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Abstract: Let p1 = p2 = 1 (mod 4) be different prime numbers such that (| — ) == | = - — ) = —1. Put
p2 p2 p1

k = Q(v/2p1p2) and let K be a quadratic extension of k contained in its absolute genus field k™). Denote by kj,
1 <j < 3, the three quadratic subfields of K. Let Ex (resp. Ej,) be the unit group of K (resp. k;). The unit index

[EK : H?:1 Ey j] is characterized in terms of biquadratic residue symbols between 2, pi1 and p2 or by the capitulation

of 2, the prime ideal of Q(1/2p1) above 2, in K. These results are used to describe the 2-rank of some CM-fields.
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1. Introduction and notations

Let k be a multiquadratic number field of degree 2™, (i.e., [k: Q] =2")and k; (i=1,---,s) bethe s =2"—1
quadratic subfields of k. Denote by Ej (resp. Ej, ) the unit group of k (resp. k;),i.e. the group of the invertible
elements of Oy, (resp. Oy, ), the ring of integers of k (resp. k;). Then the index q(k) = [Ej : [[;_, Ek,] is called
the unit index of k. By Dirichlet’s unit theorem, if 2" = ry + 279, where 7 is the number of real embeddings
and ry is the number of pairs of complex conjugate embeddings of k, then there exist r = r; + ro — 1 units of
Oy, that generate Ej (modulo the roots of unity), and these r units are called the fundamental system of units
of k.

One major problem in algebraic number theory is the computation of the number ¢(k). For quadratic
fields, the problem is easily solved. For some fields k& = Q(v/—1,/m), where m is a positive square-free
integer, Dirichlet [9] showed that g(k) = 1 or 2. Over time, Dirichlet’s result has been generalized by many
mathematicians; see, for example [1, 2, 8, 11-13, 16-20, 26]. For quartic bicyclic fields, Kubota [17] gave a
method for finding a fundamental system of units and thus for computing the unit index. Wada [26] generalized
Kubota’s method, creating an algorithm for computing fundamental units in any given multiquadratic field.
However, in general, it is not easy to compute this index.

Let p; and ps be different primes satisfying the following conditions:

m=m=1 odad (2) = (B) - (2) 1)
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Put k = Q(1/2p1p2) and let K be a quadratic extension of k contained in its absolute genus field, i.e. K equals
K = Q(/p1, V2p2), K = Q(/p2,v2p1), or K3 = Q(v/2, \/p1ip2) . The purpose of this paper is to characterize

the index ¢(K) in terms of biquadratic residue symbols between 2, p; and ps, or by the capitulation in K of 2,

the prime ideal of Q(v/2p;) above 2. Note that in [5], we dealt with the same problem for K = Q(v/2, \/p1pz)
assuming (Z—;) =—1 and p; =py =5 (mod 8).

The structure of this paper is as follows. Denote by ¢;, 1 < j < 3, the fundamental units of the
three quadratic subfields of K. In Section 2, we collect some necessary results, and we give the abelian types
and the generators of the 2-class groups of Q(v/2p1p2) and Q(4/2p1). In Section 3, we prove necessary and
sufficient conditions for ¢(K;), 1 < j < 3, to be equal to 1 (Theorems 3.1 and 3.2). This allows us to
characterize the solvability in K, whenever the norms of ¢; are equal to —1, of the equation X 2 —e1ege3 =0
in terms of biquadratic residue symbols between 2, p; and po, if K = Kf or K = K;‘, and by using the

capitulation of the prime ideal of Q(y/2p;) above 2 if K = K . We end this paragraph by giving some results

on units, indices, and the structure of G = Gal(]kg)/]k), where ]kéQ) is the second Hilbert 2-class field of k.
We then apply these results, in Section 4, to compute the 2-rank of the CM-fields K; = Q(,/p1, v/2p2, vV—1),

Ko = Q(v/P2,v2p1,vV=1), Kz = Q(v2, /pip2, vV=1), and F*) = Q(V2, \/p1, /P2, ).

Let k be a number field and m be a square-free integer. In what follows, we adopt the following notations:
e h(m) (resp. h(k)): the 2-class number of Q(y/m) (resp k).
e [).: the unit group of k.
o Wiy : the group of roots of unity contained in k, and wy denotes its order.
o Q. =[Fy : WiEy+] is Hasse’s unit index, if k is a CM-field.
e kT: the maximal real subfield of k.

e (k) = [Ey : [1] Ex,], the unit index of k if k is multiquadratic, where k; are the s quadratic subfields
of k.

e k™) the genus field of k; that is, the maximal abelian unramified extension of k obtained by composing

k and an abelian extension over Q.

. kél) : the first Hilbert 2-class field of k; that is, the maximal abelian unramified extension of k£ such that

[kél) : k] is a power of 2.
. kéz) : the second Hilbert 2-class field of k; that is, the first Hilbert 2-class field of kél).
e Cly(k) (resp. Cli(k)): the 2-class (resp. class) group of k.
e ¢, : the fundamental unit of Q(y/m).

i=+—1.
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2. Preliminaries

Let p; and py be different primes satisfying the conditions (1) and put k = Q(v/2p1p2) and k1 = Q(v/2p1). Let
€;, 1 < j <3, denote the three fundamental units of the three quadratic subfields of any biquadratic bicyclic
real number field K.

Lemma 2.1 ([18]) Assuming N(e1) = N(e2) = N(e3) = £1, then the equation X* —e1eze3 = 0 has a solution
in K if and only if ¢(K) =2.

Lemma 2.2 [/, Corollary 3.6] If d = 2p1ps, where p; =ps =1 (mod 4) are different primes, and at least two
of the elements of {( 2 ) , (l) , <ﬂ>} are equal to —1, then the norm of the fundamental unit of Q(\/E) i$

p1 P2 P2
—-1.

Lemma 2.3 Let p; and py be different primes satisfying the conditions (1). Then the 2-class group Cla(k1)
of k1 is cyclic of order ha(2p1) = 2", n > 1. It is generated by the class of P2, a prime ideal of k1 above ps.

Moreover, P22"71 ~ 2 in Cly(k1), where 2 is the prime ideal of ki above 2.

2
Proof As (1)1) =1, so py splits in ky. Put paOy, = PoPj and denote by 2 and P; the prime ideals of

P2

k1 above 2 and p;, respectively. P, is not principal in k;, as otherwise we will get p; = 2 — 2p1y?, where
x,y € Q; this contradicts the fact that (%) = —1. Similarly, we prove that 2 and P, are not principal.

It is well known, under our conditions, that Cly (k1) is cyclic of order 2™ where n > 1. On the other hand,
p2,2p1\ (D2 _ . . _
—=—— ] == ] =—1, and then by genus theory [P)] is not a square in Cla(k1). Thus, Cla(k1) = ([P2]).

P1 Y4t

Finally, since 2 ~ P; are of order 2, we deduce that P22n71 ~2n~ Py O

Lemma 2.4 Let p; and ps be different primes satisfying the conditions (1). Then the 2-class group Cla(k)
of k = Q(v/2p1p2) is of type (2,2). It is generated by the classes of p1 and po the prime ideals above p; and

P2, respectively.

Proof According to [14] Cly(k), the 2-class group of k is of type (2,2). It is generated by the classes of

p1 and ps the prime ideals above p; and pg, respectively. In fact, p; is of order 2 since p? = (p;), and it is

not principal for all i € {1,2}; otherwise, we would get p; = F (2% — 2p1poy?) for some z and y in Q and this

implies the contradiction (1)7) = —1 where i # j € {1,2}. Similarly, we show that 2 the prime ideal of k
by

above 2 is not principal, too. The same reasoning shows that p; and po (resp. 2 and py) are independent. As

2p1 ~ P2, so 2p; is not principal, too. Finally, the classes of p; and po are not squares since <p1> =-1. O
P2

3. Main results
Let p; and ps be different primes satisfying the conditions (1) and put k = Q(v/2pip2). Letting F =
k(i) = Q(v/2p1p2,i), then F admits three unramified quadratic extensions that are abelian over Q, which
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are Kl = F(\/ﬁ) = Q(\/ITM \/%77;)7 KQ = F(\/ITQ) = Q(\/ZT% \/ﬂai)a and K?) = F(\/i) = Q(\/éa \/plp%i)'

Let K;r denote the maximal real subfield of K; where 1 < j < 3.

Theorem 3.1 Let p; and ps be different primes satisfying the conditions (1). Then the following assertions

are equivalent:

L. (;)%)4 (%1)4 =-1
2. ¢(Kf) =1 or ¢(KJ) =1,
3. ¢(KI) =1 and h(2p;) = 2.

Proof To prove this theorem, consider Figure 1 below, where k*) denotes the genus field of k = Q(y/2p1p2)
and ]kgl) denotes its Hilbert 2-class field. Since the 2-class group of k is of type (2,2) (see Lemma 2.4), and

k) = k) = Q(v2, \/p1, /P2)

i

K{ = Q(v/p1, v2p2) K3 = Q(y/P2, v2p1) K1 = Q(v2, /p1p2)

k = Q(v2p1p2)

Figure 1. Subfields of k™) /k.

since also the discriminant of k is equal to di, = 8pipa, then by [7] we have (%)4 (%1)4 = —1 if and only if

1 2
On one hand, according to [15] and [25] the condition ]1{(21) = ]kéQ) is equivalent to h(K] ) = 2 for some

j €{1,2,3}. On the other hand, the class number formula implies that

h(KT) = a(K)h(p1)h(2p2)h(2p1p2) = 2¢(KT),
h(K) = 2q(K$)h(p2)h(2p1)h(2p1p2) = h(2p1)q(K5), and
h(K3) = 1¢(K3)R(2)h(p1p2)h(2p1p2) = 2q(K3).
Thus the results. O

Theorem 3.2 Let p1 and py be different primes satisfying the conditions (1). Denote by 2 the prime ideal
of Q(+v2p1) lies above 2 and by h(2p1) = 2™, n > 1, the 2-class number of Q(v/2p1). Then the following

assertions hold:
1. q¢(KJ) =1 if and only if 2 capitulates in K3 .
2. Clo(KJ) is cyclic generated by the class of Py a prime ideal of Ki above py. Moreover, h(KJ) = 2" <=

qKI) =1, ice. h(KJ) =2 = ¢(KJ) = 2.
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K3 = Q(y/p2,v2p1)

e o

ko = V2p1p2) v2p1)

\ /

Figure 2. Subfields of KJ /Q.

Proof To prove this theorem, we need Figure 2 below. It is easy to see that ]K+ /k1 and K; /ko are ramified,
but K3 /k is not, so by class field theory NK;/kl(CZQ(K;)) Cly(k1), Nyt n, (Cly(KJ)) = Cla(k2) (which
has an odd class number), and [Cly(k) : NK;/B{(CZQ(K;))} =2.

On the other hand, it is easy to see also that p, capitulates and splits in K3 . Letting P2 be a prime
ideal of K;‘ above py, then P, is not principal, as otherwise we will get NK; Jky (Pg) ~ Py ~ 1, which is absurd
(Lemma 2.3).

We claim that, in Clz(KJ), P2 ~ P,. To this end, let s and ¢ be the elements of order 2 in Gal(KJ /Q)
that fix k; and k, respectively. Using the identity 2+ (1+s+t+st) = (1+s)+ (1 +¢) + (1 + st) of the group
ring Z[Gal(Kj /Q)] and observing that Q and the fixed field of st have odd class numbers, we find:

P~ PYPYPIT ~ paPy o P,

where the last relation (in Cly(K5)) comes from the fact that po capitulates in KJ . Thus,

2n1

P2~ P ~2 and P2

2n+1

~ P2~ 1. (2)

Note that for all i <n —1, 7322i 4 1; otherwise, we get P22i ~ 1, which is absurd by Lemma 2.3. Hence, the
class of P generates a subgroup of Cly(KJ) of order 2" or 2"*! accordingly as 2 capitulates or not in Kj .
On one hand, NK;/k1(<[P2]>)) = ([P]) and NK;/B((<[P2]>)) = {[p2]), which is of index 2 in Cly(k); on

the other hand, in Cly(KJ), we have P3" ~ P2 ~ 2 ~ Py, where Py is the prime ideal of K3 above p;.
Therefore, Cly(KJ) is cyclic generated by the class of Py, i.e.

Cla(K3) = ([P2]).

Finally, the class number formula implies that h(KJ) = ¢(K3)h(2p1); thus, by the equation (2), 2 capitulates
in KJ if and only if ”P%n ~ 1. Therefore, 2 capitulates in KJ if and only if ¢(K5) = 1. Thus the results. O

Remark 3.3 Let p1 and py be primes as above and keep the previous notations. Then, for j € {1,3}, we

have:

gKH =1« (%)4 (%1)4 =1 & p1 # 2%+ 32y%, where z,y € N.
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Proof Note first that N(e2) = —1 and, by Lemma 2.2, N(ezp,p,) = —1. Moreover, since (%) = —1 and

(p%) = —1, then according to [24] N(ep,p,) = —1 and N(egp,) = —1. Thus, [18] implies that q(K;r) =1 or 2.

Hence, the first equivalence is assured by Theorem 3.1, and the second one is assured by [6]. Thus the results
derived. a

Corollary 3.4 Let p; and pa be different primes satisfying the conditions (1). Let K be an unramified quadratic
extension of k. Denote by ¢;, 1 < j < 3, the three fundamental units of the three quadratic subfields of K.

Denote by 2 the prime ideal of Q(\/2p1) above 2. If N(e1) = N(e2) = N(es) = —1, then the equation

X2 — €1e9e3 = 0 has a solution in K if and only if one of the following statements holds:

L (2),(8), =1, # K=K orKi.

)
2. 2 does not capitulate in K = K .

Proof Follows immediately from Theorems 3.1 and 3.2 and Lemma 2.1. O

Corollary 3.5 Let p1 and ps be primes as above and keep the previous notations. Put k = Q(y/2p1p2) and

denote by ]kél) its first Hilbert 2-class field and by ]kéQ) its second Hilbert 2-class field. Put G = Gal(]k(zz)/]k)
and denote by 2 the prime ideal of Q(1/2p1) lies above 2. Then:

1. For j € {1,2,3} the following statements are equivalent:
2 _
a. (pT)4 (3),=-1,
b. Clg(Kj‘) ~ (2),
c. All the classes of Cla(k) capitulate in K;r,
d. G~ (2,2).
2. For j € {1,3} the following statements are equivalent:
(), 0,1
b. Two classes of Cla(k) capitulate in ]Kj+ ,
c. Clo(Kf) ~(2,2),

d. G is dihedral of order 2™ (m > 8) or quaternionic of order 2™ (m > 3), and, moreover, G is dihedral

of order 2™ (m > 8) if and only if 2 capitulates in K .

Proof Let Ey+ and Ey be the unit groups of K;’ and k, respectively. It is well known from [10] that the
J
number of classes of Ey that capitulate in K is 2[Ei : N+ 5 (Eg+)]. On the other hand, as ¢(K]) =1 or 2
J J

and, under our conditions, [Ej : N+ /n{(EK+)] =1 or 2, then we deduce easily that:

[E : NK;F/]I((EK;F)] =1 Q(Kj) =2. (3)
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1. a. is equivalent by Theorem 3.1 to q(Kj) = 1, which is equivalent by the equation (3) to c., and a. is also
equivalent by [24] to h(]Kj) = 2. This in turn is equivalent by [15] to d.
2. a. is equivalent by Theorem 3.1 to q(K;r) = 2, which is equivalent by the equation (3) to b.

We know from Lemma 2.4 that Cla(k) = {[p1], [p2]), where k = Q(v/2p1p2) and p;, ps are the prime
ideals above p; and pa, respectively. We know also from Theorem 3.2 that Cly(KJ) = ([Ps]) with P, being
a prime ideal of K5 above py. Thus, NK;—/E((CZQ(K;)) = ([p2]). As KJ = Q(/p2,v2p1), it is easy to see
N+ /ik(Cla (K3)) C Kt where kg is the set of ideal classes of k that capitulate in K3 . Hence, KJ satisfies
Taussky’s condition A. Therefore, G is never a semidihedral group (see [15]).

Proceeding as in the proof of Theorem 3.2, we determine the generators of Cla(K{) and Cly(Kj). From
that we deduce that b. is equivalent to ¢. By calculating NK;/E{(CZQ(K;_), 1 < j < 3, we notice (using
Taussky’s conditions) that we have two cases of capitulation: 4 2B 2B or 2A 2B 2B.

The first case occurs if and only if G is dihedral of order 2™ (m > 3), and the second one occurs if and
only if G is quaternionic of order 2™ (m > 3) (for more details, see [15]). Therefore, the equivalence between
c. and d. is assured by Theorem 3.2 and [15]. O

4. The 2-rank of some CM-fields

Recall that p; and ps are different primes satisfying the following conditions:

Consider the field F = Q(v/2p1p2,i). The goal of this section is to compute the 2-rank of the 2-class
groups of the fields Kl = Q(\/]Tla V2p27 V _1)7 KQ = Q(\/@a V2p1a Vv _1)7 KS = Q(\/i7 VP1P2, V _1)u and
F®) = Q(V2, \/p1. /P2.1). Let us begin by Ko.

2

Theorem 4.1 Let p1 and ps be different primes satisfying the conditions (1). Assume (p—l) (%1)4 = -1,
4

and consider Ky = Q(y/p2,v/2p1,i). Then Cly(Kz), the 2-class group of Ky, is of type (2,21, where
2¢ = h(—2p;) and £ € N*.

Proof Setting F' = Q(y/pz2,17), then according to [2] the unit group of F' is Er = (i,¢p,). As h(F) =
2q(F)h(p2)h(—p2) = 1, so the class number of F is odd. Therefore, the 2-rank of the 2-class group of K
is equal to r = t — e — 1, where t is the number of finite and infinite primes of F' ramified in Ky/F and
2¢ = [Ep : Ep N Ng, p(K3)].

Let us compute ¢. Let p be a prime number of Q and denote by pj; a prime ideal of some extension
M/Q, which lies above p, and e(pas/p) its ramification index.

As the extension Ky /F is unramified, then e(pr/p).e(px,/pr) = e(pr/p). Since 2 is totally ramified in
F and inert in Q(,/p2), then there is only one ideal prime of F' above 2 that ramifies in K. On the other

hand, p; is inert in Q(y/pz2) and hence e(p.r/p1) = 1, and since e(p,p/p1) = 2 , then e(pg,/prr) = 2.
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Finally, e(p,r/p2) = 2, and as e(p,p/p2) = 2, we deduce that e(p,g,/p.r) = 1. Thus, t =3 and r =2 —e,
i.e. the 2-rank of Ky is r =2 — €.

To compute e, we have to find units of F' that are norms of some elements of K . Letting p be an ideal
of F' such that p # 2y, then we have:

2 2p1,1
e If p is not above p;, then wvy(€p,) = vy(2p1) = vp(i) = 0. Hence, (1)1‘;6172) =1 and <p;,z) =1.

o If p = p, ; is above p;, then vy(€p,) = vp(i) =0 and v,(2p;) = 1. As p is not ramified in both of F(v/)

and F(,/€p,), so
(€P2a2p1) _ <EP2 ) _ 6?’2 _
Pip Pip Prayma) ’
(i,?pl)_< i\ -1 _1
Pip Pip pl@(i) '
2
Therefore, for all prime ideal p of F, the product formula for the Hilbert symbol implies that (W) =

<i7 2p1> 1.
p
From this, we deduce that e =0 and r = 2.

We prove now that the 4-rank of Cly(Kg) is 1. For this, put k& = Q(v/—2p1p2) and denote by
k™) = Q(v/=2, /P1,/D2) its genus field (see Figure 3). Note that q(L1) = ¢(L2) = g(L3) = 1, so the 2-class

L1 = Q(p1,vV=2p2) L2 =Q(/p2,vV/=2p1) L3 =Q(/-2,/p1p2)
\ | /

Figure 3. Subfields of k™) /k.

group of k is of type (2,2) (see [14]). The class number formula implies that h(Li) = 4, h(Ls) = 2h(—2p;),

and h(L3) = 4. On the other hand, according to [3], the 2-class group of Ls is of type (2,2). Thus, by [7] we
have (%)4 (%1)4 = —1 if and only if k*) = kél) = kéZ). Hence, by [15] and [25] we get that the 2-class group

of Ly is of type (2,2) and that of Lg is cyclic of order 2h(—2p;). To this end, consider the application:

@ CZQ(KQ) — CZQ(LQ)
c — NKg/Lg (C)

As h(Ksz) = 4h(—2p1) and h(L3) = 2h(—2p1), so |kery| = 2. Since also the 2-rank of Cly(K3) is 2 and that
of Cly(Ls) is 1, then the 4-rank of Cly(Kz) is 1. Hence, Cly(Ky) is of type (2,2h(—2p1)) = (2,2¢F1), where
2¢ = h(—2p1). |
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Theorem 4.2 Let p1 and ps be different primes satisfying the conditions (1). Assume (p%) (%1)4 = -1,
4

and consider the field Kz = Q(\/2, \/p1D2,1) ; then Cla(K3), the 2-class group of Ks, is of type (2,2,2).

Proof Putting F' = Q(v/2,i) and letting e, be the fundamental unit of Q(v/2), from [2] we get that the unit
group of F' is Ef = (i,€3). It is well known that the class number of F' is odd. Thus, the 2-rank of the 2-class
group of K3 is r =t —e — 1, where ¢ is the number of finite and infinite primes of F' ramified in K3/F and
2¢ = [Er : Ep N Ng,/r(K3)]. Proceeding as in Theorem 4.1 we prove that 7 = 3. On the other hand, the
2-class number of K3 is h(Ks) = 4¢(K3) = 8. Hence the result. O

Theorem 4.3 Let p1 and ps be different primes satisfying the conditions (1). Assume (p%) (”71)4 = -1,
4
2

and consider the field Ky = Q(\/p1,v/2p2,1); then Cla(Ky), the 2-class group of Ky, is of type (2,2,4).
Proof Putting F' = Q(y/p1,7) and letting ¢, be the fundamental unit of Q(,/p1), then by [2] the unit group
of F'is Ep = (i,€p,). As py =1 (mod 8), then the class number of F' is even and hence the 2-rank of the

class group of K; satisfies 7 >t — e — 1, where ¢ is the number of finite and infinite primes of F' ramified in
Ki/F, and 2° = [Ep : Ep N Nk, /p(K{)]. Proceeding as in Theorem 4.1 we prove that ¢ = 4. Thus, r > 3 —e.
Let us calculate e by computing the units of F that are norms of some elements of K;*.

Keep the notation that py; denotes a prime ideal of some extension M/Q lying above a prime number

p of Q, and let e(pas/p) be its ramification index.
Since pyp is unramified in both of F(v/i) and F(\/€p), s0

(52 (2)- () -
Porp Pop Pz@(\fi)
() ()~ -
Pap Pap Paqwv) .
Similarly, as 2 is unramified in F'(y/pz2), so
i2p2 _ (6.2 (ip2) _ (82) _ (iiTh) (i.20) _,
2F - \2p 2p ) \2r) 2F 2p )

Finally, since N(e,,) = —1, then 2m¢,, is a square in F' (where 71, mo € Z[i] and p; = mm2), and hence
<6p1,2> _ (27r1,2>
Pop Pap

’UZF(Q)
6P1a2p2 _ 610172 €pyy D2 _ €p172 _ 27y, 2 _ ™ -1
2r 2F 2r 2F 2F 2F '

Consequently, e = 0, and thus r > 3.

Setting ko = Q(v/—p1, v2p2), we will compute the 2-rank of the class group of ko. For this, we use the
notations of [22]. Putting k1 = Q(/—p1), k2 = 2p2, ks = Q(/—2p1p2), | = p1, ¢ = 2, and r = 2, then

SO
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t1=2,ty=2,and t3=3. Thus, t=4, r, =4, w=1, x =0, and y = 1 and consequently the 2-rank of the
class group of kg is o =4—-1-0—-1=2.

On the other hand, since ¢(kp) = 1 and ¢(K;) = 2, then the class number formula implies that
h(ko) = h(K;) = 16. Hence, Cly(Ky) is of type (2,2,2,2) or (2,2,4).

To this end, K; is an unramified quadratic extension of kg, and then
Clz(K1)/Cla (K1) ™7 =~ N, /i, (Cla(K1)),

where (o) = Gal(K;/ko). If we suppose that Cly(KKy) is of type (2,2,2,2), we will get that N, /i, (Cl2(Ky))
is of type (2,2,2) since Cly(Ky)'~7 is of index 2. However, this contradicts the fact that N, /i, (Cl2(K1)) is
a subgroup of Cla(k) that is of 2-rank equal to 2. Therefore, Cly(K;) is of type (2,2,4). O

Theorem 4.4 Let py and ps be different primes satisfying the conditions (1). Put F = Q(\/2p1pe,i) and
denote by F*) = Q(/P1, /P2, V2,i) its genus field. Then the rank of Cly(F™)), the 2-class group of ™), is
2 and h(F™) = 4h(—2p;).

Proof Put K = Q(y/=p1,/P2,V2), F = Q(/p1, /P2, V2), and L = Q(/p2,V2,7). It is easy to see that

F&) /LT is a Vj-extension of CM-type fields, The following diagram (Figure 4) clarifies this. According to [21]

F)

o
O 7

Lt = @(\@7 \/172)

Figure 4. Subfields of F®*)/L*.

we have:
() — Qre L Wre h(K)h<L)h(F)
AE) QrkQL wkwr h(Lt)? @)

To this end, note that wpe = wr, = dwg =8, Wyey = W, and Wi = {£1}. On the other hand, by [12] we
get Qp-) = 1; thus, Qp = 1, since by [21], we have Qr|Qpw) [Wge : Wr].

As q(LT) =2, i.e. €x€p,€2p, is a square in LT, then according to [2]
{€2, €pys /€2€p,€2p, ) 18 MOt a fundamental system of units of K if and only if there exist o, 3, and v in

{0,1}, not all zero, such that p1,/€z€,, 62,,2“62’36;2 is a square in L. Supposing that p;, /€€, 62p2aegeg2 =X2,

where X € Lt then N+ 0wz (X?) = p%eg‘egﬁ(—l)V, and thus v = 0 and o = 0 since €z is not a square

in Q(v/2). Consequently, X2 = plezﬂ, and this implies that 8 = 1. Hence, NL+/Q(\/172)(X2) = —p?, which is
false. Therefore, {€2, €p,,/€2€p, €2p, } is a fundamental system of units of K. We conclude that ¢(K) =2 and
Qr = 1. Similarly, we prove that {e2,€,,, \/€2€p,€2p, } is a fundamental system of units of L and ¢(L) = 4.
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Finally, by Theorem 4.1, h(F) = 1. The class number formula yields that h(L) = 1 and h(K) =
2h(—p1)h(—2p1). By replacement in formula (4) we get: h(F*)) = h(—p1)h(—2p1). As also (%)4 (B),=-1,
so h(—p1) = 4, and hence h(F®)) = 4h(—2p;).

We know that the class number of L = Q(v/2, V/P2,1) is odd, so then the 2-rank of the class group of

F(*) is given by the formula r =t — e — 1, where t is the number of finite and infinite primes of L ramified in

FC) /L and 2¢ = [EL, : EL N N[F(*)/L(]F(*)X)]. We compute t by using Figure 5.

Q(v2)
T
Ry =Q(v2, /p2)
Q(y/p2) L =Q(V2,/P2,%)
Q Ry = Q(y/p2,1) FG)
Q(1) Ko = Q(y/p2, v2p1,1)
\ /

F = Q(v/2p1p2, 1)
Q(v2p1p2)

Figure 5. Subfields of F*)/Q.

Since F™) is an unramified extension of Ky, and Kj is also an unramified extension of k, then it is easy to see
that there are 4 prime ideals of L that ramify in F™*) and they all lie above p;. Thus, t =4, and r =3 —e.

Let us now compute e. For this we will use the Hilbert symbol. We know that E; = (\ﬂ7 €2, €ps \/m> ;
denote by p;r1., j € {1,2,3,4}, the prime ideals of L above p;; and denote also by pis an ideal prime of some
extension M/Q that is above p;.

Since p;;, is unramified in L(v/v/4) and vp,, (p1) = 1, then
Vispr\ _ (Vi _ (V2040 (V2 <1+i>_<1+z’) V2
Pir PiL bir biL bir PiR, Pir,
(1+4)? 2 7 (2) .
P1o) Pigva) P '

We have also that p; is unramified in both of L(,/ez) and L(,/€,,), and v, (p1) =1, so then
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(62,101)( €2 )( e >1

Pag B le1 B 131@(\/5) B

(52)- G2 o) - )
P Pir, Pig(yp) P

Similarly, we get

Pair PiR,

<\/ezepzezp2,p1) _ (\/€2€p2€2p2> -~ €2 _ (2> (@) I
Pig(v2) 2 4 '

Consequently, ,/€2€,,€2,, is not a norm of some element from F*) . Thus, e = 1, and the 2-rank of F*) is
r=2. O

5. Numerical examples

In this section and in the following Table, we give examples that illustrate our results. The first column

gives the number d = 2p;ps, the second (resp. third, fourth, fifth, sixth) gives the class group of the field
F = Q(Vd,i) (resp. K, Ko, Kz, F®)) and the seventh (resp. eighth) column gives the biquadratic residue

symbol a = (%)4 (B ), (resp. the unit index b= ¢(K3)). The computations are made using PARI/GP [23].

Table. Numerical examples.

2.p1.p2 | Cl(k) CI(K;) CI(Ky) CI(K3) | CI(F®™) a | b
2175 | [6,2,2] [6,2,2] [12,2,2] | [24,2] [12,4] 1] 1
2.73.5 | [6,6,2] | [30,6,2] [12,6,2] | [96,6] (240, 12 1| 1
2975 | [6,2,2] | [30, 2 ,2] [12,2,2] | [120,2] | [60,20] —1/ 1
2.17.29 | [22,2,2] | [66,2,2] [44,2,2] | [264,2] | [132,12] 1|1
2.41.13 | [10,2,2] | [30,2,2,2] | [120,2,2] | [40,4] [120,12,2] |1 |2
2.113.5 | [22,2,2] | [66,2,2,2] | [88,2,2] | [176,8] | [264,8,8] 1|2
2.17.37 | [6,2,2] | [18,6,2] [60,2,2] | [24,2] [180,12] —~1/ 1
2.137.5 | [22,2,2] | [66,2,2,2] | [88,2,2] | [264,4] |[264,12,2] |1 |2
2.73.13 | [14,2,2] | [42,2,2] [84,2,2] | [224,2] | [336,12] -1 1
2.193.5 | [10,2,2] | [110,2,2] [20,2,2] | [40,10] | [220,20] —1/ 1
2.17.61 | [10,2,2] | [10,10,2] [20,10,2] | [120,2] | [60,20, 5] —1| 1
2.89.13 | [14,2,2] | [14,14,2] [84,6,2] | [112,2] | [168,84] —1/ 1
2.233.5 | [30,2,2] | [30,10,2] [60,6,2] | [240,2] | [120,60] 1|1
2.41.29 | [30,2,2] | [30,10,2,2] | [120,2,2] | [120,12] | [240,60,2] |1 |2
2.97.13 | [18,2,2] | [90,2,2] [36,6,2] | [360,2] | [180,60] 1] 1
2.257.5 | [22,2,2] | [66,2,2,2] | [528,2,2] | [352,4] | [528,48,2] |1 |2
2.313.5 | [14,2,2] | [14,14,2,2] | [56,2,2] | [504,4] [1008 28,2] |1 |2
2.337.5 | [18,2,2] | [234,2,2,2] | [72,2,2] | [144,12] | [936,24,2] |1 |2
2.353.5 | [26,2,2] | [390,2,2,2] | [208,2,2] | [624,4] [3120 24 21 |1 |2
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