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Abstract: In this paper, we introduce a class of unitary operators defined on the Bergman space L2
a(C+) of the right half

plane C+ and study certain algebraic properties of these operators. Using these results, we then show that a bounded

linear operator S from L2
a(C+) into itself commutes with all the weighted composition operators Wa, a ∈ D if and only

if S̃(w) = ⟨Sbw, bw⟩, w ∈ C+ satisfies a certain averaging condition. Here for a = c + id ∈ D, f ∈ L2
a(C+),Waf =

(f ◦ ta)
M′

M′◦ta ,Ms = 1−s
1+s

, ta(s) =
−ids+(1−c)
(1+c)s+id

, and bw(s) =
1√
π

1+w
1+w

2Rew
(s+w)2

, w = Ma, s ∈ C+. Some applications of these

results are also discussed.
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1. Introduction

Let C+ = {s = x + iy ∈ C : Res > 0} be the right half plane. Let dÃ(s) = dxdy be the area measure.

Let L2(C+, dÃ) be the space of complex-valued, square-integrable, measurable functions on C+ with respect

to the area measure. Let L2
a(C+) be the closed subspace [2] of L2(C+, dÃ) consisting of those functions

in L2(C+, dÃ) that are analytic. The space L2
a(C+) is referred to as the Bergman space of the right half

plane. The functions H(s, w) = 1
(s+w)2 , s ∈ C+, w ∈ C+ are the reproducing kernel [4] for L2

a(C+). Let

hw(s) = H(s,w)√
H(w,w)

= 2Rew
(s+w)2 . The functions hw, w ∈ C+ are the normalized reproducing kernels for L2

a(C+).

Let L∞(C+) be the space of complex-valued, essentially bounded, Lebesgue measurable functions on C+.

Define for f ∈ L∞(C+), ||f ||∞ = ess sup
s∈C+

|f(s)| < ∞. The space L∞(C+) is a Banach space with respect

to the essential supremum norm. For ϕ ∈ L∞(C+), we define [6, 8] the Toeplitz operator Tϕ from L2
a(C+)

into L2
a(C+) by Tϕ{ = P+(ϕ{), where P+ denote the orthogonal projection from L2(C+, dÃ) onto L2

a(C+);

the multiplication operator Mϕ from L2(C+, dÃ) into L2(C+, dÃ) by (Mϕ{)(∫) = ϕ(∫){(∫). The big Hankel

operator Hϕ from L2
a(C+) into (L2

a(C+))⊥ is defined by Hϕ{ = (I − P+)(ϕ{), { ∈ L∈
⊣(C+). The little Hankel

operator hϕ is a mapping from L2
a(C+) into L2

a(C+) defined by hϕf = P+(ϕf), where P+ is the orthogonal

projection from L2(C+, dÃ) onto L2
a(C+) = {f : f ∈ L2

a(C+)}.

Let D = {z ∈ C : |z| < 1} be the open unit disk in the complex plane C. Let L2(D, dA) be the space
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of complex-valued, square-integrable, measurable functions on D with respect to the normalized area measure

dA(z) = 1
πdxdy. Let L2

a(D) be the space consisting of those functions of L2(D, dA) that are analytic. The space

L2
a(D) is a closed subspace of L2(D, dA) and is called the Bergman space of the open unit disk D. The sequence

of functions {en(z)}∞n=0 = {
√
n + 1zn}∞n=0 form an orthonormal basis for L2

a(D). Since point evaluation at

z ∈ D is a bounded linear functional on the Hilbert space L2
a(D), the Riesz representation theorem implies that

there exists a unique function Kz in L2
a(D) such that

f(z) =

∫
D
f(w)Kz(w)dA(w).

for all f in L2
a(D). Let K(z, w) be the function on D× D defined by

K(z, w) = Kz(w).

The function K(z, w) is analytic in z and co-analytic in w . Since

f(z) =

∫
D
f(w)K(z, w)dA(w), f ∈ L2

a(D),

the function K(z, w) = 1
(1−zw)2 , z, w ∈ D and is the reproducing kernel [11] of L2

a(D). For a ∈ D, let

ka(z) = K(z,a)√
K(a,a)

= (1−|a|2)
(1−az)2 . The function ka is called the normalized reproducing kernel for L2

a(D). It is clear

that ||ka||2 = 1. Important works on the application of the reproducing kernel were obtained by Karaev et al. [9].

These results in reproducing kernel and Berezin symbols are important in operator theory [7]. Let P denote

the orthogonal projection from L2(D, dA) onto L2
a(D). Let Aut(D) be the Lie group of all automorphisms

(biholomorphic mappings) of D. We can define for each a ∈ D an automorphism ϕa in Aut(D) such that

(i) (ϕa ◦ ϕa)(z) = z;

(ii) ϕa(0) = a, ϕa(a) = 0;

(iii) ϕa has a unique fixed point in D.

In fact, ϕa(z) = a−z
1−az for all a and z in D. An easy calculation shows that the derivative of ϕa at z is equal

to −ka(z). It follows that the real Jacobian determinant of ϕa at z is Jϕa(z) = |ka(z)|2 = (1−|a|2)
|1−az|4 . Given

a ∈ D and f any measurable function on D, we define a function Uaf on D by Uaf(z) = ka(z)f(ϕa(z)). In

this paper, we introduce a class of unitary operators defined on the Bergman space L2
a(C+) and study certain

algebraic properties of these operators. Using these results, we then show that a bounded linear operator

S from L2
a(C+) into itself commutes with all the weighted composition operators Wa, a ∈ D if and only

if S̃(w) = ⟨Sbw, bw⟩, w ∈ C+ satisfies certain averaging condition. Some applications of these results are also

discussed. The organization of this paper is as follows. In §2, we introduce a class of unitary operators Va, a ∈ D
with the help of the automorphisms of C+. We establish certain algebraic properties of these unitary operators,

which are also self-adjoint. In §3, we show that a bounded linear operator S from L2
a(C+) into itself commutes

with all the weighted composition operators Wa, a ∈ D if and only if S̃(w) = ⟨Sbw, bw⟩, w ∈ C+ satisfies certain

averaging condition. Further, in §4, we establish certain applications of the main result of the paper involving

multiplication, Toeplitz, and Hankel operators.
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2. The unitary operator Va

In this section, we shall introduce the operator Va, a ∈ D and prove certain elementary properties of the unitary

operator Va .

Define M : C+ → D by Ms = 1−s
1+s . Then M is one-one and onto, and M−1 : D → C+ is given by

M−1(z) = 1−z
1+z . Thus M is its self-inverse. Let W : L2

a(D) → L2
a(C+) be defined by Wg(s) = 2√

π
g(Ms) 1

(1+s)2 .

Then W−1 : L2
a(C+) → L2

a(D) is given by W−1G(z) = 2
√
πG(Mz) 1

(1+z)2 , where Mz = 1−z
1+z .

Lemma 2.1 If a ∈ D and a = c + id, c, d ∈ R, then ta(s) = −ids+(1−c)
(1+c)s+id is an automorphism from C+ onto

C+.

Proof It is not difficult to verify that the map ta : C+ −→ C+ is one-one and onto. The lemma follows. 2

Proposition 2.2 For a ∈ D, the following hold:

(i) (ta ◦ ta)(s) = s.

(ii) t′a(s) = −la(s), where la(s) = 1−|a|2
((1+c)s+id)2 .

Proof One can verify (i) and (ii) by direct calculation.

2

For a ∈ D, define Va : L2
a(C+) → L2

a(C+) by (Vag)(s) = (g ◦ ta)(s)la(s). In Proposition 2.3, we show

that Va is a self-adjoint unitary operator that is also an idempotent.

Proposition 2.3 For a ∈ D,

(i) Vala = 1.

(ii) V −1
a = Va, V

2
a = I.

(iii) Va is self-adjoint.

(iv) Va is unitary.

(v) VaP+ = P+Va.

Proof We shall first prove (i). If a ∈ D, then by Proposition 2.2, t′a(s) = −la(s). Therefore

(Vala)(s) = (la ◦ ta)(s)la(s)

= (−t′a ◦ ta)(s)la(s)

= −(t′a ◦ ta)(s)la(s)

= [−t′a(ta(s))]la(s)

= −
[
t′a

(
−ids + (1 − c)

(1 + c)s + id

)
1 − |a|2

((1 + c)s + id)2

]
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=
1 − |a|2[

(1 + c)
(

−ids+(1−c)
(1+c)s+id

)
+ id

]2 1 − |a|2

[(1 + c)s + id]2

=
(1 − |a|2)(1 − |a|2)[(1 + c)s + id]2

[−ids + 1 − c− idsc + c− c2 + id(s + cs + id)]2[(1 + c)s + id]2

=
(1 − |a|2)2

[−ids + 1 − c− idsc + c− c2 + ids + idsc− d2]2

=
(1 − |a|2)2

[1 − c2 − d2]2

=
(1 − |a|2)2

[1 − (c2 + d2)]2

=
(1 − |a|2)2

(1 − |a|2)2
= 1.

This proves (i). The assertions in (ii), (iii), and (iv) can be verified by direct calculation. Note that Va can also

be defined from L2(C+). To prove (v), observe that Va(L2
a(C+)) ⊂ L2

a(C+) and Va(L2
a(C+))⊥ ⊂ (L2

a(C+))⊥.

Now let f ∈ L2(C+) and f = f1 + f2, where f1 ∈ L2
a(C+) and f2 ∈ (L2

a(C+))⊥. Hence,

P+Vaf = P+Va(f1 + f2)

= PJ (Vaf1 + Vaf2)

= P+Vaf1

= Vaf1

= VaP+f.

2

Suppose a ∈ D and w = 1−a
1+a = Ma ∈ C+. Define bw(s) = (−1)√

π
(ka ◦M)(s)M ′(s).

Lemma 2.4 Let a ∈ D. For w1 ∈ C+, Vabw1 = αbta(w1) for some α ∈ C such that |α| = 1.

Proof To prove the lemma, we shall first show that for z1, z2 ∈ D, Uz1kz2 = αkϕz1 (z2)
for some complex

constant α such that |α| = 1. Suppose z1, z2 ∈ D. If f ∈ L2
a(D), then

⟨f, Uz1Kz2⟩ = ⟨Uz1f,Kz2⟩ = (Uz1f)(z2) = −(f ◦ ϕz1)(z2)ϕ′
z1(z2) = ⟨f, (−ϕ′

z1(z2))Kϕz1 (z2)
⟩. (2.1)

Thus Uz1Kz2 = −ϕ′
z1(z2)Kϕz1 (z2)

. Rewriting this in terms of normalized reproducing kernels, we have

Uz1kz2 = αkϕz1 (z2)
(2.2)

for some complex constant α. Since Uz1 is unitary and ||kz2 ||2 = ||kϕz1 (z2)
||2 = 1, we obtain that |α| = 1.

Let w1 ∈ C+ and define w1 = Ma1. Since

ta(w1) =
−idw1 + (1 − c)

(1 + c)w1 + id
,
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we obtain

ta(w1) =
idw1 + (1 − c)

(1 + c)w1 − id
= ta(w1).

Thus,

Vabw1 = WUaka1

= αWkϕa(a1)

= αbl,

where

l = Mϕa(a1)

= Mϕa(Mw1)

= ta(w1) = ta(w1).

2

Lemma 2.5 Let a ∈ D, and w = Ma. Then

(i) Vabw = (−1)√
π
M ′.

(ii) Va

(
(−1)√

π
M ′
)

= bw.

Proof Let a ∈ D. Then, since Uaka = 1 and W1 = (−1)√
π
M ′, we obtain

Vabw = WUaka

= W1

=
(−1)√

π
M ′.

Now, to prove (ii), observe that

Va

(
(−1)√

π
M ′
)

= WUa1

= Wka

= bw.

2
Let L(L∈

⊣(C+)) be the space of all bounded linear operators from L2
a(C+) into itself. For T ∈ L(L∈

⊣(C+)),

define the function T̃ on C+ as T̃ (w) = ⟨Tbw, bw⟩.

Theorem 2.6 Let S, T ∈ L(L∈
⊣(C+)). If S̃(w) = T̃ (w) for all w ∈ C+, then S = T.
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Proof Let S̃(w) = T̃ (w) for all w ∈ C+. Then, for w = Ma, we have

⟨Sbw, bw⟩ = ⟨SWka,Wka⟩

= ⟨W−1SWka, ka⟩.

Similarly,

⟨Tbw, bw⟩ = ⟨TWka,Wka⟩

= ⟨W−1TWka, ka⟩.

Hence for all a ∈ D,
⟨W−1SWka, ka⟩ = ⟨W−1TWka, ka⟩.

This implies

⟨(W−1SW −W−1TW )ka, ka⟩ = ⟨Lka, ka⟩ = 0,

where L = W−1SW −W−1TW. Hence,

⟨LKa,Ka⟩ = K(a, a)⟨Lka, ka⟩ = K(a, a) · 0 = 0.

Define F (x, y) = ⟨LKx,Ky⟩. The function F is holomorphic in x and y and F (x, y) = 0 if x = y [5]. It

can be verified that such functions must vanish identically. Let x = u + iv, y = u− iv. Let G(u, v) = F (x, y).

The function G is holomorphic and vanishes if u and v are real. Hence F (x, y) = G(u, v) ≡ 0. Thus even

⟨LKx,Ky⟩ = 0 for any x, y. Since linear combinations of Kx, x ∈ D, are dense in L2
a(D) [3], it follows that

L = 0. That is, W−1SW = W−1TW. Hence S = T. 2

Corollary 2.7 Let S, T ∈ L(L∈
⊣(C+)) . Suppose for all a ∈ D,⟨

(VaSVa)

(
(−1)√

π
M ′
)
,

(
(−1)√

π
M ′
)⟩

=

⟨
(VaTVa)

(
(−1)√

π
M ′
)
,

(
(−1)√

π
M ′
)⟩

.

Then S = T.

Proof Let a ∈ D. Then since W−1
(

(−1)√
π
M ′
)

= 1, hence⟨
(VaSVa)

(
(−1)√

π
M ′
)
,

(
(−1)√

π
M ′
)⟩

=

⟨
Ua(W−1SW )UaW

−1

(
(−1)√

π
M ′
)
,W−1

(
(−1)√

π
M ′
)⟩

=
⟨
Ua(W−1SW )Ua1, 1

⟩
=
⟨
(W−1SW )Ua1, Ua1

⟩
=
⟨
(W−1SW )ka, ka

⟩
.

Similarly,⟨
(VaTVa)

(
(−1)√

π
M ′
)
,

(
(−1)√

π
M ′
)⟩

=

⟨
Ua(W−1TW )UaW

−1

(
(−1)√

π
M ′
)
,W−1

(
(−1)√

π
M ′
)⟩

=
⟨
Ua(W−1TW )Ua1, 1

⟩
=
⟨
(W−1TW )Ua1, Ua1

⟩
=
⟨
(W−1TW )ka, ka

⟩
.
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Thus, ⟨
(VaSVa)

(
(−1)√

π
M ′
)
,

(
(−1)√

π
M ′
)⟩

=

⟨
(VaTVa)

(
(−1)√

π
M ′
)
,

(
(−1)√

π
M ′
)⟩

for all a ∈ D

implies ⟨
(W−1SW −W−1TW )ka, ka

⟩
= 0 for all a ∈ D.

Hence, ⟨
(W−1SW −W−1TW )Ka,Ka

⟩
= K(a, a)

⟨
(W−1SW −W−1TW )ka, ka

⟩
= K(a, a) · 0 = 0.

Proceeding similarly as in Corollary 2.7, we obtain W−1SW = W−1TW. Hence S = T. 2

3. Main result

The operators Wa are called weighted composition operators on L2
a(C+). In this section, we shall show that

a bounded linear operator S from L2
a(C+) into itself commutes with all the weighted composition operators

Wa, a ∈ D, if and only if S̃ satisfies a certain averaging condition.

Theorem 3.1 A bounded linear operator S ∈ L(L2
a(C+)) commutes with all the weighted composition operators

Wa, a ∈ D if and only if

S̃(w1) =

∫
D
S̃(ta(w1))dA(a), for all w1 ∈ C+.

Proof Suppose

S̃(w1) =

∫
D
S̃(ta(w1))dA(a), (3.1)

for all w1 ∈ C+ . Then, by Lemma 2.4, there exists a constant α ∈ C with |α| = 1 such that for all w1 ∈ C+,

⟨Sbw1 , bw1⟩ =

∫
D

⟨
Sb

ta(w1)
, b

ta(w1)

⟩
dA(a)

=

∫
D
⟨αSVabw1 , αVabw1⟩ dA(a)

=

∫
D
⟨VaSVabw1 , bw1⟩ dA(a)

=

⟨(∫
D
VaSVadA(a)

)
bw1 , bw1

⟩
= ⟨Ŝbw1 , bw1⟩,

where Ŝ =

∫
D
VaSVadA(a).

Thus, by Theorem 2.6, S = Ŝ. Hence for all f, g ∈ L2
a(C+), ⟨Sf, g⟩ = ⟨Ŝf, g⟩. Thus the equation (3.1) is

equivalent to saying that ∫
D
⟨SVaf, Vag⟩dA(a) =

∫
C+

(Sf)(w1)g(w1)dÃ(w1)
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for all f, g ∈ L2
a(C+). Let w ∈ C+ and let w = Ma = 1−a

1+a . Since

bw(s) =
(−1)√

π

(1 − |a|2)

(1 − aMs)2
(−2)

(1 + s)2

=
2√
π

(1 − |a|2)

(1 − aMs)2
1

(1 + s)2
,

we obtain

bw(w) =
2√
π

(1 − |a|2)

(1 − aMw)2
1

(1 + w)2

=
2√
π

(1 − |a|2)

(1 − |a|2)2
1(

1 + 1−a
1+a

)2
=

2√
π

1

(1 − |a|2)

(1 + a)2

4

=
1

2
√
π

(1 + a)2

(1 − |a|2)
.

Thus

bw(s)bw(w) =
2√
π

(1 − |a|2)

(1 − aMs)2
1

(1 + s)2
1

2
√
π

(1 + a)2

(1 − |a|2)

=
1

π

1

(1 − aMs)2
(1 + a)2

(1 + s)2

=
(−1)

2π

(1 + a)2

(1 − aMs)2
(−2)

(1 + s)2

=
(−1)

2π

(1 + a)2

(1 − aMs)2
M ′

= B(s, w) (let).

Thus bw(s) = B(s,w)
bw(w) and (bw(w))2 = B(w,w). That is, bw(s) = B(s,w)

bw(w) = B(s,w)√
B(w,w)

. Note that

W1 = (−1)√
π
M ′ and therefore W−1

(
−M ′
√
π

)
= 1.

That is, (M ′ ◦M)M ′ = (−1)
√
π (−1)√

π
(M ′ ◦M)M ′ = W−1

(
−M ′
√
π

)
= 1.

From Lemma 2.5, it follows that

(bw ◦ ta)la =
(−1)√

π
M ′.

This implies

bw(la ◦ ta) =
(−1)√

π
(M ′ ◦ ta). (3.2)

That is,

bw

 la ◦ ta
(−1)√

π
(M ′ ◦ ta)

 = 1.
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Thus (−
√
π)bw

(
la
M ′ ◦ ta

)
= 1 and therefore (−

√
π)bw[(la(M ′ ◦M)) ◦ ta] = 1. Hence

bw[(−
√
π)(la ◦ ta)(M ′ ◦M ◦ ta)] = 1.

This implies bw ∈ H∞(C+) and 1
bw

∈ H∞(C+). Further B(s,M0) = B(s,M0) = B(s, 1) = (−1)
2π M ′ =

(−1)
2π

(−2)
(1+s)2 = 1

π
1

(1+s)2 . Again B(Ma,M0) = 1
π

1
(1+Ma)2 and B(M0,M0) = 1

4π . Now note that Waf =

(f ◦ ta) M ′

M ′◦ta . Hence WaSf = SWaf for all f ∈ L2
a(C+) and for all a ∈ D if and only if

[(Sf) ◦ ta]
M ′

M ′ ◦ ta
= S

[
(f ◦ ta)

M ′

M ′ ◦ ta

]
for all a ∈ D and for all f ∈ L2

a(C+). That is, if and only if,[
(Sf)

M ′ ◦ ta
]
M ′ = S

[(
f

M ′ ◦ ta
)
M ′
]

for all f ∈ L2
a(C+) and for all a ∈ D. Putting f

bw
in place of f, we obtain SWaf = WaSf for all f ∈ L2

a(C+)

and for all a ∈ D if and only if[(
1

M ′(w1)
S

(
f

bw

))
◦ ta
]
M ′(w1) = S

[(
f

M ′bw
◦ ta
)
M ′
]

(w1) (3.3)

for all f ∈ L2
a(C+) and for all a ∈ D. Now to prove the necessary part of the theorem, assume that

SWaf = WaSf for all f ∈ L2
a(C+) and for all a ∈ D. We shall prove that∫

C+

(Sf)(w1)g(w1)dÃ(w1) =

∫
D
⟨SVaf, Vag⟩dA(a)

for all f, g ∈ L2
a(C+). Note that

⟨Sf, g⟩ =

∫
C+

(Sf)(z)g(z)dÃ(z)

=

∫
C+

g(z)dÃ(z)

M ′(z)
S

(
fM ′

( (−1)
2π )M ′

)
(z)

(
−1

2π
M ′
)

(z)

=

∫
C+

g(z)dÃ(z)

M ′(z)
S

(
fM ′

B(.,M0)

)
(z)B(z,M0).

Hence by the mean-value property for harmonic functions [1], we obtain

⟨Sf, g⟩ =

∫
C+

g(z)dÃ(z)

M ′(z)

∫
D
S

(
fM ′

√
B(Ma,Ma)

B(.,Ma)

)
(z)

B(z,Ma)√
B(Ma,Ma)

dA(a)

=

∫
C+

g(z)dÃ(z)

M ′(z)

∫
D
S

(
fM ′

bw

)
(z)bw(z)dA(a).
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Using Fubini’s theorem [10] and using the identity (3.2), we obtain

⟨Sf, g⟩ =

∫
D

[∫
C+

1

M ′(z)
S

(
fM ′

bw

)
(z)bw(z)g(z)dÃ(z)

]
dA(a)

=

∫
D

[∫
C+

1

M ′(z)
S

(
fM ′

bw

)
(z)

bw
la

(z)g(z)la(z)dÃ(z)

]
dA(a)

=

∫
D

[∫
C+

1

M ′(z)
S

(
fM ′

bw

)
(z)bw(la ◦ ta)(z)g(z)la(z)dÃ(z)

]
dA(a)

=

∫
D

[∫
C+

1

M ′S

(
fM ′

bw

)
(z)

(
−1√
π

)
(M ′ ◦ ta)(z)g(z)(la ◦ ta)(z)|la(z)|2dÃ(z)

]
dA(a)

=

∫
D

[∫
C+

[(
1

M ′S

(
fM ′

bw

))
◦ ta
]

(z)

(
−1√
π

)
M ′(z)(g ◦ ta)(z)la(z)dÃ(z)

]
dA(a).

Now observe that by the identity (3.2) we obtain

SVaf = S [(f ◦ ta)la] = S

[
f ◦ ta
bw ◦ ta

(−1)√
π

M ′
]

= S

[(
f

bw
◦ ta
)

(−1)√
π

M ′
]

= S

[((
fM ′

M ′bw

)
◦ ta
)

(−1)√
π

M ′
]

=

[((
1

M ′S

(
fM ′

bw

))
◦ ta
)

(−1)√
π

M ′
]
.

This last equality follows from (3.3) since SWaf = WaSf. Thus for all f, g ∈ L2
a(C+), we obtain

⟨Sf, g⟩ =

∫
D
⟨SVaf, Vag⟩dA(a).

We shall now prove the sufficient part. Suppose ⟨Sf, g⟩ =

∫
D
⟨SVaf, Vag⟩dA(a) for all f, g ∈ L2

a(C+). We shall

show that SWa = WaS for all a ∈ D. We have already verified that

SVaf = S

[((
f

bw

)
◦ ta
)

(−1)√
π

M ′
]
.

Hence∫
D
⟨SVaf, Vag⟩dA(a) =

∫
D

[∫
C+

S

[((
f

bw

)
◦ ta
)

(−1)√
π

M ′
]

(w1)(g ◦ ta)(w1)la(w1)dÃ(w1)

]
dA(a)

=

∫
D

[∫
C+

S

[((
fM ′

M ′bw

)
◦ ta
)

(−1)√
π

M ′
]

(w1)(g ◦ ta)(w1)la(w1)dÃ(w1)

]
dA(a).

Using Fubini’s theorem [10], we obtain
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∫
D
⟨SVaf, Vag⟩dA(a) =

∫
C+

[∫
D
S

[((
fM ′

M ′bw

)
◦ ta
)

(−1)√
π

M ′
]

(w1)(g ◦ ta)(w1)la(w1)dA(a)

]
dÃ(w1). (3.4)

Now

⟨Sf, g⟩ =

∫
C+

(Sf)(z)g(z)dÃ(z)

=

∫
C+

g(z)
1

M ′(z)
S

(
fM ′

M ′

)
(z)M ′(z)dÃ(z)

=

∫
C+

g(z)
1

M ′(z)
S

(
fM ′

(−1
2π )M ′

)
(z)

(
−1

2π

)
M ′(z)dÃ(z)

=

∫
C+

g(z)
1

M ′(z)
S

(
fM ′

B(.,M0)

)
(z)B(z,M0)dÃ(z).

By mean value property for harmonic functions [1], we obtain

⟨Sf, g⟩ =

∫
C+

g(z)dÃ(z)

M ′(z)

∫
D
S

(
fM ′

√
B(Ma,Ma)

B(.,Ma)

)
(z)

B(z,Ma)√
B(Ma,Ma)

dA(a)

=

∫
C+

g(z)dÃ(z)

∫
D

 1

M ′S

 fM ′

B(.,w)√
B(w,w)


 (z)

B(z, w)√
B(w,w)

dA(a)

=

∫
C+

g(z)dÃ(z)

∫
D

[
1

M ′S

(
fM ′

bw

)]
(z)bw(z)dA(a).

Using Fubini’s theorem [10], we obtain

⟨Sf, g⟩ =

∫
D

∫
C+

[
1

M ′S

(
fM ′

bw

)]
(z)bw(z)g(z)dÃ(z)dA(a)

=

∫
D

∫
C+

[
1

M ′S

(
fM ′

bw

)
◦ ta
]

(z)(bw ◦ ta)(z)(g ◦ ta)(z)|la(z)|2dÃ(z)dA(a)

=

∫
D

∫
C+

[(
1

M ′S

(
fM ′

bw

))
◦ ta
]

(z)

(−1)√
π
M ′(z)

la(z)
(g ◦ ta)(z)la(z)la(z)dÃ(z)dA(a)

=

∫
D

∫
C+

[(
1

M ′S

(
fM ′

bw

))
◦ ta
]

(z)
(−1)√

π
M ′(z)(g ◦ ta)(z)la(z)dÃ(z)dA(a) (3.5)

From (3.4) and (3.5), it follows that if ⟨Sf, g⟩ =

∫
D
⟨SVaf, Vag⟩dA(a) for all f, g ∈ L2

a(C+) then

S

[((
fM ′

M ′bw

)
◦ ta
)(

−1√
π

)
M ′
]

=

[(
1

M ′S

(
fM ′

bw

))
◦ ta
]

(−1)√
π

M ′ (3.6)

for all f ∈ L2
a(C+) and for all a ∈ D.
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Putting f
M ′ in place of f we obtain (3.6), which holds if and only if

S

[((
f

M ′bw

)
◦ ta
)

(−1)√
π

M ′
]

=

[(
1

M ′S

(
f

bw

))
◦ ta
]

(−1)√
π

M ′

for all f ∈ L2
a(C+) and for all a ∈ D. Thus if ⟨Sf, g⟩ =

∫
D
⟨SVaf, Vag⟩dA(a) for all f, g ∈ L2

a(C+), then

S

[((
f

M ′bw

)
◦ ta
)
M ′
]

=

[(
1

M ′S

(
f

bw

))
◦ ta
]
M ′ (3.7)

for all f ∈ L2
a(C+) and for all a ∈ D.

By (3.5), the identity (3.7) holds if and only if SWaf = WaSf for all f ∈ L2
a(C+) and for all a ∈ D.

Thus we have proved that if ⟨Sf, g⟩ =

∫
D
⟨SVaf, Vag⟩dA(a) for all f, g ∈  L2

a(C+) then SWaf = WaSf for all

f ∈ L2
a(C+) and for all a ∈ D. The theorem follows. 2

4. Applications

In this section, we establish certain applications of the main result of the paper involving multiplication,

Toeplitz, and Hankel operators. For ϕ ∈ L∞(C+, dÃ) and T ∈ L(L∈
⊣(C+)), let ϕ̂(s) =

∫
D
ϕ(ta(s))dA(a)

and T̂ =

∫
D
VaTVadA(a).

Corollary 4.1 Let ϕ ∈ L∞(C+) . Then the following hold:

(i) M̂ϕ = Mϕ̂.

(ii) T̂ϕ = Tϕ̂.

(iii) Ĥϕ = Hϕ̂.

Proof From Proposition 2.2, it follows that for given h ∈ L2(C+, dÃ) and g ∈ L2(C+, dÃ) we have

⟨M̂ϕg, h⟩ =

∫
D
⟨ϕVag, Vah⟩dA(a)

=

∫
D
dA(a)

∫
C+

ϕ(s)(Vag)(s)(Vah)(s)dÃ(s)

=

∫
D
dA(a)

∫
C+

ϕ(s)(g ◦ ta)(s)la(s)(h ◦ ta)(s) la(s)dÃ(s)

=

∫
D
dA(a)

∫
C+

(ϕ ◦ ta)(s)g(s)h(s)(la ◦ ta)(s)(la ◦ ta)(s) |la(s)|2dÃ(s)

482



DAS and BEHERA/Turk J Math

=

∫
D
dA(a)

∫
C+

(ϕ ◦ ta)(s)g(s)h(s) |(la ◦ ta)(s)|2 |la(s)|2dÃ(s)

=

∫
D
dA(a)

∫
C+

(ϕ ◦ ta)(s)g(s)h(s)dÃ(s)

=

∫
C+

g(s)h(s)dÃ(s)

∫
D

(ϕ ◦ ta)(s)dA(a)

=

∫
C+

ϕ̂(s)g(s)h(s)dÃ(s) = ⟨Mϕ̂}, ⟨⟩.

This proves (i). To prove (ii), let h and g in L2
a(C+, dÃ). Then since (la ◦ ta)(s)la(s) = s, we obtain⟨

T̂ϕg, h
⟩

=

∫
D
⟨VaTϕV⊣}, ⟨⟩ dA(a)

=

∫
D
⟨TϕV⊣},V⊣⟨⟩ dA(a)

=

∫
D
dA(a)

∫
C+

⟨P+(ϕVag), Vah⟩ dÃ(s)

=

∫
D
dA(a)

∫
C+

⟨ϕVag, P+(Vah)⟩ dÃ(s)

=

∫
D
dA(a)

∫
C+

⟨ϕVag, Vah⟩ dÃ(s)

=

∫
D
dA(a)

∫
C+

ϕ(s)(Vag)(s)(Vah)(s)dÃ(s)

=

∫
D
dA(a)

∫
C+

ϕ(s)(g ◦ ta)(s)la(s)(h ◦ ta)(s) la(s) dÃ(s)

=

∫
D
dA(a)

∫
C+

(ϕ ◦ ta)(s)g(s)(la ◦ ta)(s)h(s) (la ◦ ta)(s) |la(s)|2dÃ(s)

=

∫
D
dA(a)

∫
C+

(ϕ ◦ ta)(s)g(s)h(s)(la ◦ ta)(s)(la ◦ ta)(s) |la(s)|2dÃ(s)

=

∫
D
dA(a)

∫
C+

(ϕ ◦ ta)(s)g(s)h(s)|(la ◦ ta)(s)|2|la(s)|2dÃ(s)

=

∫
D
dA(a)

∫
C+

(ϕ ◦ ta)(s)g(s)h(s)dÃ(s)

=

∫
C+

g(s)h(s)dÃ(s)

∫
D

(ϕ ◦ ta)(s)dA(a)

=

∫
C+

ϕ̂(s)g(s)h(s)dÃ(s)

=
⟨
ϕ̂g, h

⟩
=
⟨
ϕ̂g, P+h

⟩
=
⟨
P+(ϕ̂g), h

⟩
=
⟨
Tϕ̂}, ⟨

⟩
.
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Therefore, T̂ϕ = Tϕ̂. This proves (ii). Now we shall establish (iii). It is not difficult to see that for a ∈

D, Va(L2
a(C+)) ⊂ L2

a(C+) and Va((L2
a(C+))⊥) ⊂ (L2

a(C+))⊥. Further, from Proposition 2.3, it follows that for

g ∈ L2
a(C+) and h ∈ (L2

a(C+))⊥, we have⟨
Ĥϕg, h

⟩
=

∫
D
⟨VaHϕV⊣}, ⟨⟩⌈A(⊣)

=

∫
D
⟨HϕV⊣},V⊣⟨⟩⌈A(⊣)

=

∫
D
⟨(I − P+)(ϕVag), Vah⟩dA(a)

=

∫
D
⟨ϕVag, (I − P+)(Vah)⟩dA(a)

=

∫
D
⟨ϕVag, Vah⟩dA(a)

=

∫
D
dA(a)

∫
C+

ϕ(s)(Vag)(s)(Vah)(s)dÃ(s)

=

∫
D
dA(a)

∫
C+

ϕ(s)(g ◦ ta)(s)la(s)(h ◦ ta)(s)la(s)dÃ(s)

=

∫
D
dA(a)

∫
C+

(ϕ ◦ ta)(s)g(s)(la ◦ ta)(s)h(s)(la ◦ ta)(s)|la(s)|2dÃ(s)

=

∫
D
dA(a)

∫
C+

(ϕ ◦ ta)(s)g(s)h(s)dÃ(s)

=

∫
C+

g(s)h(s)dÃ(s)

∫
D

(ϕ ◦ ta)(s)dA(a)

=

∫
C+

ϕ̂(s)g(s)h(s)dÃ(s)

=
⟨
ϕ̂g, h

⟩
=
⟨
ϕ̂g, (I − P+)h

⟩
=
⟨

(I − P+)(ϕ̂g), h
⟩

=
⟨
Hϕ̂g, h

⟩
.

Hence Ĥϕ = Hϕ̂. 2

Corollary 4.2 Let a ∈ D and ϕ ∈ L∞(C+) . Then the following hold:

(i) VaMϕV⊣ = Mϕ◦⊔⊣ .

(ii) VaTϕV⊣ = Tϕ◦⊔⊣ .
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(iii) VaHϕV⊣ = Hϕ◦⊔⊣ .

(iv) VahϕVa = hϕ◦ta .

Proof We first prove (i). Note that since (la ◦ ta)(s)la(s) = s, we have for f ∈ L2
a(C+),

VaMϕV⊣{ = VaMϕ[({ ◦ ⊔⊣)↕⊣]

= Va[ϕ(f ◦ ta)la]

= (ϕ ◦ ta)f(la ◦ ta)la

= (ϕ ◦ ta)f

= Mϕ◦⊔⊣{.

This proves (i). To prove (ii), let f ∈ L2
a(C+). Then we have

VaTϕV⊣{ = VaTϕ[({ ◦ ⊔⊣)↕⊣]

= VaP+[ϕ(f ◦ ta)la]

= P+Va[ϕ(f ◦ ta)la]

= P+[(ϕ ◦ ta)f(la ◦ ta)la]

= P+[(ϕ ◦ ta)f ]

= Tϕ◦⊔⊣{,

since (la ◦ ta)(s)la(s) = s. This proves (ii). Now to establish (iii), let f ∈ L2
a(C+). Then

VaHϕV⊣{ = VaHϕ[({ ◦ ⊔⊣)↕⊣]

= Va(I − P+)[ϕ(f ◦ ta)la]

= (I − P+)Va[ϕ(f ◦ ta)la]

= (I − P+)[(ϕ ◦ ta)f(la ◦ ta)la]

= (I − P+)[(ϕ ◦ ta)f ]

= Hϕ◦⊔⊣{.

This proves (iii). To prove (iv), let f ∈ L2
a(C+). Then since P+ = JPJ,where Jf(s) = f(s) for f ∈

L2
a(C+) and VaP+ = P+Va, we obtain

VahϕVaf = Vahϕ[(f ◦ ta)la]

= VaP+[ϕ(f ◦ ta)la]

= P+Va[ϕ(f ◦ ta)la]

= P+[(ϕ ◦ ta)f(la ◦ ta)la]

= P+[(ϕ ◦ ta)f ]

= hϕ◦taf.

2
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