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Abstract: Let p1 ≡ p2 ≡ 1 (mod 4) be different prime numbers such that

(
2

p2

)
=

(
p1
p2

)
= −

(
2

p1

)
= −1. Put

k = Q(
√
2p1p2) and let K be a quadratic extension of k contained in its absolute genus field k(∗) . Denote by kj ,

1 ≤ j ≤ 3, the three quadratic subfields of K . Let EK (resp. Ekj ) be the unit group of K (resp. kj ). The unit index[
EK :

∏3
j=1 Ekj

]
is characterized in terms of biquadratic residue symbols between 2, p1 and p2 or by the capitulation

of 2 , the prime ideal of Q(
√
2p1) above 2, in K . These results are used to describe the 2-rank of some CM-fields.
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1. Introduction and notations

Let k be a multiquadratic number field of degree 2n , (i.e., [k : Q] = 2n ) and ki (i = 1, · · · , s) be the s = 2n−1

quadratic subfields of k . Denote by Ek (resp. Eki ) the unit group of k (resp. ki ), i.e. the group of the invertible

elements of Ok (resp. Oki ), the ring of integers of k (resp. ki ). Then the index q(k) = [Ek :
∏s

i=1 Eki ] is called

the unit index of k . By Dirichlet’s unit theorem, if 2n = r1 + 2r2 , where r1 is the number of real embeddings

and r2 is the number of pairs of complex conjugate embeddings of k , then there exist r = r1 + r2 − 1 units of

Ok that generate Ek (modulo the roots of unity), and these r units are called the fundamental system of units

of k .

One major problem in algebraic number theory is the computation of the number q(k). For quadratic

fields, the problem is easily solved. For some fields k = Q(
√
−1,

√
m), where m is a positive square-free

integer, Dirichlet [9] showed that q(k) = 1 or 2. Over time, Dirichlet’s result has been generalized by many

mathematicians; see, for example [1, 2, 8, 11–13, 16–20, 26]. For quartic bicyclic fields, Kubota [17] gave a

method for finding a fundamental system of units and thus for computing the unit index. Wada [26] generalized

Kubota’s method, creating an algorithm for computing fundamental units in any given multiquadratic field.

However, in general, it is not easy to compute this index.

Let p1 and p2 be different primes satisfying the following conditions:

p1 ≡ p2 ≡ 1 (mod 4) and

(
2

p2

)
=

(
p1
p2

)
= −

(
2

p1

)
= −1. (1)
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Put k = Q(
√
2p1p2) and let K be a quadratic extension of k contained in its absolute genus field, i.e. K equals

K+
1 = Q(

√
p1,

√
2p2), K+

2 = Q(
√
p2,

√
2p1), or K+

3 = Q(
√
2,
√
p1p2). The purpose of this paper is to characterize

the index q(K) in terms of biquadratic residue symbols between 2, p1 and p2 , or by the capitulation in K of 2 ,

the prime ideal of Q(
√
2p1) above 2. Note that in [5], we dealt with the same problem for K = Q(

√
2,
√
p1p2)

assuming
(

p1

p2

)
= −1 and p1 ≡ p2 ≡ 5 (mod 8).

The structure of this paper is as follows. Denote by ϵj , 1 ≤ j ≤ 3, the fundamental units of the

three quadratic subfields of K . In Section 2, we collect some necessary results, and we give the abelian types

and the generators of the 2-class groups of Q(
√
2p1p2) and Q(

√
2p1). In Section 3, we prove necessary and

sufficient conditions for q(Kj), 1 ≤ j ≤ 3, to be equal to 1 (Theorems 3.1 and 3.2). This allows us to

characterize the solvability in K , whenever the norms of ϵj are equal to −1, of the equation X2 − ϵ1ϵ2ϵ3 = 0

in terms of biquadratic residue symbols between 2, p1 and p2 , if K = K+
1 or K = K+

3 , and by using the

capitulation of the prime ideal of Q(
√
2p1) above 2 if K = K+

2 . We end this paragraph by giving some results

on units, indices, and the structure of G = Gal(k
(2)
2 /k), where k

(2)
2 is the second Hilbert 2-class field of k .

We then apply these results, in Section 4, to compute the 2-rank of the CM-fields K1 = Q(
√
p1,

√
2p2,

√
−1),

K2 = Q(
√
p2,

√
2p1,

√
−1), K3 = Q(

√
2,
√
p1p2,

√
−1), and F(∗) = Q(

√
2,
√
p1,

√
p2, i).

Let k be a number field and m be a square-free integer. In what follows, we adopt the following notations:

• h(m) (resp. h(k)): the 2-class number of Q(
√
m) (resp k ).

• Ek : the unit group of k .

• Wk : the group of roots of unity contained in k , and ωk denotes its order.

• Qk = [Ek : WkEk+ ] is Hasse’s unit index, if k is a CM-field.

• k+ : the maximal real subfield of k .

• q(k) = [Ek :
∏s

i Eki ] , the unit index of k if k is multiquadratic, where ki are the s quadratic subfields

of k .

• k(∗) : the genus field of k ; that is, the maximal abelian unramified extension of k obtained by composing

k and an abelian extension over Q .

• k
(1)
2 : the first Hilbert 2-class field of k ; that is, the maximal abelian unramified extension of k such that

[k
(1)
2 : k] is a power of 2.

• k
(2)
2 : the second Hilbert 2-class field of k ; that is, the first Hilbert 2-class field of k

(1)
2 .

• Cl2(k) (resp. Cl(k)): the 2-class (resp. class) group of k .

• ϵm : the fundamental unit of Q(
√
m).

• i =
√
−1.
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2. Preliminaries

Let p1 and p2 be different primes satisfying the conditions (1) and put k = Q(
√
2p1p2) and k1 = Q(

√
2p1). Let

ϵj , 1 ≤ j ≤ 3, denote the three fundamental units of the three quadratic subfields of any biquadratic bicyclic

real number field K .

Lemma 2.1 ([18]) Assuming N(ϵ1) = N(ϵ2) = N(ϵ3) = ±1 , then the equation X2−ϵ1ϵ2ϵ3 = 0 has a solution

in K if and only if q(K) = 2 .

Lemma 2.2 [4, Corollary 3.6] If d = 2p1p2 , where p1 ≡ p2 ≡ 1 (mod 4) are different primes, and at least two

of the elements of
{(

2
p1

)
,
(

2
p2

)
,
(

p1

p2

)}
are equal to −1 , then the norm of the fundamental unit of Q(

√
d) is

−1 .

Lemma 2.3 Let p1 and p2 be different primes satisfying the conditions (1). Then the 2-class group Cl2(k1)

of k1 is cyclic of order h2(2p1) = 2n , n ≥ 1 . It is generated by the class of P2 , a prime ideal of k1 above p2 .

Moreover, P 2n−1

2 ∼ 2 in Cl2(k1) , where 2 is the prime ideal of k1 above 2 .

Proof As

(
2p1
p2

)
= 1, so p2 splits in k1 . Put p2Ok1 = P2P

′
2 and denote by 2 and P1 the prime ideals of

k1 above 2 and p1 , respectively. P1 is not principal in k1 , as otherwise we will get p1 = x2 − 2p1y
2 , where

x, y ∈ Q ; this contradicts the fact that
(

p1

p2

)
= −1. Similarly, we prove that 2 and P2 are not principal.

It is well known, under our conditions, that Cl2(k1) is cyclic of order 2
n where n ≥ 1. On the other hand,(

p2, 2p1
p1

)
=

(
p2
p1

)
= −1, and then by genus theory [P2] is not a square in Cl2(k1). Thus, Cl2(k1) = ⟨[P2]⟩ .

Finally, since 2 ∼ P1 are of order 2, we deduce that P 2n−1

2 ∼ 2 ∼ P1 . 2

Lemma 2.4 Let p1 and p2 be different primes satisfying the conditions (1). Then the 2-class group Cl2(k)

of k = Q(
√
2p1p2) is of type (2, 2) . It is generated by the classes of p1 and p2 the prime ideals above p1 and

p2 , respectively.

Proof According to [14] Cl2(k), the 2-class group of k is of type (2, 2). It is generated by the classes of

p1 and p2 the prime ideals above p1 and p2 , respectively. In fact, pi is of order 2 since p2i = (pi), and it is

not principal for all i ∈ {1, 2} ; otherwise, we would get pi = ∓(x2 − 2p1p2y
2) for some x and y in Q and this

implies the contradiction

(
pi
pj

)
= −1 where i ̸= j ∈ {1, 2} . Similarly, we show that 2̃ the prime ideal of k

above 2 is not principal, too. The same reasoning shows that p1 and p2 (resp. 2̃ and p2 ) are independent. As

2̃p1 ∼ p2 , so 2̃p1 is not principal, too. Finally, the classes of p1 and p2 are not squares since

(
p1
p2

)
= −1. 2

3. Main results

Let p1 and p2 be different primes satisfying the conditions (1) and put k = Q(
√
2p1p2). Letting F =

k(i) = Q(
√
2p1p2, i), then F admits three unramified quadratic extensions that are abelian over Q , which
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are K1 = F(√p1) = Q(
√
p1,

√
2p2, i), K2 = F(√p2) = Q(

√
p2,

√
2p1, i), and K3 = F(

√
2) = Q(

√
2,
√
p1p2, i).

Let K+
j denote the maximal real subfield of Kj where 1 ≤ j ≤ 3.

Theorem 3.1 Let p1 and p2 be different primes satisfying the conditions (1). Then the following assertions

are equivalent:

1.
(

2
p1

)
4

(
p1

2

)
4
= −1 ,

2. q(K+
1 ) = 1 or q(K+

3 ) = 1 ,

3. q(K+
2 ) = 1 and h(2p1) = 2 .

Proof To prove this theorem, consider Figure 1 below, where k(∗) denotes the genus field of k = Q(
√
2p1p2)

and k
(1)
2 denotes its Hilbert 2-class field. Since the 2-class group of k is of type (2, 2) (see Lemma 2.4), and

k
(1)
2 = k(∗) = Q(

√
2,
√
p1,

√
p2)

UUUU
UUUU

UUUU
U

iiii
iiii

iiii
ii

K+
1 = Q(

√
p1,

√
2p2)

UUUU
UUUU

UUUU
U

K+
2 = Q(

√
p2,

√
2p1) K+

3 = Q(
√
2,
√
p1p2)

iiii
iiii

iiii
i

k = Q(
√
2p1p2)

Figure 1. Subfields of k(∗)/k .

since also the discriminant of k is equal to dk = 8p1p2 , then by [7] we have
(

2
p1

)
4

(
p1

2

)
4
= −1 if and only if

k
(1)
1 = k

(2)
2 .

On one hand, according to [15] and [25] the condition k
(1)
2 = k

(2)
2 is equivalent to h(K+

j ) = 2 for some

j ∈ {1, 2, 3} . On the other hand, the class number formula implies that

h(K+
1 ) =

1
4q(K

+
1 )h(p1)h(2p2)h(2p1p2) = 2q(K+

1 ),

h(K+
2 ) =

1
4q(K

+
2 )h(p2)h(2p1)h(2p1p2) = h(2p1)q(K+

2 ), and

h(K+
3 ) =

1
4q(K

+
3 )h(2)h(p1p2)h(2p1p2) = 2q(K+

3 ).

Thus the results. 2

Theorem 3.2 Let p1 and p2 be different primes satisfying the conditions (1). Denote by 2 the prime ideal

of Q(
√
2p1) lies above 2 and by h(2p1) = 2n , n ≥ 1 , the 2-class number of Q(

√
2p1) . Then the following

assertions hold:

1. q(K+
2 ) = 1 if and only if 2 capitulates in K+

2 .

2. Cl2(K+
2 ) is cyclic generated by the class of P2 a prime ideal of K+

2 above p2 . Moreover, h(K+
2 ) = 2n ⇐⇒

q(K+
2 ) = 1 , i.e. h(K+

2 ) = 2n+1 ⇐⇒ q(K+
2 ) = 2 .
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K+
2 = Q(

√
p2,

√
2p1)

QQQ
QQQ
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k2 = Q(
√
p2)

QQQ
QQQ
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QQQ
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k = Q(

√
2p1p2) k1 = Q(

√
2p1)

mmm
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mmm
mmm

mm

Q

Figure 2. Subfields of K+
2 /Q .

Proof To prove this theorem, we need Figure 2 below. It is easy to see that K+
2 /k1 and K+

2 /k2 are ramified,

but K+
2 /k is not, so by class field theory NK+

2 /k1
(Cl2(K+

2 )) = Cl2(k1), NK+
2 /k2

(Cl2(K+
2 )) = Cl2(k2) (which

has an odd class number), and [Cl2(k) : NK+
2 /k(Cl2(K+

2 ))] = 2.

On the other hand, it is easy to see also that p2 capitulates and splits in K+
2 . Letting P2 be a prime

ideal of K+
2 above p2 , then P2 is not principal, as otherwise we will get NK+

2 /k1
(P2) ∼ P2 ∼ 1, which is absurd

(Lemma 2.3).

We claim that, in Cl2(K+
2 ), P2

2 ∼ P2 . To this end, let s and t be the elements of order 2 in Gal(K+
2 /Q)

that fix k1 and k , respectively. Using the identity 2+ (1+ s+ t+ st) = (1+ s)+ (1+ t)+ (1+ st) of the group

ring Z[Gal(K+
2 /Q)] and observing that Q and the fixed field of st have odd class numbers, we find:

P2
2 ∼ P1+s

2 P1+t
2 P1+st

2 ∼ p2P2 ∼ P2,

where the last relation (in Cl2(K+
2 )) comes from the fact that p2 capitulates in K+

2 . Thus,

P2n

2 ∼ P 2n−1

2 ∼ 2 and P2n+1

2 ∼ P 2n

2 ∼ 1. (2)

Note that for all i ≤ n − 1, P2i

2 ̸∼ 1; otherwise, we get P 2i

2 ∼ 1, which is absurd by Lemma 2.3. Hence, the

class of P2 generates a subgroup of Cl2(K+
2 ) of order 2n or 2n+1 accordingly as 2 capitulates or not in K+

2 .

On one hand, NK+
2 /k1

(⟨[P2]⟩)) = ⟨[P2]⟩ and NK+
2 /k(⟨[P2]⟩)) = ⟨[p2]⟩ , which is of index 2 in Cl2(k); on

the other hand, in Cl2(K+
2 ), we have P2n

2 ∼ P 2n−1

2 ∼ 2 ∼ P1 , where P1 is the prime ideal of K+
2 above p1 .

Therefore, Cl2(K+
2 ) is cyclic generated by the class of P2 , i.e.

Cl2(K+
2 ) = ⟨[P2]⟩.

Finally, the class number formula implies that h(K+
2 ) = q(K+

2 )h(2p1); thus, by the equation (2), 2 capitulates

in K+
2 if and only if P2n

2 ∼ 1. Therefore, 2 capitulates in K+
2 if and only if q(K+

2 ) = 1. Thus the results. 2

Remark 3.3 Let p1 and p2 be primes as above and keep the previous notations. Then, for j ∈ {1, 3} , we

have:

q(K+
j ) = 1 ⇔

(
2
p1

)
4

(
p1

2

)
4
= −1 ⇔ p1 ̸= x2 + 32y2 , where x, y ∈ N .
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Proof Note first that N(ϵ2) = −1 and, by Lemma 2.2, N(ϵ2p1p2) = −1. Moreover, since
(

p1

p2

)
= −1 and(

2
p2

)
= −1, then according to [24] N(ϵp1p2) = −1 and N(ϵ2p2) = −1. Thus, [18] implies that q(K+

j ) = 1 or 2.

Hence, the first equivalence is assured by Theorem 3.1, and the second one is assured by [6]. Thus the results

derived. 2

Corollary 3.4 Let p1 and p2 be different primes satisfying the conditions (1). Let K be an unramified quadratic

extension of k . Denote by ϵj , 1 ≤ j ≤ 3 , the three fundamental units of the three quadratic subfields of K .

Denote by 2 the prime ideal of Q(
√
2p1) above 2 . If N(ϵ1) = N(ϵ2) = N(ϵ3) = −1 , then the equation

X2 − ϵ1ϵ2ϵ3 = 0 has a solution in K if and only if one of the following statements holds:

1.
(

2
p1

)
4

(
p1

2

)
4
= 1 , if K = K+

1 or K+
3 .

2. 2 does not capitulate in K = K+
2 .

Proof Follows immediately from Theorems 3.1 and 3.2 and Lemma 2.1. 2

Corollary 3.5 Let p1 and p2 be primes as above and keep the previous notations. Put k = Q(
√
2p1p2) and

denote by k
(1)
2 its first Hilbert 2-class field and by k

(2)
2 its second Hilbert 2-class field. Put G = Gal(k

(2)
2 /k)

and denote by 2 the prime ideal of Q(
√
2p1) lies above 2 . Then:

1. For j ∈ {1, 2, 3} the following statements are equivalent:

a.
(

2
p1

)
4

(
p1

2

)
4
= −1 ,

b. Cl2(K+
j ) ≃ (2) ,

c. All the classes of Cl2(k) capitulate in K+
j ,

d. G ∼ (2, 2) .

2. For j ∈ {1, 3} the following statements are equivalent:

a.
(

2
p1

)
4

(
p1

2

)
4
= 1 ,

b. Two classes of Cl2(k) capitulate in K+
j ,

c. Cl2(K+
j ) ≃ (2, 2) ,

d. G is dihedral of order 2m (m ≥ 8) or quaternionic of order 2m (m > 3) , and, moreover, G is dihedral

of order 2m (m ≥ 8) if and only if 2 capitulates in K+
2 .

Proof Let EK+
j

and Ek be the unit groups of K+
j and k , respectively. It is well known from [10] that the

number of classes of Ek that capitulate in K+
j is 2[Ek : NK+

j /k(EK+
j
)] . On the other hand, as q(K+

j ) = 1 or 2

and, under our conditions, [Ek : NK+
j /k(EK+

j
)] = 1 or 2, then we deduce easily that:

[Ek : NK+
j /k(EK+

j
)] = 1 ⇐⇒ q(K+

j ) = 2. (3)

708



AZIZI et al./Turk J Math

1. a. is equivalent by Theorem 3.1 to q(K+
j ) = 1, which is equivalent by the equation (3) to c., and a. is also

equivalent by [24] to h(K+
j ) = 2. This in turn is equivalent by [15] to d.

2. a. is equivalent by Theorem 3.1 to q(K+
j ) = 2, which is equivalent by the equation (3) to b.

We know from Lemma 2.4 that Cl2(k) = ⟨[p1], [p2]⟩ , where k = Q(
√
2p1p2) and p1 , p2 are the prime

ideals above p1 and p2 , respectively. We know also from Theorem 3.2 that Cl2(K+
2 ) = ⟨[P2]⟩ with P2 being

a prime ideal of K+
2 above p2 . Thus, NK+

2 /k(Cl2(K+
2 )) = ⟨[p2]⟩ . As K+

2 = Q(
√
p2,

√
2p1), it is easy to see

NK+
2 /k(Cl2(K+

2 )) ⊂ κK+
2
, where κK+

2
is the set of ideal classes of k that capitulate in K+

2 . Hence, K+
2 satisfies

Taussky’s condition A. Therefore, G is never a semidihedral group (see [15]).

Proceeding as in the proof of Theorem 3.2, we determine the generators of Cl2(K+
1 ) and Cl2(K+

3 ). From

that we deduce that b. is equivalent to c. By calculating NK+
j /k(Cl2(K+

j ), 1 ≤ j ≤ 3, we notice (using

Taussky’s conditions) that we have two cases of capitulation: 4 2B 2B or 2A 2B 2B.

The first case occurs if and only if G is dihedral of order 2m (m ≥ 3), and the second one occurs if and

only if G is quaternionic of order 2m (m > 3) (for more details, see [15]). Therefore, the equivalence between

c. and d. is assured by Theorem 3.2 and [15]. 2

4. The 2-rank of some CM-fields

Recall that p1 and p2 are different primes satisfying the following conditions:

p1 ≡ p2 ≡ 1 (mod 4) and

(
2

p2

)
=

(
p1
p2

)
= −

(
2

p1

)
= −1.

Consider the field F = Q(
√
2p1p2, i). The goal of this section is to compute the 2-rank of the 2-class

groups of the fields K1 = Q(
√
p1,

√
2p2,

√
−1), K2 = Q(

√
p2,

√
2p1,

√
−1), K3 = Q(

√
2,
√
p1p2,

√
−1), and

F(∗) = Q(
√
2,
√
p1,

√
p2, i). Let us begin by K2 .

Theorem 4.1 Let p1 and p2 be different primes satisfying the conditions (1). Assume
(

2
p1

)
4

(
p1

2

)
4
= −1 ,

and consider K2 = Q(
√
p2,

√
2p1, i) . Then Cl2(K2) , the 2-class group of K2 , is of type (2, 2ℓ+1) , where

2ℓ = h(−2p1) and ℓ ∈ N∗ .

Proof Setting F = Q(
√
p2, i), then according to [2] the unit group of F is EF = ⟨i, ϵp2⟩ . As h(F ) =

1
2q(F )h(p2)h(−p2) = 1, so the class number of F is odd. Therefore, the 2-rank of the 2-class group of K2

is equal to r = t − e − 1, where t is the number of finite and infinite primes of F ramified in K2/F and

2e = [EF : EF ∩NK2/F (K
×
2 )] .

Let us compute t . Let p be a prime number of Q and denote by pM a prime ideal of some extension

M/Q , which lies above p , and e(pM/p) its ramification index.

As the extension K2/F is unramified, then e(pF /p).e(pK2/pF ) = e(pF /p). Since 2 is totally ramified in

F and inert in Q(
√
p2), then there is only one ideal prime of F above 2 that ramifies in K2 . On the other

hand, p1 is inert in Q(
√
p2) and hence e(p1F /p1) = 1, and since e(p1F /p1) = 2 , then e(p1K2

/p1F ) = 2.
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Finally, e(p2F /p2) = 2, and as e(p2F/p2) = 2, we deduce that e(p2K2
/p2F ) = 1. Thus, t = 3 and r = 2 − e ,

i.e. the 2-rank of K2 is r = 2− e .

To compute e , we have to find units of F that are norms of some elements of K×
2 . Letting p be an ideal

of F such that p ̸= 2F , then we have:

• If p is not above p1 , then vp(ϵp2) = vp(2p1) = vp(i) = 0. Hence,

(
2p1, ϵp2

p

)
= 1 and

(
2p1, i

p

)
= 1.

• If p = p1F is above p1 , then vp(ϵp2) = vp(i) = 0 and vp(2p1) = 1. As p is not ramified in both of F (
√
i)

and F (
√
ϵp2), so 

(
ϵp2 , 2p1
p1F

)
=

(
ϵp2

p1F

)
=

(
ϵ2p2

p1Q(
√
p2)

)
= 1,(

i, 2p1
p1F

)
=

(
i

p1F

)
=

(
−1

p1Q(i)

)
= 1.

Therefore, for all prime ideal p of F , the product formula for the Hilbert symbol implies that

(
ϵp2 , 2p1

p

)
=(

i, 2p1
p

)
= 1.

From this, we deduce that e = 0 and r = 2.

We prove now that the 4-rank of Cl2(K2) is 1. For this, put k = Q(
√
−2p1p2) and denote by

k(∗) = Q(
√
−2,

√
p1,

√
p2) its genus field (see Figure 3). Note that q(L1) = q(L2) = q(L3) = 1, so the 2-class

k(∗)OO jj

TTTT
TTTT

TTTT
TTT44

jjjj
jjjj

jjjj
jjjj

L1 = Q(
√
p1,

√
−2p2)jj

TTTT
TTTT

TTTT
TTTT

L2 = Q(
√
p2,

√
−2p1)OO

L3 = Q(
√
−2,

√
p1p2)44

jjjj
jjjj

jjjj
jjjj

k

Figure 3. Subfields of k(∗)/k .

group of k is of type (2, 2) (see [14]). The class number formula implies that h(L1) = 4, h(L2) = 2h(−2p1),

and h(L3) = 4. On the other hand, according to [3], the 2-class group of L3 is of type (2, 2). Thus, by [7] we

have
(

2
p1

)
4

(
p1

2

)
4
= −1 if and only if k(∗) = k

(1)
2 = k

(2)
2 . Hence, by [15] and [25] we get that the 2-class group

of L1 is of type (2, 2) and that of L2 is cyclic of order 2h(−2p1). To this end, consider the application:

φ : Cl2(K2) −→ Cl2(L2)
c 7−→ NK2/L2

(c).

As h(K2) = 4h(−2p1) and h(L2) = 2h(−2p1), so |kerφ| = 2. Since also the 2-rank of Cl2(K2) is 2 and that

of Cl2(L2) is 1, then the 4-rank of Cl2(K2) is 1. Hence, Cl2(K2) is of type (2, 2h(−2p1)) = (2, 2ℓ+1), where

2ℓ = h(−2p1). 2
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Theorem 4.2 Let p1 and p2 be different primes satisfying the conditions (1). Assume
(

2
p1

)
4

(
p1

2

)
4
= −1 ,

and consider the field K3 = Q(
√
2,
√
p1p2, i) ; then Cl2(K3) , the 2-class group of K3 , is of type (2, 2, 2) .

Proof Putting F = Q(
√
2, i) and letting ϵ2 be the fundamental unit of Q(

√
2), from [2] we get that the unit

group of F is EF = ⟨i, ϵ2⟩ . It is well known that the class number of F is odd. Thus, the 2-rank of the 2-class

group of K3 is r = t − e − 1, where t is the number of finite and infinite primes of F ramified in K3/F and

2e = [EF : EF ∩ NK3/F (K
×
3 )] . Proceeding as in Theorem 4.1 we prove that r = 3. On the other hand, the

2-class number of K3 is h(K3) = 4q(K3) = 8. Hence the result. 2

Theorem 4.3 Let p1 and p2 be different primes satisfying the conditions (1). Assume
(

2
p1

)
4

(
p1

2

)
4
= −1 ,

and consider the field K1 = Q(
√
p1,

√
2p2, i) ; then Cl2(K1) , the 2-class group of K1 , is of type (2, 2, 4) .

Proof Putting F = Q(
√
p1, i) and letting ϵp1 be the fundamental unit of Q(

√
p1), then by [2] the unit group

of F is EF = ⟨i, ϵp1
⟩ . As p1 ≡ 1 (mod 8), then the class number of F is even and hence the 2-rank of the

class group of K1 satisfies r ≥ t − e − 1, where t is the number of finite and infinite primes of F ramified in

K1/F , and 2e = [EF : EF ∩NK1/F (K
×
1 )] . Proceeding as in Theorem 4.1 we prove that t = 4. Thus, r ≥ 3− e .

Let us calculate e by computing the units of F that are norms of some elements of K×
1 .

Keep the notation that pM denotes a prime ideal of some extension M/Q lying above a prime number

p of Q , and let e(pM/p) be its ramification index.

Since p2F is unramified in both of F (
√
i) and F (

√
ϵp1), so

(
ϵp1 , 2p2
p2F

)
=

(
ϵp1

p2F

)
=

(
−1

p2Q(
√
i)

)
= 1(

i, 2p2
p2F

)
=

(
i

p2F

)
=

(
−1

p2Q(
√
i)

)
= 1.

Similarly, as 2F is unramified in F (
√
p2), so

(
i, 2p2
2F

)
=

(
i, 2

2F

)(
i, p2
2F

)
=

(
i, 2

2F

)
=

(
i, i−1

2F

)(
i, 2i

2F

)
= 1.

Finally, since N(ϵp1
) = −1, then 2π1ϵp1

is a square in F (where π1, π2 ∈ Z[i] and p1 = π1π2 ), and hence(
ϵp1 , 2

p2F

)
=

(
2π1, 2

p2F

)
, so

(
ϵp1 , 2p2
2F

)
=

(
ϵp1 , 2

2F

)(
ϵp1 , p2
2F

)
=

(
ϵp1 , 2

2F

)
=

(
2π1, 2

2F

)
=

(
π1

2F

)v2F
(2)

= 1.

Consequently, e = 0, and thus r ≥ 3.

Setting k0 = Q(
√
−p1,

√
2p2), we will compute the 2-rank of the class group of k0 . For this, we use the

notations of [22]. Putting k1 = Q(
√
−p1), k2 =

√
2p2 , k3 = Q(

√
−2p1p2), l = p1 , q = 2, and r = 2, then
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t1 = 2, t2 = 2, and t3 = 3. Thus, t = 4, ra = 4, w = 1, x = 0, and y = 1 and consequently the 2-rank of the

class group of k0 is r2 = 4− 1− 0− 1 = 2.

On the other hand, since q(k0) = 1 and q(K1) = 2, then the class number formula implies that

h(k0) = h(K1) = 16. Hence, Cl2(K1) is of type (2, 2, 2, 2) or (2, 2, 4).

To this end, K1 is an unramified quadratic extension of k0 , and then

Cl2(K1)/Cl2(K1)
1−σ ≃ NK1/k0

(Cl2(K1)),

where ⟨σ⟩ = Gal(K1/k0). If we suppose that Cl2(K1) is of type (2, 2, 2, 2), we will get that NK1/k0
(Cl2(K1))

is of type (2, 2, 2) since Cl2(K1)
1−σ is of index 2. However, this contradicts the fact that NK1/k0

(Cl2(K1)) is

a subgroup of Cl2(k) that is of 2-rank equal to 2. Therefore, Cl2(K1) is of type (2, 2, 4). 2

Theorem 4.4 Let p1 and p2 be different primes satisfying the conditions (1). Put F = Q(
√
2p1p2, i) and

denote by F(∗) = Q(
√
p1,

√
p2,

√
2, i) its genus field. Then the rank of Cl2(F(∗)) , the 2-class group of F(∗) , is

2 and h(F(∗)) = 4h(−2p1) .

Proof Put K = Q(
√
−p1,

√
p2,

√
2), F = Q(

√
p1,

√
p2,

√
2), and L = Q(

√
p2,

√
2, i). It is easy to see that

F(∗)/L+ is a V4 -extension of CM-type fields, The following diagram (Figure 4) clarifies this. According to [21]

F(∗)

KK
KK

KK
KK

KK

ss
ss
ss
ss
ss

K

JJ
JJ

JJ
JJ

J L F

tt
tt
tt
tt
t

L+ = Q(
√
2,
√
p2)

Figure 4. Subfields of F(∗)/L+ .

we have:

h(F(∗)) =
QF(∗)

QKQL
· ωF(∗)

ωKωL
· h(K)h(L)h(F )

h(L+)2
· (4)

To this end, note that ωF(∗) = ωL = 4ωK = 8, WF(∗) = WL , and WK = {±1} . On the other hand, by [12] we

get QF(∗) = 1; thus, QL = 1, since by [21], we have QL|QF(∗) [WF(∗) : WL] .

As q(L+) = 2, i.e. ϵ2ϵp2ϵ2p2 is a square in L+ , then according to [2]

{ϵ2, ϵp2 ,
√
ϵ2ϵp2ϵ2p2} is not a fundamental system of units of K if and only if there exist α , β , and γ in

{0, 1} , not all zero, such that p1
√
ϵ2ϵp2ϵ2p2

αϵβ2 ϵ
γ
p2

is a square in L+ . Supposing that p1
√
ϵ2ϵp2ϵ2p2

αϵβ2 ϵ
γ
p2

= X2 ,

where X ∈ L+ , then NL+/Q(
√
2)(X

2) = p21ϵ
α
2 ϵ

2β
2 (−1)γ , and thus γ = 0 and α = 0 since ϵ2 is not a square

in Q(
√
2). Consequently, X2 = p1ϵ

β
2 , and this implies that β = 1. Hence, NL+/Q(

√
p2)(X

2) = −p21 , which is

false. Therefore, {ϵ2, ϵp2 ,
√
ϵ2ϵp2ϵ2p2} is a fundamental system of units of K . We conclude that q(K) = 2 and

QK = 1. Similarly, we prove that {ϵ2, ϵp2 ,
√
ϵ2ϵp2ϵ2p2} is a fundamental system of units of L and q(L) = 4.
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Finally, by Theorem 4.1, h(F ) = 1. The class number formula yields that h(L) = 1 and h(K) =

2h(−p1)h(−2p1). By replacement in formula (4) we get: h(F(∗)) = h(−p1)h(−2p1). As also
(

2
p1

)
4

(
p1

2

)
4
= −1,

so h(−p1) = 4, and hence h(F(∗)) = 4h(−2p1).

We know that the class number of L = Q(
√
2,
√
p2, i) is odd, so then the 2-rank of the class group of

F(∗) is given by the formula r = t− e− 1, where t is the number of finite and infinite primes of L ramified in

F(∗)/L and 2e = [EL : EL ∩NF(∗)/L(F(∗)×)] . We compute t by using Figure 5.

Q(
√
2)

++WWWW
WWWWW

R1 = Q(
√
2,
√
p2)

**UUU
UUUU

UUUU
UU

Q(
√
p2)

55kkkkkkkkkkkk

))SSS
SSSS

SSSS
SS

L = Q(
√
2,
√
p2, i)

''OO
OOO

OOO
OO

Q

88rrrrrrrrrr

EE��������������������

&&LL
LLL

LLL
LLL

��4
44

44
44

44
44

44
44

44
44

R2 = Q(
√
p2, i)

44iiiiiiiiiiiiii

**UUU
UUUU

UUUU
UUU

F(∗)

Q(i)

55kkkkkkkkkkkkkk

))SSS
SSSS

SSSS
SSS

K2 = Q(
√
p2,

√
2p1, i)

77oooooooooo

F = Q(
√
2p1p2, i)

44hhhhhhhhhhhhh

Q(
√
2p1p2)

33gggggggg

Figure 5. Subfields of F(∗)/Q.

Since F(∗) is an unramified extension of K2 , and K2 is also an unramified extension of k , then it is easy to see

that there are 4 prime ideals of L that ramify in F(∗) and they all lie above p1 . Thus, t = 4, and r = 3− e .

Let us now compute e . For this we will use the Hilbert symbol. We know that EL = ⟨
√
i, ϵ2, ϵp2 ,

√
ϵ2ϵp2ϵ2p2⟩ ;

denote by pjL , j ∈ {1, 2, 3, 4} , the prime ideals of L above p1 ; and denote also by p1M an ideal prime of some

extension M/Q that is above p1 .

Since pjL is unramified in L(
√√

i) and vpjL(p1) = 1, then

(√
i, p1
pjL

)
=

(√
i

pjL

)
=

(√
2(1 + i)

pjL

)
=

(√
2

pjL

)(
1 + i

pjL

)
=

(
1 + i

p1R2

)( √
2

p1R1

)
=(

(1 + i)2

p1Q(i)

)(
2

p1Q(
√
2)

)
=

(
2

p1

)
= 1.

We have also that pjL is unramified in both of L(
√
ϵ2) and L(

√
ϵp2), and vpjL

(p1) = 1, so then
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

(
ϵ2, p1
p1L

)
=

(
ϵ2

p1R1

)
=

(
ϵ22

p1Q(
√
2)

)
= 1(

ϵp2 , p1
p1L

)
=

(
ϵp2

p1R1

)
=

(
ϵp2

p1Q(
√
p2)

)
=

(
−1

p1

)
= 1.

Similarly, we get

(√
ϵ2ϵp2ϵ2p2 , p1

p1L

)
=

(√
ϵ2ϵp2ϵ2p2

p1R1

)
=

(
ϵ2

p1Q(
√
2)

)
=

(
2

p1

)
4

(p1
2

)
4
= −1.

Consequently,
√
ϵ2ϵp2ϵ2p2 is not a norm of some element from F(∗) . Thus, e = 1, and the 2-rank of F(∗) is

r = 2. 2

5. Numerical examples

In this section and in the following Table, we give examples that illustrate our results. The first column

gives the number d = 2p1p2 , the second (resp. third, fourth, fifth, sixth) gives the class group of the field

F = Q(
√
d, i) (resp. K1 , K2 , K3 , F(∗) ), and the seventh (resp. eighth) column gives the biquadratic residue

symbol a =
(

2
p1

)
4

(
p1

2

)
4
(resp. the unit index b = q(K+

3 )). The computations are made using PARI/GP [23].

Table. Numerical examples.

2.p1.p2 Cl(k) Cl(K1) Cl(K2) Cl(K3) Cl(F(∗)) a b

2.17.5 [6, 2, 2] [6, 2, 2] [12, 2, 2] [24, 2] [12, 4] −1 1

2.73.5 [6, 6, 2] [30, 6, 2] [12, 6, 2] [96, 6] [240, 12] −1 1

2.97.5 [6, 2, 2] [30, 2, 2] [12, 2, 2] [120, 2] [60, 20] −1 1

2.17.29 [22, 2, 2] [66, 2, 2] [44, 2, 2] [264, 2] [132, 12] −1 1

2.41.13 [10, 2, 2] [30, 2, 2, 2] [120, 2, 2] [40, 4] [120, 12, 2] 1 2

2.113.5 [22, 2, 2] [66, 2, 2, 2] [88, 2, 2] [176, 8] [264, 8, 8] 1 2

2.17.37 [6, 2, 2] [18, 6, 2] [60, 2, 2] [24, 2] [180, 12] −1 1

2.137.5 [22, 2, 2] [66, 2, 2, 2] [88, 2, 2] [264, 4] [264, 12, 2] 1 2

2.73.13 [14, 2, 2] [42, 2, 2] [84, 2, 2] [224, 2] [336, 12] −1 1

2.193.5 [10, 2, 2] [110, 2, 2] [20, 2, 2] [40, 10] [220, 20] −1 1

2.17.61 [10, 2, 2] [10, 10, 2] [20, 10, 2] [120, 2] [60, 20, 5] −1 1

2.89.13 [14, 2, 2] [14, 14, 2] [84, 6, 2] [112, 2] [168, 84] −1 1

2.233.5 [30, 2, 2] [30, 10, 2] [60, 6, 2] [240, 2] [120, 60] −1 1

2.41.29 [30, 2, 2] [30, 10, 2, 2] [120, 2, 2] [120, 12] [240, 60, 2] 1 2

2.97.13 [18, 2, 2] [90, 2, 2] [36, 6, 2] [360, 2] [180, 60] −1 1

2.257.5 [22, 2, 2] [66, 2, 2, 2] [528, 2, 2] [352, 4] [528, 48, 2] 1 2

2.313.5 [14, 2, 2] [14, 14, 2, 2] [56, 2, 2] [504, 4] [1008, 28, 2] 1 2

2.337.5 [18, 2, 2] [234, 2, 2, 2] [72, 2, 2] [144, 12] [936, 24, 2] 1 2

2.353.5 [26, 2, 2] [390, 2, 2, 2] [208, 2, 2] [624, 4] [3120, 24, 2] 1 2
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