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Abstract: In this paper, we introduce a class of unitary operators defined on the Bergman space L2(C4) of the right half
plane C; and study certain algebraic properties of these operators. Using these results, we then show that a bounded

linear operator S from L2(C.) into itself commutes with all the weighted composition operators W,,a € D if and only

if g(w) = (Sbw,bw), w € Cy satisfies a certain averaging condition. Here for a = ¢ +id € D, f € L2(Cy), Waf =

(fo ta)M#O;a,Ms = ﬁ,ta(s) = %&;2), and bw(s) = ﬁ}i—% (251}27“)”2,10 = Ma,s € C,. Some applications of these

results are also discussed.
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1. Introduction

Let C4 = {s = 2 +iy € C : Res > 0} be the right half plane. Let dA(s) = dazdy be the area measure.
Let L2(C+,dg) be the space of complex-valued, square-integrable, measurable functions on C,; with respect
to the area measure. Let L2(C.) be the closed subspace [2] of L2(C,,dA) consisting of those functions
in LQ(C+7dg) that are analytic. The space L2(C.) is referred to as the Bergman space of the right half

plane. The functions H(s,w) = s € C,,w € C; are the reproducing kernel [4] for L2(C.). Let

1
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Let L>°(Cy) be the space of complex-valued, essentially bounded, Lebesgue measurable functions on C,.

The functions h,,,w € C; are the normalized reproducing kernels for L2(C.).

Define for f € L°(Cy),||f||lcc = ess sup |f(s)] < oo. The space L*°(C,) is a Banach space with respect
seCq

to the essential supremum norm. For ¢ € L*°(C.), we define [6, 8] the Toeplitz operator Ty from L2(C.)
into L2(C4) by T3{ = P4 (¢{), where P, denote the orthogonal projection from L?(C,,dA) onto L2(C.);
the multiplication operator My from L2(C,,dA) into L2(C,,dA) by (Mg{)(f) = ¢(/){(f). The big Hankel
operator H from L2(Cy) into (L2(Cy))t is defined by He{ = (T — P1)(¢{), { € L5(C4). The little Hankel
operator hg is a mapping from LZ(C.) into m defined by hyf = P (¢f), where P is the orthogonal
projection from L2(C,,dA) onto L2(C4) = {f: f € L2(C4)}.

Let D = {z € C: |2] < 1} be the open unit disk in the complex plane C. Let L?*(D,dA) be the space
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of complex-valued, square-integrable, measurable functions on DD with respect to the normalized area measure
dA(z) = Ldady. Let L2(D) be the space consisting of those functions of L?(ID,dA) that are analytic. The space
L2(D) is a closed subspace of L?(ID,dA) and is called the Bergman space of the open unit disk . The sequence
of functions {e,(2)}5°, = {v/n+12"}22, form an orthonormal basis for L2(D). Since point evaluation at
2 € D is a bounded linear functional on the Hilbert space L2 (D), the Riesz representation theorem implies that

there exists a unique function K, in L2(D) such that
1) = [ S RidAqw).
D

for all f in L2(D). Let K(z,w) be the function on D x I defined by

K(z,w) = K. (w).

The function K(z,w) is analytic in z and co-analytic in w. Since

f(2) = / F(w)K (2, w)dA(w), f € L2(D),

the function K(z,w) = ﬁ, z,w € D and is the reproducing kernel [11] of L2(D). For a € D, let

ko(2) = \;(Iiiaal) — Et%’lzl;) The function k, is called the normalized reproducing kernel for L2(D). It is clear

that ||k4||2 = 1. Important works on the application of the reproducing kernel were obtained by Karaev et al. [9].
These results in reproducing kernel and Berezin symbols are important in operator theory [7]. Let P denote
the orthogonal projection from L?(D,dA) onto L?(D). Let Aut(D) be the Lie group of all automorphisms
(biholomorphic mappings) of D. We can define for each a € D an automorphism ¢, in Aut(D) such that

(i) (a0 da)(z) =2
(11) ¢a (0) = a, ¢a(a) = 0;
(iii) ¢, has a unique fixed point in D.

In fact, ¢4(2) = {== for all a and z in . An easy calculation shows that the derivative of ¢, at z is equal

Given

to —kq(2). It follows that the real Jacobian determinant of ¢, at z is Jy,(2) = |ka(2)]* = (ﬁ:g?.
a € D and f any measurable function on D, we define a function U,f on D by U, f(2) = ko(2)f(¢a(z)). In
this paper, we introduce a class of unitary operators defined on the Bergman space L2(C,) and study certain
algebraic properties of these operators. Using these results, we then show that a bounded linear operator

S from L2(C,) into itself commutes with all the weighted composition operators W,,a € D if and only
if S (w) = (Sbw, bw), w € C, satisfies certain averaging condition. Some applications of these results are also
discussed. The organization of this paper is as follows. In §2, we introduce a class of unitary operators V,,a € D
with the help of the automorphisms of C,.. We establish certain algebraic properties of these unitary operators,
which are also self-adjoint. In §3, we show that a bounded linear operator S from L2(C, ) into itself commutes
with all the weighted composition operators W,,a € D if and only if g(w) = (Sbg, bw),w € Cy satisfies certain

averaging condition. Further, in §4, we establish certain applications of the main result of the paper involving
multiplication, Toeplitz, and Hankel operators.
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2. The unitary operator V,

In this section, we shall introduce the operator V,,a € D and prove certain elementary properties of the unitary
operator V.
Define M : C. — D by Ms = 1=%. Then M is one-one and onto, and M~ : D — C, is given by

1+s
M=1(z) = % Thus M is its self-inverse. Let W : L2(D) — L2(C,) be defined by Wg(s) (Ms)ﬁ

_ 11—z
where Mz = -

Then W—1: L2(C,) — L2(D) is given by W1G(z) = QﬁG(Mz)ﬁ,

—ids+(1—c)

Lemma 2.1 If a € D and a = c+id, ¢,d € R, then t,(s) = (to)stid

Cy.

is an automorphism from C, onto

Proof It is not difficult to verify that the map t, : C;y — C, is one-one and onto. The lemma follows. O

Proposition 2.2 For a € D, the following hold:

(Z) (ta © ta)(S) = s.

1—|al?

(Z'L) t;(S) = —la(5)7 where la(S) = m

Proof One can verify (i) and (ii) by direct calculation.
O
For a € D, define V, : L2(Cy) — L2(C4) by (Vag)(s) = (g o ta)(s)la(s). In Proposition 2.3, we show
that V, is a self-adjoint unitary operator that is also an idempotent.

Proposition 2.3 For a € D,
(i) Vala = 1.
(ii) V1=V, V2=1.
(iii) Vg is self-adjoint.
(iv) Vg is unitary.
(v) VoPy = P, V,.
Proof We shall first prove (i). If @ € D, then by Proposition 2.2, t/ (s) = —l4(s). Therefore
(Vala) (3) = (la 0 1) ()1 (5)
= (—tg o ta)(s)la(s)
=t o ta)()la(s)
= [~ta(ta(s))]la(s)

- (T T
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_ 1—|a|? 1—|al?
- idst(l—c 12 (1 + ¢)s +id)?
[+ ) (Fdetza) 4 ia] (1 F s +id]

(1 —lal*)( = |a*)[(A + c)s + id]?
[—ids +1—c—idsc+c— 2 +id(s+ cs+id)]?[(1 + ¢)s + id]?
(1 —al*)?

[—ids +1—c—idsc+ c— ¢ +ids + idsc — d?]?

(1 —al*)?
[1-c2— )2

(1—lal*)?
i@+ @
_(A—laf)?
C(—laP)?

This proves (i). The assertions in (ii), (iii), and (iv) can be verified by direct calculation. Note that V, can also
be defined from L2?(C,). To prove (v), observe that V,(L2(C,)) C L2(C,) and V,(L3(Cy))+ C (L2(Cy))*.
Now let f € L2(Cy) and f = fi + fa, where f; € L2(Cy) and fy € (L2(Cy))*. Hence,
P Vof =PiVa(fi + f2)

=P;(Vaf1+Vaf2)

=P, Vaohr

=Vuhi

—V, P, f.

Suppose a € D and w = 172 = Ma € C.. Define by(s) = ko o M)(s)M'(s).

@(
1T N

Lemma 2.4 Let a € D. For wy € Cy,Voby, = aby_(y,) for some a € C such that |af = 1.

Proof To prove the lemma, we shall first show that for z;,20 € D,U,, k,, = ozkd)n(Zz) for some complex

constant « such that |a| = 1. Suppose 21,22 € D. If f € L2(D), then

<fa UZ1K22> = <U21fa KZQ> = (Uz1f)(22) = _(f © ¢Z1)(22)¢/21 (22) = <fa (_d)/zl (22))K¢z1 (Z2)>' (21)

Thus U,, K., = —¢., (22)Ky_ (z,)- Rewriting this in terms of normalized reproducing kernels, we have
U, ks = Ozk'¢21 (22) (2.2)
for some complex constant a. Since U, is unitary and [[k.,||2 = |[kg. (z,)/]2 = 1, we obtain that |a| = 1.

Let w; € C4 and define w; = Ma;. Since

—id@l + (1 - C)

) = T i
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we obtain

F (@) = idwy + (1 —¢)

-_— = ta .
(1+c)wy —id (w1)
Thus,

Vobw, = WUgkq,
= aWk¢a(a1)
= abi’

where

Lemma 2.5 Let a € D, and w = Ma. Then

- T

(i) Vab = SR M.
. =0 a0\ _
(i) Va(ﬁM>—bm.
Proof Let a € D. Then, since Uk, =1 and W1 = %M’, we obtain

Vabw = WUk,
=Wl

Now, to prove (ii), observe that

O
Let £(LS(C4)) be the space of all bounded linear operators from L2(C..) into itself. For T € £(LS(C)),
define the function T on C, as T(w) = (Tbg, by).

Theorem 2.6 Let S,T € L(LS(Cy)). If S(w) = T(w) for all w € Cy, then S =T.
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Proof Let S(w)=T(w) for all w € C,. Then, for w = Ma, we have
(Sbw, by = (SWky, Wky)

= (W LSWkq, ko).

Similarly,
(Toz, b)) = (TWke, Wkg)
= (W' TWky, ka).

Hence for all a € D,
(W LSWky, ko) = (W TWky, k).
This implies
(WASW — W T W)k, ko) = (Lka, ko) =0,
where L = W=1SW — W~'TW. Hence,
(LK., Kq) = K(a,a)(Lky, kqe) = K(a,a)-0=0.

Define F(z,y) = (LK%, K,). The function F' is holomorphic in  and y and F(z,y) =0 if 2 =7 [5]. It
can be verified that such functions must vanish identically. Let z = u + iv,y = v — iv. Let G(u,v) = F(x,y).
The function G is holomorphic and vanishes if v and v are real. Hence F(x,y) = G(u,v) = 0. Thus even
(LK., K,) = 0 for any z,y. Since linear combinations of K,,x € D, are dense in LZ(D) [3], it follows that
L =0. That is, W 1SW = W—!TW. Hence S =T. O

Corollary 2.7 Let S,T € L(LS(C.)). Suppose for all a € D,
(st (G ) () = (arm (Goar ) (o))
Then S ="1T.

Proof Let a € D. Then since W1 ((71)M’) =1, hence

(st (Gar) (Gar) ) = (uatw o (Gar) v ((2ar))

(Ua(WHSW)U,1,1)
= ((W'SW)U,1,U,1)
(WLSW)ke, kq) -

Similarly,

qary ((0) (Gar) ) = Qaw-rmwowan ((2a0) v ((2ar))
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Thus,

(s (S2ar). (S2ar)) = (v (S2ar), (S22} ) s
e (WrSW = W' TW)kq, k) = 0 for all a € D.
Hence,

(WLSW = W' TW)K,, K, ) = K(a,a) (W 'SW = W' TW)kq, ke ) = K(a,a) -0 = 0.

Proceeding similarly as in Corollary 2.7, we obtain W~'SW = W ~TW. Hence S = T.

3. Main result

The operators W, are called weighted composition operators on L2(C, ). In this section, we shall show that

a bounded linear operator S from L2(C,) into itself commutes with all the weighted composition operators

Wy, a € D, if and only if S satisfies a certain averaging condition.

Theorem 3.1 A bounded linear operator S € L(L2(C,)) commutes with all the weighted composition operators

Wea,a € D if and only if
S(wy) = / S(tz(wi))dA(a), for all wy € Cy.
D
Proof Suppose

Swy) = / 8(tx(un))dA(a),

(3.1)

for all wy; € C;. Then, by Lemma 2.4, there exists a constant o € C with |a| = 1 such that for all w; € Cy,

(Sba, s b, ) = / (b by ) A ()
D

ta(wi)’ ta(wi)
:/<aSVabml,aVabml>dA(a)
D
- / (VaSVibis, , b, ) dA(a)
D

_ << /D VaSVadA(a)> bmybwl>

= <§bﬁlvbﬁl>v

where 5 = / VaSVadA(a).
D

Thus, by Theorem 2.6, S = S. Hence for all f,g€ L2(Cy),(Sf,g) = <§f7 g). Thus the equation (3.1) is

equivalent to saying that

/ (SVaf, Vag)dA(a) = / (1) (wn)g(wn)dA(w,)
D

Cy
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for all f,g € L2(Cy). Let w € Cy and let w = Ma = {2. Since

(=) (A—laf) (=2)
Vi (1 —aMs)? (1+ s)?
2 (1—la 1

7w (1 —aMs)? (1+s)?’

bu(s) =

Bl

we obtain

(1 —lal®) 1

m (1 —aMw)? (1 +w)?
(1 —lal®) 1

_ 2)2 2
FO=TP (1 1-2)

b (w) =

Sl gl

1 (1+a)?
m(l—lal?) 4
1 U+a?

v (1=lal?)

YR

[N)

Thus

b (s)bw (W) =

2 (1-|a]?) 1 1 (1+a)?

1 (1+a)?
(1—-aMs)? (1+s)?

C(-) (1+aP  (-2)
2r (1 —aMs)? (1+s)?

(=) _(Q+a? .,
2 (1 —aMs)?

= B(s,w) (let).

Thus bg(s) = % and (bzp(w))? = B(w,w). That is, bgp(s) =

vz
That is, (M’ o M)M' = (~1)ya S (M’ o M)M' = W (*%) ~ 1

w1 = UM and therefore W1 (_Ml) =1.

From Lemma 2.5, it follows that

(*1) i
b oty)ly = ——=M".
(b o ta) VT
This implies

(=1

bﬁ(la Ota) = 7\_/; (M/ Ota).
That is,
lg 0tg
QZMI ot ) - 1
NS a

478
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Thus (—/7)bg (4% ot,) =1 and therefore (—/7)bg[(lo(M' o M)) ot,] = 1. Hence
bw[(—vm)(laota)(M' o Mot,)] = 1.

This implies by € H®(C4) and ;& € H(C,). Further B(s, M0) = B(s,M0) = B(s,1) = G2M' =

%(5132 = %(Hls)z. Again B(Ma, M0) = %m and B(M0,M0) = ;=. Now note that W,f =

(fo ta)M],Vigta. Hence W,Sf = SW,f for all f € L2(C,) and for all a € D if and only if

M’ M’
[(Sf)ota] Mot S {(f Ot“)M’ot}

for all @ € D and for all f € L2(C,). That is, if and only if,

{(jj/) ota} M =8 [(AJ;/ ota> M’]

in place of f, we obtain SW,f = W,Sf for all f e L2(C,)

for all f € L2(C,) and for all a € D. Putting
and for all a € D if and only if

(e (@) o[l on

for all f € L2(Cy) and for all a € D. Now to prove the necessary part of the theorem, assume that
SWof=W,Sf forall fe L2(Cy) and for all a € D. We shall prove that

I
b

/ () (wn)glwn)dA(wr) = / (SVaf. Vag)dA(a)
C, D

for all f,g € L2(C4). Note that

| () o e

_ /@ 9(2)dAG) o (B{,Azﬁo)) (2)B(z, MO).

Hence by the mean-value property for harmonic functions [1], we obtain

<vag> :/(C+ M'(Z) B(.,Ma) B(M%Ma)

-/ + % s (55) @riaac

9(2)dA(2) /D s< fM’«/B(Ma,Ma)) ) Bz Ma) A(a)
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Using Fubini’s theorem [10] and using the identity (3.2), we obtain

s = [ [ S (5 ) @)
[ s ()

dA(a)

“\s?

()9() o(2)dA(2)

dA(a)

15 (2 bt o ) () () | (o

/IDJ /Ty M'(z) ( bw
-/ M;, (fjj (=) (;}T) (M’ 0 1)(2)90) T 0 1) () |La ()P4 (2) | dA(a)
-/ ' [ + [(A}S {ij))t} (=) (ﬁ) M (2){g 0 T (a()dA(:) | dA(a).

1 fM/ (_1) !
= (=5~ .
(Grs(50)) )
This last equality follows from (3.3) since SW, f = W,Sf. Thus for all f,g € L2(C,), we obtain

(Sf.9) = /D (SVaf, Vag)dA(a).

We shall now prove the sufficient part. Suppose (Sf,g) = /(SVaf, V,g9)dA(a) for all f,g € L2(C,). We shall
D

show that SW, = W,S for all a € D. We have already verified that

o= [((£)) 2]
Hence

[ (vt vagaa) = [ [ / K [((bf; ota) (‘WET)M] (w1)(7 o Fa) @r)la (w1 dA(w:)

-/ l / K (372 ) o) SR | oz raiton ot

Using Fubini’s theorem [10], we obtain

dA(a)

dA(a).
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[svusviariaw = [ | [ s]((355 ) ote) G2 | oo it ttiniate) | adon).

Now

(51)(2)9(2)dA(2)

+

(Sf,g9) =

Il
o~ o
Ne)

1575 (G ) @i

+

S ((fAfM) @ (3 ) )

1 M -
(Z)M’(Z)S (B(.,MO)) (2)B(z, M0)dA(z).

I
P
)

I
o
i
Q

By mean value property for harmonic functions [1], we obtain

<5f,g>:/ g(z)dA(z)/DS<fMu/B(Ma,Ma)>(z

c, M(z) B(., Ma)
- 1 M
+ B(w,w)

= [ a@ai) [ |5 ()] @batz)aac).
Cy D @

Using Fubini’s theorem [10], we obtain

~—

st0= [ [ |59 (5 )| @mnEine
= [ L[5 (5 ) o] @t oo paiciia
:/D/(C+ (J&s (Qﬁ)) ¢ ] (2) (“%;Z)( )(g ) (Dl (D)la(2)dA(2)dA(a)

_ /D /C + Kz\;s (@j)) ota} (2) (\_/:?)M’(z)(gota)(z)la(z)dg(z)dA(a)

From (3.4) and (3.5), it follows that if (Sf,g) = /(SVaf, V.g9)dA(a) for all f,g € L2(Cy) then
D

() ) 2] =[G (8) )

for all f € L2(Cy) and for all a € D.

(3.5)

(3.6)
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Putting % in place of f we obtain (3.6), which holds if and only if
f (*1) ! 1 f (*1) !
to | —=M"| = |75 to| —=M
s|((a) o) 7 o\ ) ) ) R
for all f € L2(C,) and for all a € D. Thus if (Sf,g) = /(SVaf, Va.g)dA(a) for all f,g € L2(C,), then
D

[((ahe) )] - (G ()

for all f € L2(C,) and for all a € D.
By (3.5), the identity (3.7) holds if and only if SW,f = W,Sf for all f € L2(C,) and for all a € D.

Thus we have proved that if (Sf,g) = /(SVaf, Vag)dA(a) for all f g € L2(C) then SW,f = W,Sf for all
D

f € L?(C,) and for all a € D. The theorem follows. O

4. Applications

In this section, we establish certain applications of the main result of the paper involving multiplication,

Toeplitz, and Hankel operators. For ¢ € L>®(C,,dA) and T € L(LS(CL)), let (E(s) = /gb(ta(s))dA(a)
D

and fz/VaTVadA(a).
D

Corollary 4.1 Let ¢ € L*°(Cy). Then the following hold:

(i) ./\//7,1) = ./\/lqA5
(ii) To = T;;
(iii) Hy = Hy.

Proof From Proposition 2.2, it follows that for given h € L?(C,, dg) and g € L*(Cy, dA) we have
(Mg )= [ (6Vag. VahiiAGo)
D
= /DdA(a) : 3(5)(Vag) (s)(Vah) (s)dA(s)
= /DdA(a) g 3(5)(9 © ta) ()la(s)(h o ta)(s) la(s)dA(s)

- / dA(a) /C (60 £a)(5)g(5)A() (a © 1) ()T o 7] (3) lla(3)PdA(s)
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— [da@) [ (@0t (69T [l o ta) P I1a(s) Pd(s)
D Cy

— [da@) [ @0t HEA)
D Cy

This proves (i). To prove (i), let k and g in L2(C,,dA). Then since (I, o t,)(s)la(s) = s, we obtain

() -

/ o(s)h()dA(s) / (6 ta)(5)dA(a)
(o D

$(s)g(s)h(s)dA(s) = (M} ().

C+

/D (VaToV1}. () dA(a)

- [ mvvida

— [da@ [ (Pr(oVag). Vat 4G
D Cy

:/DdA(a)/c (OVag, Py (Voh)) dA(s)

_ /D dA(a) /(': (0Vag, Vi) dA()

_ / dA(a) [ &(s)(Vag)(s)(Vah)(5)dA(s)
D Cy

=/DdA(a) g 3(s)(g 0 ta)(s)la(s)(h o ta)(s) lu(s) dA(s)

- / dA(a) /C (600)(5)9(5)(la © 1) (5)(5) U 0 12)(5) [la(5)PdA ()

= [dA@) [ (@0t @Bl o ta)(6)Ta 0t [la(s) PaA(S)
D Cy

— [d4@) [ 00 t) &g o ) () (5)PdA)
D Cy

- / dA(a) / (60 ta)(s)g(s)R(=)dA(s)
D C.

483



DAS and BEHERA /Turk J Math

Therefore, ’?;5 = T;. This proves (ii). Now we shall establish (iii). It is not difficult to see that for a €

D, V,(L2(C4)) C L2(Cy) and V,((L2(C4))t) C (L3(Cy))*. Further, from Proposition 2.3, it follows that for
g€ L3(Cy) and h € (L2(C4))*, we have

(Flogh) = [ iHsv3.01ACH)
_ / (HoV}, V3O TAG)
_ / (I = P)(6Vag), Vah)dA(a)
- / (Vag, (I — P1)(Vah))dA(a)
_ /D (6Vag, Vah)dA(a)
- / dA@ [ 6(6)(Vog) () VR G)AL)
_ / A | 6(5)(9 0 ta) (5)la(5) (0 tq) (5)la(5)dA(s)
- [aaw) [ (60 t)(6)9(6)(la o 1) (IR TGl ()

/ dA(a) /C (60 ta)(s)g(s)R(5)dA(s)

/ / 60 1,)()dA(a)

Il
\,

Hence Mg = 3. O

Corollary 4.2 Let a €D and ¢ € L>°(Cy). Then the following hold:
(Z) VanﬁV—| == Mqﬁo\_u-

(ZZ) Va’];bv_{ - 7:1)0|_|4.
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(111) VoV = Heour,-
(iv) VahgVa = hor, -
Proof We first prove (i). Note that since (I, ot4)(s)la(s) = s, we have for f € L2(C,),
VaMVa{ = VaMy[({ o U4)T4]

= Va[o(f o ta)la]
= (¢ota)f(laota)la
=(¢ota)f
= Mgou{.

This proves (i). To prove (ii), let f € L2(C4). Then we have

VaTeV+{ = VaT[({ o U4)I4]
= VaPy[o(f o ta)la]
= P Vo[o(f ota)la]
= Pi[(¢pota)f(laota)ld]
= Py[(¢poty)f]
= Toou {,
since (Iy 0 to)(s)la(s) = s. This proves (ii). Now to establish (iii), let f € L2(Cy). Then
VaHeV4{ = VaH[({ o U4) -]
= ValI = Py)[8(f o ta)la]
= (I = PL)Va[o(f ota)la]
= (I = P)l(¢ota)f(laota)la]
= = Py)[(¢ota)f]
= Hpou {-
This proves (iii). To prove (iv), let f € L2(Cy). Then since P, = JPJ,where Jf(s) = f(3) for f €
L2(Cy) and V, P, = P, V,, we obtain
VahgVaf = Vaho[(f o ta)la]
= VaPr[o(f o ta)la]
= P Va[o(f o ta)la]
=P [(¢pota)f(laota)ld]
= Pi[(¢0ta)f]
= heot, |-
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