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Abstract: The computation of the distance between any two points of the Sierpinski gasket with respect to the intrinsic

metric has already been investigated by several authors. However, to the best of our knowledge, in the literature there is

not an explicit formula obtained by using the code set of the Sierpinski gasket. In this paper, we obtain an explicit formula

for the intrinsic metric on the Sierpinski gasket via the code representations of its points. We finally give an important

geometrical property of the Sierpinski gasket with regard to the intrinsic metric by using its code representation.

Key words: Sierpinski gasket, code representation, intrinsic metric

1. Introduction

The Sierpinski gasket was described by Sierpinski in 1915 and then it became one of the typical examples of

fractals. This set, which can be written as a finite union of its scaled copies (see Figure 1), is a quite simple

but amazing self-similar set in fractal geometry. In various mathematical studies, especially in fractal geometry,

the Sierpinski gasket is often considered or used as a test model. Thus, the Sierpinski Gasket, which we will

denote by S , has been studied in fractal geometry for years (see, for example, [1, 6, 7, 10, 13, 14] and references

therein). It is well known that S is the attractor of the iterated function system {▲; f0, f1, f2} such that
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(▲ is the filled-in convex hull of the three points {P0, P1, P2} , where P0 = (0, 0), P1 = (1, 0) and P2 = ( 12 ,
√
3
2 )).

S can be defined in different ways. In [8, 9], the authors defined S as follows: let P0 = (0, 0), P1 = (1, 0),

and P2 = ( 12 ,
√
3
2 ). Assume that i1i2 . . . in is the word of length n over the alphabet X = {0, 1, 2} for any

i1, i2, . . . , in ∈ X . For every such word, the elementary subtriangle of level n with vertices (fi1◦fi2◦. . .◦fin)(P0),
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(fi1 ◦ fi2 ◦ . . . ◦ fin)(P1), and (fi1 ◦ fi2 ◦ . . . ◦ fin)(P2) is denoted by Ti1i2...in . Then they define the Sierpinski

gasket as

S =
∩
n≥0

Tn where Tn =
∪

s∈{0,1,2}n

Ts.

It is well known that different metrics can be defined on the same set. However, the interesting and

natural one of these metrics is the one that reflects the internal structure of the set. For example, consider

the restriction of the Euclidean metric to S . According to this metric, the distance between a and b is l (see

Figure 2). However, there is not any path between a and b on S with length l . For this reason, this metric is

not meaningful on this special set.

a

b

l

a

b

l

Figure 1. The Sierpinski gasket as an attractor of an IFS. Figure 2. Distance between two points on S with respect

to the Euclidean metric.

A more suitable metric on S is the intrinsic metric, which is defined as follows:

dint(x, y) = inf{δ | δ is the length of a rectifiable curve in S joining x and y} (1)

for x, y ∈ S (for details, see [2]). The intrinsic metric, which is obtained by taking into account the paths on

the structure, eliminates this discrepancy.

In several works the intrinsic metric on the Sierpinski gasket was constructed and defined in different

ways since there exist different ways to construct (or define) the Sierpinski gasket (for details, see [3, 5, 8, 9, 14]).

For example, in [8], an alternative definition of the intrinsic metric on S is given as follows: let x, y ∈ S and

let ∆n(x),∆n(y) be two elementary subtriangles of level n where x ∈ ∆n(x) and y ∈ ∆n(y) for all n ≥ 0.

For every n ≥ 0, let xn and yn be the left lower vertices of ∆n(x) and ∆n(y), respectively. Then the authors

define the intrinsic metric as

dint(x, y) = lim
n→∞

dn(xn, yn)

2n

where x, y ∈ S and dn is the minimal length of a chain connecting xn and yn (for details, see [8]).

Strichartz also defined the intrinsic metric in a different way by using barycentric coordinates (for details,

see [12]).

In [11], Romik tackled the discrete Sierpinski gasket and defined the metric giving the shortest distance

on the points of this set using the code spaces. Romik then computed the average distance between points

on the Sierpinski gasket using the connection between the tower of Hanoi problem and the discrete Sierpinski

gasket.
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In this paper, we use code representations of the points of the Sierpinski gasket to define the intrinsic

metric. We note that the junction points of the Sierpinski gasket have two different code representations. In

this work, we give an explicit formula for the intrinsic metric on S such that the formula does not depend on

the choice of the representations of the junction points as mentioned in Proposition 3.3.

2. The code representation on S

We first give brief information about the coding process.

Let us denote the left-bottom part, the right-bottom part, and the upper part of the Sierpinski gasket

by S0, S1 , and S2 , respectively.

As shown in Figure 3, S = S0 ∪ S1 ∪ S2 , S0 ∩ S1 = {p} , S1 ∩ S2 = {q} , and S0 ∩ S2 = {r} . Let

a1 ∈ {0, 1, 2} . Now similarly we denote the left-bottom part, the right-bottom part, and the upper part of Sa1

by Sa10, Sa11 , and Sa12 , respectively.

0
S

1
S

2
S

p

qr

Figure 3. The subtriangles S0, S1 , and S2 of S .

Following the same argument, let Sa1a2...ak
denote the smaller triangular pieces of S where ai ∈ {0, 1, 2}

and i = 1, 2, . . . , k. For the sequence

Sa1 , Sa1a2 , Sa1a2a3 , . . . , Sa1a2...an , . . . ,

it is obvious that Sa1 ⊃ Sa1a2 ⊃ Sa1a2a3 ⊃ . . . ⊃ Sa1a2...an ⊃ . . . and the infinite intersection

∞∩
k=1

Sa1a2...ak

is a singleton, say {a} , where a ∈ S . We denote the point a ∈ S by a1a2 . . . an . . . where an ∈ {0, 1, 2} and

n = 1, 2, . . . . Note that, if a ∈ S is the intersection point of any two subtriangles of Sa1a2...ak
(such a point

is called a junction point of S ), then a has two different representations such that a1a2 . . . akβαααα . . . and

a1a2 . . . akαββββ . . . where α, β ∈ {0, 1, 2} . Otherwise, a has a unique representation (for an alternative code

representation of the points of S , see [4]).
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3. The construction of the intrinsic metric on S

Let a and b be two different points of S whose representations are a = a1a2 . . . an . . . and b = b1b2 . . . bn . . . ,

respectively. Then there exists a natural number s such that as ̸= bs . Let

k = min{s | as ̸= bs, s = 1, 2, 3, . . .}. (2)

We then have a ∈ Sa1a2...ak−1ak
and b ∈ Sa1a2...ak−1bk . Without loss of generality, we assume that ak = 0 and

bk = 1, which means a ∈ Sa1a2...ak−10 and b ∈ Sa1a2...ak−11 as seen in Figure 4 (in what follows we use the

abbreviation σ = a1a2 . . . ak−1 for simplicity). Note also that, in the other cases, i.e. a and b are in another

subtriangle of Sa1a2...ak−1
, similar procedures would be valid.

S 2s
S

s
p

s
q

s
r

1s
S

0s
S

210 ssss
SSSS UU=

Figure 4. The subtriangle Sσ where σ = a1a2 . . . ak−1 and the points a ∈ Sσ0 and b ∈ Sσ1 .

Let pσ , rσ , qσ be the intersection points of the subtriangles Sσ0 and Sσ1 , Sσ0 and Sσ2 , and Sσ1 and

Sσ2 , respectively. The shortest paths between a and b must pass through either the point pσ or the line rσqσ

(see Figure 4).

We now investigate these two different ways as follows:

Case 1: First consider the shortest path passing through the point pσ . Any path between a and b can be

expressed as the union of a path between a and pσ and a path between pσ and b . We first look at the shortest

paths between a and pσ (the paths between pσ and b can be obtained using a similar argument).

• If a ∈ Sa1a2...ak−100 or a ∈ Sa1a2...ak−102 , then we must compute the length of the line segment pσ′pσ

or the length of the line segment qσ′pσ where pσ′ , qσ′ are the intersection points of the subtriangles Sσ′0 and

Sσ′1 , Sσ′1 and Sσ′2 respectively where σ′ = a1a2 . . . ak−10. In both cases, the length of the shortest paths

between a and pσ is

µ =
1

2k+1
+ ε,

for some ε ≥ 0.

For the case a = rσ′ , where rσ′ is the intersection point of the subtriangles Sσ′0 and Sσ′2 , there obviously

exist two shortest paths between a and pσ . These paths are the union of the line segments rσ′pσ′ and pσ′pσ or

the union of the line segments rσ′qσ′ and qσ′pσ . The length of these paths can be easily computed as µ =
1

2k
.

• Suppose that a ∈ Sa1a2...ak−101 . If a ∈ Sa1a2...ak−1010 or a ∈ Sa1a2...ak−1012 , then we must compute the
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length of the line segment pσ′′pσ or the length of the line segment qσ′′pσ where pσ′′ ,qσ′′ are the intersection

points of the subtriangles Sσ′′0 and Sσ′′1 , Sσ′′1 and Sσ′′2 respectively where σ′′ = a1a2 . . . ak−101.

In both cases, we get

µ =
1

2k+2
+ ε,

for some ε ≥ 0.

For the case a = rσ′′ , where rσ′′ is the intersection point of the subtriangles Sσ′′0 and Sσ′′2 , there are

two paths giving the distance of the shortest paths between a and pσ as before. These paths are the union of

the line segments rσ′′pσ′′ and pσ′′pσ or the union of the line segments rσ′′qσ′′ and qσ′′pσ . The length of these

two paths is µ = 1
2k+1 .

Using a similar procedure for smaller triangles, we can determine the shortest paths between a and b

and the length of these paths. Similarly, one can determine the shortest paths between pσ and b . Then, by

splicing these shortest paths between “a and pσ ” and “pσ and b”, one can compute the length of the shortest

paths between a and b passing through the point pσ .

Case 2: Let us consider the shortest paths passing through the line segment rσqσ . In a similar way, we can

obtain the shortest paths (thus the corresponding length) between “a and rσ ” and between “b and qσ ”. As

we add 1
2k

(that is, the length of the path rσqσ ) to these lengths, we obtain the length of the shortest path

passing through rσqσ .

Consequently, the length of the shortest paths between a and b is the minimum of the lengths obtained

from Case 1 and Case 2. We can formulate this length, and hence the metric d , as follows.

Definition 3.1 Let a1a2 . . . ak−1akak+1 . . . and b1b2 . . . bk−1bkbk+1 . . . be representations of the points a ∈ S

and b ∈ S , respectively. Suppose that ai = bi for i = 1, 2, . . . , k − 1 and ak ̸= bk. We define the metric

d : S × S → R by

d(a, b) = min

{ ∞∑
i=k+1

αi + βi

2i
,
1

2k
+

∞∑
i=k+1

γi + δi
2i

}

where

αi =

{
0, ai = bk
1, ai ̸= bk

, βi =

{
0, bi = ak
1, bi ̸= ak

,

γi =

{
0, ai ̸= ak and ai ̸= bk
1, otherwise

, δi =

{
0, bi ̸= bk and bi ̸= ak
1, otherwise

.

Remark 3.2 Note that the first value
∞∑

i=k+1

αi+βi

2i is the length of the shortest paths passing through the point

pσ and the second value 1
2k

+
∞∑

i=k+1

γi+δi
2i is the length of the shortest paths passing through the line segment

rσqσ where 1
2k

is the length of the line segment rσqσ .
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It is obvious from the construction above that d(a, b) is defined as the minimum of the lengths of the

admissible paths connecting the points a and b in S .

Conclusion 3.2 The metric in Definition 3.1 is equivalent to the metric given in (1).

Proposition 3.3 The metric d defined in Definition 3.1 does not depend on the choice of the code representa-

tions of the points.

Proof Let a be a junction point whose code representations are of the form a1a2a2 . . . a2a2a2 . . . and

a2a1a1 . . . a1a1a1 . . . such that a1 ̸= a2 (in the general case, i.e. if the code representation of a is of the

form
a1a2 . . . ak−1akak+1ak+1ak+1 . . . ,

the claim can be proven similarly).

Let x be an arbitrary point of S that has the code representation

x1x2 . . . xk−1xkxk+1xk+2xk+3 . . . .

Assume that x1 ̸= a1 . We consider the following two cases: x1 ̸= a2 and x1 = a2 .

Case 1: Suppose that x1 ̸= a2 . We now investigate the distance between the points

x1x2 . . . xkxk+1xk+2xk+3 . . . and a1a2a2 . . . a2a2a2 . . . .

Due to the definition of d , we have the following equations:

αi =

{
0, xi = a1
1, xi ̸= a1

,

βi =

{
0, a2 = x1

1, a2 ̸= x1
,

γi =

{
0, xi ̸= x1 and xi ̸= a1
1, otherwise

,

δi =

{
0, a2 ̸= a1 and a2 ̸= x1

1, otherwise
.

We thus get βi = 1 for all i ≥ 2 owing to the fact that x1 ̸= a2 . Moreover, αi can change according

to the value of xi and a1 for each i ≥ 2. It is also easily seen that δi = 0 for every i ≥ 2 since a2 ̸= a1 and

a2 ̸= x1 . It follows that
∞∑
i=2

αi + βi

2i
=

1

2
+

∞∑
i=2

αi

2i

and

1

2
+

∞∑
i=2

γi + δi
2i

=
1

2
+

∞∑
i=2

γi
2i
.

Now we compute the distance between the points

x1x2 . . . xkxk+1xk+2xk+3 . . . and a2a1a1 . . . a1a1a1 . . . .
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Owing to the definition of d , we have the following equations:

α′
i =

{
0, xi = a2
1, xi ̸= a2

,

β′
i =

{
0, a1 = x1

1, a1 ̸= x1
,

γ′
i =

{
0, xi ̸= x1 and xi ̸= a2
1, otherwise

,

δ′i =

{
0, a2 ̸= a1 and a1 ̸= x1

1, otherwise
.

Similarly, we have β′
i = 1 for all i ≥ 2 as a result of the fact that x1 ̸= a1 . Moreover, α′

i can change

according to the value of xi and a2 for each i ≥ 2. We also have that δ′i = 0 for every i ≥ 2 since a1 ̸= a2

and a1 ̸= x1 . This shows that

∞∑
i=2

α′
i + β′

i

2i
=

1

2
+

∞∑
i=2

α′
i

2i

and

1

2
+

∞∑
i=2

γ′
i + δ′i
2i

=
1

2
+

∞∑
i=2

γ′
i

2i
.

Finally we show that αi = γ′
i and α′

i = γi for all i ≥ 2, respectively. We already know that a1 ̸= a2 ,

x1 ̸= a1 , and x1 ̸= a2 .

Assume that γ′
i = 0 for a fixed i . In this case, we have xi ̸= a2 and xi ̸= x1 . We thus have xi = a1 .

Namely, it is αi = 0. Let γ′
i = 1 for a fixed i . Hence, it must be xi = a2 or xi = x1 . This shows that xi ̸= a1 .

That is, we obtain αi = 1.

Suppose that γi = 0 for a fixed i . We thus have xi ̸= x1 and xi ̸= a1 and this shows that xi = a2 , so

we get α′
i = 0. Let γ′

i = 1 for a fixed i . Therefore, it must be xi = x1 or xi = a1 . It follows that xi ̸= a1 and

thus we get α′
i = 1.

This concludes the proof in Case 1.

Case 2: Let x1 = a2 . The assertion can be proved similarly. 2

4. Illustrative examples

In this section we give two examples where we compute the distance between two kinds of pairs of points in S .

Example 4.1 Let a and b be the points in S whose representations are 012 = 012012012 · · · and 1 = 111 · · ·
respectively.

To compute d(a, b) we need the natural number k defined in (2). Since the first terms of the representa-

tions are different, we get k = 1 . Straightforward calculations give us βi = 1 , δi = 1 ,

αi =

{
0 ; i ≡ 2 (mod 3)
1 ; otherwise
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and

γi =

{
0 ; i ≡ 0 (mod 3)
1 ; otherwise

for all i ≥ k + 1 = 2 , from which we conclude

∞∑
i=2

αi + βi

2i
=

∞∑
m=1

(
1

23m−1
+

2

23m
+

2

23m+1

)
=

5

7

and

1

2
+

∞∑
i=2

γi + δi
2i

=
1

2
+

∞∑
m=1

(
2

23m−1
+

1

23m
+

2

23m+1

)
=

1

2
+

6

7

and hence d(a, b) =
5

7
.

Example 4.2 Let a and b be the points in S whose representations are 0002 = 000222222 · · · and 01220 =

0122000000 · · · respectively.

Since the second terms of the representations are different, we get k = 2 . One can obtain αi = 1 for

i ≥ k + 1 = 3 , β3 = β4 = 1 and βi = 0 for i ≥ 5 , γ3 = 1 and γi = 0 for i ≥ 4 , δ3 = δ4 = 0 and δi = 1 for

i ≥ 5 . We then obtain
∞∑
i=3

αi + βi

2i
=

2

23
+

2

24
+

∞∑
i=5

1

2i
=

7

16

and

1

22
+

∞∑
i=3

γi + δi
2i

=
1

4
+

1

23
+

∞∑
i=5

1

2i
=

7

16
,

which says that d(a, b) is the value
7

16
. Notice that two values are equal and it means that there exist at least

two shortest paths between the points.

Indeed, since it is a junction point, the point 0002 has two code representations and one can take the

representation of this point as 0020 . In this case the computation yields k = 2 , αi = 1 for i ≥ 3 , β3 = β4 = 1

and βi = 0 for i ≥ 5 , γ3 = 0 and γi = 1 for i ≥ 4 , δ3 = δ4 = 0 and δi = 1 for i ≥ 5 . This together with an

elementary calculation gives that d(a, b) =
7

16
.

5. A geometrical property of the geodesic metric

In this section, we give a remarkable geometrical property with respect to the intrinsic metric on S . For any

P ∈ S , Cristea and Steinsky showed that

d(P, P0) + d(P, P1) + d(P, P2) = 2

by Proposition 12 in [3] and Viviani’s theorem. In the following proposition, we prove the general case in a

different way.
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Proposition 5.1 Let Sσ be a subtriangle of S and let Pσ0 , Pσ1 , and Pσ2 be vertices of Sσ where σ =

a1a2 . . . an for any n ∈ N. If Pσ is an arbitrary point of Sσ then

d(Pσ, Pσ0) + d(Pσ, Pσ1) + d(Pσ, Pσ2) =
1

2n−1
.

Proof Let us first denote the vertices of Sσ as follows:

Pσ0 = a1a2a3 . . . an000 . . .
Pσ1 = a1a2a3 . . . an111 . . .
Pσ2 = a1a2a3 . . . an222 . . . .

Given an arbitrary point Pσ = a1a2a3 . . . anxn+1xn+2xn+3 . . . of Sσ , notice that xn+1 is equal to one of the

elements of the set {0, 1, 2} . Suppose that xn+1 = 0 (the other cases are done similarly). In this case, we have

the following inequalities:

d(Pσ, Pσ1) ≥
1

2n+1
and d(Pσ, Pσ2) ≥

1

2n+1

owing to the fact that the the terms (n + i)th (for i = 1, 2, . . .) of Pσ1 and Pσ2 are different from the term

xn+1 of Pσ . Let us now consider the term xn+2 of Pσ . In a similar way, if xn+2 = 0 then we obtain the

inequalities as follows:

d(Pσ, Pσ1) ≥
1

2n+1
+

1

2n+2
and d(Pσ, Pσ2) ≥

1

2n+1
+

1

2n+2

since the term xn+2 of Pσ is different from the terms (n + 1)th of Pσ1 and Pσ2 . If we continue this way,

namely xn+i = 0 for i = 1, 2, 3, 4, . . . , then we have the following equalities:

d(Pσ, Pσ0) = 0,

d(Pσ, Pσ1) =
1 + 1

2n+2
+

1 + 1

2n+3
+

1 + 1

2n+4
+ · · · = 1

2n
,

d(Pσ, Pσ2) =
1 + 1

2n+2
+

1 + 1

2n+3
+

1 + 1

2n+4
+ · · · = 1

2n

and we thus obtain the desired result. Assume that there exists at least one s such that xn+s ̸= 0 for

s = 1, 2, 3 . . . . Without loss of generality, we can choose xn+s = 1. Obviously, the term xn+s of Pσ is different

from the terms (n+ s+ i)th of Pσ0 for all i = 1, 2, 3, . . . . In this case, we get

d(Pσ, Pσ0) ≥ 1

2n+s+1
+

1

2n+s+2
+

1

2n+s+3
+ · · · = A,

d(Pσ, Pσ1) ≥ 1 + 1

2n+2
+

1 + 1

2n+3
+ · · ·+ 1 + 1

2n+s−1
+

0 + 1

2n+s
+

1

2n+s+1
+

1

2n+s+2
+ · · · = B,

d(Pσ, Pσ2) ≥ 1 + 1

2n+2
+

1 + 1

2n+3
+ · · ·+ 1 + 1

2n+s−1
+

1 + 1

2n+s
+

1

2n+s+1
+

1

2n+s+2
+ · · · = C.

From now on, for every index n + s + i , exactly two terms of Pσ0 , Pσ1 , and Pσ2 are different from

the term xn+s+i of Pσ where i = 1, 2, 3, . . . . To give an example, let us take xn+s+1 = 2. Since the terms
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(n+ s+ 1)th of Pσ0 and Pσ1 are 0 and 1, respectively, we add
1

2n+s+1
to A ,

1

2n+s+1
to B , and 0 to C . The

computation is similar for xk ∈ {0, 1, 2} where k ≥ n+s+1. It follows that d(Pσ, Pσ0)+d(Pσ, Pσ1)+d(Pσ, Pσ2)

is the sum of A , B , C and

1 + 1

2n+s+1
+

1 + 1

2n+s+2
+

1 + 1

2n+s+3
+ · · · .

With a simple calculation, we get

d(Pσ, Pσ0) + d(Pσ, Pσ1) + d(Pσ, Pσ2) =
1

2n−1

and thus the proof is completed. 2
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