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Abstract: We consider the biharmonic equation with supercritical nonlinearity (Pε) : ∆2u = K|u|8/(n−4)+εu in Ω,

∆u = u = 0 on ∂Ω, where Ω is a smooth bounded domain in Rn , n ≥ 5, K is a C3 positive function, and ε is a

positive real parameter. In contrast with the subcritical case, we prove the nonexistence of sign-changing solutions of

(Pε) that blow up at two near points. We also show that (Pε) has no bubble-tower sign-changing solutions.
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1. Introduction

The study of concentration phenomena for second-order elliptic equations involving a nearly critical exponent

has attracted considerable attention in the last decades. In this paper, we are concerned with the concentration

phenomena of the following biharmonic equation under the Navier boundary condition:

(Pε)

{
∆2u = K|u|p−1+εu in Ω,

∆u = u = 0 on ∂Ω,

where Ω is a smooth bounded domain in Rn , n ≥ 5, p + 1 = 2n
n−4 is the critical Sobolev exponent for the

embedding of H2(Ω)×H1
0 (Ω) into Lp+1(Ω), K is a C3 positive function, and ε is a small positive parameter.

This type of equation naturally arises from the study of conformal geometry. A well-known example is

the problem of prescribing the Paneitz curvature: given a function K defined in compact Riemannian manifold

(M, g) of dimension n ≥ 5, we ask whether there exists a metric g conformal to g such that K is the Paneitz

curvature of the new metric g (for details one can see [6, 10, 13, 15] and the references therein).

The concentration phenomena for second-order elliptic equations (Pε) involving a nearly subcritical

exponent (ε ∈ (1− p, 0)) were studied in [11, 15, 17] for K ̸≡ 1 and [5, 8] for K ≡ 1 only.

In the critical case (when ε = 0), the limiting problem exhibits a lack of compactness. In fact, van der

Vorst showed in [22, 23] that (P0) has no positive solutions if Ω is a star-shaped domain, whereas Ebobisse

and Ould Ahmedou proved in [14] that (P0) has a positive solution provided that some homology group of Ω

is nontrivial. This topological condition is sufficient, but not necessary, as examples of contractible domains Ω

on which a positive solution exists shows [16].

∗Correspondence: hbouh@taibahu.edu.sa

2000 AMS Mathematics Subject Classification: 35J20, 35J60

487



OULD BOUH/Turk J Math

For the supercritical case, ε > 0 and K is a constant, it was proved in [19] that for ε small, (Pε) has

no sign-changing solutions that blow up at two points. This result shows that the situation is different from

the subcritical one. In this paper, we consider the case in which K is a nonconstant function and we seek to

understand the influence of the function K in the study of the sign-changing solutions of (Pε). We note that,

when the biharmonic operator in (Pε) is replaced by the Laplacian one, there are many works devoted to the

study of the solutions of the counterpart of (Pε), for example [3, 4, 7, 9, 12, 18].

To state our results, we need to introduce some notations and assumptions that we are using. We denote

by G the Green function of ∆2 , that is,

∀x ∈ Ω, ∆2G(x, .) = cnδx in Ω, ∆G(x, .) = G(x, .) = 0 on ∂Ω,

where δx is the Dirac mass at x and cn = (n − 4)(n − 2)wn , with wn the area of the unit sphere of Rn . We

denote by H the regular part of G , that is,

H(x1, x2) = |x1 − x2|4−n −G(x1, x2) for (x1, x2) ∈ Ω2.

Let

δ(a,µ)(x) = c0
µ(n−4)/2

(1 + µ2|x− a|2)(n−4)/2
, c0 =

(
n(n− 4)(n2 − 4)

)(n−4)/8

, µ > 0, a ∈ Rn, (1.1)

and Pδ(a,µ) denotes the projection of the δ(a,µ) s onto H2(Ω) ∩H1
0 (Ω). It is defined by

∆2Pδ(a,µ) = ∆2δ(a,µ) in Ω; ∆Pδ(a,µ) = Pδ(a,µ) = 0 on ∂Ω.

Notice that the family δ(a,µ) comprises the only minimizers of the Sobolev inequality on the whole space, that

is,

S =
{
∥∆u∥2L2(Rn)∥u∥

−2

L
2n

n−4 (Rn)
, such that ∆u ∈ L2, u ∈ L

2n
n−4 , u ̸= 0

}
.

The space H2(Ω)∩H1
0 (Ω) is equipped with the norm ∥.∥ and its corresponding inner product ⟨., .⟩ defined by

∥u∥ =

(∫
Ω

|∆u|2
)1/2

and ⟨u, v⟩ =
∫
Ω

∆u∆v, u, v ∈ H2(Ω)×H1
0 (Ω). (1.2)

Let:

(H1 ) For each critical point y of K , we have

c1H(y, y)− c3∆K(y)

36K(y)
̸= 0 if n = 6 and ∆K(y) ̸= 0 if n ≥ 7,

where c1 , c3 are positive constants defined in Proposition 2.4.

(H2 ) All the critical points of K are in Ω, i.e. there exists positive constant c so that |∇K(y)| ≥ c , for each

y ∈ ∂Ω.

In the first result, we prove that there are no sign-changing solutions of (Pε) with ε > 0 that have two

peaks concentrated at the same point. More precisely, we have:
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Theorem 1.1 Let Ω be a smooth bounded domain in Rn , n ≥ 6 , and the assumptions (H1 −H2 ) hold. Then

there exists ε0 > 0 such that, for each ε ∈ (0, ε0) , problem (Pε) has no sign-changing solutions uε that satisfy

uε = Pδ(aε,1,µε,1) − Pδ(aε,2,µε,2) + vε, with |uε|ε∞ is bounded, (1.3){
aε,i ∈ Ω, µε,id(aε,i, ∂Ω) → ∞ for i = 1, 2,

⟨Pδ(aε,1,µε,1), P δ(aε,2,µε,2)⟩ → 0 , ||vε|| → 0 as ε → 0,
(1.4)

and |aε,1−aε,2| < σ where σ is a positive constant such that σ < (1/2) inf{|yi−yj |, i ̸= j, ∇K(yl) = 0, l = i, j} .

In the following result, we give a sufficient condition on the function K to ensure the nonexistence of sign-

changing solutions of (Pε) with ε > 0.

Theorem 1.2 Let Ω be a smooth bounded domain in Rn , n ≥ 6 , and the assumptions (H1−H2 ) hold. Assume

that there exists at most one critical point y of K satisfying

c1H(y, y)− c3∆K(y)

16K(y)
< 0 if n = 6, and ∆K(y) > 0 if n ≥ 7. (1.5)

Then there exists ε0 > 0 such that, for each ε ∈ (0, ε0) , problem (Pε) has no sign-changing solutions uε that

satisfy (1.3) and (1.4).

Remark 1.3 We notice that Theorems 1.1, 1.2 of [19], which are proved in the case K ≡ 1 , are also true for

all C3 function K in dimension 5 .

Observe that, in the case of the Laplacian operator, all positive solutions blow up with comparable speeds,

but for sign-changing solutions, Pistoia and Weth [20] constructed solutions (uε) with many bubbles blowing

up at the same point, “bubble-tower solutions” (µi/µj → ∞ or 0), which cannot appear in the case of the

positive solutions (by using the Harnack inequalities). This is a new phenomenon for sign-changing solutions

compared with the positive one. In our case, we prove that this phenomenon cannot appear when ε > 0. In

fact, we prove that:

Theorem 1.4 Let Ω be a smooth bounded domain in Rn , n ≥ 6 , and the assumptions (H1 −H2 ) hold. Then

there exists ε0 > 0 , such that, for each ε ∈ (0, ε0) , problem (Pε) has no sign-changing solutions uε of the form

uε =

p∑
i=1

γiPδ(aε,i,µε,i) + vε, with γi ∈ {1,−1}, |uε|ε∞ is bounded, (1.6)

{
p ≥ 2, µε,i/µε,i+1 → 0, aε,i ∈ Ω, µε,id(aε,i, ∂Ω) → ∞ for 1 ≤ i ≤ p,

|aε,i − aε,j | < σ, ⟨Pδ(aε,i,µε,i), P δ(aε,j ,µε,j)⟩ → 0, i ̸= j, ||vε|| → 0 as ε → 0,
(1.7)

and ∃ q1, q2 (q1 < q2 ), µε,q1 |aε,q1 − aε,q2 | is bounded , γi ̸= γp for q1 ≤ i < p .

Theorem 1.5 Let Ω be a smooth bounded domain in Rn , n ≥ 6 , and the assumptions (H1 −H2 ) hold. Then

there exists ε0 > 0 such that, for each ε ∈ (0, ε0) , problem (Pε) has no sign-changing solutions uε that satisfy

(1.6), (1.7), and there exists q , µε,q|aε,q − aε,q+1| is bounded, γq ̸= γq+1 , and µε,q|aε,q − aε,i| → +∞ for

i > q + 1 .
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We notice that if µε,i|aε,i − aε,j | is bounded for i < j , then q in the previous theorem is equal to p − 1 and

the set {i > q + 1} is empty in this case. Furthermore, if γp−1 = γp , Theorem 1.5 also holds in this case by

adding the following assumption : µε,l|aε,l − aε,l+1| is very small if l ̸= p− 2 where l = min{r : γr = ... = γp}
The remainder of the present paper is organized as follows. In Section 2, we assume that there exist

solutions uε of (Pε) that satisfy (1.3) and (1.4). Using some information about this solution, we derive some

useful estimates. In Section 3, combining the estimates obtained in the last section, we prove sign-changing

solution results by contradiction. In Section 4, we prove bubble-tower solution results (Theorems 1.4, 1.5).

2. Preliminary results

In this section, we assume that there exist solutions (uε) of (Pε) that satisfy

uε = Pδ(a(ε,1),µ(ε,1)) − Pδ(a(ε,2),µ(ε,2)) + vε, (2.1)

with |uε|ε∞ is bounded, aε,i ∈ Ω, for i = 1, 2, and ∥vε∥ → 0, ⟨Pδ(a(ε,1),µ(ε,1)), P δ(a(ε,2),µ(ε,2))⟩ → 0,

µ(ε,i)d(a(ε,i), ∂Ω) → +∞ as ε → 0.

First, arguing as in [2, 21], we see that for uε satisfying (2.1), there is a unique way to choose αi , ai ,

µi , and v such that

uε = α1Pδ(a1,µ1) − α2Pδ(a2,µ2) + v, (2.2)

with as ε → 0 
αi ∈ R, α

8/(n−4)
i K(ai)

α
8/(n−4)
j K(aj)

→ 1,

ai ∈ Ω, µi ∈ R∗
+, µid(ai, ∂Ω) → +∞,

v → 0 in H2(Ω)×H1
0 (Ω), v ∈ E,

(2.3)

where E denotes the subspace of H1
0 (Ω) defined by

E :=
{
w : ⟨w,φ⟩ = 0 ∀φ ∈ {Pδi, ∂Pδi/∂µi, ∂Pδi/∂a

j
i , i ≤ 2; j ≤ n}

}
. (2.4)

Here, aji denotes the j th component of ai and in the sequel, in order to simplify the notations, we set

a(ε,i) = ai , µ(ε,i) = µi , δ(ai,µi) = δi, and Pδ(ai,µi) = Pδi.

In the following, we always assume that uε (which satisfies (2.1)) is written as in (2.2) and (2.3) holds.

Lemma 2.1 Let uε satisfy the assumption of the theorems. µi occurring in (2.2) satisfies

µε
i → 1 as ε → 0, for each i = 1, 2.

Proof The proof is the same as that of Lemma 2.2 of [19], so we omit it. 2

Remark 2.2 From Lemma 2.1, we remark that:

(i) Since Ω is bounded and µε
i → 1 as ε → 0 it is easy to derive that ε log(1 + µ2

i |x − ai|2) tends to 0

as ε → 0 and therefore we get:

δεi (x)− cε0µ
ε(n−4)/2
i = O

(
ε log(1 + µ2

i |x− ai|2)
)

in Ω.
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(ii) We also point out that it follows from assumption that |uε|ε∞ is bounded and µε
i → 1 as ε → 0 that |vε|ε∞

is bounded, a fact that is used in the proof of Lemma 2.3 and Proposition 2.4 below.

As usual in these types of problems, we first deal with the v -part of u in order to show that it is negligible

with respect to the concentration phenomenon. Namely, we have the following estimate:

Lemma 2.3 The function v defined in (2.2) satisfies the following estimate:

||v|| ≤ cε+ c


∑

i

(
|∇K(ai)|

µi
+ 1

µ2
i
+ 1

(µidi)n−4

)
+ ε12(log ε

−1
12 )

n−4
n if n < 12,∑

i

(
|∇K(ai)|

µi
+ 1

µ2
i
+ 1

(µidi)(n+4)/2−ε(n−4)

)
+ ε

n+4
2(n−4)

12 (log ε−1
12 )

n+4
2n ifn ≥ 12,

where di := d(ai, ∂Ω) and ε12 is defined by

ε12 =

(
µ1

µ2
+

µ2

µ1
+ µ1µ2|a1 − a2|2

)(4−n)/2

. (2.5)

Proof Since uε = α1Pδ1 − α2Pδ2 + v is a solution of (Pε) and v ∈ E (see (2.4)), we obtain∫
Ω

−∆uεv = ∥v∥2 =

∫
Ω

K|uε|p−1+εuεv =

∫
Ω

K|α1Pδ1 − α2Pδ2|p−1+ε(α1Pδ1 − α2Pδ2)v

+ p

∫
Ω

K|α1Pδ1 − α2Pδ2|p−1+εv2 + o(∥v∥2).

Hence, we have

Q(v, v) = f(v) + o(∥v∥2), (2.6)

where

Q(v, v) =∥v∥2 − p

∫
Ω

K|α1Pδ1 − α2Pδ2|p−1+εv2,

f(v) =

∫
Ω

K|α1Pδ1 − α2Pδ2|p−1+ε(α1Pδ1 − α2Pδ2)v.

Using Remark 2.2 and according to [1], it is easy to see that

Q(v, v) = ∥v∥2 − p
∑
i=1,2

αp−1+ε
i K(ai)

∫
Ω

(Pδi)
p−1+εv2 + o(∥v∥2)

is positive definite, that is, there exists c > 0 independent of ε , satisfying Q(v, v) ≥ c∥v∥2 , for each v ∈ E .

Then, from (2.6), we get

∥v∥2 = O(∥f(v)∥).

Now, using Lemma 2.1, we obtain

f(v) =

∫
Ω

K((α1Pδ1)
p+ε − (α2Pδ2)

p+ε)v +O
(∫

Ω

(δiδj)
p
2 |v|+

∑
i ̸=j

∫
Ω

δp−1
i δj |v|(if n < 6)

)
. (2.7)

491



OULD BOUH/Turk J Math

Using Remark 2.2 and the fact that v ∈ E , we get

|
∫
Ω

KPδp+ε
i v| = |

∫
Kδp+ε

i v|+O
(∫

δp−1+ε
i θi|v|

)
≤

∫
K
(
cε0µ

ε
i +O(ε log(1 + µ2

i |x− ai|2))
)
δpi |v|+ c|θi|L∞

∫
δp−1+ε
i |v|

≤ c∥v∥
(
ε+

|∇K(ai)|
µi

+
1

µ2
i

+
1

(µidi)n−4
(if n < 12) +

1

(µidi)n+4/2+ε(n−4)
(if n ≥ 12)

)
, (2.8)

where θi := θai,µi := δi − Pδi .

For the other integrals of (2.7), we use Holder’s inequality and we obtain for i ̸= j

∫
Ω

(δiδj)
p/2 | v |≤ c∥v∥

(∫
Ω

(δiδj)
n/(n−4)

)(n+4)/2n

≤ c∥v∥ε(n+4)/2(n−4)
ij (log ε−1

ij )(n+4)/2n (2.9)

and if n < 12, we have p− 1 = 8/(n− 4) > 1; therefore,

∫
Ω

δp−1
i δj | v |≤ c∥v∥

(∫
Ω

(δiδj)
n/(n−4)

)(n−4)/n

≤ c∥v∥εij(log ε−1
ij )(n−4)/n. (2.10)

Combining (2.7), ..., (2.10), the proof follows. 2

Now we are able to obtain the following result, which is a crucial point in the proof of our theorems.

Proposition 2.4 Assume that n ≥ 5 and let αi , ai , and µi be the variables defined in (2.2). We have

1−α
8/(n−4)+ε
i K(ai) = O

(
ε logµi +

∑
i

1

(µidi)n−4
+ ε12 + ∥v∥2

)
, (2.11)

∣∣∣∣αic1
H(ai, ai)

µn−4
i

− αi
c3
n2

∆K(ai)

K(ai)µ2
i

− αjc1

( 2µi

n− 4

∂ε12
∂µi

+
H(a1, a2)

(µ1µ2)(n−4)/2

)
+ αic2ε

∣∣∣∣
≤ c

(
ε2 +

1

µ3
i

+ ∥v∥2
)
+ c

{∑
k

log(µkdk)
(µkdk)n−1 + ε

n
n−4

12 log ε−1
12 (if n ≥ 6),∑

k
1

(µkdk)2
+ ε212(log ε

−1
12 )

2
5 (if n = 5),

(2.12)

where i, j ∈ {1, 2} with i ̸= j and c1 , c2 , c3 are positive constants defined by

c1 = c
2n

n−4

0

∫
Rn

dx

(1 + |x|2)(n+4)/2
, c2 =

n− 4

2
c

2n
n−4

0

∫
Rn

log(1 + |x|2) |x|2 − 1

(1 + |x|2)n+1
dx

and c3 = c
2n

n−4

0

∫
Rn

|x|2

(1 + |x|2)n
dx.

Proof It suffices to prove the proposition for i = 1. Multiplying (Pε) by µ1∂Pδ1/∂µ1 and integrating on Ω,

we obtain

α1

∫
Ω

δp1µ1
∂Pδ1
∂µ1

− α2

∫
Ω

δp2µ1
∂Pδ2
∂µ2

=

∫
Ω

K|uε|p−1+εuεµ1
∂Pδ1
∂µ1

. (2.13)
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From [1], we know that ∫
Ω

δp1µ1
∂Pδ1
∂µ1

=
n− 4

2
c1

H(a1, a1)

µn−4
1

+O

(
log(µ1d1)

(µ1d1)n−1

)
, (2.14)

∫
Ω

δp2µ1
∂Pδ1
∂µ1

= c1

(
µ1

∂ε12
∂µ1

+
n− 4

2

H(a1, a2)

(µ1µ2)(n−4)/2

)
+R, (2.15)

where R satisfies

R = O

( ∑
k=1,2

log(µkdk)

(µkdk)n−1
+ ε

n
n−4

12 log ε−1
12

)
. (2.16)

For the other term of (2.13), we have∫
Ω

K|uε|p−1+εuεµ1
∂Pδ1
∂µ1

=

∫
Ω

K|α1Pδ1 − α2Pδ2|p−1+ε(α1Pδ1 − α2Pδ2)µ1
∂Pδ1
∂µ1

+ (p+ ε)

∫
Ω

K|α1Pδ1 − α2Pδ2|p−1+εvµ1
∂Pδ1
∂µ1

+O

(
∥v∥2 + ε

n
n−4

12 log ε−1
12

)
. (2.17)

Concerning the last integral, it can be written as∫
Ω

K|α1Pδ1 − α2Pδ2|p−1+εvµ1
∂Pδ1
∂µ1

=

∫
Ω

K(α1Pδ1)
p−1+εvµ1

∂Pδ1
∂µ1

+O

(∫
Ω\A

Pδp−1
2 Pδ1|v|+

∫
A

Pδp−1
1 Pδ2|v|

)
, (2.18)

where A = {x : 2α2Pδ2 ≤ α1Pδ1}.
Observe that, for n ≥ 12, we have p− 1 = 8/(n− 4) ≤ 1; thus,∫

Ω\A
Pδp−1

2 Pδ1|v|+
∫
A

Pδp−1
1 Pδ2|v| ≤ c

∫
Ω

|v|(δ1δ2)(n+4)/2(n−4)

≤ c∥v∥ε(n+4)/2(n−4)
12 (log ε−1

12 )
(n+4)/2n. (2.19)

However, for n ≤ 11, we have∫
Ω\A

Pδp−1
2 Pδ1|v|+

∫
A

Pδp−1
1 Pδ2|v| ≤ cε12(log ε

−1
12 )

(n−4)/n||v||. (2.20)

For the other integral in (2.18), using [1, 21] and Remark 2.2, we get∫
Ω

KPδp−1+ε
1 vµ1

∂Pδ1
∂µ1

= O

(
∥v∥

[
ε+

( 1

(µ1d1)inf(n−4,(n+4)/2)
(ifn ̸= 12) +

log(µ1d1)

(µ1d1)4
(ifn = 12)

)])
.

It remains to estimate the second integral of (2.17). We have∫
Ω

K|α1Pδ1−α2Pδ2|p−1+ε(α1Pδ1 − α2Pδ2)µ1
∂Pδ1
∂µ1

=

∫
Ω

K(α1Pδ1)
p+εµ1

∂Pδ1
∂µ1

−
∫
Ω

K(α2Pδ2)
p+εµ1

∂Pδ1
∂µ1

(2.21)

− (p+ ε)

∫
Ω

Kα2Pδ2(α1Pδ1)
p−1+εµ1

∂Pδ1
∂µ1

+O
(
ε

n
n−4

12 log ε−1
12

)
.
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Now, using Remark 2.2 and [1], we have∫
Ω

KPδp+ε
1 µ1

∂Pδ1
∂µ1

=
n− 4

2

(
K(a1)c2ε− c3

∆K(a1)

n2µ2
1

+ 2c1K(a1)
H(a1, a1)

µn−4
1

)

+O

(
ε2 +

1

µ3
1

+
log(µ1d1)

(µ1d1)n−1
+

1

(µ1d1)2
(if n = 5)

)
, (2.22)

∫
Ω

KPδp+ε
2 µ1

∂Pδ1
∂µ1

=c1K(a2)
(
µ1

∂ε12
∂µ1

+
n− 4

2

H(a1, a2)

(µ1µ2)(n−4)/2

)
+R1, (2.23)

p

∫
Ω

KPδ2Pδp−1+ε
1 µ1

∂Pδ1
∂µ1

=c1K(a1)
(
µ1

∂ε12
∂µ1

+
n− 4

2

H(a1, a2)

(µ1µ2)(n−4)/2

)
+R1, (2.24)

where R1 = R+O
(
εε12(log ε

−1
12 )

(n−4)/n
)
, and R is defined by (2.16).

Therefore, combining (2.13), ..., (2.24), and Lemma 2.3, the proof of Proposition 2.4 follows. 2

Proposition 2.5 Let αi , ai , and µi be the variables defined in (2.2). Then, for n ≥ 6 , we have

c1αi
1

µn−3
i

∂H(ai, ai)

∂ai
− c4αi

∇K(ai)

µi
+ 2c1

αj

µi

(
∂ε12
∂ai

− ∂H

∂ai
(a1, a2)

1

(µ1µ2)(n−4)/2

)

= O

( ∑
k=1,2

1

(µkdk)n−2
+ ε

n
n−4

12 log ε−1
12 + εε12(log ε

−1
12 )

n−4
n +

ε

(µidi)n−3
+

1

µ3
i

+ ∥v∥2
)
,

where i, j ∈ {1, 2} , j ̸= i .

Proof The proof is similar to the proof of Proposition 2.4, but there exist some integrals that have different

estimates. In fact, the equations (2.13), (2.17), ..., (2.21) are also true if we change µ1∂δ1/∂µ1 by µ−1
1 ∂δ1/∂a1 .

For the other integrals, we use Remark 2.2 and [1] and Proposition 2.5 follows. 2

3. Proof of sign-changing solution results

We remark that, if we suppose that the problem (Pε) has a solution uε as stated in (1.3) and (1.4), then this

solution has to satisfy (2.2), and from Proposition 2.4, we have

(Ei) c1
H(ai, ai)

µn−4
i

− c3
n2

∆K(ai)

K(ai)µ2
i

− c1

(
2µi

n− 4

∂ε12
∂µi

+
H(a1, a2)

(µ1µ2)(n−4)/2

)
+ c2ε

= O
( |∇K(ai)|2

µ2
i

)
+ o

(
ε+

1

µ2
i

+
∑
k=1,2

1

(µkdk)n−4
+ ε12

)
, for i = 1, 2.

From Proposition 2.5, we get

c1
1

µn−1
i

∂H(ai, ai)

∂ai
− c4

∇K(ai)

µi
+ 2c1

1

µi

(
∂ε12
∂ai

− ∂H

∂ai
(a1, a2)

1

(µ1µ2)(n−2)/2

)

= o

( ∑
k=1,2

1

(µkdk)n−3
+ ε

n−3
n−4

12 + ε
n−3
n−4 +

1

µi

)
.
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Thus,

(Fi) c4
|∇K(ai)|

µi
+O

( 1

(µidi)n−3
+ ε12

)
= o

( ∑
k=1,2

1

(µkdk)n−3
+ ε

n−3
n−4

12 + ε
n−3
n−4 +

1

µi

)
.

Furthermore, an easy computation shows that

µi
∂ε12
∂µi

= −n− 4

2
ε12

(
1− 2

µj

µi
ε
2/n−4
12

)
, for i, j = 1, 2, j ̸= i. (3.1)

Before starting the proof of the other results, we give the following crucial proposition, which is a key point in

the proof of Theorems 1.1 and 1.2.

Proposition 3.1 Let n ≥ 6 and the assumptions (H1 − H2 ) hold. Let (uε) be a family of sign-changing

solutions of (Pε) that satisfy (1.3), (1.4). Then, for i = 1, 2 , we have aε,i → yji as ε → 0 , such that yji is a

critical point of K . Moreover, (1.5) is satisfied for i = 1, 2 .

Proof Let (uε) be a family of sign-changing solutions of (Pε) as stated in Proposition 3.1. Without loss of

generality, we can assume that µ1 ≤ µ2 . We distinguish two cases.

Case 1. Mµ1 < µ2 , where M is a large positive constant.

Since H(a1, a2) ≤ cd4−n
1 , then

H(a1, a2)

(µ1µ2)(n−4)/2
= o

( 1

(µ1d1)n−4

)
. (3.2)

Furthermore, using (3.1) and the fact that µ2 ≥ µ1 , an easy computation shows that

±µ1
∂ε12
∂µ1

− 2µ2
∂ε12
∂µ2

≥ n− 4

2
ε12. (3.3)

Arguing by contradiction, first, we suppose that |∇K(a1)| ≥ c > 0.

Multiplying (Fi) for i = 1 by a small positive constant m and adding to (E1) and (E2): (mF1 +E1 +

2E2), using (3.2) and (3.3), we get

c1

(H(a1, a1)

µn−4
1

+ 2
H(a2, a2)

µn−4
2

)
+ c′1ε12 + 3c2ε+ c′4

|∇K(a1)|
µ1

= o
(
ε+

∑
k=1,2

1

(µkdk)n−4
+ ε12 +

1

µ1

)
.

Then we derive a contradiction. Hence, a1 → yj1 , where yj1 is a critical point of K and therefore d1 =

d(a1, ∂Ω) ≥ c > 0.

If now |∇K(a2)| ≥ c > 0, then multiplying (F2) by a small positive constant m and adding to (E2),

using (3.1) and (3.2), we obtain

c1
H(a2, a2)

µn−2
2

+ c′1ε12 + c2ε+ c′4
|∇K(a2)|

µ2
= o

(
ε+

∑
k=1,2

1

(µkdk)n−2
+ ε12 +

1

µ2

)
.

Thus,

ε = o
(
(µ1d1)

4−n
)

and ε12 = o
(
(µ1d1)

4−n
)
. (3.4)
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Using (E1), we derive

c1
H(a1, a1)

µn−4
1

− c3
n2

∆K(a1)

K(a1)µ2
1

= o
( 1

µ2
1

+
1

(µ1d1)n−4

)
,

which is a contradiction with the assumption (H1). Then a2 → yj2 , where yj2 is a critical point of K and

therefore d2 = d(a2, ∂Ω) ≥ c > 0.

For the other part of the claim, let us suppose that yj2 does not satisfy (1.5). From (E2), it is easy to

obtain (3.4), which gives a contradiction in (E1).

Finally, assume that yj1 does not satisfy (1.5). Using (H1) and the fact that ai → yji , we get

∆K(a2)

µ2
2

= o
(
|c1H(a1, a1)

µ2
1

− c3∆K(a1)

36K(a1)µ2
1

|
)

if n = 6 and
∆K(a2)

µ2
2

= o
( |∆K(a1)|

µ2
1

)
if n > 6. (3.5)

Now, using (3.2), (3.3) and adding (E1) to 2(E2), we obtain

2c1
H(a2, a2)

µn−4
2

+

(
c1

H(a1, a1)

µn−4
1

− c3
n2

∆K(a1)

K(a1)µ2
1

)
+ c1ε12 + 3c2ε = o

(
ε+

1

µ2
1

+
∑
k=1,2

1

(µkdk)n−4
+ ε12

)
.

Hence, we get a contradiction. Thus, case 1 cannot occur.

Case 2. µ2 < Mµ1 . In this case, it is easy to show that

ε12 =
1

(µ1µ2|a1 − a2|2)(n−4)/2
+ o(ε12), (3.6)

which implies that

µi
∂ε12
∂µi

= −n− 4

2

1

(µ1µ2|a1 − a2|2)(n−4)/2
+ o(ε12) for i = 1, 2. (3.7)

Then (Ei) becomes

c1
H(ai, ai)

µn−4
i

− c3
n2

∆K(ai)

K(ai)µ2
i

+ c2ε+ c1

(
ε12 −

H(a1, a2)

(µ1µ2)
n−4
2

)
= o

(
ε+

1

µ2
i

+
∑
k=1,2

1

(µkdk)n−4
+ ε12

)
. (3.8)

If |∇K(ai)| ≥ c > 0, multiplying (Fi) by a small positive constant m and adding to (Ei) for i = 1, 2 :

(mFi + E1 + E2), we get

c1

(H(a1, a1)

µn−4
1

+
H(a2, a2)

µn−4
2

)
+ c′1

G(a1, a2)

(µ1µ2)
n−4
2

+ 2c2ε+ c′4
|∇K(ai)|

µi
= o

(
ε+

∑
k=1,2

1

(µkdk)n−4
+ ε12 +

1

µi

)
. (3.9)

Using the fact that G(a1, a2) := |a1 − a2|4−n −H(a1, a2) > 0 and

ε12 = O
( H(a1, a2)

(µ1µ2)(n−4)/2
+

G(a1, a2)

(µ1µ2)(n−4)/2

)
, (3.10)

(3.9) gives a contradiction. Hence, each concentration point converges to a critical point.
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For the other part of the claim, let us suppose that there exists i that does not satisfy (1.5). From (Ei),

we have

ε = o
( 1

(µidi)n−4

)
and

G(a1, a2)

(µ1µ2)(n−4)/2
= o

( 1

(µidi)n−4

)
,

and then using (Ej), we also derive a contradiction with the assumption (H1). Hence, the proof of our theorem

is thereby completed. 2

Proof of Theorem 1.1 Arguing by contradiction, let us suppose that the problem (Pε) has a solution uε as

stated in Theorem 1.1. From Proposition 3.1, we deduce that, for i = 1, 2, we have ai → yji , such that yji is

a critical point of K that satisfies (1.5). From the definition of σ the ai points have to converge to the same

critical point.

Without loss of generality, we can assume that µ2 ≥ µ1 . Two cases may occur.

Case 1. Mµ1 < µ2 , where M is a large positive constant.

Multiplying (E2) by 2 and adding to (−E1) : (2E2 − E1), we obtain:

2
(
c1

H(a2, a2)

µn−4
2

− c3
n2

∆K(a2)

K(a2)µ2
2

)
−

(
c1

H(a1, a1)

µn−4
1

− c3
n2

∆K(a1)

K(a1)µ2
1

)
+

2c1
n− 4

(
µ1

∂ε12
∂µ1

− 2µ2
∂ε12
∂µ2

)
− c1H(a1, a2)

(µ1µ2)(n−4)/2
+ c2ε

= o
(
ε+

∑
k=1,2

1

µ2
k

+
∑
k=1,2

1

(µkdk)n−4
+ ε12

)
. (3.11)

Now, combining (3.2), (3.3), (3.5), and (3.11), we derive a contradiction.

Case 2. Mµ1 ≥ µ2 . In this case, we see that ε12 is written as (3.6) and therefore (Ei) becomes

c1
H(ai, ai)

µn−4
i

− c3
n2

∆K(ai)

K(ai)µ2
i

+ c2ε+ c1

(
ε12 −

H(a1, a2)

(µ1µ2)(n−4)/2

)
= o

(
ε+

1

µ2
i

+
∑
k=1,2

1

(µkdk)n−4
+ ε12

)
. (3.12)

Since µi|a1 − a2| → ∞ for i = 1, 2 and |a1 − a2| < σ , it is easy to show that there is at least i such that

µ−2
i = o(|∇K(ai)|/µi). Multiplying (Fi) for i = 1, 2 by a small positive constant m and adding to (Ei) for

i = 1, 2 : (m(F1 + F2) + E1 + E2), we get

c1
2

(
H(ai, ai)

µn−4
i

+
H(ai, ai)

µn−4
i

)
+

c′1
(µ1µ2)(n−4)/2

(
1

|a1 − a2|(n−4)/2
−H(a1, a2)

)
+ c2ε

+ c′4
∑
k=1,2

|∇K(ai)|
µi

= o

(
ε+

∑
k=1,2

1

(µkdk)n−4
+ ε12 +

∑
k=1,2

1

µi

)
.

Finally, using the fact that G(a1, a2) > 0 and (3.10), we derive a contradiction in this case. Our proof is thereby

completed. 2

Proof of Theorem 1.2 Arguing by contradiction, let us assume that problem (Pε) has solutions (uε) as

stated in Theorem 1.2. By Theorem 1.1, we deduce that, |a1−a2| > σ . Proposition 3.1 implies that (1.5) holds

for i = 1, 2, which is a contradiction with the assumption of Theorem 1.2. 2
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4. Proof of bubble-tower solution results

In this section, we assume that problem (Pε) has solutions (uε) that satisfy (1.6) and (1.7), which means uε

is written as

uε =

p∑
i=1

γiPδ(aε,i,µε,i) + vε, with γi ∈ {−1, 1}.

Observe that, as in Section 2, there is a unique way to choose ai and µi such that vε is orthogonal to each

Pδ(ai,µi) and their derivatives with respect to µi and (ai)j , where (ai)j denotes the j th component of ai . As

in Lemma 2.1, we get µε
i → 1 as ε → 0 for each i = 1, . . . , p .

Arguing also as in the proof of Propositions 2.4 and 2.5, we have, for each i = 1, ..., p ,

(Ei) c1
H(ai, ai)

µn−4
i

− c3
n2

∆K(ai)

K(ai)µ2
i

+ c1
∑
j ̸=i

γiγj

(
2µi

n− 4

∂εij
∂µi

+
H(ai, aj)

(µiµj)(n−4)/2

)
+ c2ε

= O
( |∇K(ai)|2

µ2
i

)
+ o

(
ε+

1

µ2
i

+

p∑
j=1

1

(µjdj)n−4
+
∑
r ̸=j

εrj

)
,

and

(Fi) c1
1

µn−3
i

∂H(ai, ai)

∂ai
− c4

∇K(ai)

µi
− 2c1

∑
j ̸=i

γiγj
1

µi

(∂εij
∂ai

− ∂H

∂ai
(ai, aj)

1

(µiµj)(n−4)/2

)

= O

( p∑
k=1

1

(µkdk)n−2
+
∑
r ̸=j

ε
n

n−4

rj log ε−1
rj + ε

∑
r ̸=j

εrj(log ε
−1
rj )

n−4
2 +

1

µ3
i

)
.

Observe that

|∆K(ai)

µ2
i

|+ |∇K(ai)|2

µ2
i

= o
( 1

µ2
1

)
∀i > 1 and

H(ai, aj)

(µiµj)
n−2
2

= o
( 1

(µidi)n−2

)
∀ i < j. (4.1)

First we start by proving the following crucial proposition, which is a key point in the proof of Theorems 1.4

and 1.5.

Lemma 4.1 Let i < j < k , such that µi|ar − al| → +∞ for r, l = i, j, k . Then εik = o(εij) or εjk = o(εij) .

Proof Assume that there exists c > 0 such that εik ≥ cεij and εjk ≥ cεij . Thus, we derive that

µj |ai−aj |2 ≥ cµk|ai−ak|2 and µi|ai−aj |2 ≥ cµk|aj−ak|2 . Hence, we get |ai−ak|2/|ai−aj |2 ≤ c−1(µj/µk) → 0

and |aj − ak|2/|ai − aj |2 ≤ c−1(µi/µk) → 0, which is a contradiction, and our lemma follows. 2

Proposition 4.2 Let Ω be a smooth bounded domain in Rn , n ≥ 6 , and the assumptions (H1 −H2 ) hold. If

ε = o(
∑

i ̸=j εij +
∑

(µidi)
4−n +µ−2

1 ) , then there exists ε0 > 0 such that, for each ε ∈ (0, ε0) , problem (Pε) has

no sign-changing solutions uε that satisfy (1.6) and (1.7).

Proof The proof is based on the estimate (Ei). First, using (Ep), we prove that all the terms containing the

index p are small with respect to the others. Hence, we can drop the index p from the other (Ei). Step by step,

we derive that all the εij s and (µidi)
4−n for i ≥ 2 are small with respect to (µ1d1)

4−n . Finally, from (E1),

we conclude. More precisely, let m ≤ p , Tm = {i < m/µi|ai − am| → +∞} and jm := max{j < m, j ̸∈ Tm} .
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We remark that, from Lemma 4.1 and the estimate of εim if i ̸∈ Tm and i < m ,

∃ im ∈ Tm s.t.∀i ∈ Tm\{im}, εim = o(εimm) and ∀i ̸∈ Tm, i < jm, εim = o(εjmm). (4.2)

Note that the set Tm can be empty (resp. Tm = {1, ...,m− 1}), and then im (resp. jm ) does not appear.

Now, using (4.1) and (4.2) with m = p , the equation (Ep) becomes

(E′
p) c1

H(ap, ap)

µn−4
p

− c1γipγpεipp − γjpγpεjpp = o
( 1

µ2
1

+

p∑
j=1

1

(µjdj)n−4
+
∑
r ̸=j

εrj

)
.

Observe that, if µjp |aip −ap| → +∞ , then εipp = o(εjpp), and if µjp |aip −ap| is bounded, it follows that jp < ip

and µjp |ajp − aip | is bounded and therefore εjpp = o(εjpip).

Hence, there exists i0 ∈ {ip, jp} such that

(E′
p) c1

H(ap, ap)

µn−4
p

− c1γi0γpεi0p = o
( 1

µ2
1

+

p∑
j=1

1

(µjdj)n−4
+
∑
r ̸=j

εrj

)
.

Now, if dp > cdi0 for some positive constant c , we get

H(ap, ap)

µn−4
p

= o
( p−1∑

j=1

1

(µjdj)n−4

)
and εi0p = o

( 1

µ2
1

+

p−1∑
j=1

1

(µjdj)n−4
+
∑
r ̸=j

εrj

)
.

In the other case, dp/di0 → 0, this implies that |ai0 − ap| ∼ di0 and εi0p = (µi0µp|ai0 − ap|2)(4−n)/2 =

o((µi0di0)
4−n). Then from (E′

p), we derive, for i < p

εip = o
( 1

µ2
1

+

p−1∑
j=1

1

(µjdj)n−4
+
∑
r ̸=j

εrj

)
and

H(ap, ap)

µn−4
p

= o
( 1

µ2
1

+

p−1∑
j=1

1

(µjdj)n−4
+
∑
r ̸=j

εrj

)
.

Thus, we remove the index p from the system and we repeat the same argument with p− 1, ..., 2. Hence, we

derive that

H(ai, ai)

µn−4
i

= o
( 1

µ2
1

+
1

(µ1d1)n−4

)
for i > 1 and εij = o

( 1

µ2
1

+
1

(µ1d1)n−4

)
for i ̸= j.

Thus, (E1) and (F1) become

(E′
1) c1

H(a1, a1)

µn−4
1

− c3
n2

∆K(a1)

K(a1)µ2
1

= O
( |∇K(ai)|2

µ2
i

)
+ o

( 1

µ2
1

+
1

(µ1d1)n−4

)
,

(F ′
1) c4

|∇K(a1)|
µ1

+O
( 1

(µ1d1)n−3

)
= o

( 1

(µ1d1)n−3
+

1

µ1

)
.

Finally, if |∇K(a1)| > c , using (E′
1 + F ′

1), we get a contradiction.

If |∇K(a1)| → 0, using (E′
1) and the assumption (H1), we also derive a contradiction.

The proof of our proposition is thereby completed. 2
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Proof of Theorem 1.4 Arguing by contradiction, let us assume that problem (Pε) has solutions (uε) as

stated in Theorem 1.4.

From the definition of q1 and q2 , we have εq1q2 ≥ c(µq1/µq2)
(n−4)/2 , and this implies that, for i < q1 ,

εip ≤ c(µi/µp)
(n−4)/2 = o(εq1q2). (4.3)

Regarding the equation (Ep), using (4.1), (4.3), and the fact that γi ̸= γp for i ≥ q1 , we obtain

c1
H(ap, ap)

µn−4
p

+ c2ε+ c1

p∑
i=q1

εip = o
( 1

µ2
1

+

p∑
j=1

1

(µjdj)n−4
+

∑
r ̸=j

εrj

)
.

This gives an estimate of ε , and using Proposition 4.2, we derive a contradiction. Hence, our theorem is

proved. 2

Proof of Theorem 1.5 Arguing by contradiction, let us assume that (Pε) has solutions (uε) as stated in

Theorem 1.5. From the definition of q , we have εq(q+1) ≥ c(µq/µq+1)
(n−4)/2 , and this implies that

εi(q+1) = o(εq(q+1)) for i < q and ε(q+1)i = o(εq(q+1)) for i > q + 1. (4.4)

Now, regarding the equation (Eq+1), using (4.1), (4.4), and the fact that γq ̸= γq+1 , we have

c1
H(aq+1, aq+1)

µn−4
q+1

+ c2ε+ c1εq(q+1) = o
( 1

µ2
1

+

p∑
j=1

1

(µjdj)n−4
+

∑
r ̸=j

εrj

)
.

Then we get an estimate of ε , and using Proposition 4.2, we derive a contradiction, and the proof of our theorem

is thereby completed. 2
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