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1. Introduction

The generalized hypergeometric function pFq with p numerator and q denominator parameters is defined by

(see, for example [19, Chapter 4]; see also [25, pp. 71-72])

pFq

[
α1, . . . , αp;
β1, . . . , βq;

z

]
= pFq[α1, . . . , αp;β1, . . . , βq; z]

=

∞∑
n=0

(α1)n · · · (αp)n
(β1)n · · · (βq)n

zn

n!
, (1.1)

(
p ≤ q and |z| < ∞; p = q + 1 and |z| < 1; p = q + 1, |z| = 1 and ℜ(ω) > 0

)
where

ω :=

q∑
j=1

βj −
p∑

j=1

αj

and (α)n denotes the Pochhammer symbol defined in terms of the gamma function by

(α)n :=
Γ(α+ n)

Γ(α)
=

{
α(α+ 1) · · · (α+ n− 1) (n ∈ N;α ∈ C)
1 (n = 0;α ∈ C \ {0}).

It is interesting to mention here that whenever a hypergeometric function 2F1 or a generalized hyperge-

ometric function pFq reduces to gamma functions, the results are very important from the applications point
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of view. Thus, the classical summation theorems such as those of Gauss, Kummer, and Bailey for the series

2F1 ; Watson, Dixon, Whipple, and Saalschütz for the series 3F2 ; and others play a key role in the theory of

generalized hypergeometric series. Until 1991, only a few summation theorems for the series 2F1 and 3F2 were

available.

Applications of the above mentioned classical summation theorems are well known now.

During 1992–1996, in a series of three research papers, Lavoie et al. [11–13] established the generalizations

of the above mentioned classical summation theorems and obtained a large number of special cases and limiting

cases of their findings. Later on, Lewanowicz [14] and Vidunas [26] obtained further generalizations of Watson’s

and Kummer’s summation theorems, respectively.

In 2010–2011, Rakha and Rathie [20] and Kim et al. [9] generalized and extended the above mentioned

classical summation theorems in the most general form.

In our present investigation, we are interested in Gauss’s second summation theorem and Watson’s

summation theorem [2], given respectively by the following:

2F1

[
a, b;
1
2 (a+ b+ 1);

1

2

]
=

Γ
(
1
2

)
Γ
(
1
2a+ 1

2b+
1
2

)
Γ
(
1
2a+ 1

2

)
Γ
(
1
2b+

1
2

) (1.2)

and

3F2

[
a, b, c;
1
2 (a+ b+ 1), 2c;

1

]
=

Γ
(
1
2

)
Γ
(
c+ 1

2

)
Γ
(
1
2a+ 1

2b+
1
2

)
Γ
(
c− 1

2a− 1
2b+

1
2

)
Γ
(
1
2a+ 1

2

)
Γ
(
1
2b+

1
2

)
Γ
(
c− 1

2a+ 1
2

)
Γ
(
c− 1

2b+
1
2

) , (1.3)

provided that ℜ(2c− a− b) > −1 as well as their extensions [9] given by

3F2

[
a, b, d+ 1;
1
2 (a+ b+ 3), d;

1

2

]
=
Γ
(
1
2

)
Γ
(
1
2a+ 1

2b+
3
2

)
Γ
(
1
2a− 1

2b−
1
2

)
Γ
(
1
2a− 1

2b+
3
2

)
·

(
1
2 (a+ b− 1)− ab

d

Γ
(
1
2a+ 1

2

)
Γ
(
1
2b+

1
2

) + a+b+1
d − 2

Γ
(
1
2a
)
Γ
(
1
2b
)) (1.4)

provided that d ̸= 0,−1,−2, · · · , and

4F3

[
a, b, c, d+ 1;
1
2 (a+ b+ 1), 2c+ 1, d;

1

]
=

2a+b−2 Γ
(
c+ 1

2

)
Γ
(
1
2a+ 1

2b+
1
2

)
Γ
(
c− 1

2a− 1
2b+

1
2

)
Γ
(
1
2

)
Γ (a) Γ (b)

·

(
Γ
(
1
2a
)
Γ
(
1
2b
)

Γ
(
c− 1

2a+ 1
2

)
Γ
(
c− 1

2b+
1
2

) + (2c− d

d

)
Γ
(
1
2a+ 1

2

)
Γ
(
1
2b+

1
2

)
Γ
(
c− 1

2a+ 1
)
Γ
(
c− 1

2b+ 1
)) (1.5)

provided that ℜ(2c− a− b) > −1 and d ̸= 0,−1,−2, · · · .

Remark 1 For different proofs of Watson’s theorems, we refer the reader to [4, 15, 23, 27, 28].

Remark 2 Kim et al. [9] established the extension (1.5) of the classical Watson’s theorem by using the

contiguous functions relation together with contiguous summation theorems.

Now we shall mention some of the useful applications of the classical Watson’s summation theorem (1.3).

In 1928, by employing the classical Watson’s summation theorem (1.3), Bailey [1] established the following

interesting result involving the product of a hypergeometric function:
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1F1

[
α;
2α;

x

]
× 1F1

[
β;
2β;

− x

]
= 2F3

[
1
2 (α+ β), 1

2 (α+ β + 1);
α+ 1

2 , β + 1
2 , α+ β;

x2

4

]
. (1.6)

For β = α , the last result reduces to the following well-known Preece’s identity [17]:

1F1

[
α;
2α;

x

]
× 1F1

[
α;
2α;

− x

]
= 1F2

[
α;
α+ 1

2 , 2α;

x2

4

]
. (1.7)

For a short proof of (1.6), (1.7), and other interesting contiguous results, we refer the reader to [21, 22].

Also, from (1.7), it is easy to deduce that

e−
x
2 1F1

[
α;
2α;

x

]
= 0F1

[
;

α+ 1
2 ;

x2

16

]
, (1.8)

which is Kummer’s second theorem [19].

In the same paper, using Watson’s summation theorem, Bailey [1] obtained the following quadratic

transformation due to Gauss [3, 19]:

(1 + x)−2a
2F1

[
a, b;
2b;

4x

(1 + x)2

]
= 2F1

[
a, a− b+ 1

2 ;
b+ 1

2 ;
x2

]
. (1.9)

From (1.9), the following results can be obtained and are recorded in [19]:

2F1

[
γ, γ + 1

2 ;
2γ;

z

]
= (1− z)−

1
2

[
2

1 +
√
1− z

]2γ−1

(1.10)

and

2F1

[
γ, γ − 1

2 ;
2γ;

z

]
=

(
2

1 +
√
1− z

)2γ−1

. (1.11)

Using (1.10) and (1.11), Saad and Hall [24] obtained the following elementary but interesting and useful

results:

∫ ∞

0

ta−1 e−ht
1F1

[
a+ 1

2 ;
2a;

kt

]
dt =

Γ(a)

ha

(
1− k

h

)− 1
2

 2

1 +
√

1− k
h

2a−1

, (1.12)

∫ ∞

0

ta−
1
2 e−ht

1F1

[
a;
2a;

kt

]
dt =

Γ
(
a+ 1

2

)
ha+ 1

2

(
1− k

h

)− 1
2

 2

1 +
√
1− k

h

2a−1

, (1.13)

∫ ∞

0

ta e−ht
1F1

[
a+ 1

2 ;
2a+ 1;

kt

]
dt =

Γ (a+ 1)

ha+1

(
1− k

h

)− 1
2

 2

1 +
√

1− k
h

2a

, (1.14)
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∫ ∞

0

ta−
1
2 e−ht

1F1

[
a+ 1;
2a+ 1;

kt

]
dt =

Γ
(
a+ 1

2

)
ha+ 1

2

(
1− k

h

)− 1
2

 2

1 +
√
1− k

h

2a

, (1.15)

∫ ∞

0

ta−1 e−ht
1F1

[
a− 1

2 ;
2a;

kt

]
dt =

Γ (a)

ha

 2

1 +
√

1− k
h

2a−1

, (1.16)

∫ ∞

0

ta−
3
2 e−ht

1F1

[
a;
2a;

kt

]
dt =

Γ
(
a− 1

2

)
ha− 1

2

 2

1 +
√
1− k

h

2a−1

, (1.17)

∫ ∞

0

ta−1 e−ht
1F1

[
a+ 1

2 ;
2a+ 1;

kt

]
dt =

Γ (a)

ha

 2

1 +
√

1− k
h

2a

, (1.18)

and

∫ ∞

0

ta−
1
2 e−ht

1F1

[
a;
2a+ 1;

kt

]
dt =

Γ
(
a+ 1

2

)
ha+ 1

2

 2

1 +
√
1− k

h

2a

, (1.19)

where |k| < |h| .
Next, in 2003, Krattenthaler and Rao [10] discovered the following new hypergeometric identity by

employing (1.9) and by making use of the so-called Beta integral method:

4F3

[
a, b, e, 1− f ;
2b, 1

2 − 1
2f + 1

2e, 1−
1
2f + 1

2e;
1

]
=

Γ(f)Γ(f − e+ 2a)

Γ (f − e) Γ (f + 2a)
4F3

[
a, a− b+ 1

2 ,
1
2e,

1
2e+

1
2 ;

b+ 1
2 ,

1
2f + a, 1

2f + a+ 1
2 ;

1

]
, (1.20)

provided that a or e be a nonpositive integer.

On the other hand, it is worth noting that for every hypergeometric identity, we can evaluate a number

of integrals involving the hypergeometric function and the logarithmic function. In this sequel, among other

results, the classical Watson’s summation theorem (1.3) can be employed. Brychkov [5], in 2002, evaluated

several interesting finite integrals involving the hypergeometric function and the logarithmic function.

Very recently, Choi and Rathie [6] evaluated some single integrals involving the hypergeometric function

and logarithmic function (including those obtained by Brychkov [5]) in terms of psi and zeta functions suitable

for numerical computations. Here are two of the results they obtained:

∫ 1

0

tc−1(1− t)c−1
2F1

[
a, b;
1
2 (a+ b+ 1);

t

]
dt =

21−2c π Γ(c)Γ
(
1
2a+ 1

2b+
1
2

)
Γ
(
c− 1

2a− 1
2b+

1
2

)
Γ
(
1
2a+ 1

2

)
Γ
(
1
2b+

1
2

)
Γ
(
c− 1

2a+ 1
2

)
Γ
(
c− 1

2b+
1
2

) (1.21)
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provided that ℜ(c) > 0 and ℜ(2c− a− b) > −1 and∫ 1

0

tc−1(1− t)c−1 lnn
(
t− t2

)
2F1

[
a, b;
1
2 (a+ b+ 1);

t

]
dt

=
2 π Γ

(
1
2a+ 1

2b+
1
2

)
Γ
(
1
2a+ 1

2

)
Γ
(
1
2b+

1
2

) n−1∑
r=0

(
n− 1

r

)
∂r A

∂cr
· ∂n−r−1

∂cn−r−1
B, (1.22)

where

A =
2−2c Γ(c)Γ

(
c− 1

2a− 1
2b+

1
2

)
Γ
(
c− 1

2a+ 1
2

)
Γ
(
c− 1

2b+
1
2

) , (1.23)

∂

∂c
A = A ·B, (1.24)

B = −2 ln 2 + Ψ(c) + Ψ

(
c− 1

2
a− 1

2
b+

1

2

)
−Ψ

(
c− 1

2
a+

1

2

)
−Ψ

(
c− 1

2
b+

1

2

)
, (1.25)

∂n

∂cn
A =

n−1∑
r=0

(
n− 1

r

)
∂r

∂cr
A · ∂n−r−1

∂cn−r−1
B, (1.26)

and

∂n−r−1

∂cn−r−1
B =(−1)n−r(n− r − 1)!

{
ζ(n− r, c) + ζ

(
n− r, c− 1

2
a− 1

2
b+

1

2

)
− ζ

(
n− r, c− 1

2
a+

1

2

)
− ζ

(
n− r, c− 1

2
b+

1

2

)}
. (1.27)

Following on similar lines, Gaboury and Rathie [8], with the help of Watson’s summation theorem,

obtained eight results related to double finite integrals involving the hypergeometric function and logarithmic

function. Here are two of their results:∫ 1

0

∫ y

0

zc−1(1− z)c−2
2F1

[
a, b;
1
2 (a+ b+ 1);

z

]
dz dy

=
π 21−2c Γ (c) Γ

(
1
2a+ 1

2b+
1
2

)
Γ
(
c− 1

2a− 1
2b+

1
2

)
Γ
(
1
2a+ 1

2

)
Γ
(
1
2b+

1
2

)
Γ
(
c− 1

2a+ 1
2

)
Γ
(
c− 1

2b+
1
2

) , (1.28)

provided that ℜ(c) > 1 and ℜ(2c− a− b) > −1, and∫ 1

0

∫ y

0

zc−1(1− z)c−2 lnn
(
z − z2

)
2F1

[
a, b;
1
2 (a+ b+ 1);

z

]
dz dy

=
2 π Γ

(
1
2a+ 1

2b+
1
2

)
Γ
(
1
2a+ 1

2

)
Γ
(
1
2b+

1
2

) · n−1∑
r=0

(
n− 1

r

)
∂r

∂cr
A · ∂n−r−1

∂cn−r−1
B (1.29)
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where

A =
2−2c Γ(c)Γ

(
c− 1

2a− 1
2b+

1
2

)
Γ
(
c− 1

2a+ 1
2

)
Γ
(
c− 1

2b+
1
2

) , (1.30)

∂

∂c
A = A ·B, (1.31)

B = −2 ln 2 + Ψ(c) + Ψ

(
c− 1

2
a− 1

2
b+

1

2

)
−Ψ

(
c− 1

2
a+

1

2

)
−Ψ

(
c− 1

2
b+

1

2

)
, (1.32)

∂n

∂cn
A =

n−1∑
r=0

(
n− 1

r

)
∂r

∂cr
A · ∂n−r−1

∂cn−r−1
B, (1.33)

and

∂n−r−1

∂cn−r−1
B =(−1)n−r(n− r − 1)!

{
ζ(n− r, c) + ζ

(
n− r, c− 1

2
a− 1

2
b+

1

2

)
− ζ

(
n− r, c− 1

2
a+

1

2

)
− ζ

(
n− r, c− 1

2
b+

1

2

)}
. (1.34)

For other integrals of this type, see [8].

The remainder of this paper is organized as follows. In Section 2, we establish a natural generalization

of the Bailey’s hypergeometric identity (1.6) involving the product of two generalized hypergeometric functions

and we discuss some interesting special cases. In Section 3, we aim to provide the extension of the quadratic

transformation (1.9) due to Bailey and to give a large number of special cases and applications. In this section,

we also establish an extension of an hypergeometric identity (1.20) given by Krattenthaler and Rao [10]. Section

4 is devoted to the obtainment of three new classes of integrals involving the generalized hypergeometric function.

Next, in Section 5, these new classes of integrals are used to evaluate integrals involving the generalized

hypergeometric function and logarithmic function in terms of psi and Hurwitz zeta functions. Finally, in

Sections 6 and 7, we obtain similar results for double integrals using an interesting result due to Edwards [7].

We conclude this section by remarking that the results established in this paper are simple, interesting, and

easily obtainable and may be potentially useful.

2. Generalization of Bailey’s identity for the product of two generalized hypergeometric functions

In this section, we shall prove a natural generalization of Bailey’s identity (1.6) and give some special cases.

Theorem 1 The following natural generalization of Bailey’s identity (1.6) holds true:

1F1

[
α;
2α;

x

]
× 2F2

[
β, d+ 1;
2β + 1, d;

− x

]
=2F3

[
1
2 (α+ β), 1

2 (α+ β + 1);
α+ 1

2 , β + 1
2 , α+ β;

x2

4

]

−
x
(

2β
d − 1

)
2(2β + 1)

2F3

[
1
2 (α+ β + 1), 1

2 (α+ β + 2);
α+ 1

2 , β + 3
2 , α+ β + 1;

x2

4

]
. (2.1)
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Proof In order to prove (2.1), we proceed as follows. Let

1F1

[
α;
2α;

x

]
× 2F2

[
β, d+ 1;
2β + 1, d;

− x

]
=

∞∑
n=0

a2nx
2n +

∞∑
n=0

a2n+1x
2n+1. (2.2)

Now, in the product

1F1

[
α;
2α;

x

]
× 2F2

[
β, d+ 1;
2β + 1, d;

− x

]
, (2.3)

it is not difficult to see that the coefficient an of xn in the product, after some simplifications, is obtained as

an =
(α)n

(2α)n n!
4F3

[
−n, 1− n− 2α, β, d+ 1;
1− n− α, 2β + 1, d;

1

]
. (2.4)

Changing n to 2n and using (1.5), we get after simple simplifications

a2n =

(
1
2 (α+ β)

)
n

(
1
2 (α+ β + 1)

)
n(

α+ 1
2

)
n

(
β + 1

2

)
n
(α+ β)n 22n n!

. (2.5)

Similarly, in (2.4), changing n to 2n+ 1 and using (1.5) again gives

a2n+1 = −

(
2β
d − 1

)
2(2β + 1)

·
(
1
2 (α+ β + 1)

)
n

(
1
2 (α+ β + 2)

)
n(

α+ 1
2

)
n

(
β + 3

2

)
n
(α+ β + 1)n 22n n!

. (2.6)

Finally, substituting the values of a2n and a2n+1 in (2.2) and summing up the two series, we easily arrive at

the right-hand side of (2.1). 2

Let us give two special cases of the generalization of Bailey’s identity (2.1). If we set d = 2β in (2.1), we

at once get Bailey’s identity (1.6). Setting β = α in (2.1), we obtain the following presumably new identity:

1F1

[
α;
2α;

x

]
× 2F2

[
α, d+ 1;
2α+ 1, d;

− x

]
= 1F2

[
α;
α+ 1

2 , 2α;

x2

4

]
−
x
(
2α
d − 1

)
2(2α+ 1)

1F2

[
α+ 1;
α+ 3

2 , 2α+ 1;

x2

4

]
.

(2.7)

Furthermore, if we put d = 2α in (2.7), we obtain Preece’s identity (1.7).

3. Extension of Bailey’s quadratic transformation

In this section, we shall prove an extension of Bailey’s quadratic transformation (1.9) and we derive several

consequences and special cases.

Theorem 2 The following transformation formula holds true:

(1− x)−2a
3F2

[
a, b, d+ 1;
2b+ 1, d;

− 4x

(1− x)2

]
= 2F1

[
a, a− b+ 1

2 ;
b+ 1

2 ;
x2

]

− 2a(2b− d)x

d(2b+ 1)
2F1

[
a+ 1, a− b+ 1

2 ;
b+ 3

2 ;
x2

]
. (3.1)
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Proof Let

(1− x)−2a
3F2

[
a, b, d+ 1;
2b+ 1, d;

− 4x

(1− x)2

]
=

∞∑
n=0

a2nx
2n +

∞∑
n=0

a2n+1x
2n+1. (3.2)

In the product

(1− x)−2a
3F2

[
a, b, d+ 1;
2b+ 1, d;

− 4x

(1− x)2

]
, (3.3)

it is not difficult to see that the coefficient an of xn in the product, after some simplifications, is obtained as

an =
(2a)n
n!

4F3

[
−n, n+ 2a, b, d+ 1;
a+ 1

2 , 2b+ 1, d;
1

]
. (3.4)

Now, changing n to 2n and using (1.5), we find, after simple simplifications, that

a2n =
(a)n

(
a− b+ 1

2

)
n(

b+ 1
2

)
n
n!

. (3.5)

Similarly, in (3.4), changing n to 2n+ 1 and using (1.5) again yields

a2n+1 = −2a(2b− d)

d(2b+ 1)
·
(a+ 1)n

(
a− b+ 1

2

)
n(

b+ 3
2

)
n
n!

. (3.6)

Substituting the values of a2n and a2n+1 in (3.2) and summing up the two series, we easily arrive at the

right-hand side of (3.1). 2

It is quite easy to see that setting d = 2b in (3.1) leads us to the quadratic transformation (1.9).

Replacing x by x
a in (3.1) and taking the limit as a → ∞ , we obtain

e−2x
2F2

[
b, d+ 1;
2b+ 1, d;

4x

]
= 0F1

[
;

b+ 1
2 ;

x2

]
+

2(2b− d)x

2b+ 1
0F1

[
;

b+ 3
2 ;

x2

]
, (3.7)

which is a known result obtained by Rathie and Pogany [16] by other means.

Further, if we take d = 2b in (3.7) and if we replace x by x
4 , we recover Kummer’s second theorem (1.8).

Thus, equation (3.7) can be regarded as the generalization of Kummer’s second theorem.

Let us deduce some interesting special cases of (3.1). First of all, changing x to −x in (3.1), we have

(1 + x)−2a
3F2

[
a, b, d+ 1;
2b+ 1, d;

4x

(1 + x)2

]
= 2F1

[
a, a− b+ 1

2 ;
b+ 1

2 ;
x2

]

+
2a(2b− d)x

2b+ 1
2F1

[
a+ 1, a− b+ 1

2 ;
b+ 3

2 ;
x2

]
. (3.8)

Now, let z = 4x
(1+x)2 , a = γ + 1

2 and b = γ . Then, after some simplifications, we find

3F2

[
γ, γ + 1

2 , d+ 1;
2γ + 1, d;

z

]
=(2γ − d)(1− z)−

1
2

(
2

1 +
√
1− z

)2γ

+ (1− 2γ + d)(1− z)−
1
2

(
2

1 +
√
1− z

)2γ−1

. (3.9)
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If we set d = 2γ in (3.9), we recover (1.10) and, thus, equation (3.9) can be viewed as the generalization of

(1.10).

Also, if we put z = 4x
(1+x)2 , a = γ − 1

2 and b = γ in (3.8), then we obtain

3F2

[
γ, γ − 1

2 , d+ 1;
2γ + 1, d;

z

]
=

(
2γ − 1

2γ + 1

)
(2γ − d)

(
2

1 +
√
1− z

)2γ

+

[
1− (2γ − d)

(
2γ − 1

2γ + 1

)](
2

1 +
√
1− z

)2γ−1

. (3.10)

Letting d = 2γ in (3.10) leads us to (1.11). Thus, equation (3.10) can be viewed as the generalization of (1.11).

Here, as an application of our new identity (3.1), we shall establish the following result, which is given

in the form of a theorem.

Theorem 3 Let a or e be a nonpositive integer. Then the following identity holds true:

5F4

[
a, b, d+ 1, e, 1− f ;

2b+ 1, d, 1
2 − 1

2f + 1
2e, 1− 1

2f + 1
2e;

1

]
=

Γ(f)

Γ(e)Γ(f − e)

{
Γ(e)Γ(f − e+ 2a)

Γ(f + 2a)

· 4F3

[
a, a− b+ 1

2 ,
1
2e,

1
2e+

1
2 ;

b+ 1
2 ,

1
2f + a, 1

2f + a+ 1
2 ;

1

]
− 2a(2b− d)

d(2b+ 1)

Γ(e+ 1)Γ(f − e+ 2a)

Γ(f + 1 + 2a)

· 4F3

[
a+ 1, a− b+ 1

2 ,
1
2e+

1
2 ,

1
2e+ 1;

b+ 3
2 ,

1
2f + a+ 1

2 ,
1
2f + a+ 1;

1

]}
. (3.11)

Proof In order to prove the result (3.11), we proceed as follows. First of all, assume that a is a nonpositive

integer. Now multiply the left-hand side of (3.1) by xe−1(1 − x)f−e−1 , where we temporarily suppose that

ℜ(f) > ℜ(e) > 0, and integrating the resulting equation with respect to x from 0 to 1, expressing the involved

3F2 as a series, changing the order of integration and summation, which is easily seen to be justified due to the

uniform convergence of the involved series, and denoting it by S1 , we have

S1 =

∞∑
n=0

(a)n(b)n(d+ 1)n(−1)n 22n

(2b+ 1)n(d)n n!

∫ 1

0

xe+n−1(1− x)f−e−2n−1dx. (3.12)

Evaluating the beta integral and using the identity

Γ(α− n) =
(−1)n Γ(α)

(1− α)n
, (3.13)

we find after simple calculations

S1 =
Γ(e)Γ(f − e)

Γ(f)

∞∑
n=0

(a)n(b)n(d+ 1)n(e)n(1− f)n

(2b+ 1)n(d)n
(
1
2 + 1

2e−
1
2f
)
n

(
1 + 1

2e−
1
2f
)
n
n!
, (3.14)

which can be written in the form

S1 =
Γ(e)Γ(f − e)

Γ(f)
5F4

[
a, b, d+ 1, e, 1− f ;

2b+ 1, d, 1
2 − 1

2f + 1
2e, 1− 1

2f + 1
2e;

1

]
. (3.15)
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Now, multiplying the right-hand side of (3.1) by xe−1(1 − x)f−e−1 , and proceeding essentially in the way as

above and denoting it by S2 , gives after simple calculations

S2 =
Γ(e)Γ(f − e+ 2a)

Γ(f + 2a)
4F3

[
a, a− b+ 1

2 ,
1
2e,

1
2e+

1
2 ;

b+ 1
2 ,

1
2f + a, 1

2f + a+ 1
2 ;

1

]
− 2a(2b− d)

d(2b+ 1)

Γ(e+ 1)Γ(f − e+ 2a)

Γ(f + 1 + 2a)

· 4F3

[
a+ 1, a− b+ 1

2 ,
1
2e+

1
2 ,

1
2e+ 1;

b+ 3
2 ,

1
2f + a+ 1

2 ,
1
2f + a+ 1;

1

]
. (3.16)

Finally, equating (3.15) and (3.16), the asserted result (3.11) follows. 2

Note that setting d = 2b in (3.11), we recover the known result (1.20) due to Krattenthaler and Rao [10].

We conclude this section by giving some applications of results (3.9) and (3.10). To this end, let us first

state an integral formula that is not difficult to prove, that is,∫ ∞

0

td−1e−ht
2F2

[
a, e+ 1;
b+ 1, e;

kt

]
dt =

Γ(d)

hd 3F2

[
a, d, e+ 1;
b+ 1, e;

k

h

]
, (3.17)

provided that ℜ(d) > 0, |k| < |h| and e ̸= 0,−1,−2, · · · .
Upon taking suitable values and applying the result (3.9), it is quite easy to see that the following relations

can be obtained from equation (3.17):

∫ ∞

0

ta−1e−ht
2F2

[
a+ 1

2 , e+ 1;
2a+ 1, e;

kt

]
dt =

Γ(a)

ha

[
(2a− e)

(
1− k

h

)− 1
2

 2

1 +
√
1− k

h

2a

+ (1− 2a+ e)

(
1− k

h

)− 1
2

 2

1 +
√
1− k

h

2a−1 ]
, (3.18)

∫ ∞

0

ta−
1
2 e−ht

2F2

[
a, e+ 1;
2a+ 1, e;

kt

]
dt =

Γ
(
a+ 1

2

)
ha+ 1

2

[
(2a− e)

(
1− k

h

)− 1
2

 2

1 +
√
1− k

h

2a

+ (1− 2a+ e)

(
1− k

h

)− 1
2

 2

1 +
√
1− k

h

2a−1 ]
, (3.19)

∫ ∞

0

tae−ht
2F2

[
a+ 1

2 , e+ 1;
2a+ 2, e;

kt

]
dt =

Γ (a+ 1)

ha+1

[
(e− 2a)

(
1− k

h

)− 1
2

 2

1 +
√
1− k

h

2a

+ (2a+ 1− e)

(
1− k

h

)− 1
2

 2

1 +
√
1− k

h

2a+1 ]
, (3.20)
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and

∫ ∞

0

ta−
1
2 e−ht

2F2

[
a+ 1, e+ 1;
2a+ 2, e;

kt

]
dt =

Γ
(
a+ 1

2

)
ha+ 1

2

[
(e− 2a)

(
1− k

h

)− 1
2

 2

1 +
√

1− k
h

2a

+ (2a+ 1− e)

(
1− k

h

)− 1
2

 2

1 +
√
1− k

h

2a+1 ]
, (3.21)

provided that the conditions easily obtainable from (3.17) are satisfied.

Similarly, in (3.17), upon taking suitable values and applying the result (3.10), we find the following

relations:

∫ ∞

0

ta−1e−ht
2F2

[
a− 1

2 , e+ 1;
2a+ 1, e;

kt

]
dt =

Γ (a)

ha

[
(2a− e)

(
2a− 1

2a+ 1

) 2

1 +
√

1− k
h

2a

+

[
1− (2a− e)

(
2a− 1

2a+ 1

)] 2

1 +
√
1− k

h

2a−1 ]
, (3.22)

∫ ∞

0

ta−
3
2 e−ht

2F2

[
a, e+ 1;
2a+ 1, e;

kt

]
dt =

Γ
(
a− 1

2

)
ha− 1

2

[
(2a− e)

(
2a− 1

2a+ 1

) 2

1 +
√
1− k

h

2a

+

[
1− (2a− e)

(
2a− 1

2a+ 1

)] 2

1 +
√
1− k

h

2a−1 ]
, (3.23)

∫ ∞

0

ta−1e−ht
2F2

[
a+ 1

2 , e+ 1;
2a+ 2, e;

kt

]
dt =

Γ (a)

ha

[
(2a+ 1− e)

(
a

a+ 1

) 2

1 +
√
1− k

h

2a+1

+

[
1− (2a+ 1− e)

(
a

a+ 1

)] 2

1 +
√
1− k

h

2a ]
, (3.24)

and

∫ ∞

0

ta−
1
2 e−ht

2F2

[
a, e+ 1;
2a+ 2, e;

kt

]
dt =

Γ
(
a+ 1

2

)
ha+ 1

2

[
(2a+ 1− e)

(
a

a+ 1

) 2

1 +
√
1− k

h

2a+1

+

[
1− (2a+ 1− e)

(
a

a+ 1

)] 2

1 +
√
1− k

h

2a ]
, (3.25)

provided that the conditions easily obtainable from (3.17) are satisfied.
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Remark 3 In (3.18) to (3.21), if we set respectively e = 2a , e = 2a , e = 2a+ 1 , and e = 2a+ 1 , we recover

(1.12) to (1.15), respectively. Also, in (3.22) to (3.25), if we set respectively e = 2a , e = 2a , e = 2a+ 1 , and

e = 2a+ 1 , we recover (1.16) to (1.19), respectively.

4. New class of finite integrals involving generalized hypergeometric functions

This section aims to provide a new class of finite integrals involving generalized hypergeometric functions. Let

us give, in the form of a theorem, the three integral formulas that we shall establish.

Theorem 4 The following finite integrals formulas holds true:∫ 1

0

tb−1(1− t)
1
2 (1+a−b)−1

3F2

[
a, c, d+ 1;
2c+ 1, d;

t

]
dt

= Γ

(
1

2

)
Γ(b)Γ

(
1

2
a− 1

2
b+

1

2

)
Γ

(
c− 1

2
a− 1

2
b+

1

2

)
Γ

(
c+

1

2

)

·

[
1

Γ
(
1
2a+ 1

2

)
Γ
(
1
2b+

1
2

)
Γ
(
c− 1

2a+ 1
2

)
Γ
(
c− 1

2b+
1
2

)
+

( 2cd − 1)

Γ
(
1
2a
)
Γ
(
1
2b
)
Γ
(
c− 1

2a+ 1
)
Γ
(
c− 1

2b+ 1
)], (4.1)

provided that ℜ(b) > 0 , ℜ(1 + a− b) > 0 , ℜ(2c− a− b) > −1 and d ̸= 0,−1,−2, · · · ,∫ 1

0

tc−1(1− t)c 3F2

[
a, b, d+ 1;
1
2 (a+ b+ 1), d;

t

]
dt

= 2−2c π Γ (c) Γ

(
1

2
a+

1

2
b+

1

2

)
Γ

(
c− 1

2
a− 1

2
b+

1

2

)

·

[
1

Γ
(
1
2a+ 1

2

)
Γ
(
1
2b+

1
2

)
Γ
(
c− 1

2a+ 1
2

)
Γ
(
c− 1

2b+
1
2

)
+

(2cd − 1)

Γ
(
1
2a
)
Γ
(
1
2b
)
Γ
(
c− 1

2a+ 1
)
Γ
(
c− 1

2b+ 1
)], (4.2)

provided that ℜ(c) > 0 , ℜ(2c− a− b) > −1 and d ̸= 0,−1,−2, · · · ,
and ∫ 1

0

tc−1(1− t)d−c−1
3F2

[
a, b, d+ 1;
1
2 (a+ b+ 1), 2c+ 1;

t

]
dt

=
Γ
(
1
2

)
Γ (c) Γ (d− c) Γ

(
c+ 1

2

)
Γ
(
1
2a+ 1

2b+
1
2

)
Γ
(
c− 1

2a− 1
2b+

1
2

)
Γ(d)

·

[
1

Γ
(
1
2a+ 1

2

)
Γ
(
1
2b+

1
2

)
Γ
(
c− 1

2a+ 1
2

)
Γ
(
c− 1

2b+
1
2

)
+

( 2cd − 1)

Γ
(
1
2a
)
Γ
(
1
2b
)
Γ
(
c− 1

2a+ 1
)
Γ
(
c− 1

2b+ 1
)], (4.3)

provided that ℜ(c) > 0 , ℜ(d− c) > 0 , ℜ(2c− a− b) > −1 and d ̸= 0,−1,−2, · · · .
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Proof In order to prove (4.1), we proceed as follows. Denoting the left-hand side of (4.1) by I , expressing the

3F2 function as a series, changing the order of integration and summation (which is easily seen to be justified due

to the uniform convergence of the series involved), evaluating the beta-integral, and after some simplifications,

we obtain

I =
Γ(b)Γ

(
1
2a− 1

2b+
1
2

)
Γ
(
1
2a+ 1

2b+
1
2

) ∞∑
n=0

(a)n(b)n(c)n(d+ 1)n(
1
2 (a+ b+ 1)

)
n
(2c+ 1)n(d)n n!

. (4.4)

Rewriting the series (4.4) in terms of the generalized hypergeometric function, we have

I =
Γ(b)Γ

(
1
2a− 1

2b+
1
2

)
Γ
(
1
2a+ 1

2b+
1
2

) 4F3

[
a, b, c, d+ 1;

1
2 (a+ b+ 1), 2c+ 1, d;

1

]
. (4.5)

Observing that the 4F3 function can be evaluated by using the extended Watson’s summation theorem (1.5)

and after making some simplifications, we obtain the result (4.1).

In exactly the same manner, the integrals (4.2) and (4.3) can be established. 2

Let us now give some special cases of the three integrals formulas (4.1), (4.2), and (4.3).

In (4.1), if we let a = −2n or a = −2n− 1, where n is zero or a positive integer, in each case, one of the

two terms in the right-hand side of (4.1) vanishes, and after some calculations, we get the following interesting

results:∫ 1

0

tb−1(1− t)
1
2 (1−b−2n)−1

3F2

[
−2n, c, d+ 1;
2c+ 1, d;

t

]
dt =

Γ
(
1
2 − 1

2b
)
Γ(b)

Γ
(
1
2b+

1
2

) ·
(
1
2

)
n

(
c− 1

2b+
1
2

)
n(

c+ 1
2

)
n

(
1
2b+

1
2

)
n

(4.6)

and∫ 1

0

tb−1(1− t)−
1
2 (b+2n)−1

3F2

[
−2n− 1, c, d+ 1;
2c+ 1, d;

t

]
dt =

(
2c
d − 1

)
2c+ 1

·
Γ
(
1
2

)
Γ
(
−1

2b
)

Γ
(
1
2b
) ·

(
3
2

)
n

(
c− 1

2b+ 1
)
n(

c+ 3
2

)
n

(
1 + 1

2b
)
n

.

(4.7)

In particular, if we set d = 2c in (4.7), we obtain∫ 1

0

tb−1(1− t)−
1
2 (b+2n)−1

2F1

[
−2n− 1, c;
2c;

t

]
dt = 0. (4.8)

In (4.2), if we let b = −2n and replace a by a+2n or if we let b = −2n−1 and replace a by a+2n+1,

where n is zero or a positive integer, in each case, one of the two terms in the right-hand side of (4.2) vanishes,

and after some elementary algebra, we find the following results:∫ 1

0

tc−1(1− t)c 3F2

[
−2n, a+ 2n, d+ 1;
1
2 (a+ 1), d;

t

]
dt =

√
π 2−2c Γ(c)

Γ
(
c+ 1

2

) ·
(
1
2

)
n

(
1
2a+ 1

2 − c
)
n(

c+ 1
2

)
n

(
1
2a+ 1

2

)
n

(4.9)

and∫ 1

0

tc−1(1− t)c 3F2

[
−2n− 1, a+ 2n+ 1, d+ 1;
1
2 (a+ 1), d;

t

]
dt =

(
1− 2c

d

)
· Γ(c)Γ(c+ 1)

Γ (2c+ 2)
·
(
3
2

)
n

(
1
2a+ 1

2 − c
)
n(

c+ 3
2

)
n

(
1
2a+ 1

2

)
n

.

(4.10)
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In particular, putting d = 2c in (4.10) yields∫ 1

0

tc−1(1− t)c 3F2

[
−2n− 1, a+ 2n+ 1, 2c+ 1;
1
2 (a+ 1), 2c;

t

]
dt = 0. (4.11)

Finally, in (4.3), if we let b = −2n and replace a by a+ 2n or if we let b = −2n− 1 and replace a by

a + 2n + 1, where n is zero or a positive integer, in each case, one of the two terms in the right-hand side of

(4.3) vanishes, and after some elementary algebra, we find the following results:

∫ 1

0

tc−1(1− t)d−c−1
3F2

[
−2n, a+ 2n, d+ 1;
1
2 (a+ 1), 2c+ 1;

t

]
dt =

Γ(c)Γ(d− c)

Γ(d)
·
(
1
2

)
n

(
1
2a+ 1

2 − c
)
n(

c+ 1
2

)
n

(
1
2a+ 1

2

)
n

(4.12)

and∫ 1

0

tc−1(1− t)d−c−1
3F2

[
−2n− 1, a+ 2n+ 1, d+ 1;
1
2 (a+ 1), 2c+ 1;

t

]
dt =

(
1− 2c

d

)
2c+ 1

· Γ(c)Γ(d− c)

Γ (d)
·
(
3
2

)
n

(
1
2a+ 1

2 − c
)
n(

c+ 3
2

)
n

(
1
2a+ 1

2

)
n

.

(4.13)

If we further set d = 2c in (4.13), we get∫ 1

0

tc−1(1− t)c−1
2F1

[
−2n− 1, a+ 2n+ 1;
1
2 (a+ 1);

t

]
dt = 0. (4.14)

Many other results can be obtained by specializing the different parameters appearing in (4.1) to (4.3).

Remark 4 The integrals (4.6) and (4.9) are curious as the right-hand side of these are independent of d.

5. New class of finite integrals involving the generalized hypergeometric function and logarithmic

function

In this section, we shall establish a new class of integrals involving the generalized hypergeometric function and

logarithmic function.

Theorem 5 The following integral formula holds true:∫ 1

0

tb−1(1− t)
1
2 (1+a−b)−1 lnn

(
t√
1− t

)
3F2

[
a, c, d+ 1;
2c+ 1, d;

t

]
dt

=
Γ
(
1
2

)
Γ
(
c+ 1

2

)
Γ
(
1
2a+ 1

2

)
Γ
(
c− 1

2a+ 1
2

) n−1∑
r=0

(
n− 1

r

)
∂r A

∂br
· ∂

n−r−1 B

∂bn−r−1

+

(
2c

d
− 1

)
Γ
(
1
2

)
Γ
(
c+ 1

2

)
Γ
(
1
2a
)
Γ
(
c− 1

2a+ 1
) n−1∑

r=0

(
n− 1

r

)
∂r C

∂br
· ∂

n−r−1 D

∂bn−r−1
(5.1)

where

A =
Γ(b)Γ

(
1
2a− 1

2b+
1
2

)
Γ
(
c− 1

2a− 1
2b+

1
2

)
Γ
(
1
2b+

1
2

)
Γ
(
c− 1

2b+
1
2

) , (5.2)
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∂ A

∂b
= A ·B, (5.3)

B = Ψ(b)− 1

2
Ψ

(
1

2
a− 1

2
b+

1

2

)
− 1

2
Ψ

(
c− 1

2
a− 1

2
b+

1

2

)
− 1

2
Ψ

(
1

2
b+

1

2

)
+

1

2
Ψ

(
c− 1

2
b+

1

2

)
, (5.4)

∂n A

∂bn
=

n−1∑
r=0

(
n− 1

r

)
∂r A

∂br
· ∂

n−r−1 B

∂bn−r−1
, (5.5)

∂n−r−1 B

∂bn−r−1
=(−1)n−r(n− r − 1)!

{
ζ(n− r, b)− (−1)n−r−1

2n−r
ζ

(
n− r,

1

2
a− 1

2
b+

1

2

)

− (−1)n−r−1

2n−r
ζ

(
n− r, c− 1

2
a− 1

2
b+

1

2

)
− 1

2n−r
ζ

(
n− r,

1

2
b+

1

2

)

+
(−1)n−r−1

2n−r
ζ

(
n− r, c− 1

2
b+

1

2

)}
, (5.6)

C =
Γ(b)Γ

(
1
2a− 1

2b+
1
2

)
Γ
(
c− 1

2a− 1
2b+

1
2

)
Γ
(
1
2b
)
Γ
(
c− 1

2b+ 1
) , (5.7)

∂ C

∂b
= C ·D, (5.8)

D = Ψ(b)− 1

2
Ψ

(
1

2
a− 1

2
b+

1

2

)
− 1

2
Ψ

(
c− 1

2
a− 1

2
b+

1

2

)
− 1

2
Ψ

(
1

2
b

)
+

1

2
Ψ

(
c− 1

2
b+ 1

)
, (5.9)

∂n C

∂bn
=

n−1∑
r=0

(
n− 1

r

)
∂r C

∂br
· ∂

n−r−1 D

∂bn−r−1
, (5.10)

and

∂n−r−1 D

∂bn−r−1
=(−1)n−r(n− r − 1)!

{
ζ(n− r, b)− (−1)n−r−1

2n−r
ζ

(
n− r,

1

2
a− 1

2
b+

1

2

)

− (−1)n−r−1

2n−r
ζ

(
n− r, c− 1

2
a− 1

2
b+

1

2

)
− 1

2n−r
ζ

(
n− r,

1

2
b

)

+
(−1)n−r−1

2n−r
ζ

(
n− r, c− 1

2
b+ 1

)}
. (5.11)
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Proof Differentiating n times both sides of (4.1) with respect to b yields∫ 1

0

tb−1(1− t)
1
2 (1+a−b)−1 lnn

(
t√
1− t

)
3F2

[
a, c, d+ 1;
2c+ 1, d;

t

]
dt

=
Γ
(
1
2

)
Γ
(
c+ 1

2

)
Γ
(
1
2a+ 1

2

)
Γ
(
c− 1

2a+ 1
2

) ∂n A

∂bn

+

(
2c

d
− 1

)
Γ
(
1
2

)
Γ
(
c+ 1

2

)
Γ
(
1
2a
)
Γ
(
c− 1

2a+ 1
) ∂n C

∂bn
, (5.12)

where A and C are the same as given in (5.2) and (5.7), respectively.

Now it easy to see that

∂ A

∂b
= A

∂ lnA

∂b
= A ·B (5.13)

and

∂ C

∂b
= C

∂ lnC

∂b
= C ·D, (5.14)

where B and D are the same as given in (5.4) and (5.9), respectively. From (5.13), we have

∂n A

∂bn
=

∂n−1

∂bn−1

(
∂ A

∂b

)
=

∂n−1 A ·B
∂bn−1

, (5.15)

which upon using the Leibniz theorem becomes

∂n A

∂bn
=

n−1∑
r=0

(
n− 1

r

)
∂r A

∂br
· ∂

n−r−1 B

∂bn−r−1
(5.16)

and similarly

∂n C

∂bn
=

n−1∑
r=0

(
n− 1

r

)
∂r C

∂br
· ∂

n−r−1 D

∂bn−r−1
, (5.17)

where ∂n−r−1 B
∂bn−r−1 and ∂n−r−1 D

∂bn−r−1 are the same as given in (5.6) and (5.11), respectively.

Finally, substituting the values of ∂n A
∂bn and ∂n C

∂bn from (5.15) and (5.17) into (5.12) leads us to the

asserted result (5.1). 2

Theorem 6 The following integral formula holds true:∫ 1

0

tc−1(1− t)c lnn
(
t− t2

)
3F2

[
a, b, d+ 1;
1
2 (a+ b+ 1), d;

t

]
dt

=
π Γ

(
1
2a+ 1

2b+
1
2

)
Γ
(
1
2a+ 1

2

)
Γ
(
1
2b+

1
2

) n−1∑
r=0

(
n− 1

r

)
∂r A

∂cr
· ∂

n−r−1 B

∂cn−r−1

+
π Γ

(
1
2a+ 1

2b+
1
2

)
Γ
(
1
2a
)
Γ
(
1
2b
) n−1∑

r=0

(
n− 1

r

)
∂r C

∂cr
· ∂

n−r−1 D

∂cn−r−1
(5.18)
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where

A =
2−2c Γ(c)Γ

(
c− 1

2a− 1
2b+

1
2

)
Γ
(
c− 1

2a+ 1
2

)
Γ
(
c− 1

2b+
1
2

) , (5.19)

∂ A

∂c
= A ·B, (5.20)

B = −2 ln 2 + Ψ(c) + Ψ

(
c− 1

2
a− 1

2
b+

1

2

)
−Ψ

(
c− 1

2
a+

1

2

)
−Ψ

(
c− 1

2
b+

1

2

)
, (5.21)

∂n A

∂cn
=

n−1∑
r=0

(
n− 1

r

)
∂r A

∂cr
· ∂

n−r−1 B

∂cn−r−1
, (5.22)

∂n−r−1 B

∂bn−r−1
=(−1)n−r(n− r − 1)!

{
ζ(n− r, c) + ζ

(
n− r, c− 1

2
a− 1

2
b+

1

2

)
− ζ

(
n− r, c− 1

2
a+

1

2

)
− ζ

(
n− r, c− 1

2
b+

1

2

)}
, (5.23)

C =

(
2c
d − 1

)
2−2c Γ(c)Γ

(
c− 1

2a− 1
2b+

1
2

)
Γ
(
c− 1

2a+ 1
)
Γ
(
c− 1

2b+ 1
) , (5.24)

∂ C

∂c
= C ·D, (5.25)

D =
2

2c− d
− 2 ln 2 + Ψ(c) + Ψ

(
c− 1

2
a− 1

2
b+

1

2

)
−Ψ

(
c− 1

2
a+ 1

)
−Ψ

(
c− 1

2
b+ 1

)
, (5.26)

∂n C

∂cn
=

n−1∑
r=0

(
n− 1

r

)
∂r C

∂cr
· ∂

n−r−1 D

∂cn−r−1
, (5.27)

and

∂n−r−1 D

∂cn−r−1
=(−1)n−r(n− r − 1)!

{
− 2n−r(2c− d)−(n−r) + ζ(n− r, c)

+ ζ

(
n− r, c− 1

2
a− 1

2
b+

1

2

)
− ζ

(
n− r, c− 1

2
a+ 1

)
− ζ

(
n− r, c− 1

2
b+ 1

)}
. (5.28)
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Theorem 7 The following integral formula holds true:∫ 1

0

tc−1(1− t)d−c−1 lnn
(

t

1− t

)
3F2

[
a, b, d+ 1;
1
2 (a+ b+ 1), d;

t

]
dt

=
Γ
(
1
2

)
Γ
(
1
2a+ 1

2b+
1
2

)
Γ (d) Γ

(
1
2a+ 1

2

)
Γ
(
1
2b+

1
2

) n−1∑
r=0

(
n− 1

r

)
∂r A

∂cr
· ∂

n−r−1 B

∂cn−r−1

+
Γ
(
1
2

)
Γ
(
1
2a+ 1

2b+
1
2

)
Γ (d) Γ

(
1
2a
)
Γ
(
1
2b
) n−1∑

r=0

(
n− 1

r

)
∂r C

∂cr
· ∂

n−r−1 D

∂cn−r−1
(5.29)

where

A =
Γ(c)Γ(d− c)Γ

(
c+ 1

2

)
Γ
(
c− 1

2a− 1
2b+

1
2

)
Γ
(
c− 1

2a+ 1
2

)
Γ
(
c− 1

2b+
1
2

) , (5.30)

∂ A

∂c
= A ·B, (5.31)

B = Ψ(c) + Ψ

(
c+

1

2

)
−Ψ(d− c) + Ψ

(
c− 1

2
a− 1

2
b+

1

2

)
−Ψ

(
c− 1

2
a+

1

2

)
−Ψ

(
c− 1

2
b+

1

2

)
, (5.32)

∂n A

∂cn
=

n−1∑
r=0

(
n− 1

r

)
∂r A

∂cr
· ∂

n−r−1 B

∂cn−r−1
, (5.33)

∂n−r−1 B

∂bn−r−1
=(−1)n−r(n− r − 1)!

{
ζ(n− r, c) + ζ

(
n− r, c+

1

2

)
− (−1)n−r−1ζ (n− r, d− c) + ζ

(
n− r, c− 1

2
a− 1

2
b+

1

2

)
− ζ

(
n− r, c− 1

2
a+

1

2

)
− ζ

(
n− r, c− 1

2
b+

1

2

)}
, (5.34)

C =

(
2c
d − 1

)
Γ(c)Γ(d− c)Γ

(
c+ 1

2

)
Γ
(
c− 1

2a− 1
2b+

1
2

)
Γ
(
c− 1

2a+ 1
)
Γ
(
c− 1

2b+ 1
) , (5.35)

∂ C

∂c
= C ·D, (5.36)

D =
2

2c− d
+Ψ(c) + Ψ(d− c) + Ψ

(
c+

1

2

)
+Ψ

(
c− 1

2
a− 1

2
b+

1

2

)
−Ψ

(
c− 1

2
a+ 1

)
−Ψ

(
c− 1

2
b+ 1

)
, (5.37)
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∂n C

∂cn
=

n−1∑
r=0

(
n− 1

r

)
∂r C

∂cr
· ∂

n−r−1 D

∂cn−r−1
, (5.38)

and

∂n−r−1 D

∂cn−r−1
=(−1)n−r(n− r − 1)!

{
2n−r+1(2c− d)−(n−r) + ζ(n− r, c)

+ ζ

(
n− r, c+

1

2

)
− (−1)n−r−1ζ(n− r, d− c)

+ ζ

(
n− r, c− 1

2
a− 1

2
b+

1

2

)
− ζ

(
n− r, c− 1

2
a+ 1

)
− ζ

(
n− r, c− 1

2
b+ 1

)}
. (5.39)

The proofs of (5.18) and (5.29) are omitted since they are very similar to the one of (5.1).

We now shift our focus to some special cases of the first integral formula (5.1). Several interesting special

cases could also be obtained from (5.18) and (5.29). For brevity, we decided to restrict ourselves to special cases

of the first integral formula.

Case 1. If we set a = c = 1
2 , d = 2 in (5.1), and making use of the following known result [18, p. 513, Eq.

(252)]:

3F2

[
1
2 ,

1
2 , 3;

2, 2;
x

]
=

1

π

[
3K(

√
x)− 2

(
K (

√
x)− E (

√
x)

x

)]
, (5.40)

where K(x) holds for the complete elliptic integral of the first kind and E(x) denotes the complete elliptic

integral of the second kind, we obtain∫ 1

0

tb−1(1− t)
1
2 (

3
2−b)−1 lnn

(
t√
1− t

) [
3K(

√
t)− 2

(
K
(√

t
)
− E

(√
t
)

t

)]
dt

=
π

3
2

Γ2
(
3
4

) n−1∑
r=0

(
n− 1

r

)
∂r A

∂br
· ∂

n−r−1 B

∂bn−r−1

−
Γ2
(
3
4

)
π

1
2

n−1∑
r=0

(
n− 1

r

)
∂r C

∂br
· ∂

n−r−1 D

∂bn−r−1
, (5.41)

where

A =
Γ(b)Γ2

(
3
4 − 1

2b
)

Γ
(
1
2b+

1
2

)
Γ
(
1− 1

2b
) , (5.42)

∂ A

∂b
= A ·B, (5.43)

B = Ψ(b)−Ψ

(
3

4
− 1

2
b

)
−Ψ

(
1

2
b+

1

2

)
+

1

2
Ψ

(
1− 1

2
b

)
, (5.44)
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∂n A

∂bn
=

n−1∑
r=0

(
n− 1

r

)
∂r A

∂br
· ∂

n−r−1 B

∂bn−r−1
, (5.45)

∂n−r−1 B

∂bn−r−1
=(−1)n−r(n− r − 1)!

{
ζ(n− r, b)− (−1)n−r−1

2n−r−1
ζ

(
n− r,

3

4
− 1

2
b

)

− 1

2n−r
ζ

(
n− r,

1

2
b+

1

2

)
+

(−1)n−r−1

2n−r
ζ

(
n− r, 1− 1

2
b

)}
, (5.46)

C =
Γ(b)Γ2

(
3
4 − 1

2b
)

Γ
(
1
2b
)
Γ
(
3
2 − 1

2b
) , (5.47)

∂ C

∂b
= C ·D, (5.48)

D = Ψ(b)−Ψ

(
3

4
− 1

2
b

)
− 1

2
Ψ

(
1

2
b

)
+

1

2
Ψ

(
3

2
− 1

2
b

)
, (5.49)

∂n C

∂bn
=

n−1∑
r=0

(
n− 1

r

)
∂r C

∂br
· ∂

n−r−1 D

∂bn−r−1
, (5.50)

and

∂n−r−1 D

∂bn−r−1
=(−1)n−r(n− r − 1)!

{
ζ(n− r, b)− (−1)n−r−1

2n−r−1
ζ

(
n− r,

3

4
− 1

2
b

)

− 1

2n−r
ζ

(
n− r,

1

2
b

)
+

(−1)n−r−1

2n−r
ζ

(
n− r,

3

2
− 1

2
b

)}
. (5.51)

Case 2. Putting a = c = 1 and d = 1 in (5.1) and with the help of the following result [18, p. 519, Eq.

(384)]:

3F2

[
1, 1, 3

2 ;
3, 1

2 ;
x

]
= − 2

x

[
3 +

3− x

x
ln(1− x)

]
, (5.52)

we obtain ∫ 1

0

tb−2(1− t)−
1
2 b lnn

(
t√
1− t

) [
3 +

(3− t)

t
ln(1− t)

]
dt

= −π

4

n−1∑
r=0

(
n− 1

r

)
∂r A

∂br
· ∂

n−r−1 B

∂bn−r−1
− 3

2

n−1∑
r=0

(
n− 1

r

)
∂r C

∂br
· ∂

n−r−1 D

∂bn−r−1
, (5.53)

where

A =
Γ(b)Γ2

(
1− 1

2b
)

Γ
(
1
2b+

1
2

)
Γ
(
3
2 − 1

2b
) , (5.54)
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∂ A

∂b
= A ·B, (5.55)

B = Ψ(b)−Ψ

(
1− 1

2
b

)
− 1

2
Ψ

(
1

2
b+

1

2

)
+

1

2
Ψ

(
3

2
− 1

2
b

)
, (5.56)

∂n A

∂bn
=

n−1∑
r=0

(
n− 1

r

)
∂r A

∂br
· ∂

n−r−1 B

∂bn−r−1
, (5.57)

∂n−r−1 B

∂bn−r−1
=(−1)n−r(n− r − 1)!

{
ζ(n− r, b)− (−1)n−r−1

2n−r−1
ζ

(
n− r, 1− 1

2
b

)

− 1

2n−r
ζ

(
n− r,

1

2
b+

1

2

)
+

(−1)n−r−1

2n−r
ζ

(
n− r,

3

2
− 1

2
b

)}
, (5.58)

C =
Γ(b)Γ2

(
1− 1

2b
)

Γ
(
1
2b
)
Γ
(
2− 1

2b
) , (5.59)

∂ C

∂b
= C ·D, (5.60)

D = Ψ(b)−Ψ

(
1− 1

2
b

)
− 1

2
Ψ

(
1

2
b

)
+

1

2
Ψ

(
2− 1

2
b

)
, (5.61)

∂n C

∂bn
=

n−1∑
r=0

(
n− 1

r

)
∂r C

∂br
· ∂

n−r−1 D

∂bn−r−1
, (5.62)

and

∂n−r−1 D

∂bn−r−1
=(−1)n−r(n− r − 1)!

{
ζ(n− r, b)− (−1)n−r−1

2n−r−1
ζ

(
n− r, 1− 1

2
b

)

− 1

2n−r
ζ

(
n− r,

1

2
b

)
+

(−1)n−r−1

2n−r
ζ

(
n− r, 2− 1

2
b

)}
. (5.63)

Case 3. Setting a = 5
2 , c = 1, d = 1

2 in (5.1) and making use of the following result [18, p. 521, Eq. (410)]:

3F2

[
5
2 , 1, 3

2 ;
3, 1

2 ;
x

]
=

4

9x2

[
6 + x− 2

(3− 4x)√
1− x

]
, (5.64)

we have∫ 1

0

tb−3(1− t)
1
2 (

7
2−b)−1 lnn

(
t√
1− t

) [
6 + t− 2

(3− 4t)√
1− t

]
dt =

1

2
√
2

n−1∑
r=0

(
n− 1

r

)
∂r A

∂br
· ∂

n−r−1 B

∂bn−r−1

+
9

2
√
2

n−1∑
r=0

(
n− 1

r

)
∂r C

∂br
· ∂

n−r−1 D

∂bn−r−1
(5.65)
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where

A =
Γ(b)Γ

(
7
4 − 1

2b
)
Γ
(
1
4 − 1

2b
)

Γ
(
1
2b+

1
2

)
Γ
(
3
2 − 1

2b
) , (5.66)

∂ A

∂b
= A ·B, (5.67)

B = Ψ(b)− 1

2
Ψ

(
7

4
− 1

2
b

)
− 1

2
Ψ

(
1

4
− 1

2
b

)
− 1

2
Ψ

(
1

2
b+

1

2

)
+

1

2
Ψ

(
3

2
− 1

2
b

)
, (5.68)

∂n A

∂bn
=

n−1∑
r=0

(
n− 1

r

)
∂r A

∂br
· ∂

n−r−1 B

∂bn−r−1
, (5.69)

∂n−r−1 B

∂bn−r−1
=(−1)n−r(n− r − 1)!

{
ζ(n− r, b)− (−1)n−r−1

2n−r
ζ

(
n− r,

7

4
− 1

2
b

)

− (−1)n−r−1

2n−r
ζ

(
n− r,

1

4
− 1

2
b

)
− 1

2n−r
ζ

(
n− r,

1

2
b+

1

2

)

+
(−1)n−r−1

2n−r
ζ

(
n− r,

3

2
− 1

2
b

)}
, (5.70)

C =
Γ(b)Γ

(
7
4 − 1

2b
)
Γ
(
1
4 − 1

2b
)

Γ
(
1
2b
)
Γ
(
2− 1

2b
) , (5.71)

∂ C

∂b
= C ·D, (5.72)

D = Ψ(b)− 1

2
Ψ

(
7

4
− 1

2
b

)
− 1

2
Ψ

(
1

4
− 1

2
b

)
− 1

2
Ψ

(
1

2
b

)
+

1

2
Ψ

(
2− 1

2
b

)
, (5.73)

∂n C

∂bn
=

n−1∑
r=0

(
n− 1

r

)
∂r C

∂br
· ∂

n−r−1 D

∂bn−r−1
, (5.74)

and

∂n−r−1 D

∂bn−r−1
=(−1)n−r(n− r − 1)!

{
ζ(n− r, b)− (−1)n−r−1

2n−r
ζ

(
n− r,

7

4
− 1

2
b

)

− (−1)n−r−1

2n−r
ζ

(
n− r,

1

4
− 1

2
b

)
− 1

2n−r
ζ

(
n− r,

1

2
b

)

+
(−1)n−r−1

2n−r
ζ

(
n− r, 2− 1

2
b

)}
. (5.75)
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Obviously, using other known results such as [18, p. 519, Eq. (364)] and [18, p. 519, Eq. (380)], that is,

3F2

[
1, 1, 5

2 ;
3, 3

2 ;
x

]
= − 2

3x

[
1 +

(1− x)

x
ln(1− x)

]
(5.76)

and

3F2

[
2, 1, 3

2 ;
3, 1

2 ;
x

]
=

2

x

[
3− x

1− x
+

3

x
ln(1− x)

]
, (5.77)

we can obtain other interesting special cases of (5.1).

6. New class of finite double integrals involving the generalized hypergeometric function

In this section, we shall establish a new class of double integrals involving the generalized hypergeometric

function. We first begin by giving six integrals formulas in the form of six theorems. The proofs of these double

integrals are essentially the same as those given in Section 4, so we omit the details. Note that while deriving

the integrals, we shall use the following well-known double integrals due to Edwards [7]:∫ 1

0

∫ 1

0

yα(1− x)α−1(1− y)β−1(1− xy)1−α−βdx dy =
Γ(α)Γ(β)

Γ(α+ β)
, (6.1)

provided that ℜ(α) > 0 and ℜ(β) > 0.

Theorem 8 Under the conditions given in (4.1), the following double integrals formula holds true:∫ 1

0

∫ 1

0

yb(1− x)b−1(1− y)
1
2 (1+a−b)−1(1− xy)1−

1
2 (1+a+b) · 3F2

[
a, c, d+ 1;
2c+ 1, d;

y(1− x)

1− xy

]
dx dy = U1,

(6.2)

where U1 is the right-hand side of (4.1).

Theorem 9 Under the conditions given in (4.2), the following double integrals formula holds true:∫ 1

0

∫ 1

0

yc(1− x)c−1(1− y)c(1− xy)−2c
3F2

[
a, b, d+ 1;
1
2 (a+ b+ 1), d;

y(1− x)

1− xy

]
dx dy = U2, (6.3)

where U2 is the right-hand side of (4.2).

Theorem 10 Under the conditions given in (4.3), the following double integrals formula holds true:∫ 1

0

∫ 1

0

yc(1− x)c−1(1− y)d−c−1(1− xy)1−d · 3F2

[
a, b, d+ 1;
1
2 (a+ b+ 1), 2c+ 1;

y(1− x)

1− xy

]
dx dy = U3,

(6.4)

where U3 is the right-hand side of (4.3).
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Theorem 11 Under the conditions given in (4.1), the following double integrals formula holds true:∫ 1

0

∫ 1

0

y
1
2 (1+a−b)(1− x)

1
2 (1+a−b)−1(1− y)b−1(1− xy)1−

1
2 (1+a+b)

· 3F2

[
a, c, d+ 1;
2c+ 1, d;

1− y

1− xy

]
dx dy

= U1, (6.5)

where U1 is the right-hand side of (4.1).

Theorem 12 Under the conditions given in (4.2), the following double integrals formula holds true:∫ 1

0

∫ 1

0

yc+1(1− x)c(1− y)c−1(1− xy)−2c · 3F2

[
a, b, d+ 1;
1
2 (a+ b+ 1), d;

1− y

1− xy

]
dx dy = U2, (6.6)

where U2 is the right-hand side of (4.2).

Theorem 13 Under the conditions given in (4.3), the following double integrals formula holds true:∫ 1

0

∫ 1

0

yd−c(1− x)d−c−1(1− y)c−1(1− xy)1−d · 3F2

[
a, b, d+ 1;
1
2 (a+ b+ 1), 2c+ 1;

1− y

1− xy

]
dx dy = U3,

(6.7)

where U3 is the right-hand side of (4.3).

Remark 5 A large number of special cases of our double integrals (6.2) to (6.7) can be obtained in a way

similar to that in Sections 4 and 5, so we again prefer to omit the details.

7. New class of finite double integrals involving the generalized hypergeometric function and

logarithmic function

We end this paper by presenting a new class of double integrals involving the generalized hypergeometric function

and logarithmic function. Since the proofs of these integrals are similar to those of the previous section, we

choose to omit the details. We simply state our double integrals in the form of theorems.

Theorem 14 The following double integrals formula holds true:∫ 1

0

∫ 1

0

yb(1− x)b−1(1− y)
1
2 (1+a−b)−1(1− xy)1−

1
2 (1+a+b)

· lnn
(

y(1− x)√
(1− y)(1− xy)

)
3F2

[
a, c, d+ 1;
2c+ 1, d;

y(1− x)

1− xy

]
dx dy

= V1, (7.1)

where V1 is the right-hand side of (5.1).
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Theorem 15 The following double integrals formula holds true:∫ 1

0

∫ 1

0

y
1
2 (1+a−b)(1− x)

1
2 (1+a−b)−1(1− y)b−1(1− xy)1−

1
2 (1+a+b)

· lnn
(

(1− y)√
y(1− x)(1− xy)

)
3F2

[
a, c, d+ 1;
2c+ 1, d;

1− y

1− xy

]
dx dy

= V1, (7.2)

where V1 is the right-hand side of (5.1).

Theorem 16 The following double integrals formula holds true:∫ 1

0

∫ 1

0

yc(1− x)c−1(1− y)c(1− xy)−2c

· lnn
(
y(1− x)(1− y)

(1− xy)2

)
3F2

[
a, c, d+ 1;
1
2 (a+ b+ 1), d;

y(1− x)

1− xy

]
dx dy

= V2, (7.3)

where V2 is the right-hand side of (5.18).

Theorem 17 The following double integrals formula holds true:∫ 1

0

∫ 1

0

yc+1(1− x)c(1− y)c−1(1− xy)−2c

· lnn
(
y(1− x)(1− y)

(1− xy)2

)
3F2

[
a, c, d+ 1;
1
2 (a+ b+ 1), d;

1− y

1− xy

]
dx dy

= V2, (7.4)

where V2 is the right-hand side of (5.18).

8. Competing interests

The authors declare that they have no competing interests.

9. Author’s contributions

All authors completed the paper together. All authors read and approved the final manuscript.

Acknowledgment

The research of the first author was supported by Wonkwang University (2017).

References

[1] Bailey WN. Products of generalized hypergeometric series. P Lond Math Soc 1928; 28: 242-254.

[2] Bailey WN. Generalized Hypergeometric Series. New York, NY, USA: Stechert-Hafner, 1964.

442



KIM et al./Turk J Math

[3] Berndt BC. Ramanujan’s Notebooks, Parts II. New York, NY, USA: Springer-Verlag, 1989.

[4] Bhatt RC. Another proof of Watson’s theorem for summing 3F2(1). J London Math Soc 1965; 40: 47-48.

[5] Brychkov YA. Evaluation of some classes of definite and indefinite integrals. Integral Transforms Spec Funct 2002;

13: 163-167.

[6] Choi J, Rathie AK. Evaluation of certain new classes of definite integrals. Integral Transforms Spec Funct 2015; 26:

282-294.

[7] Edwards J. A Treatise on the Integral Calculus with Applications, Examples and Problems, II. New York, NY,

USA: Chelsea Publishing Company, 1954.

[8] Gaboury S, Rathie AK. Evaluation of a new class of double definite integrals. Comm Korean Math Soc 2017; 32:

979-990.

[9] Kim YS, Rakha MA, Rathie AK. Extensions of certain classical summation theorem for the series 2F1, 3F2 and

4F3 with applications in Ramanujan’s summations. Int J Math Math Sci 2010; 2010: 309503.

[10] Krattenthaler C, Rao KS. Automatic generation of hypergeometric identities by the beta integral method. J Comput

Appl Math 2003; 160: 159-173.

[11] Lavoie JL, Grondin F, Rathie AK. Generalizations of Watson’s theorem on the sum of a 3F2. Indian J Math 1992;

34: 23-32.

[12] Lavoie JL, Grondin F, Rathie AK. Generalizations of Whipple’s theorem on the sum of a 3F2. J Comput Appl

Math 1996; 72: 293-300.

[13] Lavoie JL, Grondin F, Rathie AK, Arora K. Generalizations of Dixon’s theorem on the sum of a 3F2. Math Comp

1994; 205: 267-276.

[14] Lewanowicz S. Generalized Watson’s summation formula for 3F2(1). J Comput Appl Math 1997; 86: 375-386.

[15] MacRobert TM. Functions of a Complex Variable. London, UK: Macmillan Company, 1962.

[16] Rathie AK, Pogany TK. New summation formula for 3F2(1/2) and a Kummer-type II transformation of 2F2(x).

Math Commun 2008; 13: 63-66.

[17] Preece CT. The product of two generalized hypergeometric functions. P Lond Math Soc 1924; 22: 370-380.

[18] Prudnikov AP, Brychkov YA, Marichev OI. Intregrals and Series Vol. 3: More Special Functions. New York, NY,

USA: Gordon and Breach Science Publishers, 1990.

[19] Rainville ED. Special Functions. New York, NY, USA: Macmillan Company, 1960.

[20] Rakha MA, Rathie AK. Generalizations of classical summation theorems for the series 2F1 and 3F2 with applica-

tions. Integral Transforms Spec Funct 2011; 22: 823-840.

[21] Rathie AK. A short proof of Preece’s identity and other contiguous results. Rev Mat Estat 1997; 15: 207-210.

[22] Rathie AK, Choi J. A note on generalization of Preece’s identity and other contiguous results. B Korean Math Soc

1998; 35: 339-344.

[23] Rathie AK, Paris RB. A new proof of Watson’s theorem for the 3F2(1) series. Appl Math Sci 2009; 314: 161-164.

[24] Saad N, Hall RL. Integrals containing confluent hypergeometric functions with applications to perturbed singular

potentials. J Phys A-Math Gen 2003; 36: 7771-7788.

[25] Srivastava HM, Choi J. Zeta and q-Zeta Functions and Associated Series and Integrals. New York, NY, USA:

Elsevier Science Publishers, 2012.

[26] Vidunas R. A generalization of Kummer’s identity. Rocky Mount J Math 2002; 32: 919-936.

[27] Watson GN. A note on generalized hypergeometric series. P Lond Math Soc 1925; 2: 13-15.

[28] Whipple FJW. A group of generalized hypergeometric series: relations between 120 allied series of the type F(a; b;

c; e; f). P Lond Math Soc 1925; 2: 104-114.

443


	Introduction
	Generalization of Bailey's identity for the product of two generalized hypergeometric functions
	Extension of Bailey's quadratic transformation
	New class of finite integrals involving generalized hypergeometric functions
	New class of finite integrals involving the generalized hypergeometric function and logarithmic function
	New class of finite double integrals involving the generalized hypergeometric function
	New class of finite double integrals involving the generalized hypergeometric function and logarithmic function
	Competing interests
	Author's contributions

