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Abstract: This paper proves that the number of small covers over products of a simple polytope with a n-simplex, up
to D-J equivalence, is a polynomial in the variable 2" . A similar result holds for orientable small covers. We also provide
a new way of computation, namely computing the finite number of representatives and interpolating polynomially. The
ratio between the number of orientable small covers and the number of small covers is given. As an application, by
interpolation, we determine the polynomials related to small covers and orientable small covers over products of a prism
with a simplex up to D-J equivalence. A formula for calculating the number of equivariant homeomorphism classes of

small covers over the product is also provided.
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1. Introduction

The small cover, introduced by Davis and Januszkiewicz [9], has recently become one of the most interesting
objects in toric topology. A closed manifold M™ is called a small cover if M™ admits a locally standard
(Z3)™ -action such that its orbit space is homeomorphic to a simple convex m-polytope P™. A typical example
of a small cover is the Stong manifold [8] defined by means of a real projective bundle, which can be used
as generators in the Thom unoriented cobordism ring. More generally, a generalized real Bott manifold was
introduced as a small cover in [7] by Choi et al., which appears in a sequence of projective bundles starting with
a point

RBj, ™5 RBj_1 ——% ... ™, RB; ™% RB, = {a point},

where RB; is the projectivization of the Whitney sum of n; + 1 real line bundles over RB;_;. Each RB;
provides a small cover over H;Zl A™ where A™ is the n;-simplex. RB; is called a generalized real Bott
manifold of height 4 starting with a point. If each n; = 1, then it is called a real Bott manifold; see [15].

In the above sequence, if we replace “a point” with a closed manifold M™, which is a small cover over

P™  then we get a new sequence starting with M™:

RBy = RBj_; —% ... 2 RB; ™ RBy = M™.

We call RB; a generalized real Bott manifold of height i starting with M™. In fact, each RB; is a small cover
over P™ x H§:1 A" ; see [12].
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For RBy = {a point}, Choi et al. [7] proved that every small cover over a product of simplices is D-J
equivalent (see definition 4) to a generalized real Bott manifold, and so the number of D-J equivalence classes
of small covers over a product of simplices is equal to the number of equivalence classes of generalized real Bott
manifolds. We could ask a similar question for RBy = M™. Since the general question seems quite hard to
solve, it is reasonable to restrict P™, the height i, or n; for enumerating small covers up to various equivalences.
Generally speaking, if the height ¢ is fixed, it is more difficult to enumerate small covers for large m, [ — m,
and n; than for small m, | —m, or n;. For m < 3 and some n;, several papers have studied the equivalence
classes of small covers over the space.

For m = 1, Choi studied small covers over cubes [5], which are obtained as the projectivization of a
Whitney sum of two real line bundles. In particular he associated an acyclic digraph with labeled n vertices
to a small cover over an n-cube and proved that the correspondence is bijective. Using the number of acyclic
digraphs with n labeled vertices, he counted the number of equivariant homeomorphism classes of small covers
over an n-cube. In [6] orientable small covers over cubes were counted. Choi also obtained estimates for O,,/R,,,
where O,, stands for the number of orientable small covers and R,, denotes the number of all small covers over
an n-cube up to D-J equivalence.

For m = 2, using combinatorial tools, Cai et al. gave a counting formula for the number of small covers of
3-dimensional prisms [3]. Later, as a generalization of this result, Lii and Masuda investigated a closed smooth
manifold of dimension n with a nonfree effective action of (Z3)™[13]. The orbit space @ is a nice manifold with
corners. When @ is a simple polytope, the manifold is a small cover. They dealt with the classification of all
2-torus manifolds with a given orbit space up to equivariant homeomorphism and showed that the equivariant
homeomorphism classes can be identified with the coset space (H(Q;(Z2)") x A(Q))/Aut(Q). On this basis,
using the fact that the equivariant homeomorphism classes of small covers correspond to the orbits of the action
of the automorphism group of the polytope on the set of colorings, Wang and Chen [17] obtained a formula for
calculating the number of equivariant homeomorphism classes of small covers and orientable small covers over
products of a polygon with a simplex.

In a similar manner, for m = 3, Chen et al. [4] calculated the number of equivariant homeomorphism

classes of (orientable) small covers over products of the polar of the cyclic polytope C?(6) with a simplex.

On the other hand, for RBy = {a point }, Kamishima and Masuda [11] studied the cohomological rigidity
problem for real toric manifolds and asserted that two real Bott manifolds are diffeomorphic if their cohomology
rings with Zs -coefficients are isomorphic as graded rings. Furthermore, in another paper [15], using the structure
of stable KO groups of real projective spaces, Masuda gave a necessary and sufficient condition for cohomological
rigidity of generalized real Bott manifolds of height two and found counterexamples of cohomological rigidity
for real toric manifolds. He also showed that if two generalized real Bott manifolds of height two are homotopy
equivalent then they are diffeomorphic.

In [16], Nakayama and Nishimura investigated the topology of small covers using the coloring theory in
combinatorics and gave an orientability condition for a small cover. They showed the existence of an orientable
small cover over every simple convex 3-polytope and the existence of a nonorientable small cover over every
simple convex 3-polytope, except for the 3-simplex.

From a geometric point of view, Garrison and Scott [10] discussed small covers over the right-angled
dodecahedron and the right-angled 120-cell. Small covers over right-angled hyperbolic polytopes provide exam-
ples of closed hyperbolic manifolds. They used an algorithm to find all the small covers over the dodecahedron

(there are 25), and to find small covers over the 120-cell of minimal complexity. In [14], Li and Yu showed

693



DAI and WANG /Turk J Math

that every 3-dimensional small cover can be obtained from standard actions on RP? and S x RP? through
the application of six explicitly described geometric operations.

In this work, suppose that M™ is a small cover over P™, which is a fixed simple polytope with [ facets.
Then we generate a series of polytopes P™ x A™(n = 1,2,---). We prove that the number of all small covers (or
orientable small covers) over P™ x A™, up to D-J equivalence, is a polynomial in the variable 2" (or 2"71); see
Theorem 12, which extends several previous results [3, 5-7, 12, 17]. We thus provide a new way of computation
by computing the finite number of representatives in the series and interpolating polynomially. Moreover, we
find that the ratio between the number of orientable small covers and the number of small covers over P™ x A™
approaches 1/2!=™ as odd n increases, and the ratio approaches 0 as even n increases. Next, as an application
of Theorem 12, we intend to specify a generalized real Bott manifold as a starting small cover over P™(m > 4),
and, by interpolation, determine the polynomial. For this purpose, we take P™ = P§ x I as an example,
where P (see the Figure) is the dual of the cyclic polytope C3(6) as a convex hull of 6 distinct points on
a curve y(t) = {(t,t%,t3) : t € R} in R?; see [2]. In this case, it turns out that, up to D-J equivalence, the
number of small covers is greater than the number of generalized real Bott manifolds. In addition, a formula for
calculating the number of equivariant homeomorphism classes of small covers over the product is also provided;

see Theorem 18 and Theorem 21.
This paper is organized as follows. In Section 2, we review the basic theory of small covers. In Section 3,

we prove polynomial theorems concerning D-J equivalence classes of (orientable) small covers over P™ x A™ and
get the ratio. In Section 4, we take P™ = P§ x I as an example, by interpolation, to determine the polynomial
related to small covers up to D-J equivalence. We also determine the number of equivariant homeomorphism

classes of small covers. In Section 5, we deal with the orientable small covers over P™ x A" for P™ = P§ x I.

2. Preliminaries
Definition 1 (see [18]) An m-dimensional convex polytope P™ is simple if precisely m facets (i.e. codimension-

one faces) meet at each vertez.

Definition 2 (see [9]) An m-dimensional closed manifold M™ is a small cover if it admits a (Z2)™ -action
such that the action is locally isomorphic to a standard action of (Zz)™ on R™ and the orbit space M™ /(Za)™

1s homeomorphic to a simple convex polytope P™ .

Let P™ be a simple convex polytope of dimension m and F(P™) = {Fy,---, F;} be the set of facets of
P™. Suppose that 7 : M™ — P™ is a small cover over P™. For any € 7! (int( F})), the isotropy group at
x is independent of the choice of x; denote it by Zo(F;), which is a rank-one subgroup. Zs(F;) actually agrees

with an element v; in (Z2)™ as a vector space. In this way, we obtain a characteristic function
A F(P™) — (Zo)™

defined by A(F;) = v; such that whenever the intersection F; N---NFj, is nonempty, A(F;,), -,

A(F;,) are linearly independent in (Zy)™; see [9]. If we regard each nonzero vector of (Z3)™ as being a
color, then the characteristic function A means that each facet is colored by a color. Here we also call A a
(Z2)™-coloring on P™.

In fact, using a (Zy)™-coloring A : F(P™) — (Z2)™, Davis and Januszkiewicz gave a reconstruction

process for a small cover. Let Zao(F;) be the subgroup of (Z2)™ generated by A(F;). Given a point p € P™,
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we denote by F(p) the minimal face containing p in its relative interior. Assume F(p) = F; N--- N F,
and Zy(F(p)) = @?:1 Zo(F;;). Let M(A) denote P™ x (Zz)™/ ~, where (p,g) ~ (¢,h) if p = ¢ and
g th € Za(F(p)). The free action of (Z3)™ on P™ x (Z3)™ descends to an action on M ()\) with quotient P™.

Thus, M(\) is a small cover over P™.

Definition 3 (see [9]) Two small covers My and My over P™ are said to be weakly equivariantly homeomorphic
if there is an automorphism ¢ : (Z3)™ — (Z2)™ and a homeomorphism f : My — My such that f(t-x) =
p(t) - f(z) for every t € (Z2)™ and x € My. If ¢ is an identity, then M; and M, are equivariantly

homeomorphic.

Definition 4 (see [9])Two small covers My and My over P™ are said to be Davis—Januszkiewicz equivalent

(or simply, D-J equivalent) if there is a weakly equivariant homeomorphism f : My — My covering the identity

on P™.

Let A(P™) be the set of all (Z3)™-colorings on P™. The following theorem has been proved in [9].

Theorem 5 (Davis—Januszkiewicz)All small covers over P™ are given by {M (M)A € A(P™)}, i.e. for each
small cover M™ over P™, there is a (Zz)™ -coloring A with an equivariant homeomorphism M(A) — M™

covering the identity on P™.

In order to determine the D-J equivalence classes of small covers, noting that the characteristic functions
differing by the linear automorphism of (Z3)™ produce the same small cover up to D-J equivalence, we know
that the answer should be the number of characteristic functions divided by |GL(m,Zz)|. More precisely, a free
action of GL(m,Zs) on A(P™) can be defined by the correspondence A — o o A [17]. Then two small covers
M(A1) and M(A2) over P™ are D-J equivalent if and only if there is a ¢ € GL(m,Zz) such that A\; = g0 Aq.

What is the orbit space of the action? Let ey,--- ,e,, be the standard basis of (Z2)™ and Fy,---,F,,
of F(P™) meet at one vertex of P™. Write A(P™) = {\ € A(P™)|\(F;) =e;,i=1,---,m}. Then A(P™) is
the orbit space of A(P™) under the action of GL(m,Zz), and so the number of D-J equivalence classes

of small covers over P™ is |A(P™)|. We have:

Lemma 6 (see [17]) |[A(P™)| = |A(P™)| x |GL(m, Zs)|.

For equivariant homeomorphism classes of small covers, from Theorem 5, symmetries of a polytope
P™ should be taken into account. In a similar manner, consider that the automorphism group of P™ acts
on characteristic functions, but since these symmetries do not act freely, we need the Burnside lemma in
computation. Precisely, all faces of a simple convex polytope P™ form a poset (i.e. a partially ordered set by
inclusion). An automorphism of F(P™) is a bijection from F(P™) to itself that preserves the poset structure
of all faces of P™. The group of automorphisms of F(P™) is denoted by Aut(F(P™)). One defines a right
action of Aut(F(P™)) on A(P™) by A x h — Aoh, where A € A(P™) and h € Aut(F(P™)). The following

theorem is known.

Theorem 7 (see [13]) Two small covers over an m-dimensional simple convex polytope P™ are equivariantly
homeomorphic if and only if there is an h € Aut(F(P™)) such that Ay = A2 o h, where A1 and o are the

corresponding (Za)™ -colorings on P™.

695



DAI and WANG /Turk J Math

Consequently, the number of orbits of A(P™) under the action of Aut(F(P™)) is just the
number of equivariant homeomorphism classes of small covers over P"™. The enumeration of the

number of orbits can be accomplished by using the Burnside lemma.

Lemma 8 (Burnside lemma) Let G be a finite group acting on a set X. Then the number of orbits X under the

action of G equals ﬁ > gec | Xgl, where Xy ={z € X|gz = z}.

For an orientable small cover M (\) over a simple convex polytope P™, Nakayama and Nishimura proved

the following:

Theorem 9 (see [16]) For a basis {e1, - ,em} of (Z2)™, a homomorphism € : (Z2)™ — Zy = {0,1} is
defined by e(e;)) =1(i =1,--- ,m). A small cover M(X\) over a simple convex polytope P™ is orientable if and
only if there exists a basis {e1, -+ ,em} of (Za)™ such that the image of e\ is {1}.

Definition 10 A (Z3)™ -coloring is orientable if it satisfies the orientability condition in Theorem 9.

Similarly, let O(P™) be the set of all orientable colorings on P™. There is a free action of GL(m,Zs)
on O(P™) defined by the correspondence A — o o A. Let ey, -, e, be the standard basis of (Z3)™ and
Fy,--+ Fp, of F(P™) meet at a vertex of P™. Write B(P™) = {A € O(P™)|A(F;) = e;,i = 1,---,m}.
Then B(P™) is the orbit space of O(P™) under the action of GL(m,Zs). In fact, we have B(P™) = {\ €
O(P™)|A(F;) = et =1,--- ,m and for m+1 < j <, A(F;) =ej, +e¢j, +ot eyl S <ja< <

Jon;+1 < mj.
Lemma 11 (see [17]) |O(P™)| = |B(P™)| x |GL(m,Zs)|.

Two orientable small covers M (A1) and M(Ay) over P™ are D-J equivalent if and only if there is
o0 € GL(m,Z2) such that A\; = 0o \y. Thus, the number of D-J equivalence classes of orientable small
covers over P™ is |B(P™)|.

One can also define a right action of Aut(F(P™)) on O(P™) by A x h —— Ao h, where A € O(P™)
and h € Aut(F(P™)). Theorem 7 holds for orientable small covers; that is, two orientable small covers over
P™ are equivariantly homeomorphic if and only if there is h € Aut(F(P™)) such that A\; = Ay o h, where \;
and Ay are their corresponding orientable colorings on P™. Therefore, the number of orbits of O(P™) under
the action of Aut(F(P™)) is just the number of equivariant homeomorphism classes of orientable small covers

over P™.

3. D-J equivalence classes of small covers and polynomials

Suppose that P™ is a fixed simple polytope with [ facets, and we generate a series of polytopes P™ x A™(n =
1,2,---), where A" is an n-simplex. Let DJ(P™ x A™) be the number of D-J equivalence classes of small
covers over P™ x A™ and DJ,(P™ x A™) be the number of D-J equivalence classes of orientable small covers
over P™ x A™. Then we have:

Theorem 12 Let P™ be a fized simple polytope with | facets and A(P™) # (0. We have:

(1) DJ(P™ x A™) is a polynomial of degree | — m in the variable 2™ ;
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(2) DJ,(P™ x A™) is a polynomial of degree | —m in the variable 2"~% for odd n, and the coefficient of the

term of degree | —m is the same as the coefficient of the term of degree | —m in DJ(P™ x A™);
(3) DJ,(P™ x A™) is a polynomial of degree p in the variable 2"~ for even n, where p <l —m — 1.

Proof By Fi,Fy,---,F] we denote all facets of P™ and by Fy |, F/ 5, ,F/,, ., the facets of the n-simplex
A", Set F' ={F,=F/ xA"1<i<l}, F'={F,=P™ x F/|l4+1<i<l+n+1}. Then the set of facets of
P x A™ is F(P™ x A™) =F UF".

(1) Let eq, €2, -+, €man be the standard basis of (Z3)™*T™. Then A(P™ x A™) = {\ € A(P™ x A™M)|\(F}) =
e, \(F2) = e, , M(Fn) = em, A(Fi41) = emp1, A(Fiv2) = emy2, , AM(Fl4n) = emyn) and DJ(P™ X
A™) = JA(P™ x A™)].

Assume \(F;) = Z;njlnfijej, where i =m+1,--- ,[,l+n+1, fij =0or 1. For i =+ n+ 1, by the

linear independence of A, A(F;) = Z;":l fijej + emy1 + -+ €min -

Consider (Zo)™ and (Z)" C (Zo)™t™ = (Zo)™ @ (Z2)" as a direct summand, and write ky : (Z2)™ —
(Zo)™t™ and ko : (Zo)™ < (Zz)™*™ for inclusions; py : (Z)™™™ — (Zo)™ and po : (Zo)™ ™ — (Z2)" for
projections.

If A\ € A(P™ x A™), then we construct a characteristic function n € A(P™), defined by n(F}) =
pro MFy)(1 < i <1). Let F/, Fj,

im < 1. Then n(F]),n(Fj,),---,n(F; ) are linearly independent. It is possible that p; o A\ (F;) =

- F] meet at a vertex of P™, where 1 < i; < iy < --- <

p1 o X(F)(@ = 1,2,---,l + n+ 1) even though A; # As. Next, fixing a collection of vectors p; o
M(EF)(E=1,2,---,l+n+1), we consider such A that p; o A;(F;) = p1 o A(F};) and investigate relations
among p2 © AN(F5) = (fitm+1)s fitm+2)> - » figman)) (@ =m+1,---,1). Using the linear independence of
INEFL), - AMEFL ) M Fig1), - AMER), -+ M Frgn)s A(Fipni1)}, where Fy with the ‘hat’ symbol indicates

that this facet is deleted from a sequence Fjiq, -+, Fy, -+, Fiyn(l4+1 < d < 1+ n), by calculating

determinants we know that there exist 1,79, -, 7, € Zo such that

1 i ma1) T T2 fis(me1) o+ Tmfin, (me1) =0

7"1fi1(m—i-2) + eriz(m-&-Q) +-+ 7nmfim(m—i-2) =0

7"1fi1(m+n) + r2fi2(m+n) +oee rmfim(m—l-n) =0.

From these equations, vectors pa o A\(F;) = (fitm+1)» fi(m+2)> - » figman)) (@ =m4+1,--- 1) can be divided
into three groups, G1,Gs, and Gz. pro AN(F;) € Gy ifandonly if Am+1 < j; < jo < -+ < jgp < ¢
such that ps o A(Fy) = 3 e,y jir P2 0 A(F)); p2 o A(F;) € G2 if and only if p2 o A(F}) ¢ G1; and
whenever the components fi(m1); fitm+2), " » fi(m4n) freely vary in Zy (p1 o A(F;) = p1o A1 (F;) is fixed),
the corresponding A is in A(P™ x A™); ps o A(F;) € Gy if and only if py o A(F;) = (0,0,---,0) € G1 UGs.
Set Tr, = {\ € A(P™ x A™)| exactly 3 k facets F; such that ps o A(F;) € G2},0 < k <1 —m. Then T
contributes (2")* to DJ(P™ x A™). Thus, DJ(P™ x A") is a polynomial in the variable 2.
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In order to show that the degree of the polynomial is equal to | — m, fixing a characteristic function
n € A(P™) and taking a collection of vectors £; = (fjm+1), fj(m+2)> * » fijmtn)) € (Z2)",j =m+1,--- 1,
we construct a collection of characteristic functions A € A(P™ x A™), defined by A(F;) = ¢€;(1 <i <m),
AME;) = kron(F))+ko(£)(m~+1 <i <), A(F;) = emtimi(I+1 <@ <I+n), A(Flan+1) = €mt1+ - +emin.
These characteristic functions belong to T;_,, and contribute (2")!=™ to DJ(P™ x A™). Hence, the degree

is equal to [ — m.

(2) In the proof of the first conclusion (1), replacing A(P™) and A(P™) with O(P™) and B(P™), respectively,
we consider the orientability condition of a characteristic function to obtain that py o A(F;) € G if and
only if py o A(F;) € G1, and whenever n — 1 components in (fim+1)s fitm+2), - » fimtn)) freely vary in
Zso (p1 o A(F;) = p1 o A1 (F;) is fixed), the corresponding A is in B(P™ x A™). Therefore, T} contributes
(2" 1% to DJ,(P™ x A"),0 <k <l—m and T;_,, # (). Thus, DJ,(P™ x A™) is a polynomial of degree
[ —m in the variable 2"~!. Using the fact that each edge of a polytope is incident with two vertices, we

know that the coefficient of the term of degree I — m is the same as the coefficient of the term of degree
l—m in DJ(P™ x A™).

(3) Similar to the proof of the second part, but 7;_,, = #. Hence, the degree of the polynomial is less than

l—m.

Corollary 13 For odd n, %{]"((;T;AA:)) — QIEm (n — 00); for even n, % — 0(n — o0).

Remark 14 If M™ is a small cover over P™ and A € A(P™ x A"™) is a characteristic function that corresponds
to a generalized real Bott manifold starting with M™, by [12] we must have A(Fiqnt1) = €m+1 + -+ + €mtn-
For P™ = P$ x I, we know that there exists a A € A(P™ x A™) such that A(Fjynt1) # €mt1 + - + €min-

The corresponding small cover must not be equivalent to any generalized real Bott manifold starting with M™ .

4. Equivalence classes of small covers over P x [ x A"

As an application of Theorem 12, we intend to specify a generalized real Bott manifold as a starting small
cover over P™(m > 4), and by interpolation determine the polynomial for calculating the number of D-J
equivalence classes. For this purpose, we take P™ = P$ x I as an example, where P§ is the dual of the cyclic
polytope C3(6). From the above remark, we know that, up to D-J equivalence, the number of small covers over
P$ x I x A™ is greater than the number of generalized real Bott manifolds. Furthermore, we provide a formula

for calculating the number of equivariant homeomorphism classes of small covers over P§ x I x A”™.

Theorem 15 DJ(P$ x I x A™) =165 - 24" 4 72 237 1 348 . 22" 4 900 - 2" + 1155.

Proof By Theorem 12, DJ(P§ x I x A") is a polynomial of degree 4 in the variable 2. For n = 1,2,--- ,5, we
have data points (zg,%0) = (2,7563), (21,y1) = (22,57171), (w2, y2) = (23,743331), (x3,y3) = (2*,11212995),
(w4,y4) = (2°,175760643). We write down the polynomial immediately in terms of Lagrange polynomials:

n 4 T—XT; _ n n n n
DJ(P3 x I x A") = >icoUTo<jcajui =25 Jyi=165- 24n 4 72.237 4 348 . 227 4900 - 2" + 1155. O

Ti—Tj
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Theorem 16 The number of (Z)"+*-colorings on P$ x I x A™ is equal to

n+4
[T (2+* —2571) (165 - 24 + 72 25" + 348 - 22" 4900 - 2" + 1155).
k=1

n+4
Proof From [1], we know that |GL(n+4,Z)| = [ (2"** —2"7!). By Lemma 6 and Theorem 15, we have
k=1

that
n+4
AP x I x A™)| = [] (2"+4 —2F71) (165 - 24 4 72 - 25" 4+ 348 - 22" 4 900 - 2" + 1155). O
k=1
In order to calculate the number of equivariant homeomorphism classes of small covers over Pg x I x A™,
we need to understand the structure of Aut(F (Pg x I x A™)). P§ has two pentagons, two quadrilaterals, and

two triangles (see the Figure).

~
e

Figure. Polytope P§.

For convenience, by F| we denote the top pentagon of P§; by Fj, the left quadrilateral; F}, the right
quadrilateral; Fy, the bottom pentagon; FY, the right triangle; and by Ff, the left triangle. Similarly, by
F; and Fg§ we denote the two endpoints of I, and by Fy, Fy,---,F} 4 all the facets of the n-simplex A™.
Set F!/'={F, =F/ xIxA"1<i<6}, F' ={F, =P} xF xA"i =7,8},F" ={F, = P} x I x Fl|i =
9,--- .n+9}. Then F(P3 x I x A") = F'[JF'|JF".

Lemma 17 The automorphism group Aut(F(P§ x I x A™)) is isomorphic to the direct product Ky x Za X
Spr1(n > 2), where Ky = (x,y|a® = y? = (zy)? = 1) is the Klein four-group and S, 1 the symmetric group
with order (n+ 1)!.

Proof The automorphism group Aut(F(PJ)) is isomorphic to the Klein four-group Ky = (z,y|z? = y? =
(ry)? = 1), where one of the generators gives an interchange between top and bottom pentagons and the other
gives an interchange between left and right triangles, between left and right quadrilaterals. The automorphism
group Aut(F(I)) is isomorphic to the group Zs = {—1,1}. The automorphism group Aut(F(A™)) is isomorphic
to the (n + 1)-symmetric group S, 1. Since an automorphism of Aut(F(P§ x I x A™))(n > 2) maps F' to
F', F" to F"” and maps F""' to F", we have that Aut(F(P§ x I x A™)) is isomorphic to Ky X Zg X S41. O

Theorem 18 Let E(P$ x I x A™) denote the number of equivariant homeomorphism classes of small covers
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over P x I x A™(n > 2). Then we have

n+4

11 (2n+4_2k—1)
B(P3 x I x A") ==
(Fg > I A%) 8(n+1)!

(165 - 24" 4 27 . 23nH3 4 87 . 92n+2 | 345 . 9nF2 | 1683).

Proof By Lemma 8, we have
B(P$ x I x A") = gty D geAut(F(pixixan) gl where Ag = {X € A(P§ x I x A")|A = Xog}.
The automorphism group Aut(F(P§ x I x A™)) is isomorphic to Ky X Zs X Sp+1(n > 2). Each

automorphism g of Aut(F(P$ x I x A™)) can be written as (z%y",(—1)*,s), and the argument is divided
into the following cases.

Case 1. g=(1,-1,1).

If A€ A,, then A\(Fy) = A(Fs). A computation gives |Ay| = (92374 4 15 . 27%5 4 528)|GL(n + 4, Zs)|
(see supplementary material).

Case 2. g =(1,1,1).

g is the identity automorphism, by Theorem 16, |A,| = (165 - 24" 4 72 - 23" 4 348 - 22" 4+ 900 - 2" +
1155)|GL(n + 4, Zs)|.

Case 3. g € Aut(F(P$ x I x A")\{(1,-1,1),(1,1,1)} .

In this case, by linear independence, we have A, = 0, so

"H(z"“—z’“l
E(ngIxA”):k:ls(W

(165 - 247 4 27 . 23743 4 87. 22042 | 345 . 2n+2 | 1683). m
5. Orientable small covers over P§ x I x A"

Theorem 19 (1) DJ,(P$ x I x A™) =165-24"~1 £ 84 .27 142 if n is odd;

(2) DJ,(P$ x I x A™) =72.230=1 140.22(n=1) 4 682"~ 143 if n is even.
Proof

(1) By Theorem 12, DJ,(P$ x I x A™) is a polynomial of degree 4 in the variable 2"~!. From data points
(0, 90) = (2,291), (21,y1) = (2°,42618), (w2,92) = (2°,66 x 163861), (x3,y3) = (27,6 x 461374343),
(24,91) = (2°,174x4072813939), we have a polynomial D.J,(P§xIxA") = Z?:O(Hogjgél,j;éi =L )y; =165

Ti—Tj

24(n—1) 4 84 .9n—1 4 49

(2) Similarly, DJ,(Pg x I x A") is a polynomial of degree < 3 in the variable 2"~!. From data points
(0, 90) = (22,915), (w1,91) = (2%,40011), (22,y2) = (2°,75 x 32033), (w3,y3) = (2,3 x 50553017), we
get a polynomial DJ,(P§ x I x A™) =72.23("=1) 1 40.22(n=1) 1 68. 271 4 43,
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Theorem 20 The number of orientable (Z3)"**-colorings on P§ x I x A™ is equal to:

n+4
(1) (165- 24— 84 2n=1 4 42) ] (2"+* — 2*71) if n is odd;
k=1

n+4
(2) (72-23("=D 440 22(n=D 4 68 - 271 +43) ] (274 —2%=1) if n is even.
k=1
Proof By Lemma 11 and Theorem 19, we have Theorem 20. O

Theorem 21 Let E,(P3 x I x A™) denote the number of equivariant homeomorphism classes of all orientable

small covers over P§ x I x A™(n >2). Then we have:

n44 nid_ ko1
kl;[ <2n 2 )

S (1652477 +9. 297 +.9. 273 £ 75) if n is odd,
3 ny _
By (P3 x I x A") = ey
’M&W(g R o R SV A () if nis even.

Proof By Lemma 8, we have that
Eo(P§ x I x A") = grdyi Yge aut(F(pexixany Mgl where Ag = {X € O(P§ x I x A")[]x=Xog}. O

The argument is divided into the following cases.

Case 1. g=(1,-1,1).

If A € Ay, then \(F7) = A(F3). A computation gives |Ay| = (923" +15-2"! 4 33)|GL(n+ 4, Zs)| (see
supplementary material).

Case 2. g =(1,1,1).

g is the identity automorphism, by Theorem 20 [Ay| = |O(P§ x I x A™)].

Case 3. g € Aut(F(P$ x I x A™)\{(1,-1,1),(1,1,1)}.

In this case, by linear independence, we have A, =0, so E,(P§ x I x A™)

n+4

1—[ (2n+472k71
Sy (165 - 2474 9. 937 9. 943 £ 75) if nis odd,
4 ok—1
I (2 2

W(Q 2230l 5. 920l 4 9nt6 4 76) if nis even.
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Supplementary material of small covers over products of a
simple polytope with a simplex

Wei DAI Yanying WANG

1. Computation of [A;| for ¢ = (1,—1,1) in determining the number of equiv-

ariant homeomorphism classes of small covers over P x [ x A"

Let e1, o, -+, enyq be the standard basis of (Zy)"™. It is easy to see that [, b,
Fy, Fy, Fy, ---, F,.g meet at one vertex of P? x I x A". Set C(P3 x I x A") =
N € AP x I x A")|A(F)) = e, \(Fy) = eg, A(F3) = e3, \(F7) = A(Fg) = eq, \(Fy) =
€5, A(Frs) = €ntal.

Assume A(F}) = Y ageq, MFs) = Zg bges, N(Fg) = Z"ff ey M Fryo) =
Z:J“f gvey, where a,, bg, ¢y, and g, = 0 or 1.
In order to calculate |A,|, we need to determine all possible values of the coefficients a,,

bs, ¢y, and g,, and this can be accomplished by using the linear independence of A(F},),

MEy), -+, MF;,.,) whenever F; , F,, ---, F; ., meet at one vertex of Pg x I x A™.
By the linear independence of {A(F}), A(Fy), A(F7), A(Fy), -+, AM(Fnig)} we have
as + az = 1 or a9 = a3z = 1. Slmllarly {)\(FQ), )\(F3)7 /\<F4), >\(F7), )\(Fg), Ty, )\(Fn+g>}

are linearly independent if and only if a; = 1. Consequently, \(Fy) = e; +es+ Eg+i AaCors

e1 + ez + Za Qo€ OF €1 + €2+ €3+ ZTi (n€y. Write

CL(P} x I x A" ={\ € O(P} x I x AM)NF)) =e1 +ex+ 3" agea);

Co(P3 x I x A") ={\e€ C(P} x I x AMNFy) =e1 +es+ S dneat;

Cy(P3x I x A") = {\ € C(P3 x I x A")NFy) =e1 + s+ e3 + 3. anea}.

By considering the other vertices, we get all A € Cy (P x I x A™), which are listed
in Table 1. If we exchange e; and ez in Table 1, we obtain all A\ € Co(Pg x I x A™).
Similarly, all X in C5(P3 x I x A™) are listed in Table 2

So [Ay| = |C(PE x I x A™)||GL(n +4,Z,)|=3"0_, |[Cs(P3 x I x A™)|=(9 - 2%"+* 4+ 15 -
275 1+ 528)|GL(n + 4, Zs)).

2. Computation of [A,| for ¢ = (1,—1,1) in determining the number of equiv-

ariant homeomorphism classes of orientable small covers over Pg x I x A"

Let €1, €g, -+, €44 be the standard basis of (Z,)"™. Set



D(Pg) x I x An) = {/\ S A(Pg’ x I x An)|)\(F1) = 61,)\(F2) = 627/\(F3) = 63,)\(F7) =
AMFg) = es, M(Fy) = €5, , A(Frys) = €nya}

A similar argument shows that A\(Fy) = e; + e + Za 1 0aCq, €1+ €3+ ZZJri A€oy OF

e1+es +es+ Za:4 (nCq. Write

Dy(P3 x I x A") = {\ € D(P} x I x A")MNFy) = e1 4+ €2 + S0 dnea, S0 a0 =
1(mod 2)};

Da(P3 x I x A") = {\ € D(P} x I x A")NFy) = e1 4+ e3 + S0 dnea, Y0 a0 =
1(mod 2)};

Ds(P x I x A") = {\ € D(F{ x I x AMA(Fy) = 1+ 25+ 1) daea, Dol da
0(mod 2)}.

The determination of D;(P3 x I x A™) is divided into two cases.

For n is odd, by considering the linear independence of A on the vertices of P3 x I x A"
and the orientability condition in Theorem 9, from Table 1 we obtain all orientable \ in
Dy (P x I x A™), which are listed in Table 3 where 371 a, = 1(mod 2) for cases 10-12;
by + 3.2 a0 = 1(mod 2) for case 11; Zn+4 bs = 1(mod 2) for case 12; ¢; + ¢o = 1 for
case 4; ¢; + c2 + ¢4 = 0(mod 2) for cases 5 and 6; Z:iiwég ¢y = 0(mod 2) for cases 7-9
and 12. If we exchange e; and e3 in Table 3, then we obtain all A in Dy(P3 x I x A™).
Similarly, from Table 2 we get all orientable A in D3(P3 x I x A™), which are listed in
Table 4 where 3.""1 a, = 0(mod 2) for cases 4-6; by + .72 a, = 0(mod 2) for case 5;
Z"+4 bs = 0(mod 2) for case 6; ¢y + 3.2 a, = 0(mod 2) for case 4; Z"+4 ¢y = 0(mod 2)

for case 6; g2 + g3 = 1 for case 3.

For n is even, similarly from Table 1 we obtain all orientable A in Dy (Pg x I x A™), which
are listed in Table 5 where 3277 a,, = 1(mod 2) for cases 11-13; Z”+4 bs = 1(mod 2) for
case 13; ¢; + ¢2 + ¢4 = 0(mod 2) for cases 6 and 7; Z::i#:,) ¢y = 0(mod 2) for cases 8-10
and 13. If we exchange e; and e3 in Table 5, we obtain all A € Dy(BPg x I x A™). Similarly,
from Table 2 we get all orientable A in D3(Pg x I x A™), which are listed in Table 6 where
S = 0(mod 2) for cases 4-6; Z"+4 bs = 0(mod 2) and Z"+4 ¢, = 0(mod 2) for case

6; g2 + g3 = 1 for case 3.

So |Ay| = [D(P3 x I x A™)||GL(n + 4, Z)|=5"2_, [ D;(P? x I x A™)[=(9 - 23" + 15 -
21 4+ 33)|GL(n + 4, Zs)|.
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Table 1 All A in C; (Pb3 x I x A™), where a;,b;,¢;, g; freely vary in Zo
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Table 2 All A in 03(P63 x I x A™), where a;, b;, ¢;, g; freely vary in Zo

/\(Fn+9)
e] ez e3 e4 e5 - -

€n+4

1 0

1
1 g2930 1

1 go0 0 1

1 01 01
1 go0 0 1

101 01
01 001
00101
01101

1 92930 1
01 0 0 1
0 0 1 0 1

0
0

1
1

1

1

1 g2931

00101

1
00101
00111
00 011
0 0 001

0 1 0 1

A(Fs)
e1 ez e3 eq e5 --
00100
00 1 0O

CEn44

-0
-0

01 1
00100
0 0 1
0 0 1

-0

cy O

cqy O
1
1
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0

*An44
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as --

00100

0 0 1

cs O

*An+44
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001 0 as--

11

0
0 01

cy O
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0 0 1
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cy O

an4a] 0 1 0 0 1

0 0 1 a4 az ---

0 0 1

anga] 0 1 0 0 1

c4 as -

-0

*An44

-0
-0

Cq G5 -

1

0 0 1

0
0

cq C5 -

0 0 1 c4
0 0 1
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* Cn4-4

*Cn+4

cy C5 -

A(F5)

e] ez e3 e4 e5 --
01 0 00
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01 000
01 0 bs0

“@nt4/ 0 0 1 0 O

-0
-0
-0
-0
-0
-0

01 000
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cEnt4
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Table 3 All orientable A in D1(P§ x I x A") for odd n
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Table 4 All orientable X in D3(P§ x I x A™) for odd n

A(Fy) A(Fs) A(Fs) A(Fnt9)
€1 €2 €3 €4 €5 **-€Entd| €1 €2 €3 €4 €5 - Enid| €1 €2 €3 €4 €5 ‘- Enj4| €1 €2 €3 €4 €5 - Enid
1 11100 -0 01 0 0 O -0 00 1 0O -0 1 gogo1l 1 ---1
2 111 00 -0 01 0 0O -0 00 1 0O -0 o110 1 ---1
3 111 00 -0 01 0 0O -0 00 1 0O -0 1 gog3 0 1 ---1
4 1 1 1 agas ---apnt4/ 0 1 0 0 O -0 0 01 cgaa5 --rapys/ 0 1 0 1 1 ---1
5 1 1 1 asas5 -~-apnta| 0 1 0 bgas ---anya/ 0 0 1 0 O -0 o011 1 ---1
6 1 1 1 asas5 -~-apngta| 0 1 0 bg b5 - bpya| 0 0O 1 ¢4 c5 “cp+a| 0 0 O O 1 -1
Table 5 All orientable A in D1 (P§ x I x A™) for even n
A(Fy) A(Fs) A(Fs) A(Fn+o)
€1 €2 €3 €4 €5 - €Ent4| €1 €2 €3 €4 €5 - €Ent4| €1 €2 €3 €4 €5 - €py4qg| €1 €2 €3 €4 €5 - €niq
1 11010 ---0 01110 ---0 01110 ---0 oo0101 ---1
2 11010 ---0 01110 ---0 0110 ---0 oo0101 ---1
3 11010 ---0 01110 ---0 11100 ---0 o0oo0101 ---1
4 11010 ---0 01110 ---0 11100 ---0 01111 ---1
5 11010 ---0 01110 ---0 ct 01 ¢100 ---0 01111 ---1
6 11010 ---0 01110 ---0 circ21l ¢4 0 ---0 11101 ---1
7 11010 ---0 01110 ---0 ci1 c21 ¢4 0 -0 1 0111 -1
8 11010 ---0 01110 ---0 cprc21 cge5 --vcppall 00 O 1 ---1
9 11010 ---0 01110 ---0 cpc21l cge5 --vcppa) 01 0 01 ---1
10 11010 -0 01 1 10 -0 cpc21l ecsge5 --reppal 11011 -1
11 1 1 0 agas5 ---antal 0 1 1 ag a5 ---anta 01 0 -0 o010 1 ---1
12 1 1 0 aga5 ---anyal 0 1 1 1 0 -0 1 11 -0 o1 111 ---1
13 1 1 0 asa5 ---anga| 0 1 1 bg b5 ---bpya| c1 21 cac5 ~~-cppa| 0 0 0 1 1 -1
Table 6 All orientable A in D3(P§ x I x A™) for even n
A(Fy) A(F5) A(Fe) A(Fnt9)
€1 €2 €3 €4 €5 "+ Entd| €1 €2 €3 €4 €5 - €enfd| €1 €2 €3 €4 €5 - €ntd| €1 €2 €3 €4 €5 ‘- entd
1 11100 -0 01 0 0 O -0 00 1 0O -0 1 g2g20 1 ---1
2 11100 -0 01 0 0 O -0 001 0O -0 o011 11 ---1
3 1 1100 -0 01 0 0O -0 00 1 0O -0 1 gogasl 1 ---1
4 1 1 1 agas ---anyal 0 1 0 0 O -0 0 01 azas ---apya/ 0 1 0 O 1 ---1
5 1 1 1 agas5 ---anyal 0 1 0 ag a5 ---anyal 0 0 1 0 O -0 o010 1 ---1
6 |1 1 1 asas ~-ansa| 0 1 0 bybs - bpya| 0 0 1 cae5 ~-cnga| 0 0 0 1 1 -1
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