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Abstract: The aim of this paper is to give an alternative solution for the q -kinetic equation involving the Riemann–

Liouville fractional q -integral operator. The solution is obtained in terms of the q -Mittag–Leffler functions using inverse

q -Sumudu transform. As applications, some corollaries are presented to illustrate the main results.
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1. Introduction

Fractional differential equations appear more and more frequently for modeling of relevant systems in several

fields of applied sciences. These equations play important roles not only in mathematics but also in physics,

dynamical systems, control systems, and engineering to create the mathematical models of many physical

phenomena. In particular, the kinetic equations describe the continuity of motion of substance and are the basic

equations of mathematical physics and natural science. Therefore, in the literature we found several papers

that analyze extensions and generalizations of these equations involving various fractional calculus operators.

One may be referred, for example, to such works as those of Zaslavsky [23]; Saichev and Zaslavsky [16]; Saxena

et al. [17], [18], [19]; Haubold et al. [11]; and Chouhan et al. [6].

The fractional q -calculus is the extension of the ordinary fractional calculus in q -theory. Recently

there was a significant increase of activity in the area of q -calculus due to the applications of q -calculus

in mathematics, statistics, and physics. Particularly, q -analysis has found many applications in the theory of

partitions, combinatorics, exactly solvable models in statistical mechanics, computer algebra, geometric function

theory, optimal control problems, q -difference and q -integral equations, and q -transform analysis. A detailed

account of q -analysis can be seen in the works of Slater [20], Exton [7], Gasper and Rahman [9], Kac and

Cheung [13], and Annaby and Mansour [5]. The Sumudu transform was introduced by Watugala [21]. For more

details, one can be referred to Abdi [1] and Hahn [10] for applications of the q -Laplace transform in solving

q -difference equations. Recently, Albayrak et al. [3] introduced q -analogues of the Sumudu transform and

derived certain fundamental properties of q -Sumudu transforms like linearity, shifting theorems, differentiation,

integration, and certain interesting connection theorems involving q -Laplace transforms.

Recently, Garg and Chanchlani [8] solved the following fractional q -kinetic equation by applying the

method of q -Laplace transform and its inverse to obtain the solution in the following closed form:
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Nq (t)−N0fq (t) = −cIαq Nq (t) , c > 0, α > 0, 0 < |q| < 1. (1.1)

The aim of this paper, due to the usefulness and importance of the fractional differential equations in

certain physical problems, is to give an alternative solution method, using q -Sumudu transform, for the q -kinetic

equation (1.1) involving the Riemann–Liouville fractional q -integral operator.

2. Preliminaries and definitions

For convenience, we give here the basic definitions and related details of q -calculus. Throughout this paper,

we will assume that q satisfies the condition 0 < |q| < 1. The q -derivative Dqf of an arbitrary function f is

given by

(Dqf)(x) =
f(x)− f(qx)

(1− q)x
,

where x ̸= 0. Clearly, if f is differentiable, then

lim
q→1−

(Dqf)(x) =
df(x)

dx
.

For any real number α,

[α]q :=
qα − 1

q − 1
.

In particular, if n ∈ N , we denote

[n]q =
qn − 1

q − 1
= qn−1 + · · ·+ q + 1,

and q -binomial coefficients are defined by

[
n

k

]
q

=
[n]q!

[k]q! · [n− k]q!
,

where [n]q! = [n]q [n− 1]q · · · [2]q [1]q . Here and in the following, let C,R , and N be the sets of complex numbers,

real numbers, and positive integers, respectively. For x, y, ν, a, t ∈ R , we have following usual notations:

(a; q)n =


n−1∏
k=0

(
1− aqk

)
if n ∈ N

1 if n = 0

,

(a; q)∞ =

∞∏
k=0

(
1− aqk

)
,

(a; q)t =
(a; q)∞
(aqt; q)∞

,

(x− y)
ν
q = xν (y/x; q)ν = xν (y/x; q)∞

(y/xqν ; q)∞
.
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The q -analogues of the classical exponential function are defined by

eq(t) =

∞∑
n=0

tn

(q; q)n
=

1

(t; q)∞
, |t| < 1, (2.1)

Eq(t) =

∞∑
n=0

(−1)nqn(n−1)/2tn

(q; q)n
= (t; q)∞. (2.2)

q -Analogues of generalized Mittag–Leffler type functions are defined by Prabhakar [15] and by Wiman [22]

respectively as follows:

Eγ
α,β (z; q) =

∞∑
n=0

(qγ ; q)n zn

Γq (αn+ β) [n]q!
, (2.3)

and

Eα,β (z; q) =
∞∑

n=0

zn

Γq (αn+ β)
, (2.4)

where α > 0;β, γ, z ∈ C.
The Jackson definite integral of the function f is defined by (see [12])∫ x

0

f(t)dqt = a(1− q)
∞∑
k=0

qkf(aqk), a ∈ R. (2.5)

The q -gamma function is defined by

Γq (x) =
(q; q)∞
(qx; q)∞

(1− q)
1−x

=
(q; q)x−1

(1− q)
x−1 , (2.6)

and it is well known that
lim

q→1−
Γq (α) = Γ (α) .

The q -gamma and the q -beta function have the following properties (see Kac and Sole [14]) :

Γq (α) =

∫ 1/(1−q)

0

xα−1Eq (q (1− q)x) dqx (α > 0) , (2.7)

Bq (t; s) =

∫ 1

0

xt−1 (1− qx)
s−1
q dqx (t, s > 0) , (2.8)

Bq (t; s) =
Γq (t) Γq (s)

Γq (t+ s)
(t, s > 0) . (2.9)

The Riemann–Liouville fractional q -integral operator was introduced by Al-Salam [4] and also given

independently by Agarwal [2] (for more details, see [5]):

Iαq f (t) :=
tα−1

Γq (α)

∫ t

0

(qz/t; q)α−1 f (z) dqz, Re (α) > 0, (2.10)

where α /∈ {−1,−2, . . . }.
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Definition 2.1 (see [3] ): The first type of q -analogue of the Sumudu transform will be denoted by Sq and

defined as follows:

Sq {f (t) ; s} =
1

(1− q) s

∫ s

0

Eq

(q
s
t
)
f (t) dqt, s ∈ (−τ1, τ2) (2.11)

= (q; q)∞

∞∑
k=0

qkf
(
sqk
)

(q; q)k
(2.12)

over the set of functions

A =
{
f(t)|∃M, τ1, τ2 > 0, |f(t)| < MEq (|t| /τj) , t ∈ (−1)j × [0,∞)

}
.

The q -Sumudu transforms of some special functions that we use in the sequel are given as follows:

Sq

{
xα−1; s

}
= sα−1 (1− q)

α−1
Γq (α) , (Re(α) > 0) (2.13)

and

Sq

{
1− q

t
Eα,0 (−ctα; q) ; s

}
=

1

s (1 + csα (1− q)
α
)
. (2.14)

Albayrak et al. [3] gave the q -Sumudu convolution theorem as follows:

Sq {(f ∗q g) (x) ; s} = sSq {f (x) ; s}Sq {g (x) ; s} (2.15)

where f ∗q g is the q -convolution of two analytic functions f(t) and g(t) defined as

(f ∗q g) (t) =
t

1− q

∫ 1

0

f (tx) g [t (1− qx)] dqx (2.16)

where g(t) =
∞∑
k=0

ant
n and

g[t− x] =
∞∑
k=0

an(t− x)nq .

3. Main theorem

We start this section with a lemma that gives a functional relation involving the Riemann–Liouville fractional

q -integral operator and the q -Sumudu transforms.

Lemma 3.1 The q -Sumudu transform of the Riemann–Liouville fractional q -integral operator:

Sq{Iαq f (t) ; s} = sα (1− q)
α
Sq {f (t) ; s} , (3.1)

where the Riemann–Liouville fractional q -integral operator is as in (2.10).

Proof Applying the q -Sumudu transform to both sides of (2.10) and then making use of (2.15) and the known

formula (2.13), one can easily find

Sq{Iαq f (t) ; s} = sα (1− q)
α
Sq {f (t) ; s} .
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Now we give our main theorem, which involves an analytical solution of the fractional q -kinetic equation.
2

Theorem 3.1 The solution of the q -kinetic equation (1.1) involving the Riemann–Liouville fractional q -integral

operator is

Nq (t) = N0

∫ t

0

fq [t− qu]u−1Eα,0 (−cuα; q) dqu, (3.2)

where c > 0, α > 0, 0 < |q| < 1.

Proof Let us denote Sq{fq (t) , s} = F (s) and Sq{Nq (t) , s} = N (s). Applying the q -Sumudu transform to

both sides of the equation (1.1) and then using identity (3.1), we get

N (s)−N0F (s) = −csα (1− q)
α
N (s)

and therefore

N(s) =
N0F (s)

1 + csα (1− q)
α . (3.3)

If we take the inverse q -Sumudu transform of (3.3) and then make use of (2.14) and the convolution theorem

for Sq -transform (2.15) , we get

S−1
q {N(s); t} = S−1

q

{
N0sSq {fq (t) ; s}Sq

{
(1− q) t−1Eα,0 (−ctα; q) ; s

}
; t
}
,

Nq (t) = N0

∫ t

0

fq [t− qu]u−1Eα,0 (−cuα; q) dqu.

2

4. Special cases

We give some examples as the special cases of our result given in the previous section.

Corollary 4.1 For µ > 0 , the solution of the fractional q -kinetic equation

Nq (t)−N0t
µ−1 = −cIαq Nq (t) (4.1)

is given by

Nq (t) = N0Γq (µ) t
µ−1Eα,µ (−ctα; q) . (4.2)

Proof If we set f (t) = tµ−1 (µ > 0) in the solution (3.2), then we have

Nq (t) = N0

∫ t

0

(t− qu)
µ−1
q u−1Eα,0 (−cuα; q) dqu.

Using the definition (2.4) of the Mittag–Leffler type function, we find

Nq (t) = N0

∫ t

0

(t− qu)
µ−1
q u−1

∞∑
n=0

(−cuα)
n

Γ (αn)
dqu.
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Interchanging the order of integration and summation, we have

Nq (t) = N0

∞∑
n=0

(−c)
n

Γ (αn)

∫ t

0

(t− qu)
µ−1
q uαn−1dqu.

If we make the change of variable u = tx, then we obtain

Nq (t) = N0

∞∑
n=0

(−c)
n

Γ (αn)

∫ 1

0

(t− qtx)
µ−1
q (tx)

αn−1
tdqx

= N0t
µ−1

∞∑
n=0

(−ctα)
n

Γ (αn)

∫ 1

0

(1− qx)
µ−1
q xαn−1dqx.

Hence, we find from (2.8) and (2.9)

Nq (t) = N0t
µ−1

∞∑
n=0

(−ctα)
n

Γ (αn)
β (µ;αn)

= N0Γ (µ) tµ−1
∞∑

n=0

(−ctα)
n

Γ (αn+ µ)
,

and using the definition (2.4) of the Mittag–Leffler type function, we get

Nq (t) = N0Γ (µ) tµ−1Eα,µ (−ctα; q) .

2

Corollary 4.2 If we choose fq (t) = tµ−1Eγ
α,µ (−ctα; q) in (1.1) , then the solution of the fractional q -kinetic

equation

Nq (t)−N0t
µ−1Eγ

α,µ (−ctα; q) = −cIαq Nq (t) (4.3)

is given by

Nq (t) = N0t
µ−1

∞∑
k=0

(qγ ; q)k (−ctα)
k

[k]q!
Eα,αk+µ (−ctα; q) . (4.4)

Proof If we set

fq (t) = tµ−1Eγ
α,µ (−ctα; q)

=
∞∑
k=0

(qγ ; q)k (−c)
k

Γq (αk + µ) [k]q!
tµ+αk−1

in the solution (3.2), then we have

Nq (t) = N0

∫ t

0

∞∑
k=0

(qγ ; q)k (−c)
k

Γq (αk + µ) [k]q!
(t− qu)

µ+αk−1
q u−1Eα,0 (−cuα; q) dqu.
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Making use of (2.4) we obtain,

Nq (t) = N0

∫ t

0

∞∑
k=0

(qγ ; q)k (−c)
k

Γq (αk + µ) [k]q!
(t− qu)

µ+αk−1
q u−1

∞∑
n=0

(−cuα)
n

Γq (αn)
dqu.

Interchanging the order of integration and summations, we have

Nq (t) = N0

∞∑
k=0

(qγ ; q)k (−c)
k

Γq (αk + µ) [k]q!

∞∑
n=0

(−c)
n

Γq (αn)

∫ t

0

(t− qu)
µ+αk−1
q u−1+αndqu.

If we make the change of variable u = tx , then we obtain

Nq (t) = N0

∞∑
k=0

(qγ ; q)k (−c)
k

Γq (αk + µ) [k]q!

∞∑
n=0

(−c)
n

Γq (αn)

∫ 1

0

(t− qtx)
µ+αk−1
q (tx)

−1+αn
tdqx

= N0t
µ−1

∞∑
k=0

(qγ ; q)k (−ctα)
k

Γq (αk + µ) [k]q!

∞∑
n=0

(−ctα)
n

Γq (αn)

∫ 1

0

(1− qx)
µ+αk−1
q xαn−1dqx.

Hence, we find from (2.8) and (2.9)

Nq (t) = N0t
µ−1

∞∑
k=0

(qγ ; q)k (−ctα)
k

[k]q!

∞∑
n=0

(−ctα)
n

Γq (αk + µ+ αn)
.

Finally, in view of the definition of the q -analogue of the generalized Mittag–Leffler function defined by (2.3),

we have

Nq (t) = N0t
µ−1

∞∑
k=0

(qγ ; q)k (−ctα)
k

[k]q!
Eα,αk+µ (−ctα; q) .

2

Corollary 4.3 If we choose α = 1 in (1.1) , then the solution of the fractional q -kinetic equation

Nq (t)−N0fq (t) = −cIqNq (t) (4.5)

is given by

Nq (t) = −cN0

∫ t

0

fq [t− qu] eq (− (1− q)u) dqu. (4.6)

Proof If we set α = 1 in the solution (3.2), then we have

Nq (t) = N0

∫ t

0

fq [t− qu]u−1E1,0 (−cu; q) dqu.
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Using the definition of the q -analogue of the generalized Mittag–Leffler function and the q -gamma function

defined by (2.4) and (2.6), we have

Nq (t) = N0

∫ t

0

fq [t− qu]u−1

( ∞∑
n=1

(−cu)
n

Γq (n)

)
dqu

= N0

∫ t

0

fq [t− qu]u−1

( ∞∑
n=1

(−cu)
n
(1− q)

n−1

(q; q)n−1

)
dqu

= −cN0

∫ t

0

fq [t− qu]

( ∞∑
n=0

(−u)
n
(1− q)

n

(q; q)n

)
dqu.

Thus, from the definition of the q -analogue of the classical exponential function given by (2.1) , we find

Nq (t) = −cN0

∫ t

0

fq [t− qu] eq (− (1− q)u) dqu.

2

5. Conclusions

Although the q -Sumudu transform is the theoretical dual of the q -Laplace transform, it has many applications in

sciences and engineering for its special fundamental properties. This paper infers that the q -Sumudu transform

has a very interesting property with the Riemann–Liouville fractional q -integral operator, which makes it easy

to visualize. Therefore, we conclude this paper by remarking that the q -Sumudu transform method is a very

effective and convenient alternative method for solving fractional q -differential equations.
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