Turk J Math
(2018) 42: $471-486$
(c) TÜBİTAK
doi:10.3906/mat-1509-50

On a class of unitary operators on the Bergman space of the right half plane

Namita DAS* ${ }^{*}$, Jitendra Kumar BEHERA

P. G. Department of Mathematics, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India

Received: 15.09.2015 • Accepted/Published Online: 17.04.2017 \quad Final Version: 24.03 .2018

Abstract

In this paper, we introduce a class of unitary operators defined on the Bergman space $L_{a}^{2}\left(\mathbb{C}_{+}\right)$of the right half plane \mathbb{C}_{+}and study certain algebraic properties of these operators. Using these results, we then show that a bounded linear operator S from $L_{a}^{2}\left(\mathbb{C}_{+}\right)$into itself commutes with all the weighted composition operators $W_{a}, a \in \mathbb{D}$ if and only if $\widetilde{S}(w)=\left\langle S b_{\bar{w}}, b_{\bar{w}}\right\rangle, w \in \mathbb{C}_{+}$satisfies a certain averaging condition. Here for $a=c+i d \in \mathbb{D}, f \in L_{a}^{2}\left(\mathbb{C}_{+}\right), W_{a} f=$ $\left(f \circ t_{a}\right) \frac{M^{\prime}}{M^{\prime} \circ t_{a}}, M s=\frac{1-s}{1+s}, t_{a}(s)=\frac{-i d s+(1-c)}{(1+c) s+i d}$, and $b_{\bar{w}}(s)=\frac{1}{\sqrt{\pi}} \frac{1+w}{1+\bar{w}} \frac{2 \operatorname{Re} w}{(s+w)^{2}}, w=M \bar{a}, s \in \mathbb{C}_{+}$. Some applications of these results are also discussed.

Key words: Right half plane, Bergman space, unitary operator, automorphism, Toeplitz operators

1. Introduction

Let $\mathbb{C}_{+}=\{s=x+i y \in \mathbb{C}: \operatorname{Re} s>0\}$ be the right half plane. Let $d \widetilde{A}(s)=d x d y$ be the area measure. Let $L^{2}\left(\mathbb{C}_{+}, d \widetilde{A}\right)$ be the space of complex-valued, square-integrable, measurable functions on \mathbb{C}_{+}with respect to the area measure. Let $L_{a}^{2}\left(\mathbb{C}_{+}\right)$be the closed subspace [2] of $L^{2}\left(\mathbb{C}_{+}, d \widetilde{A}\right)$ consisting of those functions in $L^{2}\left(\mathbb{C}_{+}, d \widetilde{A}\right)$ that are analytic. The space $L_{a}^{2}\left(\mathbb{C}_{+}\right)$is referred to as the Bergman space of the right half plane. The functions $H(s, w)=\frac{1}{(s+\bar{w})^{2}}, s \in \mathbb{C}_{+}, w \in \mathbb{C}_{+}$are the reproducing kernel [4] for $L_{a}^{2}\left(\mathbb{C}_{+}\right)$. Let $\mathbf{h}_{w}(s)=\frac{H(s, w)}{\sqrt{H(w, w)}}=\frac{2 \text { Rew }}{(s+\bar{w})^{2}}$. The functions $\mathbf{h}_{w}, w \in \mathbb{C}_{+}$are the normalized reproducing kernels for $L_{a}^{2}\left(\mathbb{C}_{+}\right)$. Let $L^{\infty}\left(\mathbb{C}_{+}\right)$be the space of complex-valued, essentially bounded, Lebesgue measurable functions on \mathbb{C}_{+}. Define for $f \in L^{\infty}\left(\mathbb{C}_{+}\right),\|f\|_{\infty}=\operatorname{ess} \sup _{s \in \mathbb{C}_{+}}|f(s)|<\infty$. The space $L^{\infty}\left(\mathbb{C}_{+}\right)$is a Banach space with respect to the essential supremum norm. For $\phi \in L^{\infty}\left(\mathbb{C}_{+}\right)$, we define $[6,8]$ the Toeplitz operator \mathcal{T}_{ϕ} from $L_{a}^{2}\left(\mathbb{C}_{+}\right)$ into $L_{a}^{2}\left(\mathbb{C}_{+}\right)$by $\mathcal{T}_{\phi}\left\{=\mathcal{P}_{+}\left(\phi\{)\right.\right.$, where P_{+}denote the orthogonal projection from $L^{2}\left(\mathbb{C}_{+}, d \widetilde{A}\right)$ onto $L_{a}^{2}\left(\mathbb{C}_{+}\right)$; the multiplication operator \mathcal{M}_{ϕ} from $L^{2}\left(\mathbb{C}_{+}, d \widetilde{A}\right)$ into $L^{2}\left(\mathbb{C}_{+}, d \widetilde{A}\right)$ by $\left(\mathcal{M}_{\phi}\{)(f)=\phi\left(\int\right)\{(f)\right.$. The big Hankel operator \mathcal{H}_{ϕ} from $L_{a}^{2}\left(\mathbb{C}_{+}\right)$into $\left(L_{a}^{2}\left(\mathbb{C}_{+}\right)\right)^{\perp}$ is defined by $\mathcal{H}_{\phi}\left\{=\left(\mathcal{I}-\mathcal{P}_{+}\right)\left(\phi\{),\left\{\in \mathcal{L}_{\dashv}^{\in}\left(\mathbb{C}_{+}\right)\right.\right.\right.$. The little Hankel operator h_{ϕ} is a mapping from $L_{a}^{2}\left(\mathbb{C}_{+}\right)$into $\overline{L_{a}^{2}\left(\mathbb{C}_{+}\right)}$defined by $h_{\phi} f=\bar{P}_{+}(\phi f)$, where \bar{P}_{+}is the orthogonal projection from $L^{2}\left(\mathbb{C}_{+}, d \widetilde{A}\right)$ onto $\overline{L_{a}^{2}\left(\mathbb{C}_{+}\right)}=\left\{\bar{f}: f \in L_{a}^{2}\left(\mathbb{C}_{+}\right)\right\}$.

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ be the open unit disk in the complex plane \mathbb{C}. Let $L^{2}(\mathbb{D}, d A)$ be the space

[^0]of complex-valued, square-integrable, measurable functions on \mathbb{D} with respect to the normalized area measure $d A(z)=\frac{1}{\pi} d x d y$. Let $L_{a}^{2}(\mathbb{D})$ be the space consisting of those functions of $L^{2}(\mathbb{D}, d A)$ that are analytic. The space $L_{a}^{2}(\mathbb{D})$ is a closed subspace of $L^{2}(\mathbb{D}, d A)$ and is called the Bergman space of the open unit disk \mathbb{D}. The sequence of functions $\left\{e_{n}(z)\right\}_{n=0}^{\infty}=\left\{\sqrt{n+1} z^{n}\right\}_{n=0}^{\infty}$ form an orthonormal basis for $L_{a}^{2}(\mathbb{D})$. Since point evaluation at $z \in \mathbb{D}$ is a bounded linear functional on the Hilbert space $L_{a}^{2}(\mathbb{D})$, the Riesz representation theorem implies that there exists a unique function K_{z} in $L_{a}^{2}(\mathbb{D})$ such that
$$
f(z)=\int_{\mathbb{D}} f(w) \overline{K_{z}(w)} d A(w)
$$
for all f in $L_{a}^{2}(\mathbb{D})$. Let $K(z, w)$ be the function on $\mathbb{D} \times \mathbb{D}$ defined by
$$
K(z, w)=\overline{K_{z}(w)}
$$

The function $K(z, w)$ is analytic in z and co-analytic in w. Since

$$
f(z)=\int_{\mathbb{D}} f(w) K(z, w) d A(w), f \in L_{a}^{2}(\mathbb{D})
$$

the function $K(z, w)=\frac{1}{(1-z \bar{w})^{2}}, z, w \in \mathbb{D}$ and is the reproducing kernel [11] of $L_{a}^{2}(\mathbb{D})$. For $a \in \mathbb{D}$, let $k_{a}(z)=\frac{K(z, a)}{\sqrt{K(a, a)}}=\frac{\left(1-|a|^{2}\right)}{(1-\bar{a} z)^{2}}$. The function k_{a} is called the normalized reproducing kernel for $L_{a}^{2}(\mathbb{D})$. It is clear that $\left\|k_{a}\right\|_{2}=1$. Important works on the application of the reproducing kernel were obtained by Karaev et al. [9]. These results in reproducing kernel and Berezin symbols are important in operator theory [7]. Let P denote the orthogonal projection from $L^{2}(\mathbb{D}, d A)$ onto $L_{a}^{2}(\mathbb{D})$. Let $A u t(\mathbb{D})$ be the Lie group of all automorphisms (biholomorphic mappings) of \mathbb{D}. We can define for \quad each $a \in \mathbb{D}$ an automorphism ϕ_{a} in $A u t(\mathbb{D})$ such that
(i) $\left(\phi_{a} \circ \phi_{a}\right)(z)=z ;$
(ii) $\phi_{a}(0)=a, \phi_{a}(a)=0$;
(iii) ϕ_{a} has a unique fixed point in \mathbb{D}.

In fact, $\phi_{a}(z)=\frac{a-z}{1-\bar{a} z}$ for all a and z in \mathbb{D}. An easy calculation shows that the derivative of ϕ_{a} at z is equal to $-k_{a}(z)$. It follows that the real Jacobian determinant of ϕ_{a} at z is $J_{\phi_{a}}(z)=\left|k_{a}(z)\right|^{2}=\frac{\left(1-|a|^{2}\right)}{|1-\bar{a} z|^{4}}$. Given $a \in \mathbb{D}$ and f any measurable function on \mathbb{D}, we define a function $U_{a} f$ on \mathbb{D} by $U_{a} f(z)=k_{a}(z) f\left(\phi_{a}(z)\right)$. In this paper, we introduce a class of unitary operators defined on the Bergman space $L_{a}^{2}\left(\mathbb{C}_{+}\right)$and study certain algebraic properties of these operators. Using these results, we then show that a bounded linear operator S from $L_{a}^{2}\left(\mathbb{C}_{+}\right)$into itself commutes with all the weighted composition operators $W_{a}, a \in \mathbb{D}$ if and only if $\widetilde{S}(w)=\left\langle S b_{\bar{w}}, b_{\bar{w}}\right\rangle, w \in \mathbb{C}_{+}$satisfies certain averaging condition. Some applications of these results are also discussed. The organization of this paper is as follows. In $\S 2$, we introduce a class of unitary operators $V_{a}, a \in \mathbb{D}$ with the help of the automorphisms of \mathbb{C}_{+}. We establish certain algebraic properties of these unitary operators, which are also self-adjoint. In $\S 3$, we show that a bounded linear operator S from $L_{a}^{2}\left(\mathbb{C}_{+}\right)$into itself commutes with all the weighted composition operators $W_{a}, a \in \mathbb{D}$ if and only if $\widetilde{S}(w)=\left\langle S b_{\bar{w}}, b_{\bar{w}}\right\rangle, w \in \mathbb{C}_{+}$satisfies certain averaging condition. Further, in $\S 4$, we establish certain applications of the main result of the paper involving multiplication, Toeplitz, and Hankel operators.

2. The unitary operator V_{a}

In this section, we shall introduce the operator $V_{a}, a \in \mathbb{D}$ and prove certain elementary properties of the unitary operator V_{a}.

Define $M: \mathbb{C}_{+} \rightarrow \mathbb{D}$ by $M s=\frac{1-s}{1+s}$. Then M is one-one and onto, and $M^{-1}: \mathbb{D} \rightarrow \mathbb{C}_{+}$is given by $M^{-1}(z)=\frac{1-z}{1+z}$. Thus M is its self-inverse. Let $W: L_{a}^{2}(\mathbb{D}) \rightarrow L_{a}^{2}\left(\mathbb{C}_{+}\right)$be defined by $W g(s)=\frac{2}{\sqrt{\pi}} g(M s) \frac{1}{(1+s)^{2}}$. Then $W^{-1}: L_{a}^{2}\left(\mathbb{C}_{+}\right) \rightarrow L_{a}^{2}(\mathbb{D})$ is given by $W^{-1} G(z)=2 \sqrt{\pi} G(M z) \frac{1}{(1+z)^{2}}$, where $M z=\frac{1-z}{1+z}$.

Lemma 2.1 If $a \in \mathbb{D}$ and $a=c+i d, c, d \in \mathbb{R}$, then $t_{a}(s)=\frac{-i d s+(1-c)}{(1+c) s+i d}$ is an automorphism from \mathbb{C}_{+}onto \mathbb{C}_{+}.
Proof It is not difficult to verify that the map $t_{a}: \mathbb{C}_{+} \longrightarrow \mathbb{C}_{+}$is one-one and onto. The lemma follows.

Proposition 2.2 For $a \in \mathbb{D}$, the following hold:
(i) $\left(t_{a} \circ t_{a}\right)(s)=s$.
(ii) $t_{a}^{\prime}(s)=-l_{a}(s)$, where $l_{a}(s)=\frac{1-|a|^{2}}{((1+c) s+i d)^{2}}$.

Proof One can verify (i) and (ii) by direct calculation.

For $a \in \mathbb{D}$, define $V_{a}: L_{a}^{2}\left(\mathbb{C}_{+}\right) \rightarrow L_{a}^{2}\left(\mathbb{C}_{+}\right)$by $\left(V_{a} g\right)(s)=\left(g \circ t_{a}\right)(s) l_{a}(s)$. In Proposition 2.3, we show that V_{a} is a self-adjoint unitary operator that is also an idempotent.

Proposition 2.3 For $a \in \mathbb{D}$,
(i) $V_{a} l_{a}=1$.
(ii) $V_{a}^{-1}=V_{a}, V_{a}^{2}=I$.
(iii) V_{a} is self-adjoint.
(iv) V_{a} is unitary.
(v) $V_{a} P_{+}=P_{+} V_{a}$.

Proof We shall first prove (i). If $a \in \mathbb{D}$, then by Proposition 2.2, $t_{a}^{\prime}(s)=-l_{a}(s)$. Therefore

$$
\begin{aligned}
\left(V_{a} l_{a}\right)(s) & =\left(l_{a} \circ t_{a}\right)(s) l_{a}(s) \\
& =\left(-t_{a}^{\prime} \circ t_{a}\right)(s) l_{a}(s) \\
& =-\left(t_{a}^{\prime} \circ t_{a}\right)(s) l_{a}(s) \\
& =\left[-t_{a}^{\prime}\left(t_{a}(s)\right)\right] l_{a}(s) \\
& =-\left[t_{a}^{\prime}\left(\frac{-i d s+(1-c)}{(1+c) s+i d}\right) \frac{1-|a|^{2}}{((1+c) s+i d)^{2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1-|a|^{2}}{\left[(1+c)\left(\frac{-i d s+(1-c)}{(1+c) s+i d}\right)+i d\right]^{2}} \frac{1-|a|^{2}}{[(1+c) s+i d]^{2}} \\
& =\frac{\left(1-|a|^{2}\right)\left(1-|a|^{2}\right)[(1+c) s+i d]^{2}}{\left[-i d s+1-c-i d s c+c-c^{2}+i d(s+c s+i d)\right]^{2}[(1+c) s+i d]^{2}} \\
& =\frac{\left(1-|a|^{2}\right)^{2}}{\left[-i d s+1-c-i d s c+c-c^{2}+i d s+i d s c-d^{2}\right]^{2}} \\
& =\frac{\left(1-|a|^{2}\right)^{2}}{\left[1-c^{2}-d^{2}\right]^{2}} \\
& =\frac{\left(1-|a|^{2}\right)^{2}}{\left[1-\left(c^{2}+d^{2}\right)\right]^{2}} \\
& =\frac{\left(1-|a|^{2}\right)^{2}}{\left(1-|a|^{2}\right)^{2}}=1 .
\end{aligned}
$$

This proves (i). The assertions in (ii), (iii), and (iv) can be verified by direct calculation. Note that V_{a} can also be defined from $L^{2}\left(\mathbb{C}_{+}\right)$. To prove (v), observe that $V_{a}\left(L_{a}^{2}\left(\mathbb{C}_{+}\right)\right) \subset L_{a}^{2}\left(\mathbb{C}_{+}\right)$and $V_{a}\left(L_{a}^{2}\left(\mathbb{C}_{+}\right)\right)^{\perp} \subset\left(L_{a}^{2}\left(\mathbb{C}_{+}\right)\right)^{\perp}$. Now let $f \in L^{2}\left(\mathbb{C}_{+}\right)$and $f=f_{1}+f_{2}$, where $f_{1} \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$and $f_{2} \in\left(L_{a}^{2}\left(\mathbb{C}_{+}\right)\right)^{\perp}$. Hence,

$$
\begin{aligned}
P_{+} V_{a} f & =P_{+} V_{a}\left(f_{1}+f_{2}\right) \\
& =P_{J}\left(V_{a} f_{1}+V_{a} f_{2}\right) \\
& =P_{+} V_{a} f_{1} \\
& =V_{a} f_{1} \\
& =V_{a} P_{+} f .
\end{aligned}
$$

Suppose $a \in \mathbb{D}$ and $w=\frac{1-\bar{a}}{1+\bar{a}}=M \bar{a} \in \mathbb{C}_{+}$. Define $b_{\bar{w}}(s)=\frac{(-1)}{\sqrt{\pi}}\left(k_{a} \circ M\right)(s) M^{\prime}(s)$.
Lemma 2.4 Let $a \in \mathbb{D}$. For $w_{1} \in \mathbb{C}_{+}, V_{a} b_{\bar{w}_{1}}=\alpha b_{t_{\bar{\pi}}\left(w_{1}\right)}$ for some $\alpha \in \mathbb{C}$ such that $|\alpha|=1$.
Proof To prove the lemma, we shall first show that for $z_{1}, z_{2} \in \mathbb{D}, U_{z_{1}} k_{z_{2}}=\alpha k_{\phi_{z_{1}}\left(z_{2}\right)}$ for some complex constant α such that $|\alpha|=1$. Suppose $z_{1}, z_{2} \in \mathbb{D}$. If $f \in L_{a}^{2}(\mathbb{D})$, then

$$
\begin{equation*}
\left\langle f, U_{z_{1}} K_{z_{2}}\right\rangle=\left\langle U_{z_{1}} f, K_{z_{2}}\right\rangle=\left(U_{z_{1}} f\right)\left(z_{2}\right)=-\left(f \circ \phi_{z_{1}}\right)\left(z_{2}\right) \phi_{z_{1}}^{\prime}\left(z_{2}\right)=\left\langle f,\left(\overline{\left(-\phi_{z_{1}}^{\prime}\left(z_{2}\right)\right)}\right) K_{\phi_{z_{1}}\left(z_{2}\right)}\right\rangle . \tag{2.1}
\end{equation*}
$$

Thus $U_{z_{1}} K_{z_{2}}=\overline{-\phi_{z_{1}}^{\prime}\left(z_{2}\right)} K_{\phi_{z_{1}}\left(z_{2}\right)}$. Rewriting this in terms of normalized reproducing kernels, we have

$$
\begin{equation*}
U_{z_{1}} k_{z_{2}}=\alpha k_{\phi_{z_{1}}\left(z_{2}\right)} \tag{2.2}
\end{equation*}
$$

for some complex constant α. Since $U_{z_{1}}$ is unitary and $\left\|k_{z_{2}}\right\|_{2}=\left\|k_{\phi_{z_{1}}\left(z_{2}\right)}\right\|_{2}=1$, we obtain that $|\alpha|=1$.
Let $w_{1} \in \mathbb{C}_{+}$and define $w_{1}=M \bar{a}_{1}$. Since

$$
t_{a}\left(\bar{w}_{1}\right)=\frac{-i d \bar{w}_{1}+(1-c)}{(1+c) \bar{w}_{1}+i d},
$$

we obtain

$$
\overline{t_{a}\left(\bar{w}_{1}\right)}=\frac{i d w_{1}+(1-c)}{(1+c) w_{1}-i d}=t_{\bar{a}}\left(w_{1}\right)
$$

Thus,

$$
\begin{aligned}
V_{a} b_{\bar{w}_{1}} & =W U_{a} k_{a_{1}} \\
& =\alpha W k_{\phi_{a}\left(a_{1}\right)} \\
& =\alpha b_{\bar{l}},
\end{aligned}
$$

where

$$
\begin{aligned}
l & =\overline{M \phi_{a}\left(a_{1}\right)} \\
& =\overline{M \phi_{a}\left(M \bar{w}_{1}\right)} \\
& =\overline{t_{a}\left(\bar{w}_{1}\right)}=t_{\bar{a}}\left(w_{1}\right) .
\end{aligned}
$$

Lemma 2.5 Let $a \in \mathbb{D}$, and $w=M \bar{a}$. Then
(i) $V_{a} b_{\bar{w}}=\frac{(-1)}{\sqrt{\pi}} M^{\prime}$.
(ii) $V_{a}\left(\frac{(-1)}{\sqrt{\pi}} M^{\prime}\right)=b_{\bar{w}}$.

Proof Let $a \in \mathbb{D}$. Then, since $U_{a} k_{a}=1$ and $W 1=\frac{(-1)}{\sqrt{\pi}} M^{\prime}$, we obtain

$$
\begin{aligned}
V_{a} b_{\bar{w}} & =W U_{a} k_{a} \\
& =W 1 \\
& =\frac{(-1)}{\sqrt{\pi}} M^{\prime} .
\end{aligned}
$$

Now, to prove (ii), observe that

$$
\begin{aligned}
V_{a}\left(\frac{(-1)}{\sqrt{\pi}} M^{\prime}\right) & =W U_{a} 1 \\
& =W k_{a} \\
& =b_{\bar{w}}
\end{aligned}
$$

Let $\mathcal{L}\left(\mathcal{L}_{\dashv}^{\in}\left(\mathbb{C}_{+}\right)\right)$be the space of all bounded linear operators from $L_{a}^{2}\left(\mathbb{C}_{+}\right)$into itself. For $T \in \mathcal{L}\left(\mathcal{L}_{\dashv}^{\in}\left(\mathbb{C}_{+}\right)\right)$, define the function \widetilde{T} on \mathbb{C}_{+}as $\widetilde{T}(w)=\left\langle T b_{\bar{w}}, b_{\bar{w}}\right\rangle$.

Theorem 2.6 Let $S, T \in \mathcal{L}\left(\mathcal{L}_{\dashv}^{\in}\left(\mathbb{C}_{+}\right)\right)$. If $\widetilde{S}(w)=\widetilde{T}(w)$ for all $w \in \mathbb{C}_{+}$, then $S=T$.

Proof Let $\widetilde{S}(w)=\widetilde{T}(w)$ for all $w \in \mathbb{C}_{+}$. Then, for $w=M \bar{a}$, we have

$$
\begin{aligned}
\left\langle S b_{\bar{w}}, b_{\bar{w}}\right\rangle & =\left\langle S W k_{a}, W k_{a}\right\rangle \\
& =\left\langle W^{-1} S W k_{a}, k_{a}\right\rangle
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\left\langle T b_{\bar{w}}, b_{\bar{w}}\right\rangle & =\left\langle T W k_{a}, W k_{a}\right\rangle \\
& =\left\langle W^{-1} T W k_{a}, k_{a}\right\rangle
\end{aligned}
$$

Hence for all $a \in \mathbb{D}$,

$$
\left\langle W^{-1} S W k_{a}, k_{a}\right\rangle=\left\langle W^{-1} T W k_{a}, k_{a}\right\rangle
$$

This implies

$$
\left\langle\left(W^{-1} S W-W^{-1} T W\right) k_{a}, k_{a}\right\rangle=\left\langle L k_{a}, k_{a}\right\rangle=0
$$

where $L=W^{-1} S W-W^{-1} T W$. Hence,

$$
\left\langle L K_{a}, K_{a}\right\rangle=K(a, a)\left\langle L k_{a}, k_{a}\right\rangle=K(a, a) \cdot 0=0
$$

Define $F(x, y)=\left\langle L K_{\bar{x}}, K_{y}\right\rangle$. The function F is holomorphic in x and y and $F(x, y)=0$ if $x=\bar{y}$ [5]. It can be verified that such functions must vanish identically. Let $x=u+i v, y=u-i v$. Let $G(u, v)=F(x, y)$. The function G is holomorphic and vanishes if u and v are real. Hence $F(x, y)=G(u, v) \equiv 0$. Thus even $\left\langle L K_{x}, K_{y}\right\rangle=0$ for any x, y. Since linear combinations of $K_{x}, x \in \mathbb{D}$, are dense in $L_{a}^{2}(\mathbb{D})$ [3], it follows that $L=0$. That is, $W^{-1} S W=W^{-1} T W$. Hence $S=T$.

Corollary 2.7 Let $S, T \in \mathcal{L}\left(\mathcal{L}_{\dashv}^{\in}\left(\mathbb{C}_{+}\right)\right)$. Suppose for all $a \in \mathbb{D}$,

$$
\left\langle\left(V_{a} S V_{a}\right)\left(\frac{(-1)}{\sqrt{\pi}} M^{\prime}\right),\left(\frac{(-1)}{\sqrt{\pi}} M^{\prime}\right)\right\rangle=\left\langle\left(V_{a} T V_{a}\right)\left(\frac{(-1)}{\sqrt{\pi}} M^{\prime}\right),\left(\frac{(-1)}{\sqrt{\pi}} M^{\prime}\right)\right\rangle
$$

Then $S=T$.
Proof Let $a \in \mathbb{D}$. Then since $W^{-1}\left(\frac{(-1)}{\sqrt{\pi}} M^{\prime}\right)=1$, hence

$$
\begin{aligned}
\left\langle\left(V_{a} S V_{a}\right)\left(\frac{(-1)}{\sqrt{\pi}} M^{\prime}\right),\left(\frac{(-1)}{\sqrt{\pi}} M^{\prime}\right)\right\rangle & =\left\langle U_{a}\left(W^{-1} S W\right) U_{a} W^{-1}\left(\frac{(-1)}{\sqrt{\pi}} M^{\prime}\right), W^{-1}\left(\frac{(-1)}{\sqrt{\pi}} M^{\prime}\right)\right\rangle \\
& =\left\langle U_{a}\left(W^{-1} S W\right) U_{a} 1,1\right\rangle \\
& =\left\langle\left(W^{-1} S W\right) U_{a} 1, U_{a} 1\right\rangle \\
& =\left\langle\left(W^{-1} S W\right) k_{a}, k_{a}\right\rangle
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\left\langle\left(V_{a} T V_{a}\right)\left(\frac{(-1)}{\sqrt{\pi}} M^{\prime}\right),\left(\frac{(-1)}{\sqrt{\pi}} M^{\prime}\right)\right\rangle & =\left\langle U_{a}\left(W^{-1} T W\right) U_{a} W^{-1}\left(\frac{(-1)}{\sqrt{\pi}} M^{\prime}\right), W^{-1}\left(\frac{(-1)}{\sqrt{\pi}} M^{\prime}\right)\right\rangle \\
& =\left\langle U_{a}\left(W^{-1} T W\right) U_{a} 1,1\right\rangle \\
& =\left\langle\left(W^{-1} T W\right) U_{a} 1, U_{a} 1\right\rangle \\
& =\left\langle\left(W^{-1} T W\right) k_{a}, k_{a}\right\rangle
\end{aligned}
$$

Thus,

$$
\left\langle\left(V_{a} S V_{a}\right)\left(\frac{(-1)}{\sqrt{\pi}} M^{\prime}\right),\left(\frac{(-1)}{\sqrt{\pi}} M^{\prime}\right)\right\rangle=\left\langle\left(V_{a} T V_{a}\right)\left(\frac{(-1)}{\sqrt{\pi}} M^{\prime}\right),\left(\frac{(-1)}{\sqrt{\pi}} M^{\prime}\right)\right\rangle \text { for all } a \in \mathbb{D}
$$

implies

$$
\left\langle\left(W^{-1} S W-W^{-1} T W\right) k_{a}, k_{a}\right\rangle=0 \text { for all } a \in \mathbb{D} .
$$

Hence,

$$
\left\langle\left(W^{-1} S W-W^{-1} T W\right) K_{a}, K_{a}\right\rangle=K(a, a)\left\langle\left(W^{-1} S W-W^{-1} T W\right) k_{a}, k_{a}\right\rangle=K(a, a) \cdot 0=0
$$

Proceeding similarly as in Corollary 2.7, we obtain $W^{-1} S W=W^{-1} T W$. Hence $S=T$.

3. Main result

The operators W_{a} are called weighted composition operators on $L_{a}^{2}\left(\mathbb{C}_{+}\right)$. In this section, we shall show that a bounded linear operator S from $L_{a}^{2}\left(\mathbb{C}_{+}\right)$into itself commutes with all the weighted composition operators $W_{a}, a \in \mathbb{D}$, if and only if \widetilde{S} satisfies a certain averaging condition.

Theorem 3.1 A bounded linear operator $S \in \mathcal{L}\left(L_{a}^{2}\left(\mathbb{C}_{+}\right)\right)$commutes with all the weighted composition operators $W_{a}, a \in \mathbb{D}$ if and only if

$$
\widetilde{S}\left(w_{1}\right)=\int_{\mathbb{D}} \widetilde{S}\left(t_{\bar{a}}\left(w_{1}\right)\right) d A(a), \text { for all } w_{1} \in \mathbb{C}_{+} .
$$

Proof Suppose

$$
\begin{equation*}
\widetilde{S}\left(w_{1}\right)=\int_{\mathbb{D}} \widetilde{S}\left(t_{\bar{a}}\left(w_{1}\right)\right) d A(a) \tag{3.1}
\end{equation*}
$$

for all $w_{1} \in \mathbb{C}_{+}$. Then, by Lemma 2.4, there exists a constant $\alpha \in \mathbb{C}$ with $|\alpha|=1$ such that for all $w_{1} \in \mathbb{C}_{+}$,

$$
\begin{aligned}
\left\langle S b_{\bar{w}_{1}}, b_{\bar{w}_{1}}\right\rangle & =\int_{\mathbb{D}}\left\langle S b_{\overline{t_{\bar{a}\left(w_{1}\right)}}}, b_{\overline{t_{\bar{a}}\left(w_{1}\right)}}\right\rangle d A(a) \\
& =\int_{\mathbb{D}}\left\langle\alpha S V_{a} b_{\bar{w}_{1}}, \alpha V_{a} b_{\bar{w}_{1}}\right\rangle d A(a) \\
& =\int_{\mathbb{D}}\left\langle V_{a} S V_{a} b_{\bar{w}_{1}}, b_{\bar{w}_{1}}\right\rangle d A(a) \\
& =\left\langle\left(\int_{\mathbb{D}} V_{a} S V_{a} d A(a)\right) b_{\bar{w}_{1}}, b_{\bar{w}_{1}}\right\rangle \\
& =\left\langle\widehat{S} b_{\bar{w}_{1}}, b_{\bar{w}_{1}}\right\rangle
\end{aligned}
$$

$$
\text { where } \widehat{S}=\int_{\mathbb{D}} V_{a} S V_{a} d A(a)
$$

Thus, by Theorem 2.6, S $=\widehat{S}$. Hence for all $f, g \in L_{a}^{2}\left(\mathbb{C}_{+}\right),\langle S f, g\rangle=\langle\widehat{S} f, g\rangle$. Thus the equation (3.1) is equivalent to saying that

$$
\int_{\mathbb{D}}\left\langle S V_{a} f, V_{a} g\right\rangle d A(a)=\int_{\mathbb{C}_{+}}(S f)\left(w_{1}\right) \overline{g\left(w_{1}\right)} d \widetilde{A}\left(w_{1}\right)
$$

for all $f, g \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$. Let $w \in \mathbb{C}_{+}$and let $w=M \bar{a}=\frac{1-\bar{a}}{1+\bar{a}}$. Since

$$
\begin{aligned}
b_{\bar{w}}(s) & =\frac{(-1)}{\sqrt{\pi}} \frac{\left(1-|a|^{2}\right)}{(1-\bar{a} M s)^{2}} \frac{(-2)}{(1+s)^{2}} \\
& =\frac{2}{\sqrt{\pi}} \frac{\left(1-|a|^{2}\right)}{(1-\bar{a} M s)^{2}} \frac{1}{(1+s)^{2}}
\end{aligned}
$$

we obtain

$$
\begin{aligned}
b_{\bar{w}}(\bar{w}) & =\frac{2}{\sqrt{\pi}} \frac{\left(1-|a|^{2}\right)}{(1-\bar{a} M \bar{w})^{2}} \frac{1}{(1+\bar{w})^{2}} \\
& =\frac{2}{\sqrt{\pi}} \frac{\left(1-|a|^{2}\right)}{\left(1-|a|^{2}\right)^{2}} \frac{1}{\left(1+\frac{1-a}{1+a}\right)^{2}} \\
& =\frac{2}{\sqrt{\pi}} \frac{1}{\left(1-|a|^{2}\right)} \frac{(1+a)^{2}}{4} \\
& =\frac{1}{2 \sqrt{\pi}} \frac{(1+a)^{2}}{\left(1-|a|^{2}\right)}
\end{aligned}
$$

Thus

$$
\begin{aligned}
b_{\bar{w}}(s) b_{\bar{w}}(\bar{w}) & =\frac{2}{\sqrt{\pi}} \frac{\left(1-|a|^{2}\right)}{(1-\bar{a} M s)^{2}} \frac{1}{(1+s)^{2}} \frac{1}{2 \sqrt{\pi}} \frac{(1+a)^{2}}{\left(1-|a|^{2}\right)} \\
& =\frac{1}{\pi} \frac{1}{(1-\bar{a} M s)^{2}} \frac{(1+a)^{2}}{(1+s)^{2}} \\
& =\frac{(-1)}{2 \pi} \frac{(1+a)^{2}}{(1-\bar{a} M s)^{2}} \frac{(-2)}{(1+s)^{2}} \\
& =\frac{(-1)}{2 \pi} \frac{(1+a)^{2}}{(1-\bar{a} M s)^{2}} M^{\prime} \\
& =B(s, w)(l e t)
\end{aligned}
$$

Thus $b_{\bar{w}}(s)=\frac{B(s, w)}{b_{\bar{w}(\bar{w})}}$ and $\left(b_{\bar{w}}(\bar{w})\right)^{2}=B(\bar{w}, w)$. That is, $b_{\bar{w}}(s)=\frac{B(s, w)}{b_{\bar{w}}(\bar{w})}=\frac{B(s, w)}{\sqrt{B(\bar{w}, w)}}$. Note that $W 1=\frac{(-1)}{\sqrt{\pi}} M^{\prime}$ and therefore $W^{-1}\left(\frac{-M^{\prime}}{\sqrt{\pi}}\right)=1$.
That is, $\left(M^{\prime} \circ M\right) M^{\prime}=(-1) \sqrt{\pi} \frac{(-1)}{\sqrt{\pi}}\left(M^{\prime} \circ M\right) M^{\prime}=W^{-1}\left(\frac{-M^{\prime}}{\sqrt{\pi}}\right)=1$.
From Lemma 2.5, it follows that

$$
\left(b_{\bar{w}} \circ t_{a}\right) l_{a}=\frac{(-1)}{\sqrt{\pi}} M^{\prime}
$$

This implies

$$
\begin{equation*}
b_{\bar{w}}\left(l_{a} \circ t_{a}\right)=\frac{(-1)}{\sqrt{\pi}}\left(M^{\prime} \circ t_{a}\right) \tag{3.2}
\end{equation*}
$$

That is,

$$
b_{\bar{w}}\left(\frac{l_{a} \circ t_{a}}{\frac{(-1)}{\sqrt{\pi}}\left(M^{\prime} \circ t_{a}\right)}\right)=1
$$

Thus $(-\sqrt{\pi}) b_{\bar{w}}\left(\frac{l_{a}}{M^{\prime}} \circ t_{a}\right)=1$ and therefore $(-\sqrt{\pi}) b_{\bar{w}}\left[\left(l_{a}\left(M^{\prime} \circ M\right)\right) \circ t_{a}\right]=1$. Hence

$$
b_{\bar{w}}\left[(-\sqrt{\pi})\left(l_{a} \circ t_{a}\right)\left(M^{\prime} \circ M \circ t_{a}\right)\right]=1
$$

This implies $b_{\bar{w}} \in H^{\infty}\left(\mathbb{C}_{+}\right)$and $\frac{1}{b_{\bar{w}}} \in H^{\infty}\left(\mathbb{C}_{+}\right)$. Further $B(s, M \overline{0})=B(s, M 0)=B(s, 1)=\frac{(-1)}{2 \pi} M^{\prime}=$ $\frac{(-1)}{2 \pi} \frac{(-2)}{(1+s)^{2}}=\frac{1}{\pi} \frac{1}{(1+s)^{2}}$. Again $B(M a, M \overline{0})=\frac{1}{\pi} \frac{1}{(1+M a)^{2}}$ and $B(M 0, M \overline{0})=\frac{1}{4 \pi}$. Now note that $W_{a} f=$ $\left(f \circ t_{a}\right) \frac{M^{\prime}}{M^{\prime} \circ t_{a}}$. Hence $W_{a} S f=S W_{a} f$ for all $f \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$and for all $a \in \mathbb{D}$ if and only if

$$
\left[(S f) \circ t_{a}\right] \frac{M^{\prime}}{M^{\prime} \circ t_{a}}=S\left[\left(f \circ t_{a}\right) \frac{M^{\prime}}{M^{\prime} \circ t_{a}}\right]
$$

for all $a \in \mathbb{D}$ and for all $f \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$. That is, if and only if,

$$
\left[\frac{(S f)}{M^{\prime}} \circ t_{a}\right] M^{\prime}=S\left[\left(\frac{f}{M^{\prime}} \circ t_{a}\right) M^{\prime}\right]
$$

for all $f \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$and for all $a \in \mathbb{D}$. Putting $\frac{f}{b_{\bar{w}}}$ in place of f, we obtain $S W_{a} f=W_{a} S f$ for all $f \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$ and for all $a \in \mathbb{D}$ if and only if

$$
\begin{equation*}
\left[\left(\frac{1}{M^{\prime}\left(w_{1}\right)} S\left(\frac{f}{b_{\bar{w}}}\right)\right) \circ t_{a}\right] M^{\prime}\left(w_{1}\right)=S\left[\left(\frac{f}{M^{\prime} b_{\bar{w}}} \circ t_{a}\right) M^{\prime}\right]\left(w_{1}\right) \tag{3.3}
\end{equation*}
$$

for all $f \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$and for all $a \in \mathbb{D}$. Now to prove the necessary part of the theorem, assume that $S W_{a} f=W_{a} S f$ for all $f \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$and for all $a \in \mathbb{D}$. We shall prove that

$$
\int_{\mathbb{C}_{+}}(S f)\left(w_{1}\right) \overline{g\left(w_{1}\right)} d \widetilde{A}\left(w_{1}\right)=\int_{\mathbb{D}}\left\langle S V_{a} f, V_{a} g\right\rangle d A(a)
$$

for all $f, g \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$. Note that

$$
\begin{aligned}
\langle S f, g\rangle & =\int_{\mathbb{C}_{+}}(S f)(z) \overline{g(z)} d \widetilde{A}(z) \\
& =\int_{\mathbb{C}_{+}} \frac{\overline{g(z)} d \widetilde{A}(z)}{M^{\prime}(z)} S\left(\frac{f M^{\prime}}{\left(\frac{(-1)}{2 \pi}\right) M^{\prime}}\right)(z)\left(\frac{-1}{2 \pi} M^{\prime}\right)(z) \\
& =\int_{\mathbb{C}_{+}} \frac{\overline{g(z)} d \widetilde{A}(z)}{M^{\prime}(z)} S\left(\frac{f M^{\prime}}{B(., M 0)}\right)(z) B(z, M 0)
\end{aligned}
$$

Hence by the mean-value property for harmonic functions [1], we obtain

$$
\begin{aligned}
\langle S f, g\rangle & =\int_{\mathbb{C}_{+}} \frac{\overline{g(z)} d \widetilde{A}(z)}{M^{\prime}(z)} \int_{\mathbb{D}} S\left(\frac{f M^{\prime} \sqrt{B(M a, M \bar{a})}}{B(., M \bar{a})}\right)(z) \frac{B(z, M \bar{a})}{\sqrt{B(M a, M \bar{a})}} d A(a) \\
& =\int_{\mathbb{C}_{+}} \frac{\overline{g(z)} d \widetilde{A}(z)}{M^{\prime}(z)} \int_{\mathbb{D}} S\left(\frac{f M^{\prime}}{b_{\bar{w}}}\right)(z) b_{\bar{w}}(z) d A(a)
\end{aligned}
$$

Using Fubini's theorem [10] and using the identity (3.2), we obtain

$$
\begin{gathered}
\langle S f, g\rangle=\int_{\mathbb{D}}\left[\int_{\mathbb{C}_{+}} \frac{1}{M^{\prime}(z)} S\left(\frac{f M^{\prime}}{b_{\bar{w}}}\right)(z) b_{\bar{w}}(z) \overline{g(z)} d \widetilde{A}(z)\right] d A(a) \\
=\int_{\mathbb{D}}\left[\int_{\mathbb{C}_{+}} \frac{1}{M^{\prime}(z)} S\left(\frac{f M^{\prime}}{b_{\bar{w}}}\right)(z) \frac{b_{\bar{w}}}{l_{a}}(z) \overline{g(z)} l_{a}(z) d \widetilde{A}(z)\right] d A(a) \\
=\int_{\mathbb{D}}\left[\int_{\mathbb{C}_{+}} \frac{1}{M^{\prime}(z)} S\left(\frac{f M^{\prime}}{b_{\bar{w}}}\right)(z) b_{\bar{w}}\left(l_{a} \circ t_{a}\right)(z) \overline{g(z)} l_{a}(z) d \widetilde{A}(z)\right] d A(a) \\
=\int_{\mathbb{D}}\left[\int_{\mathbb{C}_{+}} \frac{1}{M^{\prime}} S\left(\frac{f M^{\prime}}{b_{\bar{w}}}\right)(z)\left(\frac{-1}{\sqrt{\pi}}\right)\left(M^{\prime} \circ t_{a}\right)(z) \overline{\left.g(z)\left(l_{a} \circ t_{a}\right)(z)\left|l_{a}(z)\right|^{2} d \widetilde{A}(z)\right] d A(a)}\right. \\
=\int_{\mathbb{D}}\left[\int_{\mathbb{C}_{+}}\left[\left(\frac{1}{M^{\prime}} S\left(\frac{f M^{\prime}}{b_{\bar{w}}}\right)\right) \circ t_{a}\right](z)\left(\frac{-1}{\sqrt{\pi}}\right) M^{\prime}(z) \overline{\left(g \circ t_{a}\right)(z) l_{a}(z)} d \widetilde{A}(z)\right] d A(a) .
\end{gathered}
$$

Now observe that by the identity (3.2) we obtain

$$
\begin{aligned}
S V_{a} f & =S\left[\left(f \circ t_{a}\right) l_{a}\right]=S\left[\frac{f \circ t_{a}}{b_{\bar{w}} \circ t_{a}} \frac{(-1)}{\sqrt{\pi}} M^{\prime}\right] \\
& =S\left[\left(\frac{f}{b_{\bar{w}}} \circ t_{a}\right) \frac{(-1)}{\sqrt{\pi}} M^{\prime}\right]=S\left[\left(\left(\frac{f M^{\prime}}{M^{\prime} b_{\bar{w}}}\right) \circ t_{a}\right) \frac{(-1)}{\sqrt{\pi}} M^{\prime}\right] \\
& =\left[\left(\left(\frac{1}{M^{\prime}} S\left(\frac{f M^{\prime}}{b_{\bar{w}}}\right)\right) \circ t_{a}\right) \frac{(-1)}{\sqrt{\pi}} M^{\prime}\right]
\end{aligned}
$$

This last equality follows from (3.3) since $S W_{a} f=W_{a} S f$. Thus for all $f, g \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$, we obtain

$$
\langle S f, g\rangle=\int_{\mathbb{D}}\left\langle S V_{a} f, V_{a} g\right\rangle d A(a)
$$

We shall now prove the sufficient part. Suppose $\langle S f, g\rangle=\int_{\mathbb{D}}\left\langle S V_{a} f, V_{a} g\right\rangle d A(a)$ for all $f, g \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$. We shall show that $S W_{a}=W_{a} S$ for all $a \in \mathbb{D}$. We have already verified that

$$
S V_{a} f=S\left[\left(\left(\frac{f}{b_{\bar{w}}}\right) \circ t_{a}\right) \frac{(-1)}{\sqrt{\pi}} M^{\prime}\right] .
$$

Hence

$$
\begin{aligned}
\int_{\mathbb{D}}\left\langle S V_{a} f, V_{a} g\right\rangle d A(a) & =\int_{\mathbb{D}}\left[\int_{\mathbb{C}_{+}} S\left[\left(\left(\frac{f}{b_{\bar{w}}}\right) \circ t_{a}\right) \frac{(-1)}{\sqrt{\pi}} M^{\prime}\right]\left(w_{1}\right) \overline{\left(g \circ t_{a}\right)\left(w_{1}\right) l_{a}\left(w_{1}\right)} d \widetilde{A}\left(w_{1}\right)\right] d A(a) \\
& =\int_{\mathbb{D}}\left[\int_{\mathbb{C}_{+}} S\left[\left(\left(\frac{f M^{\prime}}{M^{\prime} b_{\bar{w}}}\right) \circ t_{a}\right) \frac{(-1)}{\sqrt{\pi}} M^{\prime}\right]\left(w_{1}\right) \overline{\left(g \circ t_{a}\right)\left(w_{1}\right) l_{a}\left(w_{1}\right)} d \widetilde{A}\left(w_{1}\right)\right] d A(a)
\end{aligned}
$$

Using Fubini's theorem [10], we obtain

$$
\begin{equation*}
\int_{\mathbb{D}}\left\langle S V_{a} f, V_{a} g\right\rangle d A(a)=\int_{\mathbb{C}_{+}}\left[\int_{\mathbb{D}} S\left[\left(\left(\frac{f M^{\prime}}{M^{\prime} b_{\bar{w}}}\right) \circ t_{a}\right) \frac{(-1)}{\sqrt{\pi}} M^{\prime}\right]\left(w_{1}\right) \overline{\left(g \circ t_{a}\right)\left(w_{1}\right) l_{a}\left(w_{1}\right)} d A(a)\right] d \widetilde{A}\left(w_{1}\right) . \tag{3.4}
\end{equation*}
$$

Now

$$
\begin{aligned}
\langle S f, g\rangle & =\int_{\mathbb{C}_{+}}(S f)(z) \overline{g(z)} d \widetilde{A}(z) \\
& =\int_{\mathbb{C}_{+}} \overline{g(z)} \frac{1}{M^{\prime}(z)} S\left(\frac{f M^{\prime}}{M^{\prime}}\right)(z) M^{\prime}(z) d \widetilde{A}(z) \\
& =\int_{\mathbb{C}_{+}} \overline{g(z)} \frac{1}{M^{\prime}(z)} S\left(\frac{f M^{\prime}}{\left(\frac{-1}{2 \pi}\right) M^{\prime}}\right)(z)\left(\frac{-1}{2 \pi}\right) M^{\prime}(z) d \widetilde{A}(z) \\
& =\int_{\mathbb{C}_{+}} \overline{g(z)} \frac{1}{M^{\prime}(z)} S\left(\frac{f M^{\prime}}{B(., M 0)}\right)(z) B(z, M 0) d \widetilde{A}(z)
\end{aligned}
$$

By mean value property for harmonic functions [1], we obtain

$$
\begin{aligned}
\langle S f, g\rangle & =\int_{\mathbb{C}_{+}} \frac{\overline{g(z)} d \widetilde{A}(z)}{M^{\prime}(z)} \int_{\mathbb{D}} S\left(\frac{f M^{\prime} \sqrt{B(M a, M \bar{a})}}{B(., M \bar{a})}\right)(z) \frac{B(z, M \bar{a})}{\sqrt{B(M a, M \bar{a})}} d A(a) \\
& =\int_{\mathbb{C}_{+}} \overline{g(z)} d \widetilde{A}(z) \int_{\mathbb{D}}\left[\frac{1}{M^{\prime}} S\left(\frac{f M^{\prime}}{\frac{B(\cdot, w)}{\sqrt{B(\bar{w}, w)}}}\right)\right](z) \frac{B(z, w)}{\sqrt{B(\bar{w}, w)}} d A(a) \\
& =\int_{\mathbb{C}_{+}} \overline{g(z)} d \widetilde{A}(z) \int_{\mathbb{D}}\left[\frac{1}{M^{\prime}} S\left(\frac{f M^{\prime}}{b_{\bar{w}}}\right)\right](z) b_{\bar{w}}(z) d A(a) .
\end{aligned}
$$

Using Fubini's theorem [10], we obtain

$$
\begin{align*}
\langle S f, g\rangle & =\int_{\mathbb{D}} \int_{\mathbb{C}_{+}}\left[\frac{1}{M^{\prime}} S\left(\frac{f M^{\prime}}{b_{\bar{w}}}\right)\right](z) b_{\bar{w}}(z) \overline{g(z)} d \widetilde{A}(z) d A(a) \\
& =\int_{\mathbb{D}} \int_{\mathbb{C}_{+}}\left[\frac{1}{M^{\prime}} S\left(\frac{f M^{\prime}}{b_{\bar{w}}}\right) \circ t_{a}\right](z)\left(b_{\bar{w}} \circ t_{a}\right)(z) \overline{\left(g \circ t_{a}\right)(z)}\left|l_{a}(z)\right|^{2} d \widetilde{A}(z) d A(a) \\
& =\int_{\mathbb{D}} \int_{\mathbb{C}_{+}}\left[\left(\frac{1}{M^{\prime}} S\left(\frac{f M^{\prime}}{b_{\bar{w}}}\right)\right) \circ t_{a}\right](z) \frac{\frac{(-1)}{\sqrt{\pi}} M^{\prime}(z)}{l_{a}(z)} \overline{\left(g \circ t_{a}\right)(z) l_{a}(z)} l_{a}(z) d \widetilde{A}(z) d A(a) \\
& =\int_{\mathbb{D}} \int_{\mathbb{C}_{+}}\left[\left(\frac{1}{M^{\prime}} S\left(\frac{f M^{\prime}}{b_{\bar{w}}}\right)\right) \circ t_{a}\right](z) \frac{(-1)}{\sqrt{\pi}} M^{\prime}(z) \overline{\left(g \circ t_{a}\right)(z) l_{a}(z)} d \widetilde{A}(z) d A(a) \tag{3.5}
\end{align*}
$$

From (3.4) and (3.5), it follows that if $\langle S f, g\rangle=\int_{\mathbb{D}}\left\langle S V_{a} f, V_{a} g\right\rangle d A(a)$ for all $f, g \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$then

$$
\begin{equation*}
S\left[\left(\left(\frac{f M^{\prime}}{M^{\prime} b_{\bar{w}}}\right) \circ t_{a}\right)\left(\frac{-1}{\sqrt{\pi}}\right) M^{\prime}\right]=\left[\left(\frac{1}{M^{\prime}} S\left(\frac{f M^{\prime}}{b_{\bar{w}}}\right)\right) \circ t_{a}\right] \frac{(-1)}{\sqrt{\pi}} M^{\prime} \tag{3.6}
\end{equation*}
$$

for all $f \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$and for all $a \in \mathbb{D}$.

Putting $\frac{f}{M^{\prime}}$ in place of f we obtain (3.6), which holds if and only if

$$
S\left[\left(\left(\frac{f}{M^{\prime} b_{\bar{w}}}\right) \circ t_{a}\right) \frac{(-1)}{\sqrt{\pi}} M^{\prime}\right]=\left[\left(\frac{1}{M^{\prime}} S\left(\frac{f}{b_{\bar{w}}}\right)\right) \circ t_{a}\right] \frac{(-1)}{\sqrt{\pi}} M^{\prime}
$$

for all $f \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$and for all $a \in \mathbb{D}$. Thus if $\langle S f, g\rangle=\int_{\mathbb{D}}\left\langle S V_{a} f, V_{a} g\right\rangle d A(a)$ for all $f, g \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$, then

$$
\begin{equation*}
S\left[\left(\left(\frac{f}{M^{\prime} b_{\bar{w}}}\right) \circ t_{a}\right) M^{\prime}\right]=\left[\left(\frac{1}{M^{\prime}} S\left(\frac{f}{b_{\bar{w}}}\right)\right) \circ t_{a}\right] M^{\prime} \tag{3.7}
\end{equation*}
$$

for all $f \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$and for all $a \in \mathbb{D}$.
By (3.5), the identity (3.7) holds if and only if $S W_{a} f=W_{a} S f$ for all $f \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$and for all $a \in \mathbb{D}$. Thus we have proved that if $\langle S f, g\rangle=\int_{\mathbb{D}}\left\langle S V_{a} f, V_{a} g\right\rangle d A(a)$ for all $f, g \in \mathrm{~L}_{a}^{2}\left(\mathbb{C}_{+}\right)$then $S W_{a} f=W_{a} S f$ for all $f \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$and for all $a \in \mathbb{D}$. The theorem follows.

4. Applications

In this section, we establish certain applications of the main result of the paper involving multiplication, Toeplitz, and Hankel operators. For $\phi \in L^{\infty}\left(\mathbb{C}_{+}, d \widetilde{A}\right)$ and $T \in \mathcal{L}\left(\mathcal{L}_{-}^{\in}\left(\mathbb{C}_{+}\right)\right)$, let $\widehat{\phi}(s)=\int_{\mathbb{D}} \phi\left(t_{a}(s)\right) d A(a)$ and $\widehat{T}=\int_{\mathbb{D}} V_{a} T V_{a} d A(a)$.

Corollary 4.1 Let $\phi \in L^{\infty}\left(\mathbb{C}_{+}\right)$. Then the following hold:
(i) $\widehat{\mathcal{M}}_{\phi}=\mathcal{M}_{\widehat{\phi}}$.
(ii) $\widehat{\mathcal{T}}_{\phi}=\mathcal{T}_{\widehat{\phi}}$.
(iii) $\widehat{\mathcal{H}}_{\phi}=\mathcal{H}_{\widehat{\phi}}$.

Proof From Proposition 2.2, it follows that for given $h \in L^{2}\left(\mathbb{C}_{+}, d \widetilde{A}\right)$ and $g \in L^{2}\left(\mathbb{C}_{+}, d \widetilde{A}\right)$ we have

$$
\begin{aligned}
\left\langle\widehat{\mathcal{M}}_{\phi} g, h\right\rangle & =\int_{\mathbb{D}}\left\langle\phi V_{a} g, V_{a} h\right\rangle d A(a) \\
& =\int_{\mathbb{D}} d A(a) \int_{\mathbb{C}_{+}} \phi(s)\left(V_{a} g\right)(s) \overline{\left(V_{a} h\right)(s)} d \widetilde{A}(s) \\
& =\int_{\mathbb{D}} d A(a) \int_{\mathbb{C}_{+}} \phi(s)\left(g \circ t_{a}\right)(s) l_{a}(s) \overline{\left(h \circ t_{a}\right)(s)} \overline{l_{a}(s)} d \widetilde{A}(s) \\
& =\int_{\mathbb{D}} d A(a) \int_{\mathbb{C}_{+}}\left(\phi \circ t_{a}\right)(s) g(s) \overline{h(s)}\left(l_{a} \circ t_{a}\right)(s) \overline{\left(l_{a} \circ t_{a}\right)(s)}\left|l_{a}(s)\right|^{2} d \widetilde{A}(s)
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\mathbb{D}} d A(a) \int_{\mathbb{C}_{+}}\left(\phi \circ t_{a}\right)(s) g(s) \overline{h(s)}\left|\left(l_{a} \circ t_{a}\right)(s)\right|^{2}\left|l_{a}(s)\right|^{2} d \widetilde{A}(s) \\
& =\int_{\mathbb{D}} d A(a) \int_{\mathbb{C}_{+}}\left(\phi \circ t_{a}\right)(s) g(s) \overline{h(s)} d \widetilde{A}(s) \\
& =\int_{\mathbb{C}_{+}} g(s) \overline{h(s)} d \widetilde{A}(s) \int_{\mathbb{D}}\left(\phi \circ t_{a}\right)(s) d A(a) \\
& =\int_{\mathbb{C}_{+}} \widehat{\phi}(s) g(s) \overline{h(s)} d \widetilde{A}(s)=\left\langle\mathcal{M}_{\hat{\phi}}\right\},\langle \rangle .
\end{aligned}
$$

This proves (i). To prove (ii), let h and g in $L_{a}^{2}\left(\mathbb{C}_{+}, d \widetilde{A}\right)$. Then since $\left(l_{a} \circ t_{a}\right)(s) l_{a}(s)=s$, we obtain

$$
\begin{aligned}
\left\langle\widehat{\mathcal{T}}_{\phi} g, h\right\rangle & =\int_{\mathbb{D}}\left\langle V_{a} \mathcal{T}_{\phi} \mathcal{V}_{-}\right\},\langle \rangle d A(a) \\
& =\int_{\mathbb{D}}\left\langle\mathcal{T}_{\phi} \mathcal{V}_{+}\right\}, \mathcal{V}_{-}\langle \rangle d A(a) \\
& =\int_{\mathbb{D}} d A(a) \int_{\mathbb{C}_{+}}\left\langle P_{+}\left(\phi V_{a} g\right), V_{a} h\right\rangle d \widetilde{A}(s) \\
& =\int_{\mathbb{D}} d A(a) \int_{\mathbb{C}_{+}}\left\langle\phi V_{a} g, P_{+}\left(V_{a} h\right)\right\rangle d \widetilde{A}(s) \\
& =\int_{\mathbb{D}} d A(a) \int_{\mathbb{C}_{+}}\left\langle\phi V_{a} g, V_{a} h\right\rangle d \widetilde{A}(s) \\
& =\int_{\mathbb{D}} d A(a) \int_{\mathbb{C}_{+}} \phi(s)\left(V_{a} g\right)(s) \overline{\left(V_{a} h\right)(s)} d \widetilde{A}(s) \\
& =\int_{\mathbb{D}} d A(a) \int_{\mathbb{C}_{+}} \phi(s)\left(g \circ t_{a}\right)(s) l_{a}(s) \overline{\left(h \circ t_{a}\right)(s)} \overline{l_{a}(s)} d \widetilde{A}(s) \\
& =\int_{\mathbb{D}} d A(a) \int_{\mathbb{C}_{+}}\left(\phi \circ t_{a}\right)(s) g(s)\left(l_{a} \circ t_{a}\right)(s) \overline{h(s)} \overline{\left(l_{a} \circ t_{a}\right)(s)}\left|l_{a}(s)\right|^{2} d \widetilde{A}(s) \\
& =\int_{\mathbb{D}} d A(a) \int_{\mathbb{C}_{+}}\left(\phi \circ t_{a}\right)(s) g(s) \overline{h(s)}\left(l_{a} \circ t_{a}\right)(s) \overline{\left(l_{a} \circ t_{a}\right)(s)}\left|l_{a}(s)\right|^{2} d \widetilde{A}(s) \\
& =\int_{\mathbb{D}} d A(a) \int_{\mathbb{C}_{+}}\left(\phi \circ t_{a}\right)(s) g(s) \overline{h(s)\left|\left(l_{a} \circ t_{a}\right)(s)\right|^{2}\left|l_{a}(s)\right|^{2} d \widetilde{A}(s)} \\
& =\int_{\mathbb{D}} d A(a) \int_{\mathbb{C}_{+}}\left(\phi \circ t_{a}\right)(s) g(s) \overline{h(s)} d \widetilde{A}(s) \\
& =\int_{\mathbb{C}_{+}} g(s) \overline{h(s)} d \widetilde{A}(s) \int_{\mathbb{D}}\left(\phi \circ t_{a}\right)(s) d A(a) \\
& =\int_{\mathbb{C}_{+}} \widehat{\phi}(s) g(s) \overline{h(s)} d \widetilde{A}(s) \\
& =\langle\widehat{\phi} g, h\rangle \\
& =\left\langle\widehat{\phi} g, P_{+} h\right\rangle=\left\langle P_{+}(\widehat{\phi} g), h\right\rangle=\left\langle\mathcal{T}_{\hat{\phi}}\right\},\langle \rangle .
\end{aligned}
$$

Therefore, $\widehat{\mathcal{T}}_{\phi}=\mathcal{T}_{\widehat{\phi}}$. This proves (ii). Now we shall establish (iii). It is not difficult to see that for $a \in$ $\mathbb{D}, V_{a}\left(L_{a}^{2}\left(\mathbb{C}_{+}\right)\right) \subset L_{a}^{2}\left(\mathbb{C}_{+}\right)$and $V_{a}\left(\left(L_{a}^{2}\left(\mathbb{C}_{+}\right)\right)^{\perp}\right) \subset\left(L_{a}^{2}\left(\mathbb{C}_{+}\right)\right)^{\perp}$. Further, from Proposition 2.3, it follows that for $g \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$and $h \in\left(L_{a}^{2}\left(\mathbb{C}_{+}\right)\right)^{\perp}$, we have

$$
\begin{aligned}
\left\langle\widehat{\mathcal{H}}_{\phi} g, h\right\rangle & =\int_{\mathbb{D}}\left\langle V_{a} \mathcal{H}_{\phi} \mathcal{V}_{-}\right\},\langle \rangle\lceil\mathcal{A}(\dashv) \\
& =\int_{\mathbb{D}}\left\langle\mathcal{H}_{\phi} \mathcal{V}_{-}\right\}, \mathcal{V}_{-}\langle \rangle\lceil\mathcal{A}(\dashv) \\
& =\int_{\mathbb{D}}\left\langle\left(I-P_{+}\right)\left(\phi V_{a} g\right), V_{a} h\right\rangle d A(a) \\
& =\int_{\mathbb{D}}\left\langle\phi V_{a} g,\left(I-P_{+}\right)\left(V_{a} h\right)\right\rangle d A(a) \\
& =\int_{\mathbb{D}}\left\langle\phi V_{a} g, V_{a} h\right\rangle d A(a) \\
& =\int_{\mathbb{D}} d A(a) \int_{\mathbb{C}_{+}} \phi(s)\left(V_{a} g\right)(s) \overline{\left(V_{a} h\right)(s)} d \widetilde{A}(s) \\
& =\int_{\mathbb{D}} d A(a) \int_{\mathbb{C}_{+}} \phi(s)\left(g \circ t_{a}\right)(s) l_{a}(s) \overline{\left(h \circ t_{a}\right)(s) l_{a}(s)} d \widetilde{A}(s) \\
& =\int_{\mathbb{D}} d A(a) \int_{\mathbb{C}_{+}}\left(\phi \circ t_{a}\right)(s) g(s)\left(l_{a} \circ t_{a}\right)(s) \overline{h(s)\left(l_{a} \circ t_{a}\right)(s)\left|l_{a}(s)\right|^{2} d \widetilde{A}(s)} \\
& =\int_{\mathbb{D}} d A(a) \int_{\mathbb{C}_{+}}\left(\phi \circ t_{a}\right)(s) g(s) \overline{h(s)} d \widetilde{A}(s) \\
& =\int_{\mathbb{C}_{+}} g(s) \overline{h(s)} d \widetilde{A}(s) \int_{\mathbb{D}}\left(\phi \circ t_{a}\right)(s) d A(a) \\
& =\int_{\mathbb{C}_{+}} \widehat{\phi}(s) g(s) \overline{h(s)} d \widetilde{A}(s) \\
& =\langle\widehat{\phi} g, h\rangle \\
& =\left\langle\widehat{\phi} g,\left(I-P_{+}\right) h\right\rangle \\
& =\left\langle\left(I-P_{+}\right)(\widehat{\phi} g), h\right\rangle \\
& =\left\langle H_{\widehat{\phi}} g, h\right\rangle .
\end{aligned}
$$

Hence $\widehat{\mathcal{H}}_{\phi}=\mathcal{H}_{\widehat{\phi}}$.

Corollary 4.2 Let $a \in \mathbb{D}$ and $\phi \in L^{\infty}\left(\mathbb{C}_{+}\right)$. Then the following hold:
(i) $V_{a} \mathcal{M}_{\phi} \mathcal{V}_{\dashv}=\mathcal{M}_{\phi \mathrm{OL}_{\dashv}}$.
(ii) $V_{a} \mathcal{T}_{\phi} \mathcal{V}_{\dashv}=\mathcal{T}_{\text {фo }}^{+\dashv}$.
(iii) $V_{a} \mathcal{H}_{\phi} \mathcal{V}_{\dashv}=\mathcal{H}_{\text {фo } \sqcup_{\dashv}}$.
(iv) $V_{a} h_{\phi} V_{a}=h_{\phi \circ t_{a}}$.

Proof We first prove (i). Note that since $\left(l_{a} \circ t_{a}\right)(s) l_{a}(s)=s$, we have for $f \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$,

$$
\begin{aligned}
V_{a} \mathcal{M}_{\phi} \mathcal{V}_{\dashv}\{ & =V_{a} \mathcal{M}_{\phi}\left[\left(\left\{\circ \sqcup_{-}\right) \mathcal{L}_{-1}\right]\right. \\
& =V_{a}\left[\phi\left(f \circ t_{a}\right) l_{a}\right] \\
& =\left(\phi \circ t_{a}\right) f\left(l_{a} \circ t_{a}\right) l_{a} \\
& =\left(\phi \circ t_{a}\right) f \\
& =\mathcal{M}_{\phi \circ \dashv-}\{.
\end{aligned}
$$

This proves (i). To prove (ii), let $f \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$. Then we have

$$
\begin{aligned}
V_{a} \mathcal{T}_{\phi} \mathcal{V}_{-}\{ & =V_{a} \mathcal{T}_{\phi}\left[\left(\left\{\circ \sqcup_{-}\right) \mathcal{L}_{-1}\right]\right. \\
& =V_{a} P_{+}\left[\phi\left(f \circ t_{a}\right) l_{a}\right] \\
& =P_{+} V_{a}\left[\phi\left(f \circ t_{a}\right) l_{a}\right] \\
& =P_{+}\left[\left(\phi \circ t_{a}\right) f\left(l_{a} \circ t_{a}\right) l_{a}\right] \\
& =P_{+}\left[\left(\phi \circ t_{a}\right) f\right] \\
& =\mathcal{T}_{\phi \circ \sqcup_{-}\{ }\{,
\end{aligned}
$$

since $\left(l_{a} \circ t_{a}\right)(s) l_{a}(s)=s$. This proves (ii). Now to establish (iii), let $f \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$. Then

$$
\begin{aligned}
V_{a} \mathcal{H}_{\phi} \mathcal{V}_{-}\{ & =V_{a} \mathcal{H}_{\phi}\left[\left(\left\{\circ \sqcup_{-}\right)\right) \mathcal{I}_{-1}\right] \\
& =V_{a}\left(I-P_{+}\right)\left[\phi\left(f \circ t_{a}\right) l_{a}\right] \\
& =\left(I-P_{+}\right) V_{a}\left[\phi\left(f \circ t_{a}\right) l_{a}\right] \\
& =\left(I-P_{+}\right)\left[\left(\phi \circ t_{a}\right) f\left(l_{a} \circ t_{a}\right) l_{a}\right] \\
& =\left(I-P_{+}\right)\left[\left(\phi \circ t_{a}\right) f\right] \\
& =\mathcal{H}_{\phi \circ \sqcup_{-1}\{.}\{
\end{aligned}
$$

This proves (iii). To prove (iv), let $f \in L_{a}^{2}\left(\mathbb{C}_{+}\right)$. Then since $\bar{P}_{+}=J P J$, where $J f(s)=f(\bar{s})$ for $f \in$ $L_{a}^{2}\left(\mathbb{C}_{+}\right)$and $V_{a} \bar{P}_{+}=\bar{P}_{+} V_{a}$, we obtain

$$
\begin{aligned}
V_{a} h_{\phi} V_{a} f & =V_{a} h_{\phi}\left[\left(f \circ t_{a}\right) l_{a}\right] \\
& =V_{a} \overline{P_{+}}\left[\phi\left(f \circ t_{a}\right) l_{a}\right] \\
& =\overline{P_{+}} V_{a}\left[\phi\left(f \circ t_{a}\right) l_{a}\right] \\
& =\overline{P_{+}}\left[\left(\phi \circ t_{a}\right) f\left(l_{a} \circ t_{a}\right) l_{a}\right] \\
& =\overline{P_{+}}\left[\left(\phi \circ t_{a}\right) f\right] \\
& =h_{\phi \circ t_{a}} f .
\end{aligned}
$$

References

[1] Axler S, Bourdon P, Ramey W. Harmonic Function Theory. New York, NY, USA: Springer, 2001.
[2] Conway JB. A Course in Functional Analysis. New York, NY, USA: Springer, 1996.
[3] Englis M. Density of algebras generated by Toeplitz operators on Bergman space. Czech Math Journal 1990; 40: 491-502.
[4] Elliott S, Wynn A. Composition operators on weighted Bergman spaces of a half plane. Proc Edinburgh Math Soc 2011; 54: 373-380.
[5] Folland GB. Harmonic Analysis in Phase Space. Annals of Mathematics Studies, Princeton University Press, 1989.
[6] Grudsky S, Karapetyants A, Vasilevski N. Dynamics of properties of Toeplitz operators on the upper half-plane: parabolic case. J Operator Theory 2004; 52: 1-31.
[7] Gürdal M, Söhret MS. Some results for Toeplitz operators on the Bergman space. Applied Mathematics and Computation 2011; 218: 789-793.
[8] Kang HS. Berezin transforms and Toeplitz operators on the weighted Bergman space of the half plane. Bull Korean Math Soc 2007; 4: 281-290.
[9] Karaev MT, Gürdal M, Yamannci U. Some results related with Berezin symbols and Toeplitz operators, Math Inequal Appl 2014; 17: 1031-1045.
[10] Rudin W. Principles of Mathematical Analysis. New York, NY, USA: McGraw-Hill, 1976.
[11] Zhu K. Operator Theory in Fuction Spaces. New York, NY, USA: Marcel Dekker, 1990.

[^0]: *Correspondence: namitadas440@yahoo.co.in
 2010 AMS Mathematics Subject Classification: 47B35, 30H20

