

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2018) 42: 703 – 715 © TÜBİTAK doi:10.3906/mat-1704-63

Research Article

On the unit index of some real biquadratic number fields

Abdelmalek AZIZI¹, Abdelkader ZEKHNINI^{2,*}, Mohammed TAOUS³

¹Department of Mathematics, Faculty of Science, Mohammed First University, Oujda, Morocco ²Department of Mathematics, Pluridisciplinary Faculty, Mohammed First University, Nador, Morocco ³Department of Mathematics, Faculty of Sciences and Techniques, Moulay Ismail University, Errachidia, Morocco

Received: 15.04.2017 • Accepted/Published Online: 18.06.2017 •	Final Version: 24.03.2018
--	----------------------------------

Abstract: Let $p_1 \equiv p_2 \equiv 1 \pmod{4}$ be different prime numbers such that $\left(\frac{2}{p_2}\right) = \left(\frac{p_1}{p_2}\right) = -\left(\frac{2}{p_1}\right) = -1$. Put $\mathbb{k} = \mathbb{Q}(\sqrt{2p_1p_2})$ and let \mathbb{K} be a quadratic extension of \mathbb{k} contained in its absolute genus field $\mathbb{k}^{(*)}$. Denote by k_j , $1 \leq j \leq 3$, the three quadratic subfields of \mathbb{K} . Let $E_{\mathbb{K}}$ (resp. E_{k_j}) be the unit group of \mathbb{K} (resp. k_j). The unit index $\left[E_{\mathbb{K}}:\prod_{j=1}^3 E_{k_j}\right]$ is characterized in terms of biquadratic residue symbols between 2, p_1 and p_2 or by the capitulation of 2, the prime ideal of $\mathbb{Q}(\sqrt{2p_1})$ above 2, in \mathbb{K} . These results are used to describe the 2-rank of some CM-fields.

Key words: Unit index, fundamental systems of units, 2-class group, real biquadratic fields, multiquadratic CM-fields

1. Introduction and notations

Let k be a multiquadratic number field of degree 2^n , (i.e., $[k : \mathbb{Q}] = 2^n$) and k_i $(i = 1, \dots, s)$ be the $s = 2^n - 1$ quadratic subfields of k. Denote by E_k (resp. E_{k_i}) the unit group of k (resp. k_i), i.e. the group of the invertible elements of \mathcal{O}_k (resp. \mathcal{O}_{k_i}), the ring of integers of k (resp. k_i). Then the index $q(k) = [E_k : \prod_{i=1}^s E_{k_i}]$ is called the *unit index* of k. By Dirichlet's unit theorem, if $2^n = r_1 + 2r_2$, where r_1 is the number of real embeddings and r_2 is the number of pairs of complex conjugate embeddings of k, then there exist $r = r_1 + r_2 - 1$ units of \mathcal{O}_k that generate E_k (modulo the roots of unity), and these r units are called the *fundamental system of units of* k.

One major problem in algebraic number theory is the computation of the number q(k). For quadratic fields, the problem is easily solved. For some fields $k = \mathbb{Q}(\sqrt{-1}, \sqrt{m})$, where *m* is a positive square-free integer, Dirichlet [9] showed that q(k) = 1 or 2. Over time, Dirichlet's result has been generalized by many mathematicians; see, for example [1, 2, 8, 11–13, 16–20, 26]. For quartic bicyclic fields, Kubota [17] gave a method for finding a fundamental system of units and thus for computing the unit index. Wada [26] generalized Kubota's method, creating an algorithm for computing fundamental units in any given multiquadratic field. However, in general, it is not easy to compute this index.

Let p_1 and p_2 be different primes satisfying the following conditions:

$$p_1 \equiv p_2 \equiv 1 \pmod{4} \text{ and } \left(\frac{2}{p_2}\right) = \left(\frac{p_1}{p_2}\right) = -\left(\frac{2}{p_1}\right) = -1.$$
 (1)

^{*}Correspondence: zekha1@yahoo.fr

²⁰¹⁰ AMS Mathematics Subject Classification: 11R27, 11R21, 11R29, 11R11

Put $\mathbb{k} = \mathbb{Q}(\sqrt{2p_1p_2})$ and let \mathbb{K} be a quadratic extension of \mathbb{k} contained in its absolute genus field, i.e. \mathbb{K} equals $\mathbb{K}_1^+ = \mathbb{Q}(\sqrt{p_1}, \sqrt{2p_2})$, $\mathbb{K}_2^+ = \mathbb{Q}(\sqrt{p_2}, \sqrt{2p_1})$, or $\mathbb{K}_3^+ = \mathbb{Q}(\sqrt{2}, \sqrt{p_1p_2})$. The purpose of this paper is to characterize the index $q(\mathbb{K})$ in terms of biquadratic residue symbols between 2, p_1 and p_2 , or by the capitulation in \mathbb{K} of 2, the prime ideal of $\mathbb{Q}(\sqrt{2p_1})$ above 2. Note that in [5], we dealt with the same problem for $\mathbb{K} = \mathbb{Q}(\sqrt{2}, \sqrt{p_1p_2})$ assuming $\left(\frac{p_1}{p_2}\right) = -1$ and $p_1 \equiv p_2 \equiv 5 \pmod{8}$.

The structure of this paper is as follows. Denote by ϵ_j , $1 \leq j \leq 3$, the fundamental units of the three quadratic subfields of \mathbb{K} . In Section 2, we collect some necessary results, and we give the abelian types and the generators of the 2-class groups of $\mathbb{Q}(\sqrt{2p_1p_2})$ and $\mathbb{Q}(\sqrt{2p_1})$. In Section 3, we prove necessary and sufficient conditions for $q(\mathbb{K}_j)$, $1 \leq j \leq 3$, to be equal to 1 (Theorems 3.1 and 3.2). This allows us to characterize the solvability in \mathbb{K} , whenever the norms of ϵ_j are equal to -1, of the equation $X^2 - \epsilon_1\epsilon_2\epsilon_3 = 0$ in terms of biquadratic residue symbols between 2, p_1 and p_2 , if $\mathbb{K} = \mathbb{K}_1^+$ or $\mathbb{K} = \mathbb{K}_3^+$, and by using the capitulation of the prime ideal of $\mathbb{Q}(\sqrt{2p_1})$ above 2 if $\mathbb{K} = \mathbb{K}_2^+$. We end this paragraph by giving some results on units, indices, and the structure of $G = \operatorname{Gal}(\mathbb{K}_2^{(2)}/\mathbb{k})$, where $\mathbb{K}_2^{(2)}$ is the second Hilbert 2-class field of \mathbb{k} . We then apply these results, in Section 4, to compute the 2-rank of the CM-fields $\mathbb{K}_1 = \mathbb{Q}(\sqrt{p_1}, \sqrt{2p_2}, \sqrt{-1})$, $\mathbb{K}_2 = \mathbb{Q}(\sqrt{p_2}, \sqrt{2p_1}, \sqrt{-1})$, $\mathbb{K}_3 = \mathbb{Q}(\sqrt{2}, \sqrt{p_1p_2}, \sqrt{-1})$, and $\mathbb{F}^{(*)} = \mathbb{Q}(\sqrt{2}, \sqrt{p_1}, \sqrt{p_2}, i)$.

Let k be a number field and m be a square-free integer. In what follows, we adopt the following notations:

- h(m) (resp. h(k)): the 2-class number of $\mathbb{Q}(\sqrt{m})$ (resp k).
- E_k : the unit group of k.
- W_k : the group of roots of unity contained in k, and ω_k denotes its order.
- $Q_k = [E_k : W_k E_{k^+}]$ is Hasse's unit index, if k is a CM-field.
- k^+ : the maximal real subfield of k.
- $q(k) = [E_k : \prod_i^s E_{k_i}]$, the unit index of k if k is multiquadratic, where k_i are the s quadratic subfields of k.
- $k^{(*)}$: the genus field of k; that is, the maximal abelian unramified extension of k obtained by composing k and an abelian extension over \mathbb{Q} .
- $k_2^{(1)}$: the first Hilbert 2-class field of k; that is, the maximal abelian unramified extension of k such that $[k_2^{(1)}:k]$ is a power of 2.
- $k_2^{(2)}$: the second Hilbert 2-class field of k; that is, the first Hilbert 2-class field of $k_2^{(1)}$.
- $\mathbf{C}l_2(k)$ (resp. $\mathbf{C}l(k)$): the 2-class (resp. class) group of k.
- ϵ_m : the fundamental unit of $\mathbb{Q}(\sqrt{m})$.
- $i = \sqrt{-1}$.

2. Preliminaries

Let p_1 and p_2 be different primes satisfying the conditions (1) and put $\mathbb{k} = \mathbb{Q}(\sqrt{2p_1p_2})$ and $k_1 = \mathbb{Q}(\sqrt{2p_1})$. Let ϵ_j , $1 \leq j \leq 3$, denote the three fundamental units of the three quadratic subfields of any biquadratic bicyclic real number field K.

Lemma 2.1 ([18]) Assuming $N(\epsilon_1) = N(\epsilon_2) = N(\epsilon_3) = \pm 1$, then the equation $X^2 - \epsilon_1 \epsilon_2 \epsilon_3 = 0$ has a solution in K if and only if q(K) = 2.

Lemma 2.2 [4, Corollary 3.6] If $d = 2p_1p_2$, where $p_1 \equiv p_2 \equiv 1 \pmod{4}$ are different primes, and at least two of the elements of $\left\{ \left(\frac{2}{p_1}\right), \left(\frac{2}{p_2}\right), \left(\frac{p_1}{p_2}\right) \right\}$ are equal to -1, then the norm of the fundamental unit of $\mathbb{Q}(\sqrt{d})$ is -1.

Lemma 2.3 Let p_1 and p_2 be different primes satisfying the conditions (1). Then the 2-class group $\mathbf{Cl}_2(k_1)$ of k_1 is cyclic of order $h_2(2p_1) = 2^n$, $n \ge 1$. It is generated by the class of P_2 , a prime ideal of k_1 above p_2 . Moreover, $P_2^{2^{n-1}} \sim 2$ in $\mathbf{Cl}_2(k_1)$, where 2 is the prime ideal of k_1 above 2.

Proof As $\left(\frac{2p_1}{p_2}\right) = 1$, so p_2 splits in k_1 . Put $p_2O_{k_1} = P_2P'_2$ and denote by 2 and P_1 the prime ideals of k_1 above 2 and p_1 , respectively. P_1 is not principal in k_1 , as otherwise we will get $p_1 = x^2 - 2p_1y^2$, where $x, y \in \mathbb{Q}$; this contradicts the fact that $\left(\frac{p_1}{p_2}\right) = -1$. Similarly, we prove that 2 and P_2 are not principal.

It is well known, under our conditions, that $\mathbf{C}l_2(k_1)$ is cyclic of order 2^n where $n \ge 1$. On the other hand, $\left(\frac{p_2, 2p_1}{p_1}\right) = \left(\frac{p_2}{p_1}\right) = -1$, and then by genus theory $[P_2]$ is not a square in $\mathbf{C}l_2(k_1)$. Thus, $\mathbf{C}l_2(k_1) = \langle [P_2] \rangle$. Finally, since $2 \sim P_1$ are of order 2, we deduce that $P_2^{2^{n-1}} \sim 2 \sim P_1$.

Lemma 2.4 Let p_1 and p_2 be different primes satisfying the conditions (1). Then the 2-class group $\mathbf{Cl}_2(\mathbb{k})$ of $\mathbb{k} = \mathbb{Q}(\sqrt{2p_1p_2})$ is of type (2,2). It is generated by the classes of \mathfrak{p}_1 and \mathfrak{p}_2 the prime ideals above p_1 and p_2 , respectively.

Proof According to [14] $\mathbf{C}l_2(\mathbb{k})$, the 2-class group of \mathbb{k} is of type (2,2). It is generated by the classes of \mathfrak{p}_1 and \mathfrak{p}_2 the prime ideals above p_1 and p_2 , respectively. In fact, \mathfrak{p}_i is of order 2 since $\mathfrak{p}_i^2 = (p_i)$, and it is not principal for all $i \in \{1,2\}$; otherwise, we would get $p_i = \mp (x^2 - 2p_1p_2y^2)$ for some x and y in \mathbb{Q} and this implies the contradiction $\left(\frac{p_i}{p_j}\right) = -1$ where $i \neq j \in \{1,2\}$. Similarly, we show that \tilde{z} the prime ideal of \mathbb{k} above 2 is not principal, too. The same reasoning shows that \mathfrak{p}_1 and \mathfrak{p}_2 (resp. \tilde{z} and \mathfrak{p}_2) are independent. As $\tilde{z}\mathfrak{p}_1 \sim \mathfrak{p}_2$, so $\tilde{z}\mathfrak{p}_1$ is not principal, too. Finally, the classes of \mathfrak{p}_1 and \mathfrak{p}_2 are not squares since $\left(\frac{p_1}{p_2}\right) = -1$. \Box

3. Main results

Let p_1 and p_2 be different primes satisfying the conditions (1) and put $\mathbb{k} = \mathbb{Q}(\sqrt{2p_1p_2})$. Letting $\mathbb{F} = \mathbb{k}(i) = \mathbb{Q}(\sqrt{2p_1p_2}, i)$, then \mathbb{F} admits three unramified quadratic extensions that are abelian over \mathbb{Q} , which

are $\mathbb{K}_1 = \mathbb{F}(\sqrt{p_1}) = \mathbb{Q}(\sqrt{p_1}, \sqrt{2p_2}, i)$, $\mathbb{K}_2 = \mathbb{F}(\sqrt{p_2}) = \mathbb{Q}(\sqrt{p_2}, \sqrt{2p_1}, i)$, and $\mathbb{K}_3 = \mathbb{F}(\sqrt{2}) = \mathbb{Q}(\sqrt{2}, \sqrt{p_1p_2}, i)$. Let \mathbb{K}_j^+ denote the maximal real subfield of \mathbb{K}_j where $1 \le j \le 3$.

Theorem 3.1 Let p_1 and p_2 be different primes satisfying the conditions (1). Then the following assertions are equivalent:

- 1. $\left(\frac{2}{p_1}\right)_4 \left(\frac{p_1}{2}\right)_4 = -1$,
- 2. $q(\mathbb{K}_1^+) = 1$ or $q(\mathbb{K}_3^+) = 1$,
- 3. $q(\mathbb{K}_2^+) = 1$ and $h(2p_1) = 2$.

Proof To prove this theorem, consider Figure 1 below, where $\mathbb{k}^{(*)}$ denotes the genus field of $\mathbb{k} = \mathbb{Q}(\sqrt{2p_1p_2})$ and $\mathbb{k}_2^{(1)}$ denotes its Hilbert 2-class field. Since the 2-class group of \mathbb{k} is of type (2, 2) (see Lemma 2.4), and

Figure 1. Subfields of $k^{(*)}/k$.

since also the discriminant of \mathbb{k} is equal to $d_{\mathbb{k}} = 8p_1p_2$, then by [7] we have $\left(\frac{2}{p_1}\right)_4 \left(\frac{p_1}{2}\right)_4 = -1$ if and only if $\mathbb{k}_1^{(1)} = \mathbb{k}_2^{(2)}$.

On one hand, according to [15] and [25] the condition $\mathbb{k}_2^{(1)} = \mathbb{k}_2^{(2)}$ is equivalent to $h(\mathbb{K}_j^+) = 2$ for some $j \in \{1, 2, 3\}$. On the other hand, the class number formula implies that

$$h(\mathbb{K}_1^+) = \frac{1}{4}q(\mathbb{K}_1^+)h(p_1)h(2p_2)h(2p_1p_2) = 2q(\mathbb{K}_1^+),$$

$$h(\mathbb{K}_2^+) = \frac{1}{4}q(\mathbb{K}_2^+)h(p_2)h(2p_1)h(2p_1p_2) = h(2p_1)q(\mathbb{K}_2^+), \text{ and }$$

$$h(\mathbb{K}_3^+) = \frac{1}{4}q(\mathbb{K}_3^+)h(2)h(p_1p_2)h(2p_1p_2) = 2q(\mathbb{K}_3^+).$$

Thus the results.

Theorem 3.2 Let p_1 and p_2 be different primes satisfying the conditions (1). Denote by 2 the prime ideal of $\mathbb{Q}(\sqrt{2p_1})$ lies above 2 and by $h(2p_1) = 2^n$, $n \ge 1$, the 2-class number of $\mathbb{Q}(\sqrt{2p_1})$. Then the following assertions hold:

- 1. $q(\mathbb{K}_2^+) = 1$ if and only if 2 capitulates in \mathbb{K}_2^+ .
- 2. $\mathbf{C}l_2(\mathbb{K}_2^+)$ is cyclic generated by the class of \mathcal{P}_2 a prime ideal of \mathbb{K}_2^+ above p_2 . Moreover, $h(\mathbb{K}_2^+) = 2^n \iff q(\mathbb{K}_2^+) = 1$, i.e. $h(\mathbb{K}_2^+) = 2^{n+1} \iff q(\mathbb{K}_2^+) = 2$.

Figure 2. Subfields of $\mathbb{K}_2^+/\mathbb{Q}$.

Proof To prove this theorem, we need Figure 2 below. It is easy to see that \mathbb{K}_2^+/k_1 and \mathbb{K}_2^+/k_2 are ramified, but $\mathbb{K}_2^+/\mathbb{K}$ is not, so by class field theory $N_{\mathbb{K}_2^+/k_1}(\mathbf{C}l_2(\mathbb{K}_2^+)) = \mathbf{C}l_2(k_1), \ N_{\mathbb{K}_2^+/k_2}(\mathbf{C}l_2(\mathbb{K}_2^+)) = \mathbf{C}l_2(k_2)$ (which has an odd class number), and $[\mathbf{C}l_2(\mathbb{K}) : N_{\mathbb{K}_2^+/\mathbb{K}}(\mathbf{C}l_2(\mathbb{K}_2^+))] = 2$.

On the other hand, it is easy to see also that \mathfrak{p}_2 capitulates and splits in \mathbb{K}_2^+ . Letting \mathcal{P}_2 be a prime ideal of \mathbb{K}_2^+ above p_2 , then \mathcal{P}_2 is not principal, as otherwise we will get $N_{\mathbb{K}_2^+/k_1}(\mathcal{P}_2) \sim P_2 \sim 1$, which is absurd (Lemma 2.3).

We claim that, in $\mathbf{C}l_2(\mathbb{K}_2^+)$, $\mathcal{P}_2^2 \sim P_2$. To this end, let s and t be the elements of order 2 in $\mathrm{Gal}(\mathbb{K}_2^+/\mathbb{Q})$ that fix k_1 and \mathbb{k} , respectively. Using the identity 2 + (1 + s + t + st) = (1 + s) + (1 + t) + (1 + st) of the group ring $\mathbb{Z}[\mathrm{Gal}(\mathbb{K}_2^+/\mathbb{Q})]$ and observing that \mathbb{Q} and the fixed field of st have odd class numbers, we find:

$$\mathcal{P}_2^2 \sim \mathcal{P}_2^{1+s} \mathcal{P}_2^{1+t} \mathcal{P}_2^{1+st} \sim \mathfrak{p}_2 P_2 \sim P_2$$

where the last relation (in $\mathbf{C}l_2(\mathbb{K}_2^+)$) comes from the fact that \mathfrak{p}_2 capitulates in \mathbb{K}_2^+ . Thus,

$$\mathcal{P}_2^{2^n} \sim P_2^{2^{n-1}} \sim 2 \quad \text{and} \quad \mathcal{P}_2^{2^{n+1}} \sim P_2^{2^n} \sim 1.$$
 (2)

Note that for all $i \leq n-1$, $\mathcal{P}_2^{2^i} \not\sim 1$; otherwise, we get $P_2^{2^i} \sim 1$, which is absurd by Lemma 2.3. Hence, the class of \mathcal{P}_2 generates a subgroup of $\mathbf{C}l_2(\mathbb{K}_2^+)$ of order 2^n or 2^{n+1} accordingly as 2 capitulates or not in \mathbb{K}_2^+ .

On one hand, $N_{\mathbb{K}_2^+/k_1}(\langle [\mathcal{P}_2] \rangle) = \langle [P_2] \rangle$ and $N_{\mathbb{K}_2^+/\mathbb{k}}(\langle [\mathcal{P}_2] \rangle) = \langle [\mathfrak{p}_2] \rangle$, which is of index 2 in $\mathbb{C}l_2(\mathbb{k})$; on the other hand, in $\mathbb{C}l_2(\mathbb{K}_2^+)$, we have $\mathcal{P}_2^{2^n} \sim \mathcal{P}_2^{2^{n-1}} \sim 2 \sim \mathcal{P}_1$, where \mathcal{P}_1 is the prime ideal of \mathbb{K}_2^+ above p_1 . Therefore, $\mathbb{C}l_2(\mathbb{K}_2^+)$ is cyclic generated by the class of \mathcal{P}_2 , i.e.

$$\mathbf{C}l_2(\mathbb{K}_2^+) = \langle [\mathcal{P}_2] \rangle$$

Finally, the class number formula implies that $h(\mathbb{K}_2^+) = q(\mathbb{K}_2^+)h(2p_1)$; thus, by the equation (2), 2 capitulates in \mathbb{K}_2^+ if and only if $\mathcal{P}_2^{2^n} \sim 1$. Therefore, 2 capitulates in \mathbb{K}_2^+ if and only if $q(\mathbb{K}_2^+) = 1$. Thus the results. \Box

Remark 3.3 Let p_1 and p_2 be primes as above and keep the previous notations. Then, for $j \in \{1,3\}$, we have:

$$q(\mathbb{K}_j^+) = 1 \Leftrightarrow \left(\frac{2}{p_1}\right)_4 \left(\frac{p_1}{2}\right)_4 = -1 \iff p_1 \neq x^2 + 32y^2, \text{ where } x, y \in \mathbb{N}.$$

Proof Note first that $N(\epsilon_2) = -1$ and, by Lemma 2.2, $N(\epsilon_{2p_1p_2}) = -1$. Moreover, since $\left(\frac{p_1}{p_2}\right) = -1$ and $\left(\frac{2}{p_2}\right) = -1$, then according to [24] $N(\epsilon_{p_1p_2}) = -1$ and $N(\epsilon_{2p_2}) = -1$. Thus, [18] implies that $q(\mathbb{K}_j^+) = 1$ or 2. Hence, the first equivalence is assured by Theorem 3.1, and the second one is assured by [6]. Thus the results derived.

Corollary 3.4 Let p_1 and p_2 be different primes satisfying the conditions (1). Let \mathbb{K} be an unramified quadratic extension of \mathbb{k} . Denote by ϵ_j , $1 \leq j \leq 3$, the three fundamental units of the three quadratic subfields of \mathbb{K} . Denote by 2 the prime ideal of $\mathbb{Q}(\sqrt{2p_1})$ above 2. If $N(\epsilon_1) = N(\epsilon_2) = N(\epsilon_3) = -1$, then the equation $X^2 - \epsilon_1 \epsilon_2 \epsilon_3 = 0$ has a solution in \mathbb{K} if and only if one of the following statements holds:

- 1. $\left(\frac{2}{p_1}\right)_4 \left(\frac{p_1}{2}\right)_4 = 1$, if $\mathbb{K} = \mathbb{K}_1^+$ or \mathbb{K}_3^+ .
- 2. 2 does not capitulate in $\mathbb{K} = \mathbb{K}_2^+$.

Proof Follows immediately from Theorems 3.1 and 3.2 and Lemma 2.1.

Corollary 3.5 Let p_1 and p_2 be primes as above and keep the previous notations. Put $\mathbb{k} = \mathbb{Q}(\sqrt{2p_1p_2})$ and denote by $\mathbb{k}_2^{(1)}$ its first Hilbert 2-class field and by $\mathbb{k}_2^{(2)}$ its second Hilbert 2-class field. Put $G = \operatorname{Gal}(\mathbb{k}_2^{(2)}/\mathbb{k})$ and denote by 2 the prime ideal of $\mathbb{Q}(\sqrt{2p_1})$ lies above 2. Then:

- 1. For $j \in \{1, 2, 3\}$ the following statements are equivalent:
 - a. $\left(\frac{2}{p_1}\right)_4 \left(\frac{p_1}{2}\right)_4 = -1$,

b.
$$\mathbf{C}l_2(\mathbb{K}_i^+) \simeq (2)$$
,

- c. All the classes of $\mathbf{Cl}_2(\mathbb{k})$ capitulate in \mathbb{K}_j^+ ,
- d. $G \sim (2, 2)$.
- 2. For $j \in \{1,3\}$ the following statements are equivalent:
 - a. $\left(\frac{2}{p_1}\right)_4 \left(\frac{p_1}{2}\right)_4 = 1$,
 - b. Two classes of $\mathbf{C}l_2(\mathbb{k})$ capitulate in \mathbb{K}_i^+ ,
 - c. $\mathbf{C}l_2(\mathbb{K}_i^+) \simeq (2,2),$
 - d. G is dihedral of order 2^m $(m \ge 8)$ or quaternionic of order 2^m (m > 3), and, moreover, G is dihedral of order 2^m $(m \ge 8)$ if and only if 2 capitulates in \mathbb{K}_2^+ .

Proof Let $E_{\mathbb{K}_{j}^{+}}$ and $E_{\mathbb{k}}$ be the unit groups of \mathbb{K}_{j}^{+} and \mathbb{k} , respectively. It is well known from [10] that the number of classes of $E_{\mathbb{k}}$ that capitulate in \mathbb{K}_{j}^{+} is $2[E_{\mathbb{k}}: N_{\mathbb{K}_{j}^{+}/\mathbb{k}}(E_{\mathbb{K}_{j}^{+}})]$. On the other hand, as $q(\mathbb{K}_{j}^{+}) = 1$ or 2 and, under our conditions, $[E_{\mathbb{k}}: N_{\mathbb{K}_{j}^{+}/\mathbb{k}}(E_{\mathbb{K}_{j}^{+}})] = 1$ or 2, then we deduce easily that:

$$[E_{\mathbb{k}}: N_{\mathbb{K}_{i}^{+}/\mathbb{k}}(E_{\mathbb{K}_{i}^{+}})] = 1 \Longleftrightarrow q(\mathbb{K}_{j}^{+}) = 2.$$

$$(3)$$

1. a. is equivalent by Theorem 3.1 to $q(\mathbb{K}_j^+) = 1$, which is equivalent by the equation (3) to c., and a. is also equivalent by [24] to $h(\mathbb{K}_j^+) = 2$. This in turn is equivalent by [15] to d.

2. a. is equivalent by Theorem 3.1 to $q(\mathbb{K}_i^+) = 2$, which is equivalent by the equation (3) to b.

We know from Lemma 2.4 that $\mathbf{C}l_2(\mathbb{k}) = \langle [\mathfrak{p}_1], [\mathfrak{p}_2] \rangle$, where $\mathbb{k} = \mathbb{Q}(\sqrt{2p_1p_2})$ and \mathfrak{p}_1 , \mathfrak{p}_2 are the prime ideals above p_1 and p_2 , respectively. We know also from Theorem 3.2 that $\mathbf{C}l_2(\mathbb{K}_2^+) = \langle [\mathcal{P}_2] \rangle$ with \mathcal{P}_2 being a prime ideal of \mathbb{K}_2^+ above p_2 . Thus, $N_{\mathbb{K}_2^+/\mathbb{k}}(\mathbf{C}l_2(\mathbb{K}_2^+)) = \langle [\mathfrak{p}_2] \rangle$. As $\mathbb{K}_2^+ = \mathbb{Q}(\sqrt{p_2}, \sqrt{2p_1})$, it is easy to see $N_{\mathbb{K}_2^+/\mathbb{k}}(\mathbf{C}l_2(\mathbb{K}_2^+)) \subset \kappa_{\mathbb{K}_2^+}$, where $\kappa_{\mathbb{K}_2^+}$ is the set of ideal classes of \mathbb{k} that capitulate in \mathbb{K}_2^+ . Hence, \mathbb{K}_2^+ satisfies Taussky's condition A. Therefore, G is never a semidihedral group (see [15]).

Proceeding as in the proof of Theorem 3.2, we determine the generators of $\mathbf{C}l_2(\mathbb{K}_1^+)$ and $\mathbf{C}l_2(\mathbb{K}_3^+)$. From that we deduce that b. is equivalent to c. By calculating $N_{\mathbb{K}_j^+/\mathbb{K}}(\mathbf{C}l_2(\mathbb{K}_j^+))$, $1 \leq j \leq 3$, we notice (using Taussky's conditions) that we have two cases of capitulation: $4 \ 2B \ 2B$ or $2A \ 2B \ 2B$.

The first case occurs if and only if G is dihedral of order 2^m $(m \ge 3)$, and the second one occurs if and only if G is quaternionic of order 2^m (m > 3) (for more details, see [15]). Therefore, the equivalence between c. and d. is assured by Theorem 3.2 and [15].

4. The 2-rank of some CM-fields

Recall that p_1 and p_2 are different primes satisfying the following conditions:

$$p_1 \equiv p_2 \equiv 1 \pmod{4}$$
 and $\left(\frac{2}{p_2}\right) = \left(\frac{p_1}{p_2}\right) = -\left(\frac{2}{p_1}\right) = -1.$

Consider the field $\mathbb{F} = \mathbb{Q}(\sqrt{2p_1p_2}, i)$. The goal of this section is to compute the 2-rank of the 2-class groups of the fields $\mathbb{K}_1 = \mathbb{Q}(\sqrt{p_1}, \sqrt{2p_2}, \sqrt{-1})$, $\mathbb{K}_2 = \mathbb{Q}(\sqrt{p_2}, \sqrt{2p_1}, \sqrt{-1})$, $\mathbb{K}_3 = \mathbb{Q}(\sqrt{2}, \sqrt{p_1p_2}, \sqrt{-1})$, and $\mathbb{F}^{(*)} = \mathbb{Q}(\sqrt{2}, \sqrt{p_1}, \sqrt{p_2}, i)$. Let us begin by \mathbb{K}_2 .

Theorem 4.1 Let p_1 and p_2 be different primes satisfying the conditions (1). Assume $\left(\frac{2}{p_1}\right)_4 \left(\frac{p_1}{2}\right)_4 = -1$, and consider $\mathbb{K}_2 = \mathbb{Q}(\sqrt{p_2}, \sqrt{2p_1}, i)$. Then $\mathbf{C}l_2(\mathbb{K}_2)$, the 2-class group of \mathbb{K}_2 , is of type $(2, 2^{\ell+1})$, where $2^{\ell} = h(-2p_1)$ and $\ell \in \mathbb{N}^*$.

Proof Setting $F = \mathbb{Q}(\sqrt{p_2}, i)$, then according to [2] the unit group of F is $E_F = \langle i, \epsilon_{p_2} \rangle$. As $h(F) = \frac{1}{2}q(F)h(p_2)h(-p_2) = 1$, so the class number of F is odd. Therefore, the 2-rank of the 2-class group of \mathbb{K}_2 is equal to r = t - e - 1, where t is the number of finite and infinite primes of F ramified in \mathbb{K}_2/F and $2^e = [E_F : E_F \cap N_{\mathbb{K}_2/F}(\mathbb{K}_2^{\times})].$

Let us compute t. Let p be a prime number of \mathbb{Q} and denote by \mathfrak{p}_M a prime ideal of some extension M/\mathbb{Q} , which lies above p, and $e(\mathfrak{p}_M/p)$ its ramification index.

As the extension \mathbb{K}_2/\mathbb{F} is unramified, then $e(\mathfrak{p}_F/p).e(\mathfrak{p}_{\mathbb{K}_2}/\mathfrak{p}_F) = e(\mathfrak{p}_F/p)$. Since 2 is totally ramified in \mathbb{F} and inert in $\mathbb{Q}(\sqrt{p_2})$, then there is only one ideal prime of F above 2 that ramifies in \mathbb{K}_2 . On the other hand, p_1 is inert in $\mathbb{Q}(\sqrt{p_2})$ and hence $e(\mathfrak{p}_{1F}/p_1) = 1$, and since $e(\mathfrak{p}_{1F}/p_1) = 2$, then $e(\mathfrak{p}_{1\mathbb{K}_2}/\mathfrak{p}_{1F}) = 2$.

Finally, $e(\mathfrak{p}_{2F}/p_2) = 2$, and as $e(\mathfrak{p}_{2F}/p_2) = 2$, we deduce that $e(\mathfrak{p}_{2K_2}/\mathfrak{p}_{2F}) = 1$. Thus, t = 3 and r = 2 - e, i.e. the 2-rank of K_2 is r = 2 - e.

To compute e, we have to find units of F that are norms of some elements of \mathbb{K}_2^{\times} . Letting \mathfrak{p} be an ideal of F such that $\mathfrak{p} \neq \mathfrak{2}_F$, then we have:

- If \mathfrak{p} is not above p_1 , then $v_{\mathfrak{p}}(\epsilon_{p_2}) = v_{\mathfrak{p}}(2p_1) = v_{\mathfrak{p}}(i) = 0$. Hence, $\left(\frac{2p_1, \epsilon_{p_2}}{\mathfrak{p}}\right) = 1$ and $\left(\frac{2p_1, i}{\mathfrak{p}}\right) = 1$.
- If $\mathfrak{p} = \mathfrak{p}_{1F}$ is above p_1 , then $v_{\mathfrak{p}}(\epsilon_{p_2}) = v_{\mathfrak{p}}(i) = 0$ and $v_{\mathfrak{p}}(2p_1) = 1$. As \mathfrak{p} is not ramified in both of $F(\sqrt{i})$ and $F(\sqrt{\epsilon_{p_2}})$, so

$$\begin{cases} \left(\frac{\epsilon_{p_2}, 2p_1}{\mathfrak{p}_{1_F}}\right) = \left(\frac{\epsilon_{p_2}}{\mathfrak{p}_{1_F}}\right) = \left(\frac{\epsilon_{p_2}}{\mathfrak{p}_{1_Q(\sqrt{p_2})}}\right) = 1,\\ \left(\frac{i, 2p_1}{\mathfrak{p}_{1_F}}\right) = \left(\frac{i}{\mathfrak{p}_{1_F}}\right) = \left(\frac{-1}{\mathfrak{p}_{1_Q(i)}}\right) = 1. \end{cases}$$

Therefore, for all prime ideal \mathfrak{p} of F, the product formula for the Hilbert symbol implies that $\left(\frac{\epsilon_{p_2}, 2p_1}{\mathfrak{p}}\right) = (i, 2p_1)$

$$\left(\frac{i,2p_1}{\mathfrak{p}}\right) = 1.$$

From this, we deduce that e = 0 and r = 2.

We prove now that the 4-rank of $\mathbf{C}l_2(\mathbb{K}_2)$ is 1. For this, put $k = \mathbb{Q}(\sqrt{-2p_1p_2})$ and denote by $k^{(*)} = \mathbb{Q}(\sqrt{-2}, \sqrt{p_1}, \sqrt{p_2})$ its genus field (see Figure 3). Note that $q(L_1) = q(L_2) = q(L_3) = 1$, so the 2-class

Figure 3. Subfields of $k^{(*)}/k$.

group of k is of type (2,2) (see [14]). The class number formula implies that $h(L_1) = 4$, $h(L_2) = 2h(-2p_1)$, and $h(L_3) = 4$. On the other hand, according to [3], the 2-class group of L_3 is of type (2,2). Thus, by [7] we have $\left(\frac{2}{p_1}\right)_4 \left(\frac{p_1}{2}\right)_4 = -1$ if and only if $k^{(*)} = k_2^{(1)} = k_2^{(2)}$. Hence, by [15] and [25] we get that the 2-class group of L_1 is of type (2,2) and that of L_2 is cyclic of order $2h(-2p_1)$. To this end, consider the application:

$$\begin{array}{ccc} \varphi: & \mathbf{C}l_2(\mathbb{K}_2) & \longrightarrow \mathbf{C}l_2(L_2) \\ & c & \longmapsto N_{\mathbb{K}_2/L_2}(c) \end{array}$$

As $h(\mathbb{K}_2) = 4h(-2p_1)$ and $h(L_2) = 2h(-2p_1)$, so $|ker\varphi| = 2$. Since also the 2-rank of $\mathbb{C}l_2(\mathbb{K}_2)$ is 2 and that of $\mathbb{C}l_2(L_2)$ is 1, then the 4-rank of $\mathbb{C}l_2(\mathbb{K}_2)$ is 1. Hence, $\mathbb{C}l_2(\mathbb{K}_2)$ is of type $(2, 2h(-2p_1)) = (2, 2^{\ell+1})$, where $2^{\ell} = h(-2p_1)$.

Theorem 4.2 Let p_1 and p_2 be different primes satisfying the conditions (1). Assume $\left(\frac{2}{p_1}\right)_4 \left(\frac{p_1}{2}\right)_4 = -1$, and consider the field $\mathbb{K}_3 = \mathbb{Q}(\sqrt{2}, \sqrt{p_1 p_2}, i)$; then $\mathbf{Cl}_2(\mathbb{K}_3)$, the 2-class group of \mathbb{K}_3 , is of type (2, 2, 2).

Proof Putting $F = \mathbb{Q}(\sqrt{2}, i)$ and letting ϵ_2 be the fundamental unit of $\mathbb{Q}(\sqrt{2})$, from [2] we get that the unit group of F is $E_F = \langle i, \epsilon_2 \rangle$. It is well known that the class number of F is odd. Thus, the 2-rank of the 2-class group of \mathbb{K}_3 is r = t - e - 1, where t is the number of finite and infinite primes of F ramified in \mathbb{K}_3/F and $2^e = [E_F : E_F \cap N_{\mathbb{K}_3/F}(\mathbb{K}_3^{\times})]$. Proceeding as in Theorem 4.1 we prove that r = 3. On the other hand, the 2-class number of \mathbb{K}_3 is $h(\mathbb{K}_3) = 4q(\mathbb{K}_3) = 8$. Hence the result.

Theorem 4.3 Let p_1 and p_2 be different primes satisfying the conditions (1). Assume $\left(\frac{2}{p_1}\right)_4 \left(\frac{p_1}{2}\right)_4 = -1$, and consider the field $\mathbb{K}_1 = \mathbb{Q}(\sqrt{p_1}, \sqrt{2p_2}, i)$; then $\mathbf{Cl}_2(\mathbb{K}_1)$, the 2-class group of \mathbb{K}_1 , is of type (2, 2, 4).

Proof Putting $F = \mathbb{Q}(\sqrt{p_1}, i)$ and letting ϵ_{p_1} be the fundamental unit of $\mathbb{Q}(\sqrt{p_1})$, then by [2] the unit group of F is $E_F = \langle i, \epsilon_{p_1} \rangle$. As $p_1 \equiv 1 \pmod{8}$, then the class number of F is even and hence the 2-rank of the class group of \mathbb{K}_1 satisfies $r \geq t - e - 1$, where t is the number of finite and infinite primes of F ramified in \mathbb{K}_1/F , and $2^e = [E_F : E_F \cap N_{\mathbb{K}_1/F}(\mathbb{K}_1^{\times})]$. Proceeding as in Theorem 4.1 we prove that t = 4. Thus, $r \geq 3 - e$. Let us calculate e by computing the units of F that are norms of some elements of \mathbb{K}_1^{\times} .

Keep the notation that \mathfrak{p}_M denotes a prime ideal of some extension M/\mathbb{Q} lying above a prime number p of \mathbb{Q} , and let $e(\mathfrak{p}_M/p)$ be its ramification index.

Since \mathfrak{p}_{2F} is unramified in both of $F(\sqrt{i})$ and $F(\sqrt{\epsilon_{p_1}})$, so

$$\begin{cases} \left(\frac{\epsilon_{p_1}, 2p_2}{\mathfrak{p}_{2F}}\right) = \left(\frac{\epsilon_{p_1}}{\mathfrak{p}_{2F}}\right) = \left(\frac{-1}{\mathfrak{p}_{2\mathbb{Q}(\sqrt{i})}}\right) = 1\\ \left(\frac{i, 2p_2}{\mathfrak{p}_{2F}}\right) = \left(\frac{i}{\mathfrak{p}_{2F}}\right) = \left(\frac{-1}{\mathfrak{p}_{2\mathbb{Q}(\sqrt{i})}}\right) = 1. \end{cases}$$

Similarly, as 2_F is unramified in $F(\sqrt{p_2})$, so

$$\left(\frac{i,2p_2}{2_F}\right) = \left(\frac{i,2}{2_F}\right) \left(\frac{i,p_2}{2_F}\right) = \left(\frac{i,2}{2_F}\right) = \left(\frac{i,i^{-1}}{2_F}\right) \left(\frac{i,2i}{2_F}\right) = 1.$$

Finally, since $N(\epsilon_{p_1}) = -1$, then $2\pi_1\epsilon_{p_1}$ is a square in F (where $\pi_1, \pi_2 \in \mathbb{Z}[i]$ and $p_1 = \pi_1\pi_2$), and hence $\left(\frac{\epsilon_{p_1}, 2}{\mathfrak{p}_{2F}}\right) = \left(\frac{2\pi_1, 2}{\mathfrak{p}_{2F}}\right)$, so $\left(\frac{\epsilon_{p_1}, 2p_2}{2F}\right) = \left(\frac{\epsilon_{p_1}, 2}{2F}\right) \left(\frac{\epsilon_{p_1}, p_2}{2F}\right) = \left(\frac{\epsilon_{p_1}, 2}{2F}\right) = \left(\frac{2\pi_1, 2}{2F}\right) = \left(\frac{\pi_1}{2F}\right)^{v_{2F}(2)} = 1.$

Consequently, e = 0, and thus $r \ge 3$.

Setting $k_0 = \mathbb{Q}(\sqrt{-p_1}, \sqrt{2p_2})$, we will compute the 2-rank of the class group of k_0 . For this, we use the notations of [22]. Putting $k_1 = \mathbb{Q}(\sqrt{-p_1})$, $k_2 = \sqrt{2p_2}$, $k_3 = \mathbb{Q}(\sqrt{-2p_1p_2})$, $l = p_1$, q = 2, and r = 2, then

 $t_1 = 2$, $t_2 = 2$, and $t_3 = 3$. Thus, t = 4, $r_a = 4$, w = 1, x = 0, and y = 1 and consequently the 2-rank of the class group of k_0 is $r_2 = 4 - 1 - 0 - 1 = 2$.

On the other hand, since $q(k_0) = 1$ and $q(\mathbb{K}_1) = 2$, then the class number formula implies that $h(k_0) = h(\mathbb{K}_1) = 16$. Hence, $\mathbf{C}l_2(\mathbb{K}_1)$ is of type (2, 2, 2, 2) or (2, 2, 4).

To this end, \mathbb{K}_1 is an unramified quadratic extension of k_0 , and then

$$\mathbf{C}l_2(\mathbb{K}_1)/\mathbf{C}l_2(\mathbb{K}_1)^{1-\sigma} \simeq N_{\mathbb{K}_1/k_0}(\mathbf{C}l_2(\mathbb{K}_1))$$

where $\langle \sigma \rangle = \text{Gal}(\mathbb{K}_1/k_0)$. If we suppose that $\mathbf{C}l_2(\mathbb{K}_1)$ is of type (2, 2, 2, 2), we will get that $N_{\mathbb{K}_1/k_0}(\mathbf{C}l_2(\mathbb{K}_1))$ is of type (2, 2, 2) since $\mathbf{C}l_2(\mathbb{K}_1)^{1-\sigma}$ is of index 2. However, this contradicts the fact that $N_{\mathbb{K}_1/k_0}(\mathbf{C}l_2(\mathbb{K}_1))$ is a subgroup of $\mathbf{C}l_2(\mathbb{k})$ that is of 2-rank equal to 2. Therefore, $\mathbf{C}l_2(\mathbb{K}_1)$ is of type (2, 2, 4).

Theorem 4.4 Let p_1 and p_2 be different primes satisfying the conditions (1). Put $\mathbb{F} = \mathbb{Q}(\sqrt{2p_1p_2}, i)$ and denote by $\mathbb{F}^{(*)} = \mathbb{Q}(\sqrt{p_1}, \sqrt{p_2}, \sqrt{2}, i)$ its genus field. Then the rank of $\mathbf{Cl}_2(\mathbb{F}^{(*)})$, the 2-class group of $\mathbb{F}^{(*)}$, is 2 and $h(\mathbb{F}^{(*)}) = 4h(-2p_1)$.

Proof Put $K = \mathbb{Q}(\sqrt{-p_1}, \sqrt{p_2}, \sqrt{2})$, $F = \mathbb{Q}(\sqrt{p_1}, \sqrt{p_2}, \sqrt{2})$, and $L = \mathbb{Q}(\sqrt{p_2}, \sqrt{2}, i)$. It is easy to see that $\mathbb{F}^{(*)}/L^+$ is a V_4 -extension of CM-type fields, The following diagram (Figure 4) clarifies this. According to [21]

Figure 4. Subfields of $\mathbb{F}^{(*)}/L^+$.

we have:

$$h(\mathbb{F}^{(*)}) = \frac{Q_{\mathbb{F}^{(*)}}}{Q_K Q_L} \cdot \frac{\omega_{\mathbb{F}^{(*)}}}{\omega_K \omega_L} \cdot \frac{h(K)h(L)h(F)}{h(L^+)^2}.$$
(4)

To this end, note that $\omega_{\mathbb{F}^{(*)}} = \omega_L = 4\omega_K = 8$, $W_{\mathbb{F}^{(*)}} = W_L$, and $W_K = \{\pm 1\}$. On the other hand, by [12] we get $Q_{\mathbb{F}^{(*)}} = 1$; thus, $Q_L = 1$, since by [21], we have $Q_L |Q_{\mathbb{F}^{(*)}}[W_{\mathbb{F}^{(*)}} : W_L]$.

As $q(L^+) = 2$, i.e. $\epsilon_2 \epsilon_{p_2} \epsilon_{2p_2}$ is a square in L^+ , then according to [2] $\{\epsilon_2, \epsilon_{p_2}, \sqrt{\epsilon_2 \epsilon_{p_2} \epsilon_{2p_2}}\}$ is not a fundamental system of units of K if and only if there exist α , β , and γ in $\{0,1\}$, not all zero, such that $p_1 \sqrt{\epsilon_2 \epsilon_{p_2} \epsilon_{2p_2}}^{\alpha} \epsilon_2^{\beta} \epsilon_{p_2}^{\gamma}$ is a square in L^+ . Supposing that $p_1 \sqrt{\epsilon_2 \epsilon_{p_2} \epsilon_{2p_2}}^{\alpha} \epsilon_2^{\beta} \epsilon_{p_2}^{\gamma} = X^2$, where $X \in L^+$, then $N_{L^+/\mathbb{Q}(\sqrt{2})}(X^2) = p_1^2 \epsilon_2^{\alpha} \epsilon_2^{2\beta}(-1)^{\gamma}$, and thus $\gamma = 0$ and $\alpha = 0$ since ϵ_2 is not a square in $\mathbb{Q}(\sqrt{2})$. Consequently, $X^2 = p_1 \epsilon_2^{\beta}$, and this implies that $\beta = 1$. Hence, $N_{L^+/\mathbb{Q}(\sqrt{p_2})}(X^2) = -p_1^2$, which is false. Therefore, $\{\epsilon_2, \epsilon_{p_2}, \sqrt{\epsilon_2 \epsilon_{p_2} \epsilon_{2p_2}}\}$ is a fundamental system of units of K. We conclude that q(K) = 2 and $Q_K = 1$. Similarly, we prove that $\{\epsilon_2, \epsilon_{p_2}, \sqrt{\epsilon_2 \epsilon_{p_2} \epsilon_{2p_2}}\}$ is a fundamental system of units of L and q(L) = 4. Finally, by Theorem 4.1, h(F) = 1. The class number formula yields that h(L) = 1 and $h(K) = 2h(-p_1)h(-2p_1)$. By replacement in formula (4) we get: $h(\mathbb{F}^{(*)}) = h(-p_1)h(-2p_1)$. As also $\left(\frac{2}{p_1}\right)_4 \left(\frac{p_1}{2}\right)_4 = -1$, so $h(-p_1) = 4$, and hence $h(\mathbb{F}^{(*)}) = 4h(-2p_1)$.

We know that the class number of $L = \mathbb{Q}(\sqrt{2}, \sqrt{p_2}, i)$ is odd, so then the 2-rank of the class group of $\mathbb{F}^{(*)}$ is given by the formula r = t - e - 1, where t is the number of finite and infinite primes of L ramified in $\mathbb{F}^{(*)}/L$ and $2^e = [E_L : E_L \cap N_{\mathbb{F}^{(*)}/L}(\mathbb{F}^{(*)\times})]$. We compute t by using Figure 5.

Figure 5. Subfields of $\mathbb{F}^{(*)}/\mathbb{Q}$.

Since $\mathbb{F}^{(*)}$ is an unramified extension of \mathbb{K}_2 , and \mathbb{K}_2 is also an unramified extension of \mathbb{k} , then it is easy to see that there are 4 prime ideals of L that ramify in $\mathbb{F}^{(*)}$ and they all lie above p_1 . Thus, t = 4, and r = 3 - e.

Let us now compute e. For this we will use the Hilbert symbol. We know that $E_L = \langle \sqrt{i}, \epsilon_2, \epsilon_{p_2}, \sqrt{\epsilon_2 \epsilon_{p_2} \epsilon_{2p_2}} \rangle$; denote by \mathfrak{p}_{jL} , $j \in \{1, 2, 3, 4\}$, the prime ideals of L above p_1 ; and denote also by \mathfrak{p}_{1M} an ideal prime of some extension M/\mathbb{Q} that is above p_1 .

Since \mathfrak{p}_{jL} is unramified in $L(\sqrt{\sqrt{i}})$ and $v_{\mathfrak{p}_{jL}}(p_1) = 1$, then

$$\begin{pmatrix} \sqrt{i}, p_1 \\ \mathfrak{p}_{\mathfrak{j}L} \end{pmatrix} = \begin{pmatrix} \sqrt{i} \\ \mathfrak{p}_{\mathfrak{j}L} \end{pmatrix} = \begin{pmatrix} \sqrt{2}(1+i) \\ \mathfrak{p}_{\mathfrak{j}L} \end{pmatrix} = \begin{pmatrix} \sqrt{2} \\ \mathfrak{p}_{\mathfrak{j}L} \end{pmatrix} \begin{pmatrix} 1+i \\ \mathfrak{p}_{\mathfrak{j}L} \end{pmatrix} = \begin{pmatrix} 1+i \\ \mathfrak{p}_{\mathfrak{1}R_2} \end{pmatrix} \begin{pmatrix} \sqrt{2} \\ \mathfrak{p}_{\mathfrak{1}R_1} \end{pmatrix} = \begin{pmatrix} (1+i)^2 \\ \mathfrak{p}_{\mathfrak{1}Q(i)} \end{pmatrix} \begin{pmatrix} 2 \\ \mathfrak{p}_{\mathfrak{1}Q(i)} \end{pmatrix} = \begin{pmatrix} 2 \\ p_1 \end{pmatrix} = 1.$$

We have also that \mathfrak{p}_{jL} is unramified in both of $L(\sqrt{\epsilon_2})$ and $L(\sqrt{\epsilon_{p_2}})$, and $v_{\mathfrak{p}_{jL}}(p_1) = 1$, so then

AZIZI et al./Turk J Math

$$\begin{pmatrix} \left(\frac{\epsilon_2, p_1}{\mathfrak{p}_{1L}}\right) = \left(\frac{\epsilon_2}{\mathfrak{p}_{1R_1}}\right) = \left(\frac{\epsilon_2}{\mathfrak{p}_{1\mathbb{Q}(\sqrt{2})}}\right) = 1\\ \left(\frac{\epsilon_{p_2}, p_1}{\mathfrak{p}_{1L}}\right) = \left(\frac{\epsilon_{p_2}}{\mathfrak{p}_{1R_1}}\right) = \left(\frac{\epsilon_{p_2}}{\mathfrak{p}_{1\mathbb{Q}(\sqrt{p_2})}}\right) = \left(\frac{-1}{p_1}\right) = 1.$$

Similarly, we get

$$\left(\frac{\sqrt{\epsilon_2\epsilon_{p_2}\epsilon_{2p_2}}, p_1}{\mathfrak{p}_{1L}}\right) = \left(\frac{\sqrt{\epsilon_2\epsilon_{p_2}\epsilon_{2p_2}}}{\mathfrak{p}_{1R_1}}\right) = \left(\frac{\epsilon_2}{\mathfrak{p}_1}\right)_4 \left(\frac{p_1}{2}\right)_4 = -1.$$

Consequently, $\sqrt{\epsilon_2 \epsilon_{p_2} \epsilon_{2p_2}}$ is not a norm of some element from $\mathbb{F}^{(*)}$. Thus, e = 1, and the 2-rank of $\mathbb{F}^{(*)}$ is r = 2.

5. Numerical examples

In this section and in the following Table, we give examples that illustrate our results. The first column gives the number $d = 2p_1p_2$, the second (resp. third, fourth, fifth, sixth) gives the class group of the field $\mathbb{F} = \mathbb{Q}(\sqrt{d}, i)$ (resp. $\mathbb{K}_1, \mathbb{K}_2, \mathbb{K}_3, \mathbb{F}^{(*)}$), and the seventh (resp. eighth) column gives the biquadratic residue symbol $a = \left(\frac{2}{p_1}\right)_4 \left(\frac{p_1}{2}\right)_4$ (resp. the unit index $b = q(\mathbb{K}_3^+)$). The computations are made using PARI/GP [23].

$2.p_1.p_2$	$\mathbf{C}l(\mathbf{k})$	$\mathbf{C}l(\mathbb{K}_1)$	$\mathbf{C}l(\mathbb{K}_2)$	$\mathbf{C}l(\mathbb{K}_3)$	$\mathbf{C}l(\mathbb{F}^{(*)})$	a	b
2.17.5	[6, 2, 2]	[6, 2, 2]	[12, 2, 2]	[24, 2]	[12, 4]	-1	1
2.73.5	[6, 6, 2]	[30, 6, 2]	[12, 6, 2]	[96, 6]	[240, 12]	-1	1
2.97.5	[6, 2, 2]	[30, 2, 2]	[12, 2, 2]	[120, 2]	[60, 20]	-1	1
2.17.29	[22, 2, 2]	[66, 2, 2]	[44, 2, 2]	[264, 2]	[132, 12]	-1	1
2.41.13	[10, 2, 2]	[30, 2, 2, 2]	[120, 2, 2]	[40, 4]	[120, 12, 2]	1	2
2.113.5	[22, 2, 2]	[66, 2, 2, 2]	[88, 2, 2]	[176, 8]	[264, 8, 8]	1	2
2.17.37	[6, 2, 2]	[18, 6, 2]	[60, 2, 2]	[24, 2]	[180, 12]	-1	1
2.137.5	[22, 2, 2]	[66, 2, 2, 2]	[88, 2, 2]	[264, 4]	[264, 12, 2]	1	2
2.73.13	[14, 2, 2]	[42, 2, 2]	[84, 2, 2]	[224, 2]	[336, 12]	-1	1
2.193.5	[10, 2, 2]	[110, 2, 2]	[20, 2, 2]	[40, 10]	[220, 20]	-1	1
2.17.61	[10, 2, 2]	[10, 10, 2]	[20, 10, 2]	[120, 2]	[60, 20, 5]	-1	1
2.89.13	[14, 2, 2]	[14, 14, 2]	[84, 6, 2]	[112, 2]	[168, 84]	-1	1
2.233.5	[30, 2, 2]	[30, 10, 2]	[60, 6, 2]	[240, 2]	[120, 60]	-1	1
2.41.29	[30, 2, 2]	[30, 10, 2, 2]	[120, 2, 2]	[120, 12]	[240, 60, 2]	1	2
2.97.13	[18, 2, 2]	[90, 2, 2]	[36, 6, 2]	[360, 2]	[180, 60]	-1	1
2.257.5	[22, 2, 2]	[66, 2, 2, 2]	[528, 2, 2]	[352, 4]	[528, 48, 2]	1	2
2.313.5	[14, 2, 2]	[14, 14, 2, 2]	[56, 2, 2]	[504, 4]	[1008, 28, 2]	1	2
2.337.5	[18, 2, 2]	[234, 2, 2, 2]	[72, 2, 2]	[144, 12]	[936, 24, 2]	1	2
2.353.5	[26, 2, 2]	$[3\overline{90, 2, 2, 2}]$	[208, 2, 2]	[624, 4]	$[3\overline{120,24,2}]$	1	2

Table. Numerical examples.

References

- Azizi A. Unités de certains corps de nombres imaginaires et abéliens sur Q. Ann Sci Math Qubec 1999; 23: 15-21 (in French).
- [2] Azizi A. Sur les unités de certains corps de nombres de degré 8 sur Q. Ann Sci Math Qubec 2005; 29: 111-129 (in French).
- [3] Azizi A, Benhamza I. Sur la capitulation des 2-classes d'idéaux de Q(√d, √-2). Ann Sci Math Qubec 2005;
 29: 1-20 (in French).
- [4] Azizi A, Taous M. Détermination des corps $\mathbb{k} = \mathbb{Q}(\sqrt{d}, i)$ dont les 2-groupes de classes sont de type (2,4) ou (2,2,2). Rend Istit Mat Univ Trieste 2008; 40: 93-116 (in French).
- [5] Azizi A, Zekhnini A, Taous M. On the 2-class field tower of $\mathbb{Q}(\sqrt{2p_1p_2}, i)$ and the Galois group of its second Hilbert 2-class field. Collect Math 2014; 65: 131-141.
- [6] Barruccand P, Cohn H. Note on primes of type $x^2 + 32y^2$, class number, and residuacity. J Reine Angew Math 1969; 238: 67-70.
- [7] Benjamin E, Lemmermeyer F, Snyder C. Real quadratic fields with abelian 2-class field tower. J Number Theory 1998; 73: 182-194.
- [8] Benjamin E, Lemmermeyer F, Snyder C. On the unit group of some multiquadratic number fields. Pacific J Math 2007; 230: 27-40.
- [9] Dirichlet GL. Recherches sur les formes quadratiques à coéfficients et à indéterminées complexes. J Reine Angew Math 1842; 24: 291-371 (in French).
- [10] Heider FP, Schmithals B. Zur Kapitulation der Idealklassen in unverzweigten primzgklischen Erweiterungen. J Reine Angew Math 1982; 366: 1-25 (in German).
- [11] Herglotz G. Über einen Dirichletschen Satz. Math Z 1922; 12: 255-261 (in German).
- [12] Hirabayashi M. Unit indices of some imaginary composite quadratic fields II. Pacific J Math 1996; 173: 93-104.
- [13] Hirabayashi M, Yoshino K. Unit indices of imaginary abelian number fields of type (2, 2, 2). J Number Theory 1990; 34: 346-361.
- [14] Kaplan P. Sur le 2-groupe de classes d'idéaux des corps quadratiques. J Reine Angew Math 1976; 283/284: 313-363 (in French).
- [15] Kisilevsky H. Number fields with class number congruent to 4 mod 8 and Hilbert's theorem 94. J Number Theory 1976; 8: 217-279.
- [16] Kubota T. Über die Beziehung der Klassenzahlen der Unterkörper des bizyklischen biquadratischen Zahlkörpers. Nagoya Math J 1953; 6: 119-127 (in German).
- [17] Kubota T. Über den bizyklischen biquadratischen Zahlkörper. Nagoya Math J 1956; 10: 65-85 (in German).
- [18] Kuroda S. Über den Dirichletschen Körper. J Fac Sci Imp Univ Tokyo Sec 1943; 14: 383-406 (in German).
- [19] Kuroda S. Über die Klassenzahlen algebraischer Zahlkörper. Nagoya Math J 1950; 1: 1-10 (in German).
- [20] Lemmermeyer F. Kuroda's class number formula. Acta Arith 1994; 66: 245-260.
- [21] Lemmermeyer F. Ideal class groups of cyclotomic number fields I. Acta Arith 1995; 72: 347-359.
- [22] McCall TM, Parry CJ, Ranalli RR. The 2-rank of the class group of imaginary bicyclic biquadratic fields. Can J Math 1997; 49: 283-300.
- [23] PARI Group. PARI/GP, Bordeaux, Version 2.4.4 (beta), 2011 (http://pari.math.u-bordeaux.fr).
- [24] Scholz A. Über die Löbarkeit der Gleichung $t^2 Du^2 = -4$. Math Z 1934; 39: 95-111 (in German).
- [25] Taussky O. A remark on the class field tower. J London Math Soc 1937; 12: 82-85.
- [26] Wada H. On the class number and the unit group of certain algebraic number fields. J Fac Univ Tokyo 1966; 13: 201-209.