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Abstract: In this work, almost product and almost golden structures are studied. Conditions for those structures being

integrable and parallel are investigated. Moreover, the harmonicity of a map between almost product or almost golden

manifolds with pure or hyperbolic metric is discussed under certain conditions.
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1. Introduction

Let Mn be a smooth manifold of dimension n with a (1, 1)-tensor field φ of rank n. Then

(see [3, 7− 9, 12, 13]) the pair (M,φ) is called polynomial manifold provided U (φ) = 0 for some

polynomial U (x) over the field of real numbers R. In particular, φ and (M,φ) are respectively called

i) metallic structure and metallic manifold if U (x) = x2 − ηx− δ for some positive integers η and δ,

so that U (φ) = φ2 − ηφ− δI = 0.

ii) almost complex structure and almost complex manifold if U (x) = x2 +1, so that U (φ) = φ2 + I = 0.

iii) almost product structure and almost product manifold if U (x) = x2 − 1. In this case we reserve the

letter P for φ. Thus U (P ) = P 2 − I = 0.

iv) almost golden structure and almost golden manifold if U (x) = x2 − x− 1. In this case we reserve the

letter G for φ. Thus U (G) = G2 −G− I = 0.

Here I denotes the identity tensor field.

Note here that an almost golden manifold (M,G) is in fact a metallic manifold with η = δ = 1. Golden

structure has been attracting more attention among many geometers (see : for example [3, 8, 12, 13]) in the

last few years as it is closely related to the golden ratio, which plays an important role in various disciplines

such as physics, topology, probability, and field theory (see [3, 8] and the references therein).

In this work, we have dealt with almost product and almost golden structures simultaneously as one can

be obtained from the other, and provided the following results besides some side ones:
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Let φ denote either almost product structure P or almost golden structure G. To emphasize

this we shall be writing φ (= P,G) . On an almost product or an almost golden manifold (M, h, φ (= P,G))

with pure or hyperbolic metric h, (Definition (2.1)) :

1) By analogy with the result for the paracomplex case, we introduce conditions P (∗) and G (∗) (see page

12, just before Proposition (2.5)), which, together with the integrability condition of φ, guarantee that φ

is parallel (Proposition (2.5)).

2) For the bilinear operator Sφ : Γ (TM)× Γ (TM) → Γ (TM) (see : right after Definition (2.4)) it is shown

that vanishing of Sφ is equivalent to that of φ being parallel (Proposition (2.6)), unlike the case in which

the metric h is hyperbolic, vanishing of Sφ does not imply that φ is parallel. Instead, it provides a

bigger class whose members are called quasi para-Hermitian manifolds, quasi golden-Hermitian manifolds

(Definition (2.5)).

3) We introduced a subclass of (M, h, φ (= P,G)) , namely, a class of semidecomposable product (or golden)

Riemannian manifolds (Definition (2.4)) and that was used later on for the harmonicity of a certain map

(Theorems (3.1) & (3.2)).

4) By analogy with the concept of an anti-paraholomorphic map, a concept of antigolden map is introduced

(Definition (3. 2)) and later it is used for its harmonicity (Theorems (3.1) & (3.2)).

5) It is shown that being a golden (resp : paraholomorphic) map of an almost golden (resp : almost product)

manifold with a pure metric is no way sufficient for its harmonicity, whereas it is sufficient when the metric

is hyperbolic. However, on the same line, an alternative result is provided Theorem (3.1).

6) Finally, (Theorems (3.1) & (3.2)) , for a nonconstant map

F : (M, h, φ (= P,G)) → (N, g, φ (= Q,K))

(where h and g are hyperbolic), the harmonicity results given in [2, 6, 11] for ± (P,Q)-paraholomorphic

map F are extended to the cases where

• F is ± (P,Q)-paraholomorphic and h is hyperbolic, g is pure.

• F is ± (G,K)-golden and h is hyperbolic, g is pure or hyperbolic.

7) Overall, we have managed so far to express the results involving almost golden structures in terms of almost

product structures.

2. Definitions and some basic results

The structure φ (= P,G) on Mn has two distinct real eigenvalues, namely k and k. Let denote the

corresponding eigendistributions by E(k) and E(k).

Note that (see [2, 3, 7− 9, 12, 13]),

1) φ : TM→TM is an isomorphism.
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2) TM = E(k) ⊕ E(k) .

3) For an almost product manifold (M,P ) we have

• k = 1 and k = −1.

• P 2 (X) = X, ∀ X ∈ Γ (TM)

4) For an almost golden manifold (M, G) we have

• k = 1
2

(
1 +

√
5
)

and k = 1
2

(
1−

√
5
)
.

Throughout this work we shall be setting

σ =
1

2

(
1 +

√
5
)

and σ̄ =
1

2

(
1−

√
5
)
.

Observe that

σ2 = σ + 1, σ̄2 = σ̄ + 1 and σσ̄ = −1.

• G2 (X) = GX +X, ∀ X ∈ Γ (TM) .

5) • For every almost product structure P , define a P -associated (1, 1)-tensor field GP = G by

Gp = G =
1

2

(
I +

√
5P

)
• For every almost golden structure G , define a G-associated (1, 1)-tensor field PG = R by

PG = R =
1√
5
(2G− I)

Note that

i) for every almost product structure P on M, the corresponding Gp = G is an almost golden structure

on M and therefore it will be called a P -associated almost golden structure.

ii) for every almost golden structure G on M, the corresponding PG = R is an almost product structure

on M and therefore it will be called a G-associated almost product structure.

iii) we have

EG
(σ) = EP

(1) and EG
(σ̄) = EP

(−1)

iv) there is a one-to-one correspondence between the set of all almost product structures and the set of all

almost golden structures on a manifold M. We shall be calling the pairs {P, GP } {G, PG} ) an

associated pair or a twin pair. We also say that {P, G
P
} (or {G, P

G
} ) are twins. It is easy to see

that for a given pair of twin structures {P, G
P
} , the G

P
-associated almost product structure is equal

to P , that is,

P(GP ) = P.
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Similarly, for a twin pair {G, P
G
} , the P

G
-associated almost golden structure is equal to G , that is,

G(PG) = G.

v) If P is an almost product structure on M then P̂ = −P is also an almost product structure on M.

Observe that P and P̂ have the same set {1, –1} of eigenvalues. However, for their corresponding

eigendistributions we have

EP
(1) = E P̂

(−1) and E P̂
(1) = EP

(−1)

We shall be calling P̂ the conjugate almost product structure of P or the P -conjugate almost product

structure.

vi) If G is an almost golden structure on M then Ĝ = I − G is also an almost golden structure on

M. Observe that G and Ĝ have the same eigenvalues σ and σ̄ . However, for their corresponding

eigendistributions we have

EG
(σ) = EĜ

(σ̄), and EG
(σ̄) = EĜ

(σ)

We shall be calling Ĝ the conjugate almost golden structure of G or the G -conjugate almost golden

structure.

vii) If {P, G} is a twin pair then

Ĝ = Gp̂ =
1

2

(
I +

√
5(̂P

G
)
)
=

1

2

(
I −

√
5P

G

)
,

that is,
{
P̂ , Ĝ

}
is also a twin pair. Conversely, if

{
P̂ , Ĝ

}
is a twin pair then G = 1

2

(
I +

√
5P

)
, that

is, {P, G} is also a twin pair

viii) If
{
P̂ , Ĝ

}
is a twin pair then

EP
(1) = E P̂

(−1) = EG
(σ) = EĜ

(σ̄) and E P̂
(1) = EP

(−1) = EG
(σ̄) = EĜ

(σ).

An almost product manifold (M, P ) is called an almost paracomplex manifold if the eigendistributions

E(1), and E(−1) are of the same rank [2, 9]. An almost golden manifold (M, G) is called an almost para-

golden manifold if the eigendistributions E(σ) and E(σ̄) are of the same rank. It is clear from their definitions

that an almost paracomplex manifold (M, P ) and an almost para-golden manifold (M, G) are necessarily

of even dimensions.

Definition (2.1/A) Let M be a smooth manifold together with a (1, 1) tensor field φ (= P,G) and a

Riemannian metric h satisfying

h (φX, Y ) = h (X, φY ) ; ∀ X, Y ∈ Γ (TM) . ∗

Then
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i) (M, h, P ) is called almost product Riemannian manifold, [7] .

ii) (M, h, G) is called almost golden Riemannian manifold, [7, 8] .

We refer to the condition (∗) as the compatibility of h and φ. We also say “ h is pure with respect

to φ ” if h and φ are compatible, and call h pure metric (with respect to φ). Note here that

the eigendistributions E(k) and E(k̄) are h -orthogonal.

iii) An almost product Riemannian manifold (M, h, P ) and its metric h are also called almost B-

manifold and B-metric respectively if the eigendistributions E(1) and E(−1) are of the same rank

[12] .

iv) An almost golden Riemannian manifold (M, h, P ) is also called an almost para-golden Riemannian

manifold if the eigendistributions E(σ), and E(σ̄) are of the same rank.

Definition (2.1/B) Let M be a smooth manifold together with a (1, 1) tensor field φ (= P, G) and a

nondegenerate metric h satisfying

h (φX, Y ) = h (X, φ̂Y ) ; ∀ X, Y ∈ Γ (TM) . (∗∗)

Then

i) (M, h, P ) is called an almost para-Hermitian manifold [2].

ii) (M, h, G) is called an almost golden-Hermitian manifold.

In this case, we refer to the conditions (∗∗) as the hyperbolic compatibility of h and φ. We also

say “h is hyperbolic with respect to φ” if h and φ are hyperbolic compatible, and call h hyperbolic

metric (with respect to φ).

Note here that the hyperbolic case differs from the pure one. To be precise:

On a manifold (M, h, φ) with a hyperbolic metric h (with respect to φ) one has

1) h (PX, Y ) = h
(
X, P̂Y

)
= −h (X, PY ) ; ∀ X, Y ∈ Γ (TM) . Therefore, we have

h (PX, X) = 0, ∀ X ∈ Γ (TM)

unlike the pure case where, for example,

h (PX, X) = h (X, X) , ∀ X ∈ Γ
(
EP
(1)

)

2) h (GX, Y ) = h
(
X, ĜY

)
; ∀ X, Y ∈ Γ (TM). Therefore, we have

2h (GX, X) = h (X, X) = 2h
(
ĜX, X

)
, ∀ X ∈ Γ (TM) .
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3) h (X, Y ) = 0; ∀ X, Y ∈ Γ
(
Eφ
(k)

)
or ∀ X, Y ∈ Γ

(
Eφ

(k̄)

)
.

That is, hyperbolic metric h is null on the eigendistributions Eφ
(k) and Eφ

(k̄)
(and therefore the

hyperbolic metric is necessarily semi-Riemannian whereas the pure metric needs not to be.)

Indeed, let X, Y ∈ Γ
(
Eφ
(k)

)
then h (φX, Y ) = kh (X, Y ) and h (X, φ̂Y ) = k̄h (X, Y ) . On

the other hand, h (φX, Y ) = h (X, φ̂Y ) since h is hyperbolic. Thus kh (X, Y ) = k̄h (X, Y ) , which

gives
(
k − k̄

)
h (X, Y ) = 0, so that h (X, Y ) = 0; ∀ X, Y ∈ Γ

(
Eφ
(k)

)
. By the same argument we get

h (X, Y ) = 0, ∀ X, Y ∈ Γ

(
Eφ

(k̄)

)
.

Lemma (2.2/A) [2] Let (M, h, P ) be an almost para-Hermitian manifold. Then

i) h is of signature (m, m) on TM, where 2m = dimM.

ii) rank
(
EP
(1)

)
= rank

(
EP
(−1)

)
= m.

Having given an almost golden manifold (M, h, G) with a hyperbolic metric h , since h is also

hyperbolic with respect to the product structure PG , by considering the almost para-Hermitian manifold

(M, h, P
G
) and using the above Lemma, we get:

Lemma (2.2/B) Let (M, h, G) be an almost golden-Hermitian manifold. Then

i) h is of signature (m, m) on TM, where 2m = dimM.

ii) rank
(
EG
(σ)

)
= rank

(
EG
(σ̄)

)
= rank

(
ER
(1)

)
= m, where R = PG .

Proposition 2.1 Let an almost product structure P and an almost golden structure G form a twin pair

{P, G} on a smooth manifold M. For a nondegenerate metric h on M the following statements are

equivalent:

i) h is pure [resp : hyperbolic] with respect to P.

ii) h is pure [resp : hyperbolic] with respect to P̂ .

iii) h is pure [resp : hyperbolic] with respect to G.

iv) h is pure [resp : hyperbolic] with respect to Ĝ.

Proof We are only showing the equivalence of (i) and (iv) as the rest of the cases follow by the similar

argument:
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Assume (i), then ∀ X, Y ∈ Γ (TM)

h
(
X, ĜY

)
= h

(
X, 1

2

(
I +

√
5 P̂

)
Y
)

= 1
2h (X, Y ) +

√
5
2 h

(
X, P̂Y

)
= 1

2h (X, Y )−
√
5
2 h (X, PY )

= 1
2h (X, Y )−

√
5
2 h (PX, Y )

= 1
2h (X, Y ) +

√
5
2 h

(
P̂X, Y

)
= h

(
1
2

(
I +

√
5 P̂

)
X, Y

)
= h

(
ĜX, Y

)
Next assume (iv) then ∀ X, Y ∈ Γ (TM)

h (X, PY ) = −h
(
X, P̂Y

)
= −h

(
X, 1√

5

(
2Ĝ− I

)
Y
)
−

[
− 1√

5
h (X, Y ) + 2√

5
h
(
ĜX, Y

)]
= −

[
h
(

1√
5

(
2Ĝ− I

)
X, Y

)]
= −h

(
P̂X, Y

)
= h (PX, Y )

We immediately get, from Proposition (2.1), the following 2

Proposition 2.2 Let an almost product structure P and an almost golden structure G form a twin

pair {P, G} on a smooth manifold M.

(A) : The following statements are equivalent:

i) (M, h, P ) is an almost product Riemannian manifold.

ii)
(
M, h, P̂

)
is an almost product Riemannian manifold.

iii) (M, h, G) is an almost golden-Riemannian manifold.

iv)
(
M, h, Ĝ

)
is an almost golden-Riemannian manifold.

(B) : The following statements are equivalent

i) (M, h, P ) is an almost para-Hermitian manifold.

ii)
(
M, h, P̂

)
is an almost para-Hermitian manifold.

iii) (M, h, G) is an almost golden-Hermitian manifold.

iv)
(
M, h, Ĝ

)
is an almost golden-Hermitian manifold.
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Definition 2.1 An almost product manifold (M, P ) and an almost golden manifold (M, G) are said to be

twins if P and G are twins (on the same manifold M ).

Remark 2.1 It is obvious that (M, P ) and (M, G) are twins if and only if
(
M, P̂

)
and

(
M, Ĝ

)
are twins.

For an almost product (or golden) manifold (M, φ) , φ is said to be integrable if its Nijenhuis tensor

field Nφ vanishes [3, 4].

That is, ∀ X, Y ∈ Γ (TM)

Nφ (X, Y ) = φ2 [X, Y ] + [φX, φY ]− φ [φX, Y ]− φ [X, φY ] = 0,

For an almost product (or golden) manifold (M, φ) with integrable φ we drop the adjective “almost” and

then simply call it a product ( or golden) manifold.

Lemma 2.1 [3], For a twin pair {P, G} on a manifold M with any linear connection ∇̃ one has

5NP = 4NG and
√
5∇̃P = 2∇̃G.

This lemma gives immediately:

Corollary 2.1 Let {P, G} be a twin pair on a manifold M, then we have:

P is integrable if and only if P̂ is integrable if and only if Ĝ is integrable if and only if G is

integrable.

Lemma 2.2 ([4] , Pg : 150− 151) For an almost product manifold (M, P ) ,

i) There always exists a linear connection ∇̄ on M with ∇̄P = 0.

( Note that the condition that ∇̄P = 0 , does not imply the integrability of the almost product structure

P unless ∇̄ is symmetric.)

ii) For any symmetric linear connection ∇̌ on M

NP (X, Y ) =
(
∇̌PXP

)
Y −

(
∇̌PY P

)
X − P

((
∇̌XP

)
Y
)
+ P

((
∇̌Y P

)
X
)

and therefore if ∇̌P = 0 then P is integrable.

iii) If P is integrable then there always exists a symmetric linear connection
s

∇ on M with
s

∇P = 0.

From Corollary (2.1) and Lemma (2.4) one gets:

Corollary 2.2 Let {P, G} be a twin pair of almost product and almost golden structures on a smooth manifold

(M, h) with a nondegenerate metric h. Then for the Levi-Civita connection ∇ on (M, h) one has:
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A) The following are equivalent:

i) ∇P = 0.

ii) ∇ Ĝ = 0.

iii) ∇G = 0.

iv) ∇ P̂ = 0.

B) If ∇P = 0 then P , P̂ , Ĝ , and G are all integrable.

Remark 2.2 Note that

i) the above Corollary is true regardless of whether h is pure or hyperbolic or neither with respect to P

(and therefore with respect to P̂ , G , and Ĝ).

ii) Integrability of φ (= P, G) does not imply that φ is parallel (with respect to the metric (Levi-Civita)

connection).

Let (M, h, φ (= P, G)) be an almost product (or golden) manifold with a metric h that is pure or

hyperbolic with respect to φ. Then due to the above lemma (2.4)/ (iii) , an integrable φ is always parallel

with respect to some symmetric connection
s

∇ anyway. However,
s

∇h = 0 need not be true, that is,
s

∇
need not be the Levi-Civita connection. The question here is what extra condition should be imposed so that

integrability of φ, together with the imposed condition, guarantees that φ is parallel under the Levi-Civita

connection? The answer to this question will differ depending on whether the metric h is pure or hyperbolic

with respect to φ.

From here on, unless otherwise stated, the connections involved will be the Levi-Civita ones and denoted

by ∇ .

I : The hyperbolic case: Even though this case is well known for φ = P , (see [2, 11]), we will give an

outline to some extent.

Let (M, h, φ (= P, G)) be an almost para-Hermitian manifold (so that h is hyperbolic) with its

Levi-Civita connection ∇. Set ∀X, Y ∈ Γ (TM)

ΩP (X, Y ) = Ω (X, Y ) = h (PX, Y )

Then ΩP is a (P−associated) 2-form on M and it is called “fundamental 2-form” or “para-Kaehler form”.

The exterior differential dΩ is a 3-form on M , which is given by [5],

dΩ(X, Y, Z) =∇X (Ω (Y, Z))−∇Y (Ω (X, Z)) +∇Z (Ω (X, Y ))

− Ω ([X, Y ] , Z)− Ω([Y, Z] , X) + Ω ([X, Z] , Y )

which can also be expressed as

dΩ(X, Y, Z) = (∇XΩ) (Y, Z)− (∇Y Ω) (X, Z) + (∇ZΩ) (X, Y ) . (2.1)
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Definition 2.2 A : [11]

i) An almost para-Hermitian manifold (M, h, P ) is called almost para-Kaehler if its para-Kaehler form

ΩP is closed, i.e . dΩP = 0.

ii) An almost para-Kaehler manifold (M, h, P ) with integrable P is called para-Kaehler.

B :

i) An almost golden-Hermitian manifold (M, h, G) is called almost golden-Kaehler if the para-Kaehler

form ΩR is closed, i.e. dΩR = 0, where R =PG is the G−associated product structure and ΩR is

the R-associated 2-form.

ii) An almost golden-Kaehler manifold (M, h, G) with integrable G is called golden-Kaehler.

Proposition 2.3 Let {P, G} be twin structures on (M,h) with a hyperbolic metric h with respect to P

(and therefore with respect to G). Then the following statements are equivalent:

i) The manifold (M, h, P ) is almost para-Kaehler, that is, dΩP = 0.

ii) The manifold (M, h, G) is an almost golden-Kaehler, that is, dΩR = 0.

iii) The manifold
(
M, h, P̂

)
is an almost para-Kaehler, that is, dΩP̂ = 0.

iv) The manifold
(
M,h, Ĝ

)
is an almost golden-Kaehler, that is, dΩR̂ = 0.

Proof The result follows from the fact that R =PG = P since P and G are twins. 2

Lemma 2.3 [9] Let (M, h, P ) be an almost para-Hermitian manifold with its Levi-Civita connection ∇
and para-Kaehler form Ω. Then the following relation holds: ∀X, Y, Z ∈ Γ (TM)

2h ((∇XP )Y, Z) + 3dΩ(X, Y, Z) + 3dΩ (X, PY, PZ) + h (NP (Y, Z) , PX) = 0.

Proposition 2.4 Let (M, h, φ (= P, G)) be an almost para-Hermitian or an almost golden-Hermitian

manifold.

A : Then the following are equivalent:

i) P is parallel with respect to the Levi-Civita connection ∇ , that is ∇P = 0.

ii) M is para-Kaehler (that is, NP = 0 and dΩP = 0).

B : Then the following are equivalent:

i) G is parallel with respect to the Levi-Civita connection ∇ , that is, ∇G = 0.

ii) M is golden-Kaehler (that is NG = 0 and dΩR = 0), where R = PG is the G-associated product

structure.
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Proof A : ( [11])

(i) ⇒ (ii) : Note that

∇ (Ω (X, Y )) = (∇Ω) (X, Y ) + Ω (∇X, Y ) + Ω (X, ∇Y ) (2.2)

On the other hand, since ∇P = 0 and ∇h = 0, we have

∇ (Ω (X, Y )) = ∇ (h (PX, Y ))

= (∇h) (PX, Y ) + h (∇ (PX) , Y ) + h (PX, ∇Y )

= h (P (∇X) , Y ) + h (PX, ∇Y )

= Ω (∇X, Y ) + Ω (X, ∇Y ) (2.3)

However, then the equalities (2.2) and (2.3) give us that ∇Ω = 0. Thus, from (2.1) , we get

dΩP = 0. The equality NP = 0 follows from Lemma (2.3) .

(ii) ⇒ (i) : This follows directly from Lemma (2.3) .

B : Since {R, G} is a twin pair on M, the required equivalence follows from part (A). 2

Remark 2.3 Let J be a (1, 1)-tensor field with J2 = −I on a Riemannian manifold (M, g) , where

g is hyperbolic with respect to J and Ĵ = −J is the conjugate of J. Then J and (M, g, J) are

called almost complex structure and almost Hermitian manifold respectively. In this case it is well known that

Proposition (2.4)/A is also valid when P is replaced by J

II : The pure case:

Let (M, h, φ (= P, G)) be an almost product (or an almost golden) Riemannian manifold (so that

h is pure) with its Levi-Civita connection ∇. The so-called “Tachibana operator”

ϕφ : ℑ0
2 (M) → ℑ0

3 (M)

from the set of all (0, 2)−tensor fields into the set of all (0, 3)−tensor fields over M is given by (see [8, 12]) :

∀ u ∈ ℑ0
2 (M) and ∀ X, Y, Z ∈ Γ (TM)

(ϕφu) (X, Y, Z) = (φX) (u (Y, Z))−X (u (φY, Z))
+u ((LY φ)X, Z) + u (Y, (LZφ)X)

where Lφ is the Lie derivative of φ.

In particular, for the pure metric h with respect to φ , the above equality takes the form (see [7, 12]) :

∀ X, Y, Z ∈ Γ (TM)

(ϕφh) (X, Y, Z) = −h ((∇Xφ)Y, Z) + h ((∇Y φ)X, Z) + h ((∇Zφ)X, Y ) .

Now let us define another operator

Ψφ : ℑ0
2 (M) → ℑ0

3 (M)
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by ∀ X, Y, Z ∈ Γ (TM)

(Ψφu) (X, Y, Z) = (ϕφu) (X, Y, Z) + (ϕφu) (Z, Y, X)

Lemma 2.4 ( [7, 12]) Let (M, h, φ (= P, G)) be an almost product (or an almost golden) Riemannian

manifold with its Levi-Civita connection ∇. Then

i) ∀ X, Y, Z ∈ Γ (TM)

(Ψφh) (X, Y, Z) = 2h ((∇
Y
φ)X, Z)

ii) The following are equivalent:

a◦) (Ψφh) = 0

b◦) (ϕφh) = 0

c◦) ∇φ = 0

Proposition 2.5 Let (M, h, φ (= P, G)) be an almost product (or an almost golden) Riemannian manifold.

Then

A : The following are equivalent:

i) P is parallel with respect to the Levi-Civita connection ∇ , that is, ∇P = 0.

ii) P is integrable (that is, NP = 0) and the condition that ∀ X, Y, Z ∈ Γ (TM)

(ΨPh) (X, Y, Z) = (ΨPh) (Y, X, Z) + (ΨPh) (PY, PX, Z) , (P (∗))

holds.

B : The the following are equivalent:

i) G is parallel with respect to the Levi-Civita connection ∇ , that is, ∇G = 0.

ii) G is integrable, that is, NG = 0 and the condition that ∀ X, Y, Z ∈ Γ (TM)

(ΨRh) (X, Y, Z) = (ΨRh) (Y, X, Z) + (ΨRh) (RY, RX, Z) , (G (∗))

holds.

Here R =PG is the twin product structure of G, so that {G, R} form a twin pair.

Proof A :

(i) ⇒ (ii) : Since ∇P = 0 by the assumption, we have from Lemma (2.4) / (ii) that NP = 0, and from

Lemma (2.6) the condition P (∗) follows.

(ii) ⇒ (i) : From Lemma (2.4) / (ii) we have: ∀ X, Y, Z ∈ Γ (TM)
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NP (X, Y ) = (∇PXP )Y − (∇PY P )X − P ((∇XP )Y ) + P ((∇Y P )X)
= (∇PXP )Y − (∇PY P )X + (∇XP ) (PY )− (∇Y P ) (PX)

Hence

h (NP (X, Y ) , Z) = h ((∇PXP )Y, Z)− h ((∇PY P )X, Z)
+h ((∇XP ) (PY ) , Z)− h ((∇Y P ) (PX) , Z)

That is,

h (NP (X, Y ) , Z)− h ((∇XP ) (PY ) , Z)
= h ((∇PXP )Y, Z)− h ((∇PY P )X, Z)− h ((∇Y P ) (PX) , Z) .

Then using Lemma (2.6) we get ∀ X, Y, Z ∈ Γ (TM)

2 {h (NP (X, Y ) , Z)− h ((∇XP ) (PY ) , Z)}
= (ΨPh) (Y, PX, Z)− (ΨPh) (X, PY, Z)− (ΨPh) (PX, Y, Z) .

Exchanging X with Y this equation reads:

2 {h (NP (Y, X) , Z)− h ((∇Y P ) (PX) , Z)}
= (ΨPh) (X, PY, Z)− (ΨPh) (Y, PX, Z)− (ΨPh) (PY, X, Z) .

Then putting Y for PY in the last equation (doing this does not alter the equation since P is an

isomorphism) we get ∀ X, Y, Z ∈ Γ (TM)

2 {h (NP (PY, X) , Z)− h ((∇PY P ) (PX) , Z)}
= (ΨPh) (X, Y, Z)− (ΨPh) (PY, PX, Z)− (ΨPh) (Y, X, Z) .

However, then under the assumptions that NP = 0 and the condition P (∗) holds, the last equation gives

us that
h ((∇PY P ) (PX) , Z) = 0, ∀ X, Y, Z ∈ Γ (TM) ,

which means that ∇P = 0.

B :

(i) ⇒ (ii) : By the assumption, ∇G = 0 and therefore ∇R = 0. Thus by part (A) above, we get

NR = 0, and therefore NG = 0 by Lemma (2.3) . Moreover, by part (A), we get that the condition

G (∗) holds.

(ii) ⇒ (i) : By the assumption, NG = 0 and therefore NR = 0 and the condition G (∗) holds. Thus by

part (A) , we get ∇R = 0, and therefore ∇G = 0 by Corollary (2.2) .

2

For an almost product (or an almost golden) manifold (M, h, φ) with a pure or hyperbolic metric h

with respect to φ, and with its Levi-Civita connection ∇, the divergence divφ of φ is given by [5]

divφ =

m∑
i=1

hii (∇eiφ) ei.

Here {e1 , ..., em} is a local orthonormal frame field for Γ (TM) and hii = h (ei, ei) .
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Definition 2.3 (A) : An almost product Riemannian manifold (M, h, P ) with its Levi-Civita connection

∇ is called

i) locally product Riemannian manifold if P is integrable [7] .

ii) almost decomposable product Riemannian manifold if P (∗) holds.

iii) locally decomposable product Riemannian manifold if P is integrable and P (∗) holds (that is, P is

parallel) [7] . In particular, if (M, h, P ) is a B-manifold (resp : almost B-manifold) holding the

condition P (∗) then it is also called para-holomorphic B-manifold [12] (resp : almost para-holomorphic

B -manifold ). Note here that by virtue of Proposition (2.5) , if (M, h, P ) is a para-holomorphic B-

manifold then ∇P = 0 , i.e. P is parallel.

iv) Semidecomposable product Riemannian manifold if divP = 0

(B) : An almost golden Riemannian manifold (M, h, G) with its Levi-Civita connection ∇, is called

i) locally golden Riemannian manifold if G is integrable [7] .

ii) almost decomposable golden Riemannian manifold if G (∗) holds.

iii) locally decomposable golden Riemannian manifold if G is integrable and G (∗) holds (that is, G is

parallel) [7] .

iv) Semidecomposable golden Riemannian manifold if divG = 0 .

Define a bilinear map [6] ,

Sφ : Γ (TM)× Γ (TM) → Γ (TM)

on a manifold (M, h, φ (= P, G)) with the Levi-Civita connection ∇ by

Sφ (X, Y ) = (∇
X
φ)Y + φ

(
∇

φX
φ
)
Y ∀ X, Y ∈ Γ (TM) .

Lemma 2.5 (A) : For φ = P and ∀ X, Y ∈ Γ (TM) we have

i)

SP (X, Y ) = (∇
X
P )Y − (∇

PX
P ) (PY ) .

ii)

P (SP (X, Y )) = −SP (X, PY ) = SP (PX, Y ) .

iii)

SP (X, Y ) = 0, ∀ X, Y ∈ Γ
(
E(1)

)
and SP (X, Y ) = 0, ∀ X, Y ∈ Γ

(
E(−1)

)
.

(B) : For φ = G and ∀ X, Y ∈ Γ (TM) we have

i)

SG (X, Y ) = (∇
X
G)Y − (∇

GX
G) (GY ) + (∇

GX
G)Y.
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ii)

SG (X, Y ) = 0, ∀ X, Y ∈ Γ
(
E(σ)

)
and SG (X, Y ) = 0, ∀ X, Y ∈ Γ

(
E(σ̄)

)
.

Proof Using the fact that

P ((∇P )X) = − (∇P ) (PX) and G ((∇G)Y ) = − (∇G) (GY ) + (∇G)Y

we get A/ (i) and B/ (i) . Next, A/ (ii) and A/ (iii) are easy. For B/ (ii) let X, Y ∈ Γ
(
E(σ)

)
,

then

SG (X, Y ) = (∇XG)Y − (∇GXG) (GY ) + (∇GXG)Y

= (∇
X
G)Y − σ2 (∇

X
G) (Y ) + σ (∇

X
G)Y

=
(
1− σ2 + σ

)
(∇

X
G)Y = 0, since σ2 = 1 + σ.

By the same argument we also get that

SG (X, Y ) = 0, ∀ X, Y ∈ Γ
(
E(σ̄)

)
,

which completes the proof. 2

Lemma 2.6 (c.f [6]) On an almost product Riemannian or an almost para Hermitian manifold (M, h, P ) ,

the following statements are equivalent:

i) SP (X, Y ) = 0 ∀ X, Y ∈ Γ (TM) .

ii) SP (X, PX) = 0 ∀ X ∈ Γ (TM) .

iii) SP (X, X) = 0 ∀ X ∈ Γ (TM) .

Proposition 2.6 For an almost product Riemannian manifold MP = (M, h, P ) and an almost golden

Riemannian manifold MG = (M, h, G) ,

(A) : on MP

i) ∇P = 0 if and only if SP = 0 if and only if (ΨPh) = 0 if and only if (ϕPh) = 0.

ii) ∇G = 0 if and only if SG = 0 if and only if (ΨGh) = 0 if and only if (ϕGh) = 0 .

(B) : If MP and MG are twin manifolds then the following are equivalent:

i) ∇P = 0 on MP .

ii) SP = 0 on MP .

iii) ∇G = 0 on MG.

iv) SG = 0 on MG.
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v) ∇Ĝ = 0 on MĜ.

vi) SP̂ = 0 on MP̂ .

vii) ∇P̂ = 0 on MP̂ .

Proof (A) :

(i) If ∇P = 0 then obviously SP = 0.

Conversely, assume that SP = 0. Then for X ∈ Γ
(
E(1)

)
and Y ∈ Γ

(
E(−1)

)
SP (Y, X) = (∇

X
P )Y − (∇

PX
P )PY = 2 (∇

X
P )Y = 0,

which gives

(∇XP )Y = 0; ∀ X ∈ Γ
(
E(1)

)
and ∀ Y ∈ Γ

(
E(−1)

)
. (2.4)

By a similar argument we get

(∇Y P )X = 0; ∀ X ∈ Γ
(
E(1)

)
and ∀ Y ∈ Γ

(
E(−1)

)
. (2.5)

From (2.4) we get

(∇XP )Y = ∇X (PY )− P (∇XY ) = −∇XY − P (∇XY ) = 0.

Thus,

∇XY ∈ Γ
(
E(−1)

)
∀ X ∈ Γ

(
E(1)

)
and ∀ Y ∈ Γ

(
E(−1)

)
. (2.6)

On the other hand, ∀ X, Z ∈ Γ
(
E(1)

)
and ∀ Y ∈ Γ

(
E(−1)

)
X (h (Y, Z)) = h (∇XY, Z) + h (Y, ∇XZ) = 0, since h (Y, Z) = 0.

Using (2.6) , this gives h (Y, ∇XZ) = 0, ∀ Y ∈ Γ
(
E(−1)

)
and therefore ∇XZ ∈ Γ

(
E(1)

)
. However,

then

P (∇XZ) = ∇XZ = ∇X (PZ)

which gives

(∇XP )Z = 0; ∀ X, Z ∈ Γ
(
E(1)

)
(2.7)

By a similar argument we also get

(∇XP )Z = 0; ∀ X, Z ∈ Γ
(
E(−1)

)
(2.8)

However, then (2.4) , (2.5) , (2.7) , and (2.8) give us that ∇P = 0, i.e. P is parallel. The rest of

the statements in (i) will follow from Lemma (2.6).

(ii) This will follow by mimicking the arguments used in (i) .
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(B) : Now, observing that SP = −SP̂ , ∇P = −∇P̂ , and ∇G = −
√
5
2 ∇P̂ = −∇Ĝ, together with the

part (A) , proofs of the statements (i) to (vii) in part B will easily follow. 2

For an almost para-Hermitian manifold MP = (M, h, P ) and an almost golden Hermitian manifold

MG = (M, h, G) (note that here the metric is hyperbolic with respect to the indicated structures rather than

pure) we do not have Proposition (2.6/A) type of results. Instead, some conditions on the operator Sφ, with

φ (= P, G) induce some extra subclasses of those manifolds. To be precise:

Definition 2.4 (A) : An almost para-Hermitian manifold (M, h, P ) with its Levi-Civita connection ∇
is said to be, [6] ,

i) nearly para-Kaehler if (∇XP )X = 0, ∀ X ∈ Γ (TM)

ii) quasi para-Kaehler if SP = 0.

iii) semi para-Kaehler if
m∑
i=1

hiiSP (ei, ei) = 0 (equivalently, div (P ) = 0), where {e1 , ..., em; Pe1 , ..., Pem}

is a local orthonormal frame field for Γ (TM) and hii = h (ei, ei) .

(B) : An almost golden-Hermitian manifold (M, h, G) with its Levi-Civita connection ∇ is said to be

i) nearly golden-Kaehler if (∇XG)X = 0, ∀ X ∈ Γ (TM)

ii) quasi golden-Kaehler if SR = 0, where R = PG, G-associated product structure.

iii) semi golden-Kaehler if
m∑
i=1

hiiSR (ei, ei) = 0 (equivalently, div (R) = 0 or div (G) = 0) where

{e1 , ..., em; Re1 , ...,Rem} is a local orthonormal frame field for Γ (TM) and hii = h (ei, ei) .

3. Harmonicity

Definition 3.1 A distribution D over a (semi) Riemannian manifold (M, h) with its Levi-Civita connec-

tion ∇, is said to be

i) (c.f. [10]) Vidal if
∇

X
X ∈ D, ∀ X ∈ Γ (D) .

ii) [1] critical if

n∑
i=1

hii∇vivi ∈ D

If the restriction h |D of h to D is positive (or negative) definite then the critical distribution D is

also called minimal. Here {v1 , ..., vn} is a local orthonormal frame field for D and hii = h (vi, vi) .

Remark 3.1 1) For an almost product (or an almost golden) Riemannian manifold (M, h, φ (= P, G))

i) every Vidal distribution is critical.
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ii) if φ is parallel then the eigendistributions E(k) and E(k̄) of φ are both Vidal and therefore they

are minimal. Here k = 1, k̄ = −1 for φ = P and k = σ, k̄ = σ̄ for φ = G

iii) the eigendistributions E(1) and E(−1) of P (resp : E(σ) and E(σ̄) of G ) are both minimal if and

only if divP = 0, that is, (M, h, P ) is semidecomposable product Riemannian (resp : divG = 0,

that is, (M, h, G) semidecomposable golden Riemannian) manifold

2) For an almost product (or an almost golden) manifold (M, h, φ (= P, G)) with a pure or hyperbolic

metric h, if {P, G} is a twin pair then the following are equivalent:

i) divP = 0

ii) divG = 0

Lemma 3.1 Let F : (M, φM ) → (N, φN ) be a smooth map with its differential map F∗ : TM → TN,

where φ (= P, G) .

i) If F∗ ◦ PM = GN ◦ F∗ or F∗ ◦GM = PN ◦ F∗ then F is constant.

ii) If any one of the following

• F∗ ◦ PM = ĜN ◦ F∗,

• F∗ ◦ P̂M = ĜN ◦ F∗,

• F∗ ◦ P̂M = GN ◦ F∗,

• F∗ ◦GM = P̂N ◦ F∗,

• F∗ ◦ ĜM = P̂N ◦ F∗,

• F∗ ◦ ĜM = PN ◦ F∗

holds then F is constant

Proof The statement (i) is treated in ( [13] , Theorem 7&8) . The argument used in [13] works for all

the cases in (ii) 2

Definition 3.2 A smooth map F : (M, φ
M
) → (N, φ

N
) with its differential map dF = F∗ : TM → TN is

said to be

i) ( [2, 6]) , (PM , PN )-paraholomorphic, [resp : (PM , PN ) -anti-paraholomorphic] if

F∗ ◦ PM = PN ◦ F∗,
[
resp : F∗ ◦ PM = P̂N ◦ F∗ = −P ◦ F∗

]
ii)

• [13], (GM , GN )-golden if

F∗ ◦GM = GN ◦ F∗
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• (GM , GN )-antigolden if

F∗ ◦GM = ĜN ◦ F∗ = IN −GNF∗,

where φ̂
(
= P̂ , Ĝ

)
is the conjugate of φ.

We shall be writing ± (PM , PN )-paraholomorphic to mean either (PM , PN )-paraholomorphic or

(PM , PN )-anti-paraholomorphic. Similarly, we shall be writing ± (GM , GN )-golden to mean either (GM , GN )-

golden or (GM , GN )-antigolden .

Note that since ̂̂φ = φ, we have:

If a map F : (M, φ
M
) → (N, φ

N
) is (PM , PN )-paraholomorphic then it is

(
PM , P̂N

)
-anti-

paraholomorphic as a map F : (M, P
M
) →

(
N, P̂

N

)
, and if (GM , GN )-golden then it is

(
GM , ĜN

)
-

antigolden as a map F : (M, GM ) →
(
N, ĜN

)
. Conversely, if a map F : (M, φM ) → (N, φN ) is

(PM , PN )-anti-paraholomorphic then it is
(
PM , P̂N

)
-paraholomorphic as a map F : (M, P

M
) →

(
N, P̂

N

)
,

and if (GM , GN )-antigolden then it is
(
GM , ĜN

)
-golden as a map F : (M, G

M
) →

(
N, Ĝ

N

)
.

Proposition 3.1 For twin pairs {PM , GM} and {PN , GN} let

F : (M, φ
M
(= PM , GM )) → (N, φ

N
(= PN , GN ))

be a smooth map. Then the following statements are equivalent:

i) F is (PM , PN )-paraholomorphic [resp : (PM , PN )− anti-paraholomorphic] .

ii) F is (GM , GN )-golden [resp : (GM , GN ) -antigolden] .

Proof

F is (GM , GN ) -antigolden

⇐⇒
F∗ ◦GM = ĜN ◦ F∗

⇐⇒

F∗ ◦ (tI + rPM ) =
(
tI + rP̂N

)
◦ F∗

⇐⇒

Since {PM , GM} is a twin pair and then so is
{
P̂M , ĜM

}
, so that

GM = tI + rPM and ĜM = tI + rP̂M , where t =
1

2
, r =

√
5

2

⇐⇒

tF∗ + r (F∗ ◦ PM ) = tF∗ + r
(
P̂N ◦ F∗

)
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⇐⇒
F∗ ◦ PM = P̂N ◦ F∗

⇐⇒
F is (PM , PN ) -anti-paraholomorphic

The rest of the cases can be shown similarly. 2

Let F : (M, h) → (N, g) be a smooth map between (semi) Riemannian manifolds. The second

fundamental form

∇F∗ : Γ (TM)× Γ (TM) → Γ (TN)

of F is given by ∀ X, Y ∈ Γ (TM)

(∇F∗) (X, Y ) =
N

∇(F∗X) (F∗Y )− F∗

(
M

∇XY

)
,

where
M

∇ and
N

∇ are the Levi-Civita connections on M and N respectively. Note that the map ∇F∗

is bilinear and symmetric (see [1, 5]) .

For a given distribution D over a (semi) Riemannian manifold (M, h) , the D -tension field TD(F )

of F : (M, h) → (N, g) is given by (c.f. [1, 5, 6])

TD(F ) =
s∑

i,j=1

hij (∇F∗) (ei, ej) ∈ Γ (TN) , (3.1)

where {e1 , ..., es} is a local frame field for D and
(
hij

)
= (hij )

−1
, hij = h (ei, ej) . In particular, if

{e
1
, ..., es} is a local h -orthonormal frame field for D then the expression (3.1) takes the form

TD(F ) =
s∑

i=1

hii (∇F∗) (ei, ei) ∈ Γ (TN) (3.2)

In the cases where D = TM, we simply write T (F ) for TTM (F ) and call it the “tension field of F ”

Definition 3.3 (c.f. [1, 5]) A smooth map F : (M, h) → (N, g) is said to be harmonic [resp : D-harmonic]

if its tension field [resp : D-tension field] vanishes. In particular,

• for a map F : (M, h, P ) → (N, g) from an almost product Riemannian manifold M , if D =

M

E (1)

[
resp : D =

M

E (−1)

]
then D -harmonic F is also called plus-eigen harmonic [resp : minus-eigen

harmonic ] .

• for a map F : (M, h, G) → (N, g) from an almost golden Riemannian manifold M , if D =

M

E (σ)

[
resp : D =

M

E (σ̄)

]
then D -harmonic F is also called plus-eigen harmonic [ resp: minus-

eigenharmonic].
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Proposition 3.2 For almost product manifolds (M, h, P ) , (N, g, Q) with pure or hyperbolic metric h

with respect to P and pure or hyperbolic metric g with respect to Q, let F : (M, h, P ) → (N, g, Q) be

a ± (P, Q)-paraholomorphic map. Then for every local section X, Y ∈ Γ (TM) ,

(∇F∗) (PX, PY ) = (∇F∗) (X, Y )

+

(
N

∇QX ′Q

)
Y ′ −

(
N

∇Y ′Q

)
(QX ′)

−F∗

[(
M

∇PX P

)
Y −

(
M

∇Y P

)
(PX)

] (3.3)

In particular,

(∇F∗) (PX, PX) = (∇F∗) (X, X) + SQ (QX ′, X ′)
−F∗ [SP (PX ,X)]

= (∇F∗) (X, X) +Q {SQ (X ′, X ′)− λF∗ [SP (X ,X)]} ,
(3.4)

where X ′ = F∗X, Y ′ = F∗Y, and λ = 1 when F is (P, Q)-paraholomorphic, λ = −1 when F

is (P, Q)-antiparaholomorphic.

Proof Let F be a (P, Q)-paraholomorphic map so that F∗ ◦ P = Q ◦ F∗ then

(∇F∗) (X, PY ) =
N

∇X ′ (PY )
′ − F∗

(
M

∇X (PY )

)
=

N

∇X ′Q (Y ′)− F∗

(
M

∇X (PY )

)
=

(
N

∇X ′Q

)
Y ′ +Q

(
N

∇X ′Y ′
)

−F∗

[(
M

∇XP

)
Y + P

(
M

∇XY

)]
= Q

[
N

∇X ′Y ′ − F∗

(
M

∇XY

)]
+

(
N

∇X ′Q

)
Y ′ − F∗

[(
M

∇XP

)
Y

]
Thus we get

(∇F∗) (X, PY ) = Q [(∇F∗) (X, Y )] +

(
N

∇X ′Q

)
Y ′ − F∗

[(
M

∇XP

)
Y

]
However, then this gives us

(∇F∗) (PX, PY ) = Q [(∇F∗) (PX, Y )] +

(
N

∇(PX)′Q

)
Y ′

−F∗

[(
M

∇PXP

)
Y

]
= Q [(∇F∗) (PX, Y )] +

(
N

∇Q(X ′)Q

)
Y ′

−F∗

[(
M

∇PXP

)
Y

]
(3.5)

and

(∇F∗) (Y, PX) = Q [(∇F∗) (Y, X)]

+

(
N

∇Y ′Q

)
X ′ − F∗

[(
M

∇Y P

)
X

]
(3.6)
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Using (3.6) in (3.5) and the symmetry of ∇F∗, we get

(∇F∗) (PX, PY ) = (∇F∗) (X, Y )

+

(
N

∇Q(X ′)Q

)
Y ′ +Q

((
N

∇Y ′Q

)
X ′

)
−F∗

[(
M

∇PXP

)
Y + P

((
M

∇Y P

)
X

)] (3.7)

Finally using the fact that P ◦ (∇P ) = − (∇P ) ◦ P in equation (3.7) we get the desired result (3.3) . 2

In particular, since

SQ (QX ′, X ′) =

(
N

∇QX ′Q

)
X ′ −

(
N

∇X ′Q

)
(QX ′) = Q (SQ (X ′, X ′))

SP (PX ,X) =

(
M

∇PX P

)
X −

(
M

∇XP

)
(PX) = P (SP (X ,X ))

we get the equation (3.4) , that is,

(∇F∗) (PX, PX) = (∇F∗) (X, X) + SQ (QX ′, X ′)− F∗ [SP (PX ,X)]
= (∇F∗) (X, X) +Q {SQ (X ′, X ′)− F∗ [SP (X ,X)]} .

For the case where F is (P, Q)-anti-paraholomorphic, the same argument works so that the required result

(3.4) follows.

For a pair of almost product [resp : almost golden] manifolds (M, h, P ), (N, g, Q) [resp :

(M, h, G) , (N, g, K)] with pure or hyperbolic metric h with respect to P [resp : G ] and pure

or hyperbolic metric g with respect to Q [resp : K ] we set the following conditions:

(I) (M, h, P ) is a para-Kaehler manifold and (N, g, Q) is either a para-Kaehler manifold or a locally

decomposable product Riemannian manifold.

(II) (M, h, P ) is a locally decomposable product Riemannian manifold and (N, g, Q) is either a para-

Kaehler manifold or a locally decomposable product Riemannian manifold.

(III) (M, h, P ) is a quasi para-Kaehler manifold and (N, g, Q) is either quasi para Kaehler manifold or

a locally decomposable product Riemannian manifold.

(IV) (M, h, P ) is a locally decomposable product Riemannian manifold and (N, g, Q) is either a quasi

para-Kaehler manifold or a locally decomposable product Riemannian manifold.

Corollary 3.1 For a map F : (M, h, P ) → (N, g, Q)

i) let F be ± (P, Q)-paraholomorphic between manifolds holding the condition (I) or (II) then for

every local section X, Y ∈ Γ (TM) ,

(∇F∗) (PX, PY ) = (∇F∗) (X, Y )

ii) let F be ± (P, Q)-paraholomorphic between manifolds holding the condition (III) or (IV) then for

every local section X ∈ Γ (TM) ,

(∇F∗) (PX, PX) = (∇F∗) (X, X) (3.8)
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Proof

i) Since
N

∇Q = 0 and
M

∇P = 0 in the case (I) or (II) , the result follows from Proposition (3.2) .

ii) Since SQ (QX ′, X ′) = 0 and SP (PX ,X) = 0 in the case (III) or (IV), the result follows from

Proposition (3.2).

2

Theorem (3.1/A) : Let F : (M, h, P ) → (N, g, Q) be a ± (P, Q)-paraholomorphic map from a

semidecomposable product Riemannian manifold M into either an almost product Riemannian manifold or

an almost para-Hermitian manifold N with Vidal eigendistributions
N

E (1) and
N

E (−1) of Q. Then the

following statements are equivalent:

i) F is harmonic

ii) F is plus-eigen harmonic and minus-eigen harmonic

Proof (ii) ⇒ (i) : This is obvious.

(i) ⇒ (ii) : Let {u1 , ..., us} and {v1 , ..., vt} be local orthonormal frame fields for
M

E (1) and
M

E (−1)

respectively. Then observe that

a◦) Since divP = 0 and therefore
M

E (1) and
M

E (−1) are both minimal distributions,

u =
s∑

i=1

M

∇uiui ∈ Γ

(
M

E (1)

)
and v =

t∑
i=1

M

∇vivi ∈ Γ

(
M

E (−1)

)

b◦) Since F is ± (P, Q)-paraholomorphic, (a◦) gives us

F∗ (u) and u′i = F∗ (ui) ∈ Γ

(
N

E (c)

)
, ∀ i = 1, ..., s

and

F∗ (v) , v′i = F∗ (vi) ∈ Γ

(
N

E (−c)

)
, ∀ i = 1, ..., t

c◦) Since N is Vidal, (b◦) gives us

N

∇u ′
i
u ′

i ∈ Γ

(
N

E (c)

)
, ∀ i = 1, ..., s and

N

∇v ′
i
v′i ∈ Γ

(
N

E (−c)

)
, ∀ i = 1, ..., t

and therefore
s∑

i=1

N

∇u ′
i
u ′

i ∈ Γ

(
N

E (c)

)
and

t∑
i=1

N

∇v ′
i
v′i ∈ Γ

(
N

E (−c)

)
Hence, from (c◦) , we have

T(M
E (1)

)(F ) = s∑
i=1

(∇F∗) (ui, ui) =
s∑

i=1

[
N

∇u ′
i
u ′

i − F∗

(
M

∇uiui

)]
∈ Γ

(
N

E (c)

)
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and

T(M
E (−1)

)(F ) = t∑
i=1

(∇F∗) (vi, vi) =
t∑

i=1

[
N

∇v ′
i
v ′

i − F∗

(
M

∇vivi

)]
∈ Γ

(
N

E (−c)

)
Here c = 1, when F is (P, Q)-paraholomorphic and c = −1, when F is (P, Q)-anti-paraholomorphic.

However, then, since
N

E (1) ∩
N

E (−1) = {0} , we have that T(M
E (1)

)(F ) and T(M
E (−1)

)(F ) are linearly

independent. Thus, by the fact that {u1 , ..., us; v1 , ..., vt} is a local orthonormal frame field for TM

and
T (F ) = T (

M
E (1)

)(F ) + T(M
E (−1)

)(F ),
we have T(M

E (1)

)(F ) = 0 = T(M
E (−1)

)(F ) by the assumption that T (F ) = 0. 2

Corollary (3.2/A) Let F : (M, h, P ) → (N, g, Q) be a ± (P, Q)-paraholomorphic map from a

locally decomposable product Riemannian manifold M into either a locally decomposable product Riemannian

manifold or nearly para-Kaehler (in particular, para-Kaehler) manifold N. Then the following statements are

equivalent:

i) F is harmonic.

ii) F is plus-eigen harmonic and minus-eigen harmonic.

Proof By Remark (3.1) one gets that

a◦) for every locally decomposable product Riemannian manifold M, the eigendistributions
M

E (1) and

M

E (−1) are both minimal.

b◦) for every nearly para-Kaehler manifold N, the eigendistributions
N

E (1) and
N

E (−1) are also both Vidal.

Thus the equivalence of (i) and (ii) follows from the observations (a◦) , (b◦) and Theorem

(2.1/A). 2

Theorem (3.1/B) : Let F : (M, h, G) → (N, g, K) be a ± (G, K)-golden map from a semidecomposable

golden Riemannian manifold M into either an almost golden Riemannian manifold or an almost golden-

Hermitian manifold N with Vidal eigendistributions
N

E (σ) and
N

E (σ̄) of K. Then the following statements

are equivalent:

i) F is harmonic.

ii) F is plus-eigen harmonic and minus-eigen harmonic.

Proof Let PG and QK denote the twin product structures of G and K respectively. Then by

Remark (3.1) /(2) and Proposition (3.1) the hypothesis of this theorem becomes equivalent to the hypothesis

of Theorem (3.1/A), namely:
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“Let F : (M, h, PG) → (N, g, QK) be a ± (PG, QK)-paraholomorphic map from a semidecomposable

product Riemannian manifold (M, h, PG) into either an almost product Riemannian manifold or an almost

para-Hermitian manifold (N, g, QK) with Vidal eigendistributions
N

E (1) and
N

E (−1) of QK.”

Hence the required conclusion of the theorem follows from Theorem (3.1/A). 2

From Theorem (3.1/B) we immediately get.

Corollary (3.2/B) : Let F : (M, h, G) → (N, g, K) be a ± (G, K)-golden map from a locally

decomposable golden Riemannian manifold M into either a locally decomposable golden Riemannian manifold

or nearly golden-Kaehler (in particular, golden-Kaehler) manifold N. Then the following statements are

equivalent:

i) F is harmonic.

ii) F is plus-eigen harmonic and minus-eigen harmonic.

Proposition 3.3 Let F : (M, h, P ) → (N, g, Q) be a ± (P, Q)-paraholomorphic map from an almost para-

Hermitian manifold (M, h, P ) into an almost para-Hermitian manifold or an almost product Riemannian

manifold (N, g, Q) . Then the tension field T (F ) of F takes the form

T (F ) =
m∑
i=1

{h (ei, ei) (∇F∗) (ei, ei) + h (Pei, P ei) (∇F∗) (Pei, P ei)}

= −Q
{

m∑
i=1

hiiSQ (e′i, e
′
i)− λF∗ (div (P ))

}
,

where {e1 , ..., em, P e1 , ..., P em} is a local orthonormal frame field for TM and λ = 1 when F is (P, Q)-

paraholomorphic, λ = −1 when F is (P, Q)-anti-paraholomorphic and hii = h (ei, ei) , e′i = F∗ (ei) .

Proof For an orthonormal frame field {e1 , ..., em, P e1 , ..., P em} for TM we have, by definition,

T (F ) =
m∑
i=1

{h (ei, ei) (∇F∗) (ei, ei) + h (Pei, P ei) (∇F∗) (Pei, P ei)}

=
m∑
i=1

hii {(∇F∗) (ei, ei)− (∇F∗) (Pei, P ei)}
(3.9)

On the other hand, from Proposition (3.2) , we have

(∇F∗) (Pei, P ei) = (∇F∗) (ei, ei) +Q {SQ (ei
′, e′i)− λF∗ [SP (ei , ei)]}

Replacing this into (3.8) we get

T (F ) = −Q
{

m∑
i=1

hii [SQ (e′i, e
′
i)− λF∗ (SP (ei , ei))]

}
= −Q

{
m∑
i=1

hii [SQ (e′i, e
′
i)]− λF∗

(
m∑
i=1

hiiSP (ei , ei)

)}
= −Q

{
m∑
i=1

hiiSQ (e′i, e
′
i)− λF∗ (div (P ))

}
2
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Theorem (3.2/A) : Let F : (M, h, P ) → (N, g, Q) be a ± (P, Q)-paraholomorphic map from an

almost para-Hermitian manifold (M, h, P ) into an almost para-Hermitian manifold or an almost product

Riemannian manifold (N, g, Q) . If either

i) [2, 6, 11], (M, h, P ) is a semi para-Kaehler manifold and (N, g, Q) is a quasi para-Kaehler manifold,

or

ii) (M, h, P ) is a semi para-Kaehler manifold and (N, g, Q) is a locally decomposable product Riemannian

manifold,

then F is harmonic.

Proof For a local orthonormal frame field {e1 , ..., em, P e1 , ..., P em} for TM we have, by Proposition (3.3)

that

T (F ) = −Q
{

m∑
i=1

hiiSQ (e′i, e
′
i)− λF∗ (div (P ))

}
.

However, then, λF∗ (div (P )) = 0 since(M, h, P ) is semi para-Kaehler and SQ (e′i, e
′
i) = 0 since (N, g, Q)

is either quasi para-Kaehler or locally decomposable product Riemannian. Hence harmonicity of F follows. 2

Theorem (3.2/B) : For a ± (G, K)-golden map F : (M, h, G) → (N, g, K) from an almost golden-

Hermitian manifold (M, h, G) into an almost golden-Hermitian manifold or an almost golden Riemannian

manifold (N, g, K) , if either

i) (M, h, G) is a semi golden-Kaehler manifold and (N, g, K) is a quasi golden-Kaehler manifold,

or

ii) (M, h, G) is a semi golden-Kaehler manifold and (N, g, K) is a locally decomposable golden Rieman-

nian manifold,

then F is harmonic.

Proof Let PG and QK denote the twin product structures of G and K respectively. Then by Lemma

(2.1) and Remark (3.1) /2 the hypothesis of this theorem becomes equivalent to the hypothesis of Theorem

(3.2/A), namely:

“Let F : (M, h, PG) → (N, g, QK) be a ± (PG, QK)-holomorphic map from a semi Kaehler

manifold (M, h, PG) into either a quasi para-Kaehler manifold or a locally decomposable product Riemannian

manifold.” 2

Then the harmonicity of F follows from Theorem (3.2/A).

Remark 3.2 For a nonconstant map

F : (M, h, φ (= P,G)) → (N, g, ψ (= Q,K))

with a pure metric h (with respect to φ), the ± paraholomorphicity of F (or F being a ±golden) is not

much help for the harmonicity of F . The best results we seem to get are Theorems (3.1) /A and (3.1) /B.

On the other hand, when h is hyperbolic, then ± paraholomorphicity of F (or F being a ± golden) gives

its harmonicity under certain conditions as Theorems (3.2) /A and (3.2) /B state. On these lines we provide

the following example:
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Example 3.1 On R2 for X = (x1 , x2) , Y = (y1 , y2) ∈ Γ
(
TR2

)
, define

h (X ,Y ) =
2∑

i=1

xiyi and P (X) = (x1 , −x2) , G (X) = (σx1 , σ̄x2) .

Then
(
R2, h, P

)
becomes a locally decomposable product Riemannian manifold and

(
R2, h, G

)
becomes a

locally decomposable golden Riemannian manifold. Moreover,
(
R2, h, P

)
and

(
R2, h, G

)
are twin manifolds

as {P, G} form a twin pair on R2. Let f :
(
R2, h, φ (= P,G)

)
→

(
R2, h, φ (= P,G)

)
be defined by

f (s, t) =
(
s, et

)
.

Observe that

• f is (P, P )-paraholomorphic and also (G,G)-golden and yet

• f is not harmonic since T (f) =∂2f
∂s2 + ∂2f

∂t2 = (0, 0) + (0, et) = (0, et) .
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