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Abstract: We consider the biharmonic equation with supercritical nonlinearity (P.) : A%u = K|u[¥ ™ 9%y in Q,

Au = u =0 on 99, where Q is a smooth bounded domain in R*, n > 5, K is a C® positive function, and ¢ is a
positive real parameter. In contrast with the subcritical case, we prove the nonexistence of sign-changing solutions of

(P-) that blow up at two near points. We also show that (P:) has no bubble-tower sign-changing solutions.
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1. Introduction
The study of concentration phenomena for second-order elliptic equations involving a nearly critical exponent
has attracted considerable attention in the last decades. In this paper, we are concerned with the concentration

phenomena of the following biharmonic equation under the Navier boundary condition:

A%y = KluP~1*ey  in Q,
(P, v
Au=u=0 on 0,
where 2 is a smooth bounded domain in R", n > 5, p+1 = % is the critical Sobolev exponent for the

embedding of H2(Q2) x H}(Q) into LPT1(Q), K is a C? positive function, and ¢ is a small positive parameter.

This type of equation naturally arises from the study of conformal geometry. A well-known example is
the problem of prescribing the Paneitz curvature: given a function K defined in compact Riemannian manifold
(M,g) of dimension n > 5, we ask whether there exists a metric g conformal to g such that K is the Paneitz
curvature of the new metric g (for details one can see [6, 10, 13, 15] and the references therein).

The concentration phenomena for second-order elliptic equations (P.) involving a nearly subcritical
exponent (& € (1 —p,0)) were studied in [11, 15, 17] for K # 1 and [5, 8] for K =1 only.

In the critical case (when € = 0), the limiting problem exhibits a lack of compactness. In fact, van der
Vorst showed in [22, 23] that (P) has no positive solutions if 2 is a star-shaped domain, whereas Ebobisse
and Ould Ahmedou proved in [14] that (P,) has a positive solution provided that some homology group of 2
is nontrivial. This topological condition is sufficient, but not necessary, as examples of contractible domains 2

on which a positive solution exists shows [16].

*Correspondence: hbouh@taibahu.edu.sa
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487



OULD BOUH/Turk J Math

For the supercritical case, € > 0 and K is a constant, it was proved in [19] that for ¢ small, (P.) has
no sign-changing solutions that blow up at two points. This result shows that the situation is different from
the subcritical one. In this paper, we consider the case in which K is a nonconstant function and we seek to
understand the influence of the function K in the study of the sign-changing solutions of (P.). We note that,
when the biharmonic operator in (FP;) is replaced by the Laplacian one, there are many works devoted to the
study of the solutions of the counterpart of (F.), for example [3, 4, 7, 9, 12, 18].

To state our results, we need to introduce some notations and assumptions that we are using. We denote
by G the Green function of A?, that is,

Ve e, A%’G(z,.)=cyd, in Q AG(z,.)=GCG(z,.)=0 on 09,

where §, is the Dirac mass at = and ¢, = (n —4)(n — 2)w,,, with w,, the area of the unit sphere of R". We
denote by H the regular part of G, that is,

H(zy,29) = |21 — x2|4_" — G(z1,22) for (z1,22) € 02

Let
pn=4)/2
1+ 12 —aP)

(n—4)/8
)) , u>0,aeR", (1.1)

O(a,u) () = o7 oz 0= (n(” —4)(n* —4

and P4, ) denotes the projection of the d(, s onto H?(2) N Hj(Q). It is defined by
AQP(S(G’N) = A25(a,u) in Q; APa(a,u) = P(S(a#) =0 on 0N).

Notice that the family ¢, ,) comprises the only minimizers of the Sobolev inequality on the whole space, that

is,

S = {||Au||2L2(Rn)Hu||_227n , such that Au € L2, u € L73 u # 0}.
Ln—4(Rn)

The space H?(2)N H(Q) is equipped with the norm ||.|| and its corresponding inner product (.,.) defined by

| = </Q|Au|2)1/2 and (u,v):/QAuAv, wv € HA(Q) x HA(Q). (1.2)

Let:
(Hy) For each critical point y of K, we have
AK
aH(y,y) — W #0 ifn=6 and AK(y)#0 ifn>7,

where ¢, c3 are positive constants defined in Proposition 2.4.
(H3) All the critical points of K are in 2, i.e. there exists positive constant ¢ so that |[VK(y)| > ¢, for each
y € 09).

In the first result, we prove that there are no sign-changing solutions of (P.) with & > 0 that have two

peaks concentrated at the same point. More precisely, we have:
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Theorem 1.1 Let Q be a smooth bounded domain in R™, n > 6, and the assumptions (Hy — Hs ) hold. Then

there exists €9 > 0 such that, for each € € (0,gq), problem (P:) has no sign-changing solutions u. that satisfy

Ue = Plia, ) = Pdlac ppeo) T Ve, with |uc|S, is bounded, (1.3)

€, e ;, 0N =1,2
{ag,ze + e idl(ae i, 09) = 00 for i =1,2, a4

<P6(as,1aue,1)7P§(ae.27ue,2)> -0, ||UE|| —0ase—0,

and |az1—ae 2| < o where o is a positive constant such that o < (1/2)inf{|y; —y;|, i # j, VK(y) =0, 1 =14,j}.

In the following result, we give a sufficient condition on the function K to ensure the nonexistence of sign-

changing solutions of (P.) with ¢ > 0.

Theorem 1.2 Let Q be a smooth bounded domain in R™, n > 6, and the assumptions (Hy— Hs ) hold. Assume

that there exists at most one critical point y of K satisfying

AK
aH(y,y) — ?6[((;3;) <0 ifn=6, and AK(y)>0 ifn>T. (1.5)
Then there exists €9 > 0 such that, for each € € (0,2¢), problem (P.) has no sign-changing solutions u. that

satisfy (1.3) and (1.4).

Remark 1.3 We notice that Theorems 1.1, 1.2 of [19], which are proved in the case K =1, are also true for

all C3 function K in dimension 5.

Observe that, in the case of the Laplacian operator, all positive solutions blow up with comparable speeds,
but for sign-changing solutions, Pistoia and Weth [20] constructed solutions (u.) with many bubbles blowing
up at the same point, “bubble-tower solutions” (p;/p; — oo or 0), which cannot appear in the case of the
positive solutions (by using the Harnack inequalities). This is a new phenomenon for sign-changing solutions
compared with the positive one. In our case, we prove that this phenomenon cannot appear when ¢ > 0. In

fact, we prove that:

Theorem 1.4 Let Q be a smooth bounded domain in R™, n > 6, and the assumptions (Hy — Hy ) hold. Then

there exists €9 > 0, such that, for each ¢ € (0,&p), problem (P:) has no sign-changing solutions u. of the form

p
Ue = nyiPé(as)i’#E,i) +v.,  withy; € {1, -1}, |ucl5, s bounded, (1.6)
i=1

{p > 2, pei/peiv1 — 0, aci € Q, peid(ac i, 02) = oo for 1 <i < p, (17)

|aei — acj| < 0, (P i ey Pac ) = 05 0 # i ||| = 0 as e =0,
and 3q1,q2 (@1 < q2), H&%‘as,ql - a67qz| is bounded , ; # Yp for qr <i <p.

Theorem 1.5 Let Q be a smooth bounded domain in R™, n > 6, and the assumptions (Hy — Hs ) hold. Then
there exists g9 > 0 such that, for each e € (0,g¢), problem (P.) has no sign-changing solutions u. that satisfy
(1.6), (1.7), and there exists q, peql@eq — Qs g+1] is bounded, Vg # Yg+1, and pe glaeq — as ;| — +oo for
t>q+1.
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We notice that if . ;|as; — ac ;| is bounded for ¢ < j, then ¢ in the previous theorem is equal to p — 1 and
the set {i > ¢ + 1} is empty in this case. Furthermore, if v,_; = ~,, Theorem 1.5 also holds in this case by
adding the following assumption : p. j|ac; — ae 41| is very small if | # p — 2 where | = min{r: v = ... =,}

The remainder of the present paper is organized as follows. In Section 2, we assume that there exist
solutions wu. of (P.) that satisfy (1.3) and (1.4). Using some information about this solution, we derive some
useful estimates. In Section 3, combining the estimates obtained in the last section, we prove sign-changing

solution results by contradiction. In Section 4, we prove bubble-tower solution results (Theorems 1.4, 1.5).

2. Preliminary results

In this section, we assume that there exist solutions (u.) of (P.) that satisfy
Ue = Pé(a(a,l)vﬂ(a,l)) - P(S(a(a,Z)vH(aJ)) + Ve, (2.1)

with [u|S, is bounded, a.; € Q, for i = 1,2, and |v.|| — 0, (Pd ) Poa. o

A(e,1)5H(e,1) 7/1(5.2))>
t(e,iyd(ae ), 02) — +00 as € — 0.

First, arguing as in [2, 21], we see that for u. satisfying (2.1), there is a unique way to choose «;, a;,
1;, and v such that

Ue = Ozlpé(al’m) — OtQP(S(a%lQ) + v, (2.2)
with as ¢ = 0

a?/("—4)K(ai)

o; € R, S/h=A) o — ].7
a; K(aj) 93
a; € Qa Wi € Rj—? /’le(awag) — 00, ( ' )
v—0 in H3(Q) x HY(Q), veEE,
where E denotes the subspace of H}(Q) defined by
E = {w (w, ) =0 Vo € {P8;,0P6;/0u;, 0P6;/al, i < 2,5 < n}} . (2.4)
Here, af denotes the jth component of a; and in the sequel, in order to simplify the notations, we set
A(ei) = Qi s Hei) = Mis O(az,us) = 0iy, and Pd(g, 1) = Po;.
In the following, we always assume that u. (which satisfies (2.1)) is written as in (2.2) and (2.3) holds.
Lemma 2.1 Let u. satisfy the assumption of the theorems. p; occurring in (2.2) satisfies
u; =1 ase—0, foreach i=12.
Proof The proof is the same as that of Lemma 2.2 of [19], so we omit it. O

Remark 2.2 From Lemma 2.1, we remark that:

(i) Since Q is bounded and pi — 1 as € — 0 it is easy to derive that elog(1 + p?|x — a;|?) tends to 0

as € — 0 and therefore we get:

5 (z) — cguf("_4)/2 =0 (elog(1 + pif|z — a;|*)) in Q.
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(15) We also point out that it follows from assumption that |uc|S, is bounded and us — 1 as € — 0 that |ve|S,

1s bounded, a fact that is used in the proof of Lemma 2.3 and Proposition 2.4 below.

As usual in these types of problems, we first deal with the v-part of w in order to show that it is negligible

with respect to the concentration phenomenon. Namely, we have the following estimate:

Lemma 2.3 The function v defined in (2.2) satisfies the following estimate:

Zl <|VK({11)| + =5 + W) + 612(10g61721)n77714 zfn < 127
[|v]] < ce+c |VK(a | ) . Cpimid
> ( —|— + (#idi)(n+4)/27£(nf4)) + €12 (logeyy) 2n  ifn > 12,

K3

where d; = d(a;,00) and €12 is defined by

p1o | e S\
12 = < + — + H1H2|a1 - a2| ) . (25)
M2 1

Proof Since u. = a1 Pd; — aa Py + v is a solution of (P.) and v € E (see (2.4)), we obtain
/ —Augv = ||v|* = / Klu. [P~ e uv :/ K|oy P8y — PSP~ ¢ (a1 POy — aa Pdy)v
Q Q Q

+p/ K|a1 Pdy — agPo, [P~ 0% + o([|v]|?).
)

Hence, we have
Q(v,v) = f(v) + o(||v[*), (2.6)

where

Q(o,v) =[] —p/ K|on Péy — s Pés [P~ 1H02,
Q
:/ K|Q1P51 — CJL2P52|p71+€(051P§1 - a2P52)U.
Q
Using Remark 2.2 and according to [1], it is easy to see that

Q) = ol —p 3 " K (ar) / (P8P~ 1402 + of[[v]®)

i=1,2

is positive definite, that is, there exists ¢ > 0 independent of ¢, satisfying Q(v,v) > c||v||?, for each v € E.
Then, from (2.6), we get

lol* = Ol f@)])-

Now, using Lemma 2.1, we obtain

= /QK((alPél)p“ — (a2P52)p+€)v+O</ (6:6;)% v +Z/ S5 vl (if n < 6)) (2.7)

i#]

491



OULD BOUH/Turk J Math

Using Remark 2.2 and the fact that v € E, we get

\/KP55+€U\ - |/K5f+%\ +o(/5§*1+59i|v|)
Q

< [ K (6 + OCeog(1+ wle - aif)) 1ol + il [ 87741

VK (a;)| 1 1 . 1
< 1VALG)| -
< cfjv]] (5 + 10 +— 12 7+ (pad;)"—* (if n <12) + (pugd; ) t4/2+e(n—4) (

if n > 12)), (2.8)

where 92 = Qahy‘i = (51 — ]D(SZ
For the other integrals of (2.7), we use Holder’s inequality and we obtain for ¢ # j

(n+4)/2n
/Q(éiéj)p” | v |< cllvll(/ﬁ(aiéj)”/(“)) < oI (log et (nt ) /20 (2.9)

and if n < 12, we have p —1=8/(n —4) > 1; therefore,

(n—4)/n
/ 6P v |< |l (/ (5i5j)n/<n4>> < c||v||5ij(1ogs;j1)<”*4>/”. (2.10)
Q Q

Combining (2.7), ..., (2.10), the proof follows. O

Now we are able to obtain the following result, which is a crucial point in the proof of our theorems.

Proposition 2.4 Assume that n > 5 and let «;, a;, and p; be the variables defined in (2.2). We have

1-af/ " K (a;) = (Eloguﬂrz Gy teet o ) (2.11)

e H(ai, ai) o C3 AK((ZZ) e ( 2,LL7 6512 H(al, 0,2)
iC1— 4 YT o7 N 2 T €1
ot ‘n2K(a)p; 7 \n—4 0u; - (papg) /2

) + «;caE

lo d
<o(e Lk o) + o S T +ely *logery (if n 2 6), o1
<cle®+ 3+||v|\ : = (2.12)
Zk (ukdm +e3,(logery) ¥ (if n = 5),

where i, j € {1,2} with i # j and c¢1, ca, c3 are positive constants defined by

oo de 0 -4 o2 2y_leP -1
I A e I A (P

d n2j4 / |Z‘|2 d
an C3 = C 5 axr
T Je (L [P

Proof Tt suffices to prove the proposition for ¢ = 1. Multiplying (P-) by u10Pd;/0u1 and integrating on €,

O0P6 OP6 OP6
a1/51“1 : a2/52'“1 ; /K| Pty g (2.13)
6 1 8/111

we obtain
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From [1], we know that

OP6; n—4 H(ay,a) (1og(u1d1) )
P = +0
/ i (pady)"=1

a 11 - 9 €1 ’un74
oPd Oe —4 Haq,
[0 (2o 124 B

1
O 2 (pape)n=4/2
where R satisfies

IOg(:dek) ey )
R=0 E — = t e logers
<k -, ( i lk)n,1 12 gE12

For the other term of (2.13), we have

Po Pé
/ K|U5|p71+guspla ! / K\alpél 70[2P62|p 1+E(011P51 70&2P(52) 9 !
Q O
8P5
o) [ KlanP — axPolr = un 5 1 0(JolP + < T loged ).
Q

Concerning the last integral, it can be written as

0Pd oPs
KlO{lP(Sl — 042P62|p_1+61)/.t171 = K(OqP(Sl)p_l—’_sU/,élil
Q 2J0} Q O

+o< P6§_1P61|v|+/Péf_1P§2|v|>7
Q\A A

where A = {z: 2a3Pds < a1 Pd1}.
Observe that, for n > 12, we have p — 1 = 8/(n — 4) < 1; thus,
PSL Poy o] + / P&? PosJu] < c / (0] (818)T+4)/2n=4)
Q\A A Q

< C||UH€(7L+4)/2(7L 4) (10g€ )(n+4)/2n

However, for n < 11, we have
/ P5§71P51|v\ +/ P6f71P52|v\ < cerp(logery) ™D/ |v]).
Q\A A

For the other integral in (2.18), using [1, 21] and Remark 2.2, we get

K P 1tey,, 2P0

~ B 1 : log(p1dy) _
o 1 v o O<||v| [«5 + ((u1d1>inf(n—4,(n+4)/2) (ifn #12) + W( ifn 12))])

It remains to estimate the second integral of (2.17). We have

/ K|041P6170[2P52‘p71+6(041P51 — Olgp(sg),ul aP(sl
Q O
— / K(a1P§1)p+€ 3P61 / K a2P62)p+€ 68P51
H1

p+€ /Kagpég(a1P51)p 1+€ 8P61
I

o +O( S 410g512)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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Now, using Remark 2.2 and [1], we have

[ repaptem Gt <22 (Klaeae — S8 1 20 K ) o))
+ O<5 + :1 gfgf;dl)l n (,Ulill)Q (if n = 5)), (2.22)
/QKP‘SQJFEIH 68121 =C1K(az) (Ml gilf + z ; 1 (pf’u(j)l(;lai))/2> + Ry, (2'23)
p/{zKP62P5f71+€u1 88};(?1 —clK(al)(,ul gijf i ; 4 (Mfgj)l(;ai))ﬂ) + Ry, (2.24)
where Ry = R+ 0(5612(10g 51_21)(”_4)/”> , and R is defined by (2.16).
Therefore, combining (2.13), ..., (2.24), and Lemma 2.3, the proof of Proposition 2.4 follows. O

Proposition 2.5 Let a;, a;, and p; be the variables defined in (2.2). Then, for n > 6, we have

1 8H(ai,a¢) VK(CQ) c a; (8512 oH 1 )

1o ——s — C40y ——(a1,02) ——————F7
e 3 da; i i \ Oa; 8ai( ! )(mm)(n%)/z

1 _n_ n—4 13 1
= O( ————— ey logepy +eenp(logery )T 4 ——s + 5 + ”“'2)’
k—ZI,Q (udg)n=2 ~ 12 " ” (pads)"=% i}

where i, j € {1,2}, j#£1i.
Proof The proof is similar to the proof of Proposition 2.4, but there exist some integrals that have different

estimates. In fact, the equations (2.13), (2.17), ..., (2.21) are also true if we change 198, /0u1 by uy*961/da; .

For the other integrals, we use Remark 2.2 and [1] and Proposition 2.5 follows. O

3. Proof of sign-changing solution results

We remark that, if we suppose that the problem (P.) has a solution u. as stated in (1.3) and (1.4), then this

solution has to satisfy (2.2), and from Proposition 2.4, we have

H(ai,a;) ¢z AK(a;) —Cl( 2ui Oerz H(a1,a2) )4—(:25

E, _ o
(B) e ppt o n? K(ag)p n—40u;  (pip2)n=1/2

(M) <€+M+ Z ,dekn 4+€12>, for i =1,2.

I

From Proposition 2.5, we get

1 8H(azv, CL,L') VK(CLZ) 1 8612 OH 1
— 2c1 — — - -
Dt oa T T\ e 0 z(al’ 2)(u1u2)(” 2)/2
(2, s + e+ 4 )
=o +e€ et 4
o (edi)" 2 - i
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Thus,
VK (a;)| 1 1 n_3 n-s 1
F; c +O( +e >:o ey ben it — ).
(F3) Y (pid;)n=3 2 k;2 (prdy)n=3 12 75
Furthermore, an easy computation shows that
0 —4 i 2/
’“"’a%g S . 512(1 - 2%5% 4), for i,j = 1,2, j # 1. (3.1)

Before starting the proof of the other results, we give the following crucial proposition, which is a key point in
the proof of Theorems 1.1 and 1.2.

Proposition 3.1 Let n > 6 and the assumptions (Hy — Hy) hold. Let (u.) be a family of sign-changing
solutions of (P:) that satisfy (1.3), (1.4). Then, for i = 1,2, we have a.; — y;, as € — 0, such that y;, is a
critical point of K. Moreover, (1.5) is satisfied for i =1,2.

Proof Let (u.) be a family of sign-changing solutions of (P.) as stated in Proposition 3.1. Without loss of

generality, we can assume that p; < po. We distinguish two cases.

Case 1. Mpuy < uo, where M is a large positive constant.

Since H(ai,as) < cd‘f‘", then

H(ay,as) 1
(i) =072~ O((Mldl)n%)' (3.2)

Furthermore, using (3.1) and the fact that po > w1, an easy computation shows that

8512 8512 n—4
+ -2 > . 3.3
M1 e H2 s = 2 €12 (3.3)

Arguing by contradiction, first, we suppose that |VK (a1)| > ¢ > 0.
Multiplying (F;) for ¢ =1 by a small positive constant m and adding to (E7) and (E2): (mFy + Eq +
2E5), using (3.2) and (3.3), we get

H(ay,a H(as,a VK(a 1 1
01( (73_41) + 2 (5_42)) +c’1512+3025+cﬁ17| (a1)] :0<€+ Z ﬁ—&-sm—f—f)-
I 15 pa o (hnd) pa

Then we derive a contradiction. Hence, a1 — yj, , where y;, is a critical point of K and therefore d; =
d(ay,0Q) > ¢ > 0.

If now |VK(az)| > ¢ > 0, then multiplying (F3) by a small positive constant m and adding to (Es),
using (3.1) and (3.2), we obtain

H(as, VK 1
cl% +c’1612+028+cﬁlwzo(5+ — +512+—>.
1t 12 W (hwds) 12
Thus,
= 0((,uld1)4_") and 10 = 0((u1d1)4_”). (3.4)
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Using (E4), we derive

H(ai,a1) ez AK(ap) 0( 1 1 )

€1 n— ) - T2 T g \n—4 )
pht n? K(a1)p3 pi o (pady)n4

which is a contradiction with the assumption (H;). Then as — y;, , where y;, is a critical point of K and
therefore dy = d(ag,0Q) > ¢ > 0.

For the other part of the claim, let us suppose that y;, does not satisfy (1.5). From (Es), it is easy to
obtain (3.4), which gives a contradiction in (Ej).

Finally, assume that y;, does not satisfy (1.5). Using (H;) and the fact that a;, — y;,, we get

AK(a2) O(lclH(al,al) csAK (aq)

5 I 36K (a1)p?

AK(CLQ) - (|AK(CI,1
3 =0
)

N
if n>6. (3.5)
25 1 )

\) if n==6and

Now, using (3.2), (3.3) and adding (E;) to 2(E3), we obtain

H H AK
2o Mo | (o Blortn) @ 8K e oot Lt £3 o).
kUE

Ha Hq n? K(a1)p 1 —1.2
Hence, we get a contradiction. Thus, case 1 cannot occur.
Case 2. 9 < My . In this case, it is easy to show that
: +o(ew) (36)
€12 = 0(€12), .
(m1p2lar — ag|?)(n=9/2
which implies that
8512 n—4 1 .
i = — 4+ o0(e1p) for i=1,2. 3.7
Ops 2 (mapzlar — agf?) (=972 (€12) (3.7)
Then (E;) becomes
H(a;,a;) ¢33 AK(a;) H(ay,as9) 1 1
Cc1 = - — +C2€+C1( 2—7%)20(84-*4— 7%4-512). (38)
pimt o n? Klaud (k1) "7 s Zg (i)~

If [VK(a;)| > ¢ > 0, multiplying (F;) by a small positive constant m and adding to (E;) for i = 1,2 :
(mFZ + El + EQ), we get

H H G ;
o (allal) N (02_’02) I (01702) 2epe 4 ! , IVK (a;)|
,Un 4 Mn 4 1 4

1 1
:0(€—|— 7%+512+—>. (3.9)
1 2 (ppe) i k§2 (kwdi)™* i

Using the fact that G(ay,as) == |a; — az|*™" — H(a1,az2) > 0 and

H(ay,ay) G(a1,a2) ) (3.10)

T O<(M1M2)(”_4)/2 (apz) (=072

(3.9) gives a contradiction. Hence, each concentration point converges to a critical point.
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For the other part of the claim, let us suppose that there exists ¢ that does not satisfy (1.5). From (E;),
we have
5:0(¥) and Glar, a2) :o( L )
(pidi)n—* (papg) (=272 (pidi)n=*/"

and then using (E;), we also derive a contradiction with the assumption (H7). Hence, the proof of our theorem

is thereby completed. O

Proof of Theorem 1.1 Arguing by contradiction, let us suppose that the problem (P;) has a solution u. as
stated in Theorem 1.1. From Proposition 3.1, we deduce that, for i = 1,2, we have a; — y;, , such that y;, is
a critical point of K that satisfies (1.5). From the definition of o the a; points have to converge to the same
critical point.

Without loss of generality, we can assume that us > puq. Two cases may occur.

Case 1. Muy < uo, where M is a large positive constant.
Multiplying (E2) by 2 and adding to (—E1) : (2E2 — E1), we obtain:

=t n? K(az)y3

2<C1 H(ag,as) c3 AK(a2)> B ( 1H’E;f1,f1) TC; ﬁif?;%)

2c1 ( Oeqa 9 8512) _ (ClH(alaGQ) 1 coe

n—a\" Opr 1 Opa fiipz) (=72
1
- - ) 3.11
~oler X X e o 8y

Now, combining (3.2), (3.3), (3.5), and (3.11), we derive a contradiction.

Case 2. Myuy > po. In this case, we see that €12 is written as (3.6) and therefore (F;) becomes

H(a;,a;) cs AK(a;) H(ar,as)
2 o) —072) = 3.12
c1 u?% n? K(a;) 2 +cet+ 1 (512 (M1M2)(n74)/2) 0(5 + 22 + kzl:z /Jkdk yoRn 512) ( )

Since pila; — as| — oo for i = 1,2 and |a; — az| < o, it is easy to show that there is at least ¢ such that
1% = o(|[VK(a;)|/ps). Multiplying (F;) for i = 1,2 by a small positive constant m and adding to (E;) for
i=1,2: (m(Fy + F») + E1 + Es), we get

c1 ((H(a;,a;) H(ai,ai)) ) < 1 )
2 * + — H(a , + coe
2 < pit it (pp2) =72\ |ay — ap|(n—9/2 (a1, a2) 2

Z |VK @) —o<s+ Z

k=1,2

1
———— tent
(/”'kd )n 4 o2 Z ,uz>

=1,2 k=1,2

Finally, using the fact that G(a1,a2) > 0 and (3.10), we derive a contradiction in this case. Our proof is thereby
completed. O

Proof of Theorem 1.2 Arguing by contradiction, let us assume that problem (P.) has solutions (uc) as
stated in Theorem 1.2. By Theorem 1.1, we deduce that, |a; —az| > o. Proposition 3.1 implies that (1.5) holds

for ¢ = 1,2, which is a contradiction with the assumption of Theorem 1.2. O
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4. Proof of bubble-tower solution results
In this section, we assume that problem (P:) has solutions (u.) that satisfy (1.6) and (1.7), which means u.

is written as

P

Up = Z’Yip‘s(as,i,ug,i) +v., with -~ €{-1,1}.

i=1
Observe that, as in Section 2, there is a unique way to choose a; and p; such that v, is orthogonal to each
Pd(q,,u,) and their derivatives with respect to p; and (a;);, where (a;); denotes the jth component of a;. As
in Lemma 2.1, we get pf — 1 as e =0 foreach i =1,...,p.

Arguing also as in the proof of Propositions 2.4 and 2.5, we have, for each i =1, ..., p,

H(a;,a;)) ¢35 AK(a;) 2;% Oeij H(a;,a;)
(E:) 1 ‘u?_4 - EK (ai)p JF 1;%% i + (Miﬂj)(n_4)/2 + 28

VK (a; 1 P
(|(a)|)+0(5+2+ = 4—|—Zgw>
/Lz 12 j:l p—y
and
1 9H(a;,a;) VK(a;) 1 /0e;; OH 1
Fy) e1—m - —2c YiVi—— L —(a;,0;) ——————75
( ' My 3 da; ! i ! ; J 1% ( Oa; Oa; J) (Miﬂj)(n_4)/2)
O(i +3 el T loge, ) +e > el )‘2“+1)
— = € loge,  +e erj( 0ge,; — .
k=1 (dek r#£j r#j 12
Observe that
| g )| | (a)| — (72)W>1and (a (jﬂ_)z :o< _2)V2<3. (4.1)
Hi n M (i) = (padi)™

First we start by proving the following crucial proposition, which is a key point in the proof of Theorems 1.4
and 1.5.

Lemma 4.1 Let i < j <k, such that p;la, — a;| = +oo for r,l =1,j5,k. Then e;;, = o(gi;) or €, = o(esj) -
Proof  Assume that there exists ¢ > 0 such that e, > ce;; and €5, > cei5. Thus, we derive that
pjlai—a;|* > cppla;—ar|® and pilai—a;* > cuplaj—ar|?. Hence, we get |a;—ak|*/la;i—a;|* < ™ (p;/pi) — 0

and |a; — ax|?/|a; — a;|* < ¢ (pi/px) — 0, which is a contradiction, and our lemma follows. O

Proposition 4.2 Let Q be a smooth bounded domain in R™, n > 6, and the assumptions (Hy — Hy ) hold. If
e=0(3 485+ S (pidi) =" + py?), then there exists €9 > 0 such that, for each ¢ € (0,&0), problem (P.) has
no sign-changing solutions u. that satisfy (1.6) and (1.7).

Proof The proof is based on the estimate (E;). First, using (E,), we prove that all the terms containing the
index p are small with respect to the others. Hence, we can drop the index p from the other (F;). Step by step,
we derive that all the €;;5 and (pid;)*=™ for i > 2 are small with respect to (uydy)*~™. Finally, from (E}),
we conclude. More precisely, let m < p, T,, = {i <m /[ uila; — apm| = +o0} and j,, :=max{j <m, 7 &€ T,,}.
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We remark that, from Lemma 4.1 and the estimate of ¢;,, if i € T,,, and i < m,
Fip € Ty s.t.Vi € T\ {im }s €im = 0(€iyom) and Vi & Ty, & < Jimy Eim = 0(€5,,m)- (4.2)

Note that the set T,,, can be empty (resp. T, = {1,...,m — 1}), and then 4,, (resp. jm) does not appear.
Now, using (4.1) and (4.2) with m = p, the equation (E,) becomes
H(ayp,ap) 1 L
(EL) 1~ 1Y, YEipp — Vip VoEipp = 0(*2 - Z yia b 25“)
Hp H1 j:l T#j
Observe that, if p;, |a;, —a,| — 400, then €; , = o(ej,p), and if p; |a;, —a,| is bounded, it follows that j, < i,
and i, |a;, — a;,| is bounded and therefore £, = o(gj,4,)-

Hence, there exists ig € {ip, jp} such that

/ }y(apaap) 1 S 1
(Ey) 2! n—4  — C1%iVpEiop = 0(7 + Z d.)n—4 + Zg’“j)'
11y pio i (wid;) =

Now, if d;, > cd;, for some positive constant ¢, we get

-1 p—1
H(ap,ap) % 1 1
rea ( W) andgiop:0(7+z( )= 4+Z€m)'
Hp =1 By S 2
In the other case, d,/d;, — 0, this implies that |a;, — ap| ~ diy and e, = (piotip|ai, — ap|?)*™/2 =
o((ptiydio)*~™). Then from (E7), we derive, for i < p
1 = H(ay, ap) 1 =
Sip = 0(7 +d et Z%) and —=—— = 0(7 T2yt ZW)-
pi e (yd;) = 1 pio e (yd;) =
Thus, we remove the index p from the system and we repeat the same argument with p — 1, ..., 2. Hence, we
derive that
H(a;,a;) ( 1 1 , 1 1 .,
——g =0 7+7) forz>landeiv:0<f+7) for i # j.
py 13 (padi) ! pi o (padi)n—
Thus, (E1) and (Fy) become
H(ai,a1) ¢z AK(a1) VK (a;)|? L 1
R R SRR
) pit o n? K(aut I pi (padi)"?
VK(ay)| 1 1 1
PR\ LGBy SIS S PV S SR D
(F1) Y (pady)"—3 (pady)"=3
Finally, if |[VK(a1)| > ¢, using (E] 4+ FY), we get a contradiction.
If [VK(a1)| — 0, using (E{) and the assumption (Hy), we also derive a contradiction.
The proof of our proposition is thereby completed. O
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Proof of Theorem 1.4 Arguing by contradiction, let us assume that problem (P.) has solutions (u.) as
stated in Theorem 1.4.
From the definition of g; and ¢2, we have €4,4, > c(uql/u%)("*‘l)ﬂ, and this implies that, for i < ¢,

Eip < C(ﬂi/ﬂp)(n_4)/2 = 0(Eq145)- (4.3)

Regarding the equation (E,), using (4.1), (4.3), and the fact that ~; # v, for i > ¢1, we obtain

H(ay,,ap) u 1 u
Cl#“Z”ClZ&p:O(?*Z ud = Gy )

P i=q j=1 T#]

This gives an estimate of e, and using Proposition 4.2, we derive a contradiction. Hence, our theorem is
proved. O

Proof of Theorem 1.5 Arguing by contradiction, let us assume that (P.) has solutions (u.) as stated in

Theorem 1.5. From the definition of ¢, we have £4(411) > c(ttq/ptq+1)" /2, and this implies that
Eilqr1) = 0(Eq(q+n)) for i < q and  e(gq1)i = 0(eq(g+1)) for i > g+ 1. (4.4)

Now, regarding the equation (E,11), using (4.1), (4.4), and the fact that v, # v44+1, we have

H(a 1,Ag+1 1 P
o ( q+n_4q+ ) + 2+ C1€q(gr1) = o(—2 + Z = + Za”>
Hg+1 H1 j:l r#j

Then we get an estimate of e, and using Proposition 4.2, we derive a contradiction, and the proof of our theorem

is thereby completed. O
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