Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2018) 42: 703-715
(c) TÜBITTAK
doi:10.3906/mat-1704-63

On the unit index of some real biquadratic number fields

Abdelmalek AZIZI ${ }^{1}$, Abdelkader ZEKHNINI ${ }^{2, *}$, Mohammed TAOUS ${ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Mohammed First University, Oujda, Morocco
${ }^{2}$ Department of Mathematics, Pluridisciplinary Faculty, Mohammed First University, Nador, Morocco
${ }^{3}$ Department of Mathematics, Faculty of Sciences and Techniques, Moulay Ismail University, Errachidia, Morocco

| Received: 15.04 .2017 | • Accepted/Published Online: 18.06 .2017 | • | Final Version: 24.03 .2018 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Abstract: Let $p_{1} \equiv p_{2} \equiv 1(\bmod 4)$ be different prime numbers such that $\left(\frac{2}{p_{2}}\right)=\left(\frac{p_{1}}{p_{2}}\right)=-\left(\frac{2}{p_{1}}\right)=-1$. Put $\mathbb{k}=\mathbb{Q}\left(\sqrt{2 p_{1} p_{2}}\right)$ and let \mathbb{K} be a quadratic extension of \mathbb{k} contained in its absolute genus field $\mathbb{k}^{(*)}$. Denote by k_{j}, $1 \leq j \leq 3$, the three quadratic subfields of \mathbb{K}. Let $E_{\mathbb{K}}$ (resp. $E_{k_{j}}$) be the unit group of \mathbb{K} (resp. k_{j}). The unit index $\left[E_{\mathbb{K}}: \prod_{j=1}^{3} E_{k_{j}}\right]$ is characterized in terms of biquadratic residue symbols between $2, p_{1}$ and p_{2} or by the capitulation of 2 , the prime ideal of $\mathbb{Q}\left(\sqrt{2 p_{1}}\right)$ above 2 , in \mathbb{K}. These results are used to describe the 2 -rank of some CM-fields.

Key words: Unit index, fundamental systems of units, 2-class group, real biquadratic fields, multiquadratic CM-fields

1. Introduction and notations

Let k be a multiquadratic number field of degree 2^{n}, (i.e., $[k: \mathbb{Q}]=2^{n}$) and $k_{i}(i=1, \cdots, s)$ be the $s=2^{n}-1$ quadratic subfields of k. Denote by E_{k} (resp. $E_{k_{i}}$) the unit group of k (resp. k_{i}), i.e. the group of the invertible elements of \mathcal{O}_{k} (resp. $\mathcal{O}_{k_{i}}$), the ring of integers of k (resp. k_{i}). Then the index $q(k)=\left[E_{k}: \prod_{i=1}^{s} E_{k_{i}}\right]$ is called the unit index of k. By Dirichlet's unit theorem, if $2^{n}=r_{1}+2 r_{2}$, where r_{1} is the number of real embeddings and r_{2} is the number of pairs of complex conjugate embeddings of k, then there exist $r=r_{1}+r_{2}-1$ units of \mathcal{O}_{k} that generate E_{k} (modulo the roots of unity), and these r units are called the fundamental system of units of k.

One major problem in algebraic number theory is the computation of the number $q(k)$. For quadratic fields, the problem is easily solved. For some fields $k=\mathbb{Q}(\sqrt{-1}, \sqrt{m})$, where m is a positive square-free integer, Dirichlet [9] showed that $q(k)=1$ or 2 . Over time, Dirichlet's result has been generalized by many mathematicians; see, for example [1, 2, 8, 11-13, 16-20, 26]. For quartic bicyclic fields, Kubota [17] gave a method for finding a fundamental system of units and thus for computing the unit index. Wada [26] generalized Kubota's method, creating an algorithm for computing fundamental units in any given multiquadratic field. However, in general, it is not easy to compute this index.

Let p_{1} and p_{2} be different primes satisfying the following conditions:

$$
\begin{equation*}
p_{1} \equiv p_{2} \equiv 1 \quad(\bmod 4) \text { and }\left(\frac{2}{p_{2}}\right)=\left(\frac{p_{1}}{p_{2}}\right)=-\left(\frac{2}{p_{1}}\right)=-1 \tag{1}
\end{equation*}
$$

*Correspondence: zekha1@yahoo.fr
2010 AMS Mathematics Subject Classification: 11R27, 11R21, 11R29, 11R11

Put $\mathbb{k}=\mathbb{Q}\left(\sqrt{2 p_{1} p_{2}}\right)$ and let \mathbb{K} be a quadratic extension of \mathbb{k} contained in its absolute genus field, i.e. \mathbb{K} equals $\mathbb{K}_{1}^{+}=\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{2 p_{2}}\right), \mathbb{K}_{2}^{+}=\mathbb{Q}\left(\sqrt{p_{2}}, \sqrt{2 p_{1}}\right)$, or $\mathbb{K}_{3}^{+}=\mathbb{Q}\left(\sqrt{2}, \sqrt{p_{1} p_{2}}\right)$. The purpose of this paper is to characterize the index $q(\mathbb{K})$ in terms of biquadratic residue symbols between 2 , p_{1} and p_{2}, or by the capitulation in \mathbb{K} of 2 , the prime ideal of $\mathbb{Q}\left(\sqrt{2 p_{1}}\right)$ above 2 . Note that in [5], we dealt with the same problem for $\mathbb{K}=\mathbb{Q}\left(\sqrt{2}, \sqrt{p_{1} p_{2}}\right)$ assuming $\left(\frac{p_{1}}{p_{2}}\right)=-1$ and $p_{1} \equiv p_{2} \equiv 5(\bmod 8)$.

The structure of this paper is as follows. Denote by $\epsilon_{j}, 1 \leq j \leq 3$, the fundamental units of the three quadratic subfields of \mathbb{K}. In Section 2, we collect some necessary results, and we give the abelian types and the generators of the 2 -class groups of $\mathbb{Q}\left(\sqrt{2 p_{1} p_{2}}\right)$ and $\mathbb{Q}\left(\sqrt{2 p_{1}}\right)$. In Section 3, we prove necessary and sufficient conditions for $q\left(\mathbb{K}_{j}\right), 1 \leq j \leq 3$, to be equal to 1 (Theorems 3.1 and 3.2). This allows us to characterize the solvability in \mathbb{K}, whenever the norms of ϵ_{j} are equal to -1 , of the equation $X^{2}-\epsilon_{1} \epsilon_{2} \epsilon_{3}=0$ in terms of biquadratic residue symbols between $2, p_{1}$ and p_{2}, if $\mathbb{K}=\mathbb{K}_{1}^{+}$or $\mathbb{K}=\mathbb{K}_{3}^{+}$, and by using the capitulation of the prime ideal of $\mathbb{Q}\left(\sqrt{2 p_{1}}\right)$ above 2 if $\mathbb{K}=\mathbb{K}_{2}^{+}$. We end this paragraph by giving some results on units, indices, and the structure of $G=\operatorname{Gal}\left(\mathbb{k}_{2}^{(2)} / \mathbb{k}\right)$, where $\mathbb{k}_{2}^{(2)}$ is the second Hilbert 2 -class field of \mathbb{k}. We then apply these results, in Section 4 , to compute the 2 -rank of the CM-fields $\mathbb{K}_{1}=\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{2 p_{2}}, \sqrt{-1}\right)$, $\mathbb{K}_{2}=\mathbb{Q}\left(\sqrt{p_{2}}, \sqrt{2 p_{1}}, \sqrt{-1}\right), \mathbb{K}_{3}=\mathbb{Q}\left(\sqrt{2}, \sqrt{p_{1} p_{2}}, \sqrt{-1}\right)$, and $\mathbb{F}^{(*)}=\mathbb{Q}\left(\sqrt{2}, \sqrt{p_{1}}, \sqrt{p_{2}}, i\right)$.

Let k be a number field and m be a square-free integer. In what follows, we adopt the following notations:

- $h(m)($ resp. $h(k))$: the 2 -class number of $\mathbb{Q}(\sqrt{m})($ resp $k)$.
- E_{k} : the unit group of k.
- W_{k} : the group of roots of unity contained in k, and ω_{k} denotes its order.
- $Q_{k}=\left[E_{k}: W_{k} E_{k^{+}}\right]$is Hasse's unit index, if k is a CM-field.
- k^{+}: the maximal real subfield of k.
- $q(k)=\left[E_{k}: \prod_{i}^{s} E_{k_{i}}\right]$, the unit index of k if k is multiquadratic, where k_{i} are the s quadratic subfields of k.
- $k^{(*)}$: the genus field of k; that is, the maximal abelian unramified extension of k obtained by composing k and an abelian extension over \mathbb{Q}.
- $k_{2}^{(1)}$: the first Hilbert 2 -class field of k; that is, the maximal abelian unramified extension of k such that $\left[k_{2}^{(1)}: k\right]$ is a power of 2 .
- $k_{2}^{(2)}$: the second Hilbert 2 -class field of k; that is, the first Hilbert 2 -class field of $k_{2}^{(1)}$.
- $\mathbf{C} l_{2}(k)$ (resp. $\left.\mathbf{C} l(k)\right)$: the 2 -class (resp. class) group of k.
- ϵ_{m} : the fundamental unit of $\mathbb{Q}(\sqrt{m})$.
- $i=\sqrt{-1}$.

2. Preliminaries

Let p_{1} and p_{2} be different primes satisfying the conditions (1) and put $\mathbb{k}=\mathbb{Q}\left(\sqrt{2 p_{1} p_{2}}\right)$ and $k_{1}=\mathbb{Q}\left(\sqrt{2 p_{1}}\right)$. Let $\epsilon_{j}, 1 \leq j \leq 3$, denote the three fundamental units of the three quadratic subfields of any biquadratic bicyclic real number field K.

Lemma 2.1 ([18]) Assuming $N\left(\epsilon_{1}\right)=N\left(\epsilon_{2}\right)=N\left(\epsilon_{3}\right)= \pm 1$, then the equation $X^{2}-\epsilon_{1} \epsilon_{2} \epsilon_{3}=0$ has a solution in K if and only if $q(K)=2$.

Lemma 2.2 [4, Corollary 3.6] If $d=2 p_{1} p_{2}$, where $p_{1} \equiv p_{2} \equiv 1(\bmod 4)$ are different primes, and at least two of the elements of $\left\{\left(\frac{2}{p_{1}}\right),\left(\frac{2}{p_{2}}\right),\left(\frac{p_{1}}{p_{2}}\right)\right\}$ are equal to -1 , then the norm of the fundamental unit of $\mathbb{Q}(\sqrt{d})$ is -1 .

Lemma 2.3 Let p_{1} and p_{2} be different primes satisfying the conditions (1). Then the 2-class group $\mathbf{C} l_{2}\left(k_{1}\right)$ of k_{1} is cyclic of order $h_{2}\left(2 p_{1}\right)=2^{n}$, $n \geq 1$. It is generated by the class of P_{2}, a prime ideal of k_{1} above p_{2}. Moreover, $P_{2}^{2^{n-1}} \sim 2$ in $\mathbf{C} l_{2}\left(k_{1}\right)$, where 2 is the prime ideal of k_{1} above 2.

Proof As $\left(\frac{2 p_{1}}{p_{2}}\right)=1$, so p_{2} splits in k_{1}. Put $p_{2} O_{k_{1}}=P_{2} P_{2}^{\prime}$ and denote by 2 and P_{1} the prime ideals of k_{1} above 2 and p_{1}, respectively. P_{1} is not principal in k_{1}, as otherwise we will get $p_{1}=x^{2}-2 p_{1} y^{2}$, where $x, y \in \mathbb{Q}$; this contradicts the fact that $\left(\frac{p_{1}}{p_{2}}\right)=-1$. Similarly, we prove that 2 and P_{2} are not principal.

It is well known, under our conditions, that $\mathbf{C} l_{2}\left(k_{1}\right)$ is cyclic of order 2^{n} where $n \geq 1$. On the other hand, $\left(\frac{p_{2}, 2 p_{1}}{p_{1}}\right)=\left(\frac{p_{2}}{p_{1}}\right)=-1$, and then by genus theory $\left[P_{2}\right]$ is not a square in $\mathbf{C} l_{2}\left(k_{1}\right)$. Thus, $\mathbf{C} l_{2}\left(k_{1}\right)=\left\langle\left[P_{2}\right]\right\rangle$. Finally, since $2 \sim P_{1}$ are of order 2 , we deduce that $P_{2}^{2^{n-1}} \sim 2 \sim P_{1}$.

Lemma 2.4 Let p_{1} and p_{2} be different primes satisfying the conditions (1). Then the 2 -class group $\mathbf{C} l_{2}(\mathbb{k})$ of $\mathfrak{k}=\mathbb{Q}\left(\sqrt{2 p_{1} p_{2}}\right)$ is of type $(2,2)$. It is generated by the classes of \mathfrak{p}_{1} and \mathfrak{p}_{2} the prime ideals above p_{1} and p_{2}, respectively.

Proof According to [14] $\mathbf{C} l_{2}(\mathbb{k})$, the 2 -class group of \mathbb{k} is of type (2,2). It is generated by the classes of \mathfrak{p}_{1} and \mathfrak{p}_{2} the prime ideals above p_{1} and p_{2}, respectively. In fact, \mathfrak{p}_{i} is of order 2 since $\mathfrak{p}_{i}^{2}=\left(p_{i}\right)$, and it is not principal for all $i \in\{1,2\}$; otherwise, we would get $p_{i}=\mp\left(x^{2}-2 p_{1} p_{2} y^{2}\right)$ for some x and y in \mathbb{Q} and this implies the contradiction $\left(\frac{p_{i}}{p_{j}}\right)=-1$ where $i \neq j \in\{1,2\}$. Similarly, we show that \tilde{z} the prime ideal of \mathbb{k}^{k} above 2 is not principal, too. The same reasoning shows that \mathfrak{p}_{1} and \mathfrak{p}_{2} (resp. $\tilde{2}$ and \mathfrak{p}_{2}) are independent. As $\tilde{2} \mathfrak{p}_{1} \sim \mathfrak{p}_{2}$, so $\tilde{2} \mathfrak{p}_{1}$ is not principal, too. Finally, the classes of \mathfrak{p}_{1} and \mathfrak{p}_{2} are not squares since $\left(\frac{p_{1}}{p_{2}}\right)=-1$.

3. Main results

Let p_{1} and p_{2} be different primes satisfying the conditions (1) and put $\mathbb{k}=\mathbb{Q}\left(\sqrt{2 p_{1} p_{2}}\right)$. Letting $\mathbb{F}=$ $\mathbb{k}(i)=\mathbb{Q}\left(\sqrt{2 p_{1} p_{2}}, i\right)$, then \mathbb{F} admits three unramified quadratic extensions that are abelian over \mathbb{Q}, which
are $\mathbb{K}_{1}=\mathbb{F}\left(\sqrt{p_{1}}\right)=\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{2 p_{2}}, i\right), \mathbb{K}_{2}=\mathbb{F}\left(\sqrt{p_{2}}\right)=\mathbb{Q}\left(\sqrt{p_{2}}, \sqrt{2 p_{1}}, i\right)$, and $\mathbb{K}_{3}=\mathbb{F}(\sqrt{2})=\mathbb{Q}\left(\sqrt{2}, \sqrt{p_{1} p_{2}}, i\right)$. Let \mathbb{K}_{j}^{+}denote the maximal real subfield of \mathbb{K}_{j} where $1 \leq j \leq 3$.

Theorem 3.1 Let p_{1} and p_{2} be different primes satisfying the conditions (1). Then the following assertions are equivalent:

1. $\left(\frac{2}{p_{1}}\right)_{4}\left(\frac{p_{1}}{2}\right)_{4}=-1$,
2. $q\left(\mathbb{K}_{1}^{+}\right)=1$ or $q\left(\mathbb{K}_{3}^{+}\right)=1$,
3. $q\left(\mathbb{K}_{2}^{+}\right)=1$ and $h\left(2 p_{1}\right)=2$.

Proof To prove this theorem, consider Figure 1 below, where $\mathbb{k}^{(*)}$ denotes the genus field of $\mathbb{k}=\mathbb{Q}\left(\sqrt{2 p_{1} p_{2}}\right)$ and $\mathbb{k}_{2}^{(1)}$ denotes its Hilbert 2 -class field. Since the 2 -class group of \mathbb{k} is of type (2,2) (see Lemma 2.4), and

Figure 1. Subfields of $\mathbb{k}^{(*)} / \mathbb{k}$.
since also the discriminant of \mathbb{k} is equal to $d_{\mathrm{k}}=8 p_{1} p_{2}$, then by [7] we have $\left(\frac{2}{p_{1}}\right)_{4}\left(\frac{p_{1}}{2}\right)_{4}=-1$ if and only if $\mathbb{k}_{1}^{(1)}=\mathbb{k}_{2}^{(2)}$.

On one hand, according to [15] and [25] the condition $\mathbb{k}_{2}^{(1)}=\mathbb{k}_{2}^{(2)}$ is equivalent to $h\left(\mathbb{K}_{j}^{+}\right)=2$ for some $j \in\{1,2,3\}$. On the other hand, the class number formula implies that

$$
\begin{aligned}
& h\left(\mathbb{K}_{1}^{+}\right)=\frac{1}{4} q\left(\mathbb{K}_{1}^{+}\right) h\left(p_{1}\right) h\left(2 p_{2}\right) h\left(2 p_{1} p_{2}\right)=2 q\left(\mathbb{K}_{1}^{+}\right), \\
& h\left(\mathbb{K}_{2}^{+}\right)=\frac{1}{4} q\left(\mathbb{K}_{2}^{+}\right) h\left(p_{2}\right) h\left(2 p_{1}\right) h\left(2 p_{1} p_{2}\right)=h\left(2 p_{1}\right) q\left(\mathbb{K}_{2}^{+}\right), \text {and } \\
& h\left(\mathbb{K}_{3}^{+}\right)=\frac{1}{4} q\left(\mathbb{K}_{3}^{+}\right) h(2) h\left(p_{1} p_{2}\right) h\left(2 p_{1} p_{2}\right)=2 q\left(\mathbb{K}_{3}^{+}\right) .
\end{aligned}
$$

Thus the results.

Theorem 3.2 Let p_{1} and p_{2} be different primes satisfying the conditions (1). Denote by 2 the prime ideal of $\mathbb{Q}\left(\sqrt{2 p_{1}}\right)$ lies above 2 and by $h\left(2 p_{1}\right)=2^{n}, n \geq 1$, the 2 -class number of $\mathbb{Q}\left(\sqrt{2 p_{1}}\right)$. Then the following assertions hold:

1. $q\left(\mathbb{K}_{2}^{+}\right)=1$ if and only if 2 capitulates in \mathbb{K}_{2}^{+}.
2. $\mathbf{C} l_{2}\left(\mathbb{K}_{2}^{+}\right)$is cyclic generated by the class of \mathcal{P}_{2} a prime ideal of \mathbb{K}_{2}^{+}above p_{2}. Moreover, $h\left(\mathbb{K}_{2}^{+}\right)=2^{n} \Longleftrightarrow$ $q\left(\mathbb{K}_{2}^{+}\right)=1$, i.e. $h\left(\mathbb{K}_{2}^{+}\right)=2^{n+1} \Longleftrightarrow q\left(\mathbb{K}_{2}^{+}\right)=2$.

Figure 2. Subfields of $\mathbb{K}_{2}^{+} / \mathbb{Q}$.

Proof To prove this theorem, we need Figure 2 below. It is easy to see that $\mathbb{K}_{2}^{+} / k_{1}$ and $\mathbb{K}_{2}^{+} / k_{2}$ are ramified, but $\mathbb{K}_{2}^{+} / \mathbb{k}$ is not, so by class field theory $N_{\mathbb{K}_{2}^{+} / k_{1}}\left(\mathbf{C} l_{2}\left(\mathbb{K}_{2}^{+}\right)\right)=\mathbf{C} l_{2}\left(k_{1}\right), N_{\mathbb{K}_{2}^{+} / k_{2}}\left(\mathbf{C} l_{2}\left(\mathbb{K}_{2}^{+}\right)\right)=\mathbf{C} l_{2}\left(k_{2}\right)$ (which has an odd class number), and $\left[\mathbf{C} l_{2}(\mathbb{k}): N_{\mathbb{K}_{2}^{+} / \mathbb{k}}\left(\mathbf{C} l_{2}\left(\mathbb{K}_{2}^{+}\right)\right)\right]=2$.

On the other hand, it is easy to see also that \mathfrak{p}_{2} capitulates and splits in \mathbb{K}_{2}^{+}. Letting \mathcal{P}_{2} be a prime ideal of \mathbb{K}_{2}^{+}above p_{2}, then \mathcal{P}_{2} is not principal, as otherwise we will get $N_{\mathbb{K}_{2}^{+} / k_{1}}\left(\mathcal{P}_{2}\right) \sim P_{2} \sim 1$, which is absurd (Lemma 2.3).

We claim that, in $\mathbf{C} l_{2}\left(\mathbb{K}_{2}^{+}\right), \mathcal{P}_{2}^{2} \sim P_{2}$. To this end, let s and t be the elements of order 2 in $\operatorname{Gal}\left(\mathbb{K}_{2}^{+} / \mathbb{Q}\right)$ that fix k_{1} and \mathbb{k}, respectively. Using the identity $2+(1+s+t+s t)=(1+s)+(1+t)+(1+s t)$ of the group ring $\mathbb{Z}\left[\operatorname{Gal}\left(\mathbb{K}_{2}^{+} / \mathbb{Q}\right)\right]$ and observing that \mathbb{Q} and the fixed field of $s t$ have odd class numbers, we find:

$$
\mathcal{P}_{2}^{2} \sim \mathcal{P}_{2}^{1+s} \mathcal{P}_{2}^{1+t} \mathcal{P}_{2}^{1+s t} \sim \mathfrak{p}_{2} P_{2} \sim P_{2}
$$

where the last relation (in $\left.\mathbf{C} l_{2}\left(\mathbb{K}_{2}^{+}\right)\right)$comes from the fact that \mathfrak{p}_{2} capitulates in \mathbb{K}_{2}^{+}. Thus,

$$
\begin{equation*}
\mathcal{P}_{2}^{2^{n}} \sim P_{2}^{2^{n-1}} \sim 2 \quad \text { and } \quad \mathcal{P}_{2}^{2^{n+1}} \sim P_{2}^{2^{n}} \sim 1 \tag{2}
\end{equation*}
$$

Note that for all $i \leq n-1, \mathcal{P}_{2}^{2^{i}} \nsim 1$; otherwise, we get $P_{2}^{2^{i}} \sim 1$, which is absurd by Lemma 2.3. Hence, the class of \mathcal{P}_{2} generates a subgroup of $\mathbf{C} l_{2}\left(\mathbb{K}_{2}^{+}\right)$of order 2^{n} or 2^{n+1} accordingly as 2 capitulates or not in \mathbb{K}_{2}^{+}.

On one hand, $\left.N_{\mathbb{K}_{2}^{+} / k_{1}}\left(\left\langle\left[\mathcal{P}_{2}\right]\right\rangle\right)\right)=\left\langle\left[P_{2}\right]\right\rangle$ and $\left.N_{\mathbb{K}_{2}^{+} / \mathbb{k}}\left(\left\langle\left[\mathcal{P}_{2}\right]\right\rangle\right)\right)=\left\langle\left[\mathfrak{p}_{2}\right]\right\rangle$, which is of index 2 in $\mathbf{C} l_{2}(\mathbb{k})$; on the other hand, in $\mathbf{C} l_{2}\left(\mathbb{K}_{2}^{+}\right)$, we have $\mathcal{P}_{2}^{2^{n}} \sim P_{2}^{2^{n-1}} \sim 2 \sim \mathcal{P}_{1}$, where \mathcal{P}_{1} is the prime ideal of \mathbb{K}_{2}^{+}above p_{1}. Therefore, $\mathbf{C} l_{2}\left(\mathbb{K}_{2}^{+}\right)$is cyclic generated by the class of \mathcal{P}_{2}, i.e.

$$
\mathbf{C} l_{2}\left(\mathbb{K}_{2}^{+}\right)=\left\langle\left[\mathcal{P}_{2}\right]\right\rangle
$$

Finally, the class number formula implies that $h\left(\mathbb{K}_{2}^{+}\right)=q\left(\mathbb{K}_{2}^{+}\right) h\left(2 p_{1}\right)$; thus, by the equation (2), 2 capitulates in \mathbb{K}_{2}^{+}if and only if $\mathcal{P}_{2}^{2^{n}} \sim 1$. Therefore, 2 capitulates in \mathbb{K}_{2}^{+}if and only if $q\left(\mathbb{K}_{2}^{+}\right)=1$. Thus the results.

Remark 3.3 Let p_{1} and p_{2} be primes as above and keep the previous notations. Then, for $j \in\{1,3\}$, we have:

$$
q\left(\mathbb{K}_{j}^{+}\right)=1 \Leftrightarrow\left(\frac{2}{p_{1}}\right)_{4}\left(\frac{p_{1}}{2}\right)_{4}=-1 \Leftrightarrow p_{1} \neq x^{2}+32 y^{2}, \text { where } x, y \in \mathbb{N}
$$

Proof Note first that $N\left(\epsilon_{2}\right)=-1$ and, by Lemma 2.2, $N\left(\epsilon_{2 p_{1} p_{2}}\right)=-1$. Moreover, since $\left(\frac{p_{1}}{p_{2}}\right)=-1$ and $\left(\frac{2}{p_{2}}\right)=-1$, then according to [24] $N\left(\epsilon_{p_{1} p_{2}}\right)=-1$ and $N\left(\epsilon_{2 p_{2}}\right)=-1$. Thus, [18] implies that $q\left(\mathbb{K}_{j}^{+}\right)=1$ or 2 . Hence, the first equivalence is assured by Theorem 3.1, and the second one is assured by [6]. Thus the results derived.

Corollary 3.4 Let p_{1} and p_{2} be different primes satisfying the conditions (1). Let \mathbb{K} be an unramified quadratic extension of \mathbb{k}. Denote by $\epsilon_{j}, 1 \leq j \leq 3$, the three fundamental units of the three quadratic subfields of \mathbb{K}. Denote by 2 the prime ideal of $\mathbb{Q}\left(\sqrt{2 p_{1}}\right)$ above 2. If $N\left(\epsilon_{1}\right)=N\left(\epsilon_{2}\right)=N\left(\epsilon_{3}\right)=-1$, then the equation $X^{2}-\epsilon_{1} \epsilon_{2} \epsilon_{3}=0$ has a solution in \mathbb{K} if and only if one of the following statements holds:

1. $\left(\frac{2}{p_{1}}\right)_{4}\left(\frac{p_{1}}{2}\right)_{4}=1$, if $\mathbb{K}=\mathbb{K}_{1}^{+}$or \mathbb{K}_{3}^{+}.
2. 2 does not capitulate in $\mathbb{K}=\mathbb{K}_{2}^{+}$.

Proof Follows immediately from Theorems 3.1 and 3.2 and Lemma 2.1.

Corollary 3.5 Let p_{1} and p_{2} be primes as above and keep the previous notations. Put $\mathbb{k}=\mathbb{Q}\left(\sqrt{2 p_{1} p_{2}}\right)$ and denote by $\mathbb{k}_{2}^{(1)}$ its first Hilbert 2 -class field and by $\mathbb{k}_{2}^{(2)}$ its second Hilbert 2 -class field. Put $G=\mathbf{G}$ al $\left(\mathbb{k}_{2}^{(2)} / \mathbb{k}\right)$ and denote by 2 the prime ideal of $\mathbb{Q}\left(\sqrt{2 p_{1}}\right)$ lies above 2 . Then:

1. For $j \in\{1,2,3\}$ the following statements are equivalent:
a. $\left(\frac{2}{p_{1}}\right)_{4}\left(\frac{p_{1}}{2}\right)_{4}=-1$,
b. $\mathbf{C} l_{2}\left(\mathbb{K}_{j}^{+}\right) \simeq(2)$,
c. All the classes of $\mathbf{C} l_{2}(\mathbb{k})$ capitulate in \mathbb{K}_{j}^{+},
d. $G \sim(2,2)$.
2. For $j \in\{1,3\}$ the following statements are equivalent:
a. $\left(\frac{2}{p_{1}}\right)_{4}\left(\frac{p_{1}}{2}\right)_{4}=1$,
b. Two classes of $\mathbf{C} l_{2}(\mathbb{k})$ capitulate in \mathbb{K}_{j}^{+},
c. $\mathbf{C} l_{2}\left(\mathbb{K}_{j}^{+}\right) \simeq(2,2)$,
d. G is dihedral of order $2^{m}(m \geq 8)$ or quaternionic of order $2^{m}(m>3)$, and, moreover, G is dihedral of order $2^{m} \quad(m \geq 8)$ if and only if 2 capitulates in \mathbb{K}_{2}^{+}.

Proof Let $E_{\mathbb{K}_{j}^{+}}$and $E_{\mathbb{k}}$ be the unit groups of \mathbb{K}_{j}^{+}and \mathbb{k}, respectively. It is well known from [10] that the number of classes of $E_{\mathbb{k}}$ that capitulate in \mathbb{K}_{j}^{+}is $2\left[E_{\mathbb{k}}: N_{\mathbb{K}_{j}^{+} / \mathbb{k}}\left(E_{\mathbb{K}_{j}^{+}}\right)\right]$. On the other hand, as $q\left(\mathbb{K}_{j}^{+}\right)=1$ or 2 and, under our conditions, $\left[E_{\mathbb{k}}: N_{\mathbb{K}_{j}^{+} / \mathrm{k}}\left(E_{\mathbb{K}_{j}^{+}}\right)\right]=1$ or 2 , then we deduce easily that:

$$
\begin{equation*}
\left[E_{\mathbb{k}}: N_{\mathbb{K}_{j}^{+} / \mathbb{k}}\left(E_{\mathbb{K}_{j}^{+}}\right)\right]=1 \Longleftrightarrow q\left(\mathbb{K}_{j}^{+}\right)=2 \tag{3}
\end{equation*}
$$

1. a. is equivalent by Theorem 3.1 to $q\left(\mathbb{K}_{j}^{+}\right)=1$, which is equivalent by the equation (3) to c., and a. is also equivalent by [24] to $h\left(\mathbb{K}_{j}^{+}\right)=2$. This in turn is equivalent by [15] to d.
2. a. is equivalent by Theorem 3.1 to $q\left(\mathbb{K}_{j}^{+}\right)=2$, which is equivalent by the equation (3) to b .

We know from Lemma 2.4 that $\mathbf{C} l_{2}(\mathbb{k})=\left\langle\left[\mathfrak{p}_{1}\right],\left[\mathfrak{p}_{2}\right]\right\rangle$, where $\mathbb{k}=\mathbb{Q}\left(\sqrt{2 p_{1} p_{2}}\right)$ and $\mathfrak{p}_{1}, \mathfrak{p}_{2}$ are the prime ideals above p_{1} and p_{2}, respectively. We know also from Theorem 3.2 that $\mathbf{C} l_{2}\left(\mathbb{K}_{2}^{+}\right)=\left\langle\left[\mathcal{P}_{2}\right]\right\rangle$ with \mathcal{P}_{2} being a prime ideal of \mathbb{K}_{2}^{+}above p_{2}. Thus, $N_{\mathbb{K}_{2}^{+} / \mathfrak{k}}\left(\mathbf{C} l_{2}\left(\mathbb{K}_{2}^{+}\right)\right)=\left\langle\left[\mathfrak{p}_{2}\right]\right\rangle$. As $\mathbb{K}_{2}^{+}=\mathbb{Q}\left(\sqrt{p_{2}}, \sqrt{2 p_{1}}\right)$, it is easy to see $N_{\mathbb{K}_{2}^{+} / \mathbb{k}}\left(\mathbf{C} l_{2}\left(\mathbb{K}_{2}^{+}\right)\right) \subset \kappa_{\mathbb{K}_{2}^{+}}$, where $\kappa_{\mathbb{K}_{2}^{+}}$is the set of ideal classes of \mathbb{k} that capitulate in \mathbb{K}_{2}^{+}. Hence, \mathbb{K}_{2}^{+}satisfies Taussky's condition A. Therefore, G is never a semidihedral group (see [15]).

Proceeding as in the proof of Theorem 3.2, we determine the generators of $\mathbf{C} l_{2}\left(\mathbb{K}_{1}^{+}\right)$and $\mathbf{C} l_{2}\left(\mathbb{K}_{3}^{+}\right)$. From that we deduce that b. is equivalent to c. By calculating $N_{\mathbb{K}_{j}^{+} / \mathbb{k}}\left(\mathbf{C} l_{2}\left(\mathbb{K}_{j}^{+}\right), 1 \leq j \leq 3\right.$, we notice (using Taussky's conditions) that we have two cases of capitulation: $4 \quad 2 B \quad 2 B$ or $2 A \quad 2 B \quad 2 B$.

The first case occurs if and only if G is dihedral of order $2^{m}(m \geq 3)$, and the second one occurs if and only if G is quaternionic of order $2^{m}(m>3)$ (for more details, see [15]). Therefore, the equivalence between c. and d. is assured by Theorem 3.2 and [15].

4. The 2-rank of some CM-fields

Recall that p_{1} and p_{2} are different primes satisfying the following conditions:

$$
p_{1} \equiv p_{2} \equiv 1 \quad(\bmod 4) \text { and }\left(\frac{2}{p_{2}}\right)=\left(\frac{p_{1}}{p_{2}}\right)=-\left(\frac{2}{p_{1}}\right)=-1
$$

Consider the field $\mathbb{F}=\mathbb{Q}\left(\sqrt{2 p_{1} p_{2}}, i\right)$. The goal of this section is to compute the 2 -rank of the 2 -class groups of the fields $\mathbb{K}_{1}=\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{2 p_{2}}, \sqrt{-1}\right), \mathbb{K}_{2}=\mathbb{Q}\left(\sqrt{p_{2}}, \sqrt{2 p_{1}}, \sqrt{-1}\right), \mathbb{K}_{3}=\mathbb{Q}\left(\sqrt{2}, \sqrt{p_{1} p_{2}}, \sqrt{-1}\right)$, and $\mathbb{F}^{(*)}=\mathbb{Q}\left(\sqrt{2}, \sqrt{p_{1}}, \sqrt{p_{2}}, i\right)$. Let us begin by \mathbb{K}_{2}.

Theorem 4.1 Let p_{1} and p_{2} be different primes satisfying the conditions (1). Assume $\left(\frac{2}{p_{1}}\right)_{4}\left(\frac{p_{1}}{2}\right)_{4}=-1$, and consider $\mathbb{K}_{2}=\mathbb{Q}\left(\sqrt{p_{2}}, \sqrt{2 p_{1}}, i\right)$. Then $\mathbf{C} l_{2}\left(\mathbb{K}_{2}\right)$, the 2-class group of \mathbb{K}_{2}, is of type $\left(2,2^{\ell+1}\right)$, where $2^{\ell}=h\left(-2 p_{1}\right)$ and $\ell \in \mathbb{N}^{*}$.

Proof Setting $F=\mathbb{Q}\left(\sqrt{p_{2}}, i\right)$, then according to [2] the unit group of F is $E_{F}=\left\langle i, \epsilon_{p_{2}}\right\rangle$. As $h(F)=$ $\frac{1}{2} q(F) h\left(p_{2}\right) h\left(-p_{2}\right)=1$, so the class number of F is odd. Therefore, the 2 -rank of the 2 -class group of \mathbb{K}_{2} is equal to $r=t-e-1$, where t is the number of finite and infinite primes of F ramified in \mathbb{K}_{2} / F and $2^{e}=\left[E_{F}: E_{F} \cap N_{\mathbb{K}_{2} / F}\left(\mathbb{K}_{2}^{\times}\right)\right]$.

Let us compute t. Let p be a prime number of \mathbb{Q} and denote by \mathfrak{p}_{M} a prime ideal of some extension M / \mathbb{Q}, which lies above p, and $e\left(\mathfrak{p}_{M} / p\right)$ its ramification index.

As the extension $\mathbb{K}_{2} / \mathbb{F}$ is unramified, then $e\left(\mathfrak{p}_{F} / p\right) . e\left(\mathfrak{p}_{\mathbb{K}_{2}} / \mathfrak{p}_{F}\right)=e\left(\mathfrak{p}_{F} / p\right)$. Since 2 is totally ramified in \mathbb{F} and inert in $\mathbb{Q}\left(\sqrt{p_{2}}\right)$, then there is only one ideal prime of F above 2 that ramifies in \mathbb{K}_{2}. On the other hand, p_{1} is inert in $\mathbb{Q}\left(\sqrt{p_{2}}\right)$ and hence $e\left(\mathfrak{p}_{1 F} / p_{1}\right)=1$, and since $e\left(\mathfrak{p}_{1 F} / p_{1}\right)=2$, then $e\left(\mathfrak{p}_{1 \mathbb{K}_{2}} / \mathfrak{p}_{1 F}\right)=2$.

Finally, $e\left(\mathfrak{p}_{2 F} / p_{2}\right)=2$, and as $e\left(\mathfrak{p}_{2 \mathbb{F}} / p_{2}\right)=2$, we deduce that $e\left(\mathfrak{p}_{2 \mathbb{K}_{2}} / \mathfrak{p}_{2 F}\right)=1$. Thus, $t=3$ and $r=2-e$, i.e. the 2 -rank of \mathbb{K}_{2} is $r=2-e$.

To compute e, we have to find units of F that are norms of some elements of \mathbb{K}_{2}^{\times}. Letting \mathfrak{p} be an ideal of F such that $\mathfrak{p} \neq 2_{F}$, then we have:

- If \mathfrak{p} is not above p_{1}, then $v_{\mathfrak{p}}\left(\epsilon_{p_{2}}\right)=v_{\mathfrak{p}}\left(2 p_{1}\right)=v_{\mathfrak{p}}(i)=0$. Hence, $\left(\frac{2 p_{1}, \epsilon_{p_{2}}}{\mathfrak{p}}\right)=1$ and $\left(\frac{2 p_{1}, i}{\mathfrak{p}}\right)=1$.
- If $\mathfrak{p}=\mathfrak{p}_{1 F}$ is above p_{1}, then $v_{\mathfrak{p}}\left(\epsilon_{p_{2}}\right)=v_{\mathfrak{p}}(i)=0$ and $v_{\mathfrak{p}}\left(2 p_{1}\right)=1$. As \mathfrak{p} is not ramified in both of $F(\sqrt{i})$ and $F\left(\sqrt{\epsilon_{p_{2}}}\right)$, so

$$
\left\{\begin{array}{l}
\left(\frac{\epsilon_{p_{2}}, 2 p_{1}}{\mathfrak{p}_{1 F}}\right)=\left(\frac{\epsilon_{p_{2}}}{\mathfrak{p}_{1 F}}\right)=\left(\frac{\epsilon_{p_{2}}^{2}}{\mathfrak{p}_{1 \mathbb{Q}\left(\sqrt{p_{2}}\right)}}\right)=1 \\
\left(\frac{i, 2 p_{1}}{\mathfrak{p}_{1 F}}\right)=\left(\frac{i}{\mathfrak{p}_{1 F}}\right)=\left(\frac{-1}{\mathfrak{p}_{1 \mathbb{Q}(i)}}\right)=1
\end{array}\right.
$$

Therefore, for all prime ideal \mathfrak{p} of F, the product formula for the Hilbert symbol implies that $\left(\frac{\epsilon_{p_{2}}, 2 p_{1}}{\mathfrak{p}}\right)=$ $\left(\frac{i, 2 p_{1}}{\mathfrak{p}}\right)=1$.
From this, we deduce that $e=0$ and $r=2$.
We prove now that the 4 -rank of $\mathbf{C} l_{2}\left(\mathbb{K}_{2}\right)$ is 1 . For this, put $k=\mathbb{Q}\left(\sqrt{-2 p_{1} p_{2}}\right)$ and denote by $k^{(*)}=\mathbb{Q}\left(\sqrt{-2}, \sqrt{p_{1}}, \sqrt{p_{2}}\right)$ its genus field (see Figure 3). Note that $q\left(L_{1}\right)=q\left(L_{2}\right)=q\left(L_{3}\right)=1$, so the 2-class

Figure 3. Subfields of $k^{(*)} / k$.
group of k is of type $(2,2)$ (see [14]). The class number formula implies that $h\left(L_{1}\right)=4, h\left(L_{2}\right)=2 h\left(-2 p_{1}\right)$, and $h\left(L_{3}\right)=4$. On the other hand, according to [3], the 2 -class group of L_{3} is of type $(2,2)$. Thus, by [7] we have $\left(\frac{2}{p_{1}}\right)_{4}\left(\frac{p_{1}}{2}\right)_{4}=-1$ if and only if $k^{(*)}=k_{2}^{(1)}=k_{2}^{(2)}$. Hence, by [15] and [25] we get that the 2 -class group of L_{1} is of type $(2,2)$ and that of L_{2} is cyclic of order $2 h\left(-2 p_{1}\right)$. To this end, consider the application:

$$
\begin{aligned}
\varphi: \quad \mathbf{C} l_{2}\left(\mathbb{K}_{2}\right) & \longrightarrow \mathbf{C} l_{2}\left(L_{2}\right) \\
c & \longmapsto N_{\mathbb{K}_{2} / L_{2}}(c)
\end{aligned}
$$

As $h\left(\mathbb{K}_{2}\right)=4 h\left(-2 p_{1}\right)$ and $h\left(L_{2}\right)=2 h\left(-2 p_{1}\right)$, so $|\operatorname{ker} \varphi|=2$. Since also the 2 -rank of $\mathbf{C} l_{2}\left(\mathbb{K}_{2}\right)$ is 2 and that of $\mathbf{C} l_{2}\left(L_{2}\right)$ is 1 , then the 4 -rank of $\mathbf{C} l_{2}\left(\mathbb{K}_{2}\right)$ is 1 . Hence, $\mathbf{C} l_{2}\left(\mathbb{K}_{2}\right)$ is of type $\left(2,2 h\left(-2 p_{1}\right)\right)=\left(2,2^{\ell+1}\right)$, where $2^{\ell}=h\left(-2 p_{1}\right)$.

Theorem 4.2 Let p_{1} and p_{2} be different primes satisfying the conditions (1). Assume $\left(\frac{2}{p_{1}}\right)_{4}\left(\frac{p_{1}}{2}\right)_{4}=-1$, and consider the field $\mathbb{K}_{3}=\mathbb{Q}\left(\sqrt{2}, \sqrt{p_{1} p_{2}}, i\right)$; then $\mathbf{C} l_{2}\left(\mathbb{K}_{3}\right)$, the 2 -class group of \mathbb{K}_{3}, is of type $(2,2,2)$.

Proof Putting $F=\mathbb{Q}(\sqrt{2}, i)$ and letting ϵ_{2} be the fundamental unit of $\mathbb{Q}(\sqrt{2})$, from [2] we get that the unit group of F is $E_{F}=\left\langle i, \epsilon_{2}\right\rangle$. It is well known that the class number of F is odd. Thus, the 2-rank of the 2-class group of \mathbb{K}_{3} is $r=t-e-1$, where t is the number of finite and infinite primes of F ramified in \mathbb{K}_{3} / F and $2^{e}=\left[E_{F}: E_{F} \cap N_{\mathbb{K}_{3} / F}\left(\mathbb{K}_{3}^{\times}\right)\right]$. Proceeding as in Theorem 4.1 we prove that $r=3$. On the other hand, the 2 -class number of \mathbb{K}_{3} is $h\left(\mathbb{K}_{3}\right)=4 q\left(\mathbb{K}_{3}\right)=8$. Hence the result.

Theorem 4.3 Let p_{1} and p_{2} be different primes satisfying the conditions (1). Assume $\left(\frac{2}{p_{1}}\right)_{4}\left(\frac{p_{1}}{2}\right)_{4}=-1$, and consider the field $\mathbb{K}_{1}=\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{2 p_{2}}, i\right)$; then $\mathbf{C} l_{2}\left(\mathbb{K}_{1}\right)$, the 2 -class group of \mathbb{K}_{1}, is of type $(2,2,4)$.

Proof Putting $F=\mathbb{Q}\left(\sqrt{p_{1}}, i\right)$ and letting $\epsilon_{p_{1}}$ be the fundamental unit of $\mathbb{Q}\left(\sqrt{p_{1}}\right)$, then by [2] the unit group of F is $E_{F}=\left\langle i, \epsilon_{p_{1}}\right\rangle$. As $p_{1} \equiv 1(\bmod 8)$, then the class number of F is even and hence the 2 -rank of the class group of \mathbb{K}_{1} satisfies $r \geq t-e-1$, where t is the number of finite and infinite primes of F ramified in \mathbb{K}_{1} / F, and $2^{e}=\left[E_{F}: E_{F} \cap N_{\mathbb{K}_{1} / F}\left(\mathbb{K}_{1}^{\times}\right)\right]$. Proceeding as in Theorem 4.1 we prove that $t=4$. Thus, $r \geq 3-e$. Let us calculate e by computing the units of F that are norms of some elements of \mathbb{K}_{1}^{\times}.

Keep the notation that \mathfrak{p}_{M} denotes a prime ideal of some extension M / \mathbb{Q} lying above a prime number p of \mathbb{Q}, and let $e\left(\mathfrak{p}_{M} / p\right)$ be its ramification index.

Since $\mathfrak{p}_{2 F}$ is unramified in both of $F(\sqrt{i})$ and $F\left(\sqrt{\epsilon_{p_{1}}}\right)$, so

$$
\left\{\begin{array}{l}
\left(\frac{\epsilon_{p_{1}}, 2 p_{2}}{\mathfrak{p}_{2 F}}\right)=\left(\frac{\epsilon_{p_{1}}}{\mathfrak{p}_{2 F}}\right)=\left(\frac{-1}{\mathfrak{p}_{2 \mathbb{Q}(\sqrt{i})}}\right)=1 \\
\left(\frac{i, 2 p_{2}}{\mathfrak{p}_{2 F}}\right)=\left(\frac{i}{\mathfrak{p}_{2 F}}\right)=\left(\frac{-1}{\mathfrak{p}_{2 \mathbb{Q}(\sqrt{i})}}\right)=1
\end{array}\right.
$$

Similarly, as 2_{F} is unramified in $F\left(\sqrt{p_{2}}\right)$, so

$$
\left(\frac{i, 2 p_{2}}{2_{F}}\right)=\left(\frac{i, 2}{2_{F}}\right)\left(\frac{i, p_{2}}{2_{F}}\right)=\left(\frac{i, 2}{2_{F}}\right)=\left(\frac{i, i^{-1}}{2_{F}}\right)\left(\frac{i, 2 i}{2_{F}}\right)=1
$$

Finally, since $N\left(\epsilon_{p_{1}}\right)=-1$, then $2 \pi_{1} \epsilon_{p_{1}}$ is a square in F (where $\pi_{1}, \pi_{2} \in \mathbb{Z}[i]$ and $p_{1}=\pi_{1} \pi_{2}$), and hence $\left(\frac{\epsilon_{p_{1}}, 2}{\mathfrak{p}_{2 F}}\right)=\left(\frac{2 \pi_{1}, 2}{\mathfrak{p}_{2 F}}\right)$, so

$$
\left(\frac{\epsilon_{p_{1}}, 2 p_{2}}{2 F}\right)=\left(\frac{\epsilon_{p_{1}}, 2}{2_{F}}\right)\left(\frac{\epsilon_{p_{1}}, p_{2}}{2 F}\right)=\left(\frac{\epsilon_{p_{1}}, 2}{2_{F}}\right)=\left(\frac{2 \pi_{1}, 2}{2_{F}}\right)=\left(\frac{\pi_{1}}{2_{F}}\right)^{v_{2_{F}}(2)}=1
$$

Consequently, $e=0$, and thus $r \geq 3$.
Setting $k_{0}=\mathbb{Q}\left(\sqrt{-p_{1}}, \sqrt{2 p_{2}}\right)$, we will compute the 2 -rank of the class group of k_{0}. For this, we use the notations of [22]. Putting $k_{1}=\mathbb{Q}\left(\sqrt{-p_{1}}\right), k_{2}=\sqrt{2 p_{2}}, k_{3}=\mathbb{Q}\left(\sqrt{-2 p_{1} p_{2}}\right), l=p_{1}, q=2$, and $r=2$, then
$t_{1}=2, t_{2}=2$, and $t_{3}=3$. Thus, $t=4, r_{a}=4, w=1, x=0$, and $y=1$ and consequently the 2 -rank of the class group of k_{0} is $r_{2}=4-1-0-1=2$.

On the other hand, since $q\left(k_{0}\right)=1$ and $q\left(\mathbb{K}_{1}\right)=2$, then the class number formula implies that $h\left(k_{0}\right)=h\left(\mathbb{K}_{1}\right)=16$. Hence, $\mathbf{C} l_{2}\left(\mathbb{K}_{1}\right)$ is of type $(2,2,2,2)$ or $(2,2,4)$.

To this end, \mathbb{K}_{1} is an unramified quadratic extension of k_{0}, and then

$$
\mathbf{C} l_{2}\left(\mathbb{K}_{1}\right) / \mathbf{C} l_{2}\left(\mathbb{K}_{1}\right)^{1-\sigma} \simeq N_{\mathbb{K}_{1} / k_{0}}\left(\mathbf{C} l_{2}\left(\mathbb{K}_{1}\right)\right)
$$

where $\langle\sigma\rangle=\operatorname{Gal}\left(\mathbb{K}_{1} / k_{0}\right)$. If we suppose that $\mathbf{C} l_{2}\left(\mathbb{K}_{1}\right)$ is of type $(2,2,2,2)$, we will get that $N_{\mathbb{K}_{1} / k_{0}}\left(\mathbf{C} l_{2}\left(\mathbb{K}_{1}\right)\right)$ is of type $(2,2,2)$ since $\mathbf{C} l_{2}\left(\mathbb{K}_{1}\right)^{1-\sigma}$ is of index 2 . However, this contradicts the fact that $N_{\mathbb{K}_{1} / k_{0}}\left(\mathbf{C} l_{2}\left(\mathbb{K}_{1}\right)\right)$ is a subgroup of $\mathbf{C} l_{2}(\mathbb{k})$ that is of 2 -rank equal to 2 . Therefore, $\mathbf{C} l_{2}\left(\mathbb{K}_{1}\right)$ is of type $(2,2,4)$.

Theorem 4.4 Let p_{1} and p_{2} be different primes satisfying the conditions (1). Put $\mathbb{F}=\mathbb{Q}\left(\sqrt{2 p_{1} p_{2}}, i\right)$ and denote by $\mathbb{F}^{(*)}=\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \sqrt{2}, i\right)$ its genus field. Then the rank of $\mathbf{C} l_{2}\left(\mathbb{F}^{(*)}\right)$, the 2 -class group of $\mathbb{F}^{(*)}$, is 2 and $h\left(\mathbb{F}^{(*)}\right)=4 h\left(-2 p_{1}\right)$.

Proof Put $K=\mathbb{Q}\left(\sqrt{-p_{1}}, \sqrt{p_{2}}, \sqrt{2}\right), F=\mathbb{Q}\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \sqrt{2}\right)$, and $L=\mathbb{Q}\left(\sqrt{p_{2}}, \sqrt{2}, i\right)$. It is easy to see that $\mathbb{F}^{(*)} / L^{+}$is a V_{4}-extension of CM-type fields, The following diagram (Figure 4) clarifies this. According to [21]

Figure 4. Subfields of $\mathbb{F}^{(*)} / L^{+}$.
we have:

$$
\begin{equation*}
h\left(\mathbb{F}^{(*)}\right)=\frac{Q_{\mathbb{F}^{(*)}}}{Q_{K} Q_{L}} \cdot \frac{\omega_{\mathbb{F}^{(*)}}}{\omega_{K} \omega_{L}} \cdot \frac{h(K) h(L) h(F)}{h\left(L^{+}\right)^{2}} \tag{4}
\end{equation*}
$$

To this end, note that $\omega_{\mathbb{F}^{(*)}}=\omega_{L}=4 \omega_{K}=8, W_{\mathbb{F}^{(*)}}=W_{L}$, and $W_{K}=\{ \pm 1\}$. On the other hand, by [12] we get $Q_{\mathbb{F}^{(*)}}=1$; thus, $Q_{L}=1$, since by [21], we have $Q_{L} \mid Q_{\mathbb{F}^{(*)}}\left[W_{\mathbb{F}^{(*)}}: W_{L}\right]$.

As $q\left(L^{+}\right)=2$, i.e. $\epsilon_{2} \epsilon_{p_{2}} \epsilon_{2 p_{2}}$ is a square in L^{+}, then according to [2]
$\left\{\epsilon_{2}, \epsilon_{p_{2}}, \sqrt{\epsilon_{2} \epsilon_{p_{2}} \epsilon_{2 p_{2}}}\right\}$ is not a fundamental system of units of K if and only if there exist α, β, and γ in $\{0,1\}$, not all zero, such that $p_{1} \sqrt{\epsilon_{2} \epsilon_{p_{2}} \epsilon_{2 p_{2}}} \alpha \epsilon_{2}^{\beta} \epsilon_{p_{2}}^{\gamma}$ is a square in L^{+}. Supposing that $p_{1} \sqrt{\epsilon_{2} \epsilon_{p_{2}} \epsilon_{2 p_{2}}} \alpha \epsilon_{2}^{\beta} \epsilon_{p_{2}}^{\gamma}=X^{2}$, where $X \in L^{+}$, then $N_{L^{+} / \mathbb{Q}(\sqrt{2})}\left(X^{2}\right)=p_{1}^{2} \epsilon_{2}^{\alpha} \epsilon_{2}^{2 \beta}(-1)^{\gamma}$, and thus $\gamma=0$ and $\alpha=0$ since ϵ_{2} is not a square in $\mathbb{Q}(\sqrt{2})$. Consequently, $X^{2}=p_{1} \epsilon_{2}^{\beta}$, and this implies that $\beta=1$. Hence, $N_{L^{+} / \mathbb{Q}\left(\sqrt{p_{2}}\right)}\left(X^{2}\right)=-p_{1}^{2}$, which is false. Therefore, $\left\{\epsilon_{2}, \epsilon_{p_{2}}, \sqrt{\epsilon_{2} \epsilon_{p_{2}} \epsilon_{2 p_{2}}}\right\}$ is a fundamental system of units of K. We conclude that $q(K)=2$ and $Q_{K}=1$. Similarly, we prove that $\left\{\epsilon_{2}, \epsilon_{p_{2}}, \sqrt{\epsilon_{2} \epsilon_{p_{2}} \epsilon_{2 p_{2}}}\right\}$ is a fundamental system of units of L and $q(L)=4$.

Finally, by Theorem 4.1, $h(F)=1$. The class number formula yields that $h(L)=1$ and $h(K)=$ $2 h\left(-p_{1}\right) h\left(-2 p_{1}\right)$. By replacement in formula (4) we get: $h\left(\mathbb{F}^{(*)}\right)=h\left(-p_{1}\right) h\left(-2 p_{1}\right)$. As also $\left(\frac{2}{p_{1}}\right)_{4}\left(\frac{p_{1}}{2}\right)_{4}=-1$, so $h\left(-p_{1}\right)=4$, and hence $h\left(\mathbb{F}^{(*)}\right)=4 h\left(-2 p_{1}\right)$.

We know that the class number of $L=\mathbb{Q}\left(\sqrt{2}, \sqrt{p_{2}}, i\right)$ is odd, so then the 2 -rank of the class group of $\mathbb{F}^{(*)}$ is given by the formula $r=t-e-1$, where t is the number of finite and infinite primes of L ramified in $\mathbb{F}^{(*)} / L$ and $2^{e}=\left[E_{L}: E_{L} \cap N_{\mathbb{F}^{(*)} / L}\left(\mathbb{F}^{(*) \times}\right)\right]$. We compute t by using Figure 5.

Figure 5. Subfields of $\mathbb{F}^{(*)} / \mathbb{Q}$.

Since $\mathbb{F}^{(*)}$ is an unramified extension of \mathbb{K}_{2}, and \mathbb{K}_{2} is also an unramified extension of \mathbb{k}, then it is easy to see that there are 4 prime ideals of L that ramify in $\mathbb{F}^{(*)}$ and they all lie above p_{1}. Thus, $t=4$, and $r=3-e$.

Let us now compute e. For this we will use the Hilbert symbol. We know that $E_{L}=\left\langle\sqrt{i}, \epsilon_{2}, \epsilon_{p_{2}}, \sqrt{\epsilon_{2} \epsilon_{p_{2}} \epsilon_{2 p_{2}}}\right\rangle$; denote by $\mathfrak{p}_{j L}, j \in\{1,2,3,4\}$, the prime ideals of L above p_{1}; and denote also by $\mathfrak{p}_{1 M}$ an ideal prime of some extension M / \mathbb{Q} that is above p_{1}.

Since $\mathfrak{p}_{j L}$ is unramified in $L(\sqrt{\sqrt{i}})$ and $v_{\mathfrak{p}_{j L}}\left(p_{1}\right)=1$, then

$$
\begin{aligned}
& \left(\frac{\sqrt{i}, p_{1}}{\mathfrak{p}_{\mathfrak{j} L}}\right)=\left(\frac{\sqrt{i}}{\mathfrak{p}_{\mathfrak{j} L}}\right)=\left(\frac{\sqrt{2}(1+i)}{\mathfrak{p}_{\mathfrak{j} L}}\right)=\left(\frac{\sqrt{2}}{\mathfrak{p}_{\mathrm{j}}}\right)\left(\frac{1+i}{\mathfrak{p}_{\mathfrak{j} L}}\right)=\left(\frac{1+i}{\mathfrak{p}_{1 R_{2}}}\right)\left(\frac{\sqrt{2}}{\mathfrak{p}_{1_{R_{1}}}}\right)= \\
& \left(\frac{(1+i)^{2}}{\mathfrak{p}_{1 \mathbb{Q}(i)}}\right)\left(\frac{2}{\mathfrak{p}_{1 \mathbb{Q}(\sqrt{2})}}\right)=\left(\frac{2}{p_{1}}\right)=1 .
\end{aligned}
$$

We have also that $\mathfrak{p}_{j L}$ is unramified in both of $L\left(\sqrt{\epsilon_{2}}\right)$ and $L\left(\sqrt{\epsilon_{p_{2}}}\right)$, and $v_{\mathfrak{p}_{j}}\left(p_{1}\right)=1$, so then

$$
\left\{\begin{array}{l}
\left(\frac{\epsilon_{2}, p_{1}}{\mathfrak{p}_{1 L}}\right)=\left(\frac{\epsilon_{2}}{\mathfrak{p}_{1 R_{1}}}\right)=\left(\frac{\epsilon_{2}^{2}}{\mathfrak{p}_{1 \mathbb{Q}(\sqrt{2})}}\right)=1 \\
\left(\frac{\epsilon_{p_{2}}, p_{1}}{\mathfrak{p}_{1 L}}\right)=\left(\frac{\epsilon_{p_{2}}}{\mathfrak{p}_{1 R_{1}}}\right)=\left(\frac{\epsilon_{p_{2}}}{\mathfrak{p}_{1 \mathbb{Q}\left(\sqrt{p_{2}}\right)}}\right)=\left(\frac{-1}{p_{1}}\right)=1 .
\end{array}\right.
$$

Similarly, we get

$$
\left(\frac{\sqrt{\epsilon_{2} \epsilon_{p_{2}} \epsilon_{2 p_{2}}}, p_{1}}{\mathfrak{p}_{1 L}}\right)=\left(\frac{\sqrt{\epsilon_{2} \epsilon_{p_{2}} \epsilon_{2 p_{2}}}}{\mathfrak{p}_{1_{R_{1}}}}\right)=\left(\frac{\epsilon_{2}}{\mathfrak{p}_{1 \mathbb{Q}(\sqrt{2})}}\right)=\left(\frac{2}{p_{1}}\right)_{4}\left(\frac{p_{1}}{2}\right)_{4}=-1
$$

Consequently, $\sqrt{\epsilon_{2} \epsilon_{p_{2}} \epsilon_{2 p_{2}}}$ is not a norm of some element from $\mathbb{F}^{(*)}$. Thus, $e=1$, and the 2 -rank of $\mathbb{F}^{(*)}$ is $r=2$.

5. Numerical examples

In this section and in the following Table, we give examples that illustrate our results. The first column gives the number $d=2 p_{1} p_{2}$, the second (resp. third, fourth, fifth, sixth) gives the class group of the field $\mathbb{F}=\mathbb{Q}(\sqrt{d}, i)$ (resp. $\left.\mathbb{K}_{1}, \mathbb{K}_{2}, \mathbb{K}_{3}, \mathbb{F}^{(*)}\right)$, and the seventh (resp. eighth) column gives the biquadratic residue symbol $a=\left(\frac{2}{p_{1}}\right)_{4}\left(\frac{p_{1}}{2}\right)_{4}$ (resp. the unit index $b=q\left(\mathbb{K}_{3}^{+}\right)$). The computations are made using PARI/GP [23].

Table. Numerical examples.

$2 . p_{1} \cdot p_{2}$	$\mathbf{C} l(\mathbb{k})$	$\mathbf{C} l\left(\mathbb{K}_{1}\right)$	$\mathbf{C} l\left(\mathbb{K}_{2}\right)$	$\mathbf{C} l\left(\mathbb{K}_{3}\right)$	$\mathbf{C} l\left(\mathbb{F}^{(*)}\right)$	a	b
2.17 .5	$[6,2,2]$	$[6,2,2]$	$[12,2,2]$	$[24,2]$	$[12,4]$	-1	1
2.73 .5	$[6,6,2]$	$[30,6,2]$	$[12,6,2]$	$[96,6]$	$[240,12]$	-1	1
2.97 .5	$[6,2,2]$	$[30,2,2]$	$[12,2,2]$	$[120,2]$	$[60,20]$	-1	1
2.17 .29	$[22,2,2]$	$[66,2,2]$	$[44,2,2]$	$[264,2]$	$[132,12]$	-1	1
2.41 .13	$[10,2,2]$	$[30,2,2,2]$	$[120,2,2]$	$[40,4]$	$[120,12,2]$	1	2
2.113 .5	$[22,2,2]$	$[66,2,2,2]$	$[88,2,2]$	$[176,8]$	$[264,8,8]$	1	2
2.17 .37	$[6,2,2]$	$[18,6,2]$	$[60,2,2]$	$[24,2]$	$[180,12]$	-1	1
2.137 .5	$[22,2,2]$	$[66,2,2,2]$	$[88,2,2]$	$[264,4]$	$[264,12,2]$	1	2
2.73 .13	$[14,2,2]$	$[42,2,2]$	$[84,2,2]$	$[224,2]$	$[336,12]$	-1	1
2.193 .5	$[10,2,2]$	$[110,2,2]$	$[20,2,2]$	$[40,10]$	$[220,20]$	-1	1
2.17 .61	$[10,2,2]$	$[10,10,2]$	$[20,10,2]$	$[120,2]$	$[60,20,5]$	-1	1
2.89 .13	$[14,2,2]$	$[14,14,2]$	$[84,6,2]$	$[112,2]$	$[168,84]$	-1	1
2.233 .5	$[30,2,2]$	$[30,10,2]$	$[60,6,2]$	$[240,2]$	$[120,60]$	-1	1
2.41 .29	$[30,2,2]$	$[30,10,2,2]$	$[120,2,2]$	$[120,12]$	$[240,60,2]$	1	2
2.97 .13	$[18,2,2]$	$[90,2,2]$	$[36,6,2]$	$[360,2]$	$[180,60]$	-1	1
2.257 .5	$[22,2,2]$	$[66,2,2,2]$	$[528,2,2]$	$[352,4]$	$[528,48,2]$	1	2
2.313 .5	$[14,2,2]$	$[14,14,2,2]$	$[56,2,2]$	$[504,4]$	$[1008,28,2]$	1	2
2.337 .5	$[18,2,2]$	$[234,2,2,2]$	$[72,2,2]$	$[144,12]$	$[936,24,2]$	1	2
2.353 .5	$[26,2,2]$	$[390,2,2,2]$	$[208,2,2]$	$[624,4]$	$[3120,24,2]$	1	2

References

[1] Azizi A. Unités de certains corps de nombres imaginaires et abéliens sur \mathbb{Q}. Ann Sci Math Qubec 1999; 23: 15-21 (in French).
[2] Azizi A. Sur les unités de certains corps de nombres de degré 8 sur \mathbb{Q}. Ann Sci Math Qubec 2005; 29: 111-129 (in French).
[3] Azizi A, Benhamza I. Sur la capitulation des 2-classes d'idéaux de $\mathbb{Q}(\sqrt{d}, \sqrt{-2})$. Ann Sci Math Qubec 2005; 29: 1-20 (in French).
[4] Azizi A, Taous M. Détermination des corps $\mathbb{k}=\mathbb{Q}(\sqrt{d}, i)$ dont les 2-groupes de classes sont de type (2,4) ou (2,2,2). Rend Istit Mat Univ Trieste 2008; 40: 93-116 (in French).
[5] Azizi A, Zekhnini A, Taous M. On the 2-class field tower of $\mathbb{Q}\left(\sqrt{2 p_{1} p_{2}}, i\right)$ and the Galois group of its second Hilbert 2-class field. Collect Math 2014; 65: 131-141.
[6] Barruccand P, Cohn H. Note on primes of type $x^{2}+32 y^{2}$, class number, and residuacity. J Reine Angew Math 1969; 238: 67-70.
[7] Benjamin E, Lemmermeyer F, Snyder C. Real quadratic fields with abelian 2-class field tower. J Number Theory 1998; 73: 182-194.
[8] Benjamin E, Lemmermeyer F, Snyder C. On the unit group of some multiquadratic number fields. Pacific J Math 2007; 230: 27-40.
[9] Dirichlet GL. Recherches sur les formes quadratiques à coéfficients et à indéterminées complexes. J Reine Angew Math 1842; 24: 291-371 (in French).
[10] Heider FP, Schmithals B. Zur Kapitulation der Idealklassen in unverzweigten primzgklischen Erweiterungen. J Reine Angew Math 1982; 366: 1-25 (in German).
[11] Herglotz G. Über einen Dirichletschen Satz. Math Z 1922; 12: 255-261 (in German).
[12] Hirabayashi M. Unit indices of some imaginary composite quadratic fields II. Pacific J Math 1996; 173: 93-104.
[13] Hirabayashi M, Yoshino K. Unit indices of imaginary abelian number fields of type (2, 2, 2). J Number Theory 1990; 34: 346-361.
[14] Kaplan P. Sur le 2-groupe de classes d'idéaux des corps quadratiques. J Reine Angew Math 1976; 283/284: 313-363 (in French).
[15] Kisilevsky H. Number fields with class number congruent to $4 \bmod 8$ and Hilbert's theorem 94. J Number Theory 1976; 8: 217-279.
[16] Kubota T. Über die Beziehung der Klassenzahlen der Unterkörper des bizyklischen biquadratischen Zahlkörpers. Nagoya Math J 1953; 6: 119-127 (in German).
[17] Kubota T. Über den bizyklischen biquadratischen Zahlkörper. Nagoya Math J 1956; 10: 65-85 (in German).
[18] Kuroda S. Über den Dirichletschen Körper. J Fac Sci Imp Univ Tokyo Sec 1943; 14: 383-406 (in German).
[19] Kuroda S. Über die Klassenzahlen algebraischer Zahlkörper. Nagoya Math J 1950; 1: 1-10 (in German).
[20] Lemmermeyer F. Kuroda's class number formula. Acta Arith 1994; 66: 245-260.
[21] Lemmermeyer F. Ideal class groups of cyclotomic number fields I. Acta Arith 1995; 72: 347-359.
[22] McCall TM, Parry CJ, Ranalli RR. The 2-rank of the class group of imaginary bicyclic biquadratic fields. Can J Math 1997; 49: 283-300.
[23] PARI Group. PARI/GP, Bordeaux, Version 2.4 .4 (beta), 2011 (http://pari.math.u-bordeaux.fr).
[24] Scholz A. Über die Löbarkeit der Gleichung $t^{2}-D u^{2}=-4$.Math Z 1934; 39: 95-111 (in German).
[25] Taussky O. A remark on the class field tower. J London Math Soc 1937; 12: 82-85.
[26] Wada H. On the class number and the unit group of certain algebraic number fields. J Fac Univ Tokyo 1966; 13: 201-209.

