is a negative real number, we can choose k being k > 0, i.e. let

(a− c)(b− d)

a+ c− b− d
= −2k. (14)
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Because of (10), a numerator of the fraction included in a constant term of the equation (7) of the line VW

amounts to

k2(b+ d− a− c),

and hence this constant term equals −k2 . Therefore, the line VW is given by y = −k2 .

From (5) we get

TAC =

(
a+ c

2
,−k2

)
, TBD =

(
b+ d

2
,−k2

)
.

There are two more valid identities:

2(a− b)(c− d) = (a− c)(b− d),

2(a− d)(b− c) = (a− c)(b− d).
(15)

Let us consider for example the first identity in (15). By using (10) and (12) we get

2(a− b)(c− d) = 2(ac− ad− bc+ bd) = −4k2 − 2(ad+ bc)

= (a+ c)(b+ d)− 2(ad+ bc) = (a− c)(b− d).

Furthermore, by adding the identities in (15) and dividing the result by 2, the equality (a − c)(b − d) =

(a− b)(c− d) + (a− d)(b− c) is obtained, being Ptolemy’s theorem.

Due to the above discussion, such a harmonic quadrangle is said to be in a standard position or it is

a standard harmonic quadrangle (see Figure 1). Every harmonic quadrangle can be transformed into one in

standard position by means of an isotropic transformation. In order to prove geometric facts for each harmonic

quadrangle, it is sufficient to give a proof for the standard harmonic quadrangle.

The diagonal points from (6) turn into

U = (0, k2), V =

(
ab− cd

a+ b− c− d
,−k2

)
,W =

(
ad− bc

a+ d− b− c
,−k2

)
. (16)

4. Properties of the harmonic quadrangle in the isotropic plane

In this section, we will prove several theorems dealing with the properties of the harmonic quadrangle. For the

Euclidean version of the next theorem, see [6].

Theorem 2 Let ABCD be a harmonic quadrangle, and lines A,B, C , and D the tangents to the circle (1) at

the points A,B,C, and D , respectively. Assume that MAC and MBD are the midpoints of the diagonals AC

and BD , respectively. Then the points MAC , B,D , and TBD = B ∩ D are incident with a circle. The same is

valid for the points MBD, A, C , and TAC = A ∩ C .

Proof Let us prove the theorem for the points MAC , B,D , and TBD = B ∩ D .

Points B,D , and TBD are incident with a circle of the form

y = 2x2 − (b+ d)x+ bd. (17)
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Figure 1. The harmonic quadrangle.

Applying the coordinates of MAC = (a+c
2 , a2+c2

2 ) in the equation given above, we obtain

a2 + c2

2
=

(a+ c)2

2
− 1

2
(a+ c)(b+ d) + bd,

i.e.
2(ac+ bd) = (a+ c)(b+ d),

being the condition (9) for the cyclic quadrangle to be harmonic. Hence, MAC lies on the circle (17). Because

of symmetry on the real numbers a, b, c , and d , the same is valid for MBD, A, C , and TAC = A ∩ C , whose
circumscribed circle is of the form

y = 2x2 − (a+ c)x+ ac. (18)

2

Note 2 Circles (17) and (18) from Theorem 2 intersect in (0,−k2) , the point parallel to the diagonal point U

and incident to the line VW .

Theorem 3 Let ABCD be a harmonic quadrangle, and UAB , UBC , UCD , UDA be the intersections of the

isotropic line through U with the sides AB , BC , CD , DA , respectively. Then the following equalities hold:

s(U,UAB)

d(A,B)
=

s(U,UBC)

d(B,C)
=

s(U,UCD)

d(C,D)
=

s(U,UDA)

d(D,A)
. (19)

Proof The point UAB has the coordinates (0,−ab) and therefore s(U,UAB) = −k2 − ab . Let us prove

s(U,UAB)

d(A,B)
=

s(U,UBC)

d(B,C)
.
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It holds precisely when

k2 + ab

a− b
=

k2 + bc

b− c

is valid, i.e.

k2(2b− a− c) + (a+ c)b2 − 2abc = 0.

The latter equality holds if and only if

4bk2 − k2(a+ c) + b2(a+ c) = 0,

being, after inserting 4k2 = −(a+ c)(b+ d), equivalent to

−b(b+ d)− k2 + b2 = 0,

i.e.

k2 + bd = 0.

This completes the proof. 2

Theorem 4 Let ABCD be a harmonic quadrangle and let the lines ã, b̃, c̃, d̃ be incident with the vertices

A,B,C,D , respectively, and form equal angles with the sides AB,BC,CD,DA , respectively. The lines ã, b̃, c̃, d̃

form a harmonic quadrangle as well.

Proof The lines

ã ... y = (a+ b− h)x+ a(h− b)

b̃ ... y = (b+ c− h)x+ b(h− c)

c̃ ... y = (c+ d− h)x+ c(h− d)

d̃ ... y = (d+ a− h)x+ d(h− a)

fulfill the condition of the theorem since

∠(ã, AB) = ∠(b̃, BC) = ∠(c̃, CD) = ∠(d̃, DA) = h

while (a+ b− h)a+ a(h− b) = a2 (analogously for b̃, c̃, d̃). Denoting by Ã = d̃ ∩ ã , B̃ = ã ∩ b̃ , C̃ = b̃ ∩ c̃ , and

D̃ = c̃ ∩ d̃ , the accuracy of the following equalities is obvious:

Ã =

(
a+

a− d

d− b
h, a2 +

(a− d)(a+ b)

d− b
h− a− d

d− b
h2

)
,

B̃ =

(
b+

b− a

a− c
h, b2 +

(b− a)(b+ c)

a− c
h− b− a

a− c
h2

)
,

C̃ =

(
c+

c− b

b− d
h, c2 +

(c− b)(c+ d)

b− d
h− c− b

b− d
h2

)
,

D̃ =

(
d+

d− c

c− a
h, d2 +

(d− c)(d+ a)

c− a
h− d− c

c− a
h2

)
.
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Next, some computing shows that the points Ã, B̃, C̃, D̃ are incident with the circle

(h+ 2k)y = 2khx2 − h2x− hk2. (20)

Indeed, for the point Ã :

(h+ 2k)y − 2khx2 + h2x+ hk2

= (h+ 2k)

[
a2 − (a+ b)(a− d)

b− d
h+

a− d

b− d
h2

]
− 2k

[
a2 − 2a

a− d

b− d
h+

(a− d)2

(b− d)2
h2

]
+ h2

[
a− a− d

b− d
h

]
+ hk2

= a2h− (a+ b)(a− d)

b− d
h2 − 2

(a+ b)(a− d)

b− d
hk + 2

a− d

b− d
h2k + 4a

a− d

b− d
hk − 2

(a− d)2

(b− d)2
h2k + ah2 + hk2

= a2h+
bd− a2

b− d
h2 +

2hk

b− d

(
a2 − ab− ad+ bd

)
− 2

(a− b)(a− d)

(b− d)2
h2k + hk2

= a2h+
bd− a2

b− d
h2 +

2hk

b− d

(
a2 − ab− ad+ ac

)
− 2

a2 − ab− ad+ ac

(b− d)2
h2k + hk2

= a2h+
bd− a2

b− d
h2 + 2a(a− c)hk

a− b+ c− d

(a− c)(b− d)
− 2ah2k

a− c

b− d
· a− b+ c− d

(a− c)(b− d)
+ hk2

= a2h+
bd− a2

b− d
h2 − a(a− c)h+ ah2 a− c

b− d
+ hk2 = ach+ hk2 +

bd− ac

b− d
h2 = 0.

Due to (a− b)(c− d) = ab+ cd+ 2k2 , within the following calculation we get

d(Ã, B̃) = b+
b− a

a− c
h− a− a− d

d− b
h = b− a− a2 + b2 − 2ab+ ab+ cd− ac− bd

(a− c)(d− b)
h

= b− a− (a− b)2 + (a− b)(c− d)

(a− c)(d− b)
h = b− a+

(a− b)(a− b+ c− d)

(a− c)(b− d)
h

= b− a+
(a− b)

−2k
h = (b− a)(1 +

h

2k
).

Therefore,

d(Ã, B̃) · d(C̃, D̃) = (b− a)(d− c)(1 +
h

2k
)2.

On the other hand,

d(B̃, C̃) · d(D̃, Ã) = (c− b)(a− d)(1 +
h

2k
)2.

Since (a − b)(c − d) = (a − d)(b − c), the equality d(Ã, B̃) · d(C̃, D̃) = −d(B̃, C̃) · d(D̃, Ã) is fullfiled by the

points Ã, B̃, C̃, D̃ and the claim of the theorem is proved. 2

The Euclidean case of the theorem given above can be found in [2].

Corollary 1 For the harmonic quadrangles ABCD and ÃB̃C̃D̃ , the following equalities are applicable:

d(Ã, B̃)

d(A,B)
=

d(B̃, C̃)

d(B,C)
=

d(C̃, D̃)

d(C,D)
=

d(D̃, Ã)

d(D,A)
= 1 +

h

2k
.
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Note that for h = −2k all four points Ã, B̃, C̃, D̃ coincide with one point, say P1 , having the coordinates

P1 =
(
k, 3k2

)
. (21)

The point P1 , called the first Brocard point of the quadrangle ABCD , is the point whose connection

lines with the vertices A,B,C,D form the equal angles with the sides AB,BC,CD , and DA , respectively.

Similarly, the second Brocard point P2 is defined as the point such that its connection lines with the vertices

A,B,C,D form the equal angles with sides AD,DC,CB , and BA , respectively. Observations similar to those

in the proof of Theorem 4 and Corollary 1 result in

P2 =
(
−k, 3k2

)
. (22)

Some nice geometric properties of the Brocard points are described in the following two theorems and depicted

in Figure 2.

Theorem 5 Let ABCD be a harmonic quadrangle and MAC , MBD be midpoints of the line segments AC ,

BD , respectively. Two Brocard points P1 and P2 , diagonal point U , and two midpoints MAC and MBD lie

on a circle. Furthermore, d(P1, U) = d(U,P2) holds and the line P1P2 is parallel to the line VW .

Proof The points P1 , P2 , and U with the coordinates given by (21), (22), and (16) apparently lie on a circle

with the equation

y = 2x2 + k2.

It remains to prove that MAC and MBD are incident with the same circle. For example, that is true for the

point MAC = (
a+ c

2
,
a2 + c2

2
) because of

2 · (a+ c

2
)2 + k2 = 2

a2 − 2k2 + c2

4
+ k2 =

a2 + c2

2
.

The second statement from Theorem 5 holds since d(P1, U) = −k = d(U,P2) .

Lines P1P2 and VW have the equations

y = 3k2, y = −k2,

respectively, and therefore are parallel. 2

Let us now prove that the line MACMBD has the equation y = (a+ b+ c+ d)x+ 3k2 . Indeed,

2y − 2(a+ b+ c+ d)x− 6k2 = a2 + c2 − (a+ c)(a+ b+ c+ d)− 6k2

= −2ac− (a+ c)(b+ d)− 6k2 = 2k2 + 4k2 − 6k2 = 0.

The line MACMBD passes through the point U ′ = (0, 3k2), which also lies on the line P1P2 .

Theorem 6 Let ABCD be a harmonic quadrangle, MAC and MBD midpoints of the line segments AC

and BD respectively, and P1 and P2 two Brocard points of ABCD . Then P1 = WMAC ∩ VMBD and

P2 = VMAC ∩WMBD .

674



JURKIN et al./Turk J Math

Figure 2. The visualization of Theorem 5.

Proof We prove the collinearity of the points P1 , W , and MAC . Referring to (16) and (21) the slopes of

lines WMAC and P1MAC are obtained to be

(a2 + c2 + 2k2)(a+ d− b− c)

(a+ c)(a+ d− b− c)− 2(ad− bc)
=

(a2 + c2 − 2ac)(a+ d− b− c)

a2 − c2 − (a− c)(b+ d)
=

(a− c)(a− b− c+ d)

a+ c− b− d
,

a2 + c2 − 6k2

a+ c− 2k
=

(a+ c)2 − 4k2

a+ c− 2k
= a+ c+ 2k

and they are equal precisely when

(a− c)(a− b− c+ d) = (a+ c+ 2k)(a− b+ c− d),

i.e.
2ad+ 2bc− 2ac− 2bd = 2k(a− b+ c− d).

Because of (14), this is equivalent to

2ad+ 2bc− 2ac− 2bd = −(a− c)(b− d)

and this is the first equality (15). The other three collinearities can be proved in a similar manner. 2

For the Euclidean version of the following theorems, see [5] (for Theorems 7 and 9) and [6] (for Theorem

8).

Theorem 7 Let ABCD be a harmonic quadrangle and MAC be the midpoint of the line segment AC . Then

the equality

d(MAC , A)2 = d(MAC , B) · d(MAC , D) (23)

holds. The line AC is the bisector of the lines MACB and MACD .
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Proof The point MAC is of the form (
a+ c

2
,
a2 + c2

2
). According to (9),

d(MAC , B) · d(MAC , D)− d(MAC , A)2 = (a+c
2 − b)(a+c

2 − d)− (a+c
2 − a)2

= bd− a2 + a+c
2 (2a− b− d) = bd+ ac− 1

2 (a+ c)(b+ d) = 0

is valid.

Further on, the equations of the lines MACB,MACD are given by

MACB . . . y = (a+ b+ c− d)x+ b(d− a− c),

MACD . . . y = (a− b+ c+ d)x+ d(b− a− c).
(24)

In that case, the equalities

∠(MACB,MACC) = (a+ c)− (a+ b+ c− d) = d− b,

∠(MACC,MACD) = (a− b+ c+ d)− (a+ c) = d− b

prove the second part of the theorem. 2

Theorem 8 Let ABCD be a harmonic quadrangle and MAC be the midpoint of the line segment AC . The

triangles MACDA , MACAB , and CDB have equal corresponding angles.

Proof By using (3) and (24) it is easy to prove that

∠(DA,AMAC) = ∠(AB,BMAC) = ∠(DB,BC) = c− d,

∠(MACD,DA) = ∠(MACA,AB) = ∠(CD,DB) = b− c, and

∠(AMAC ,MACD) = ∠(BMAC ,MACA) = ∠(BC,CD) = d− b. 2

Corollary 2 The diagonal line BD is a symmedian for the triangles ABC and CDB , while the diagonal line

AC is a symmedian for the triangles ABD and CDB .

Theorem 9 Let ABCD be a harmonic quadrangle. The lines lAB , lBC , lCD , lDA incident with the diagonal

point U and parallel to AB , BC , CD , DA , respectively, intersect the sides of the quadrangle ABCD in eight

points, lCD ∩AD , lCD ∩BC , lAB ∩BC , lAB ∩AD , lBC ∩AB , lAD ∩AB , lAD ∩CD , and lBC ∩CD , which

lie on a circle.

Proof It is easy to prove that the line lCD has the equation of the form

y = (c+ d)x+ k2. (25)

Then the coordinates of lCD ∩AD are given with

(
ad+ k2

a− c
,
a(d2 + k2)

a− c

)
.
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Because of

2

(
ad+ k2

a− c

)2

=
2a2d2 + 4adk2 + 2k4

(a− c)2
=

ad(2ad+ 4k2 + 2bc)

(a− c)2

=
ad(2ad− ab− ad− bc− cd+ 2bc)

(a− c)2
=

ad(ad− ab+ bc− cd)

(a− c)2

=
ad(a− c)(d− b)

(a− c)2
=

ad(d− b)

a− c
=

a(d2 + k2)

a− c
,

the point given above is incident with the circle

y = 2x2.

We can prove the same for the other seven points. 2

The structure of the harmonic quadrangle allows us to obtain a rich structure of collinear points and

concurrent lines. The Euclidean version of the following theorem can be found in [3].

Theorem 10 Let ABCD be a harmonic quadrangle. If CAB = AB ∩ C , DAB = AB ∩ D , ABC = BC ∩ A ,

DBC = BC ∩D , ACD = CD ∩A , BCD = CD ∩ B , BAD = AD ∩ B , CAD = AD ∩ C are considered, the four

triples of points {CAB , ABC , TBD} , {ACD, CAD, TBD} , {DAB , BAD, TAC} , {DBC , BCD, TAC} are collinear.

Proof The points

ACD =

(
cd− a2

c+ d− 2a
,
2acd− (c+ d)a2

c+ d− 2a

)
, CAD =

(
ad− c2

a+ d− 2c
,
2acd− (a+ d)c2

a+ d− 2c

)
are lying on the line given by

y =
a2(c+ d) + c2(a+ d) + d2(a+ c)− 6acd

(a− c)2 + (a− d)(c− d)
x+

acd(a+ c+ d)− a2c2 − a2d2 − c2d2

(a− c)2 + (a− d)(c− d)
.

The coordinates of the point TBD = (
b+ d

2
, bd) satisfy the equation above if and only if −(a− d)(c− d)(ab−

2ac+ bc+ ad− 2bd+ cd) = 0, which happens exactly in the case of ab+ bc+ ad+ cd = 2ac+ 2bd . 2
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