On a biharmonic equation involving slightly supercritical exponent

Kamal OULD BOUH*

Department of Mathematics, Taibah University, Medina, Saudi Arabia

Received: 14.11.2016 • Accepted/Published Online: 19.05.2017 \quad Final Version: 24.03.2018

Abstract

We consider the biharmonic equation with supercritical nonlinearity $\left(P_{\varepsilon}\right): \Delta^{2} u=K|u|^{8 /(n-4)+\varepsilon} u$ in Ω, $\Delta u=u=0$ on $\partial \Omega$, where Ω is a smooth bounded domain in $\mathbb{R}^{n}, n \geq 5, K$ is a C^{3} positive function, and ε is a positive real parameter. In contrast with the subcritical case, we prove the nonexistence of sign-changing solutions of $\left(P_{\varepsilon}\right)$ that blow up at two near points. We also show that $\left(P_{\varepsilon}\right)$ has no bubble-tower sign-changing solutions.

Key words: Sign-changing solutions, bubble-tower solution, fourth-order equation, supercritical exponent

1. Introduction

The study of concentration phenomena for second-order elliptic equations involving a nearly critical exponent has attracted considerable attention in the last decades. In this paper, we are concerned with the concentration phenomena of the following biharmonic equation under the Navier boundary condition:

$$
\left(P_{\varepsilon}\right) \quad\left\{\begin{array}{cl}
\Delta^{2} u=K|u|^{p-1+\varepsilon} u & \text { in } \Omega \\
\Delta u=u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where Ω is a smooth bounded domain in $\mathbb{R}^{n}, n \geq 5, p+1=\frac{2 n}{n-4}$ is the critical Sobolev exponent for the embedding of $H^{2}(\Omega) \times H_{0}^{1}(\Omega)$ into $L^{p+1}(\Omega), K$ is a C^{3} positive function, and ε is a small positive parameter.

This type of equation naturally arises from the study of conformal geometry. A well-known example is the problem of prescribing the Paneitz curvature: given a function K defined in compact Riemannian manifold (M, g) of dimension $n \geq 5$, we ask whether there exists a metric \bar{g} conformal to g such that K is the Paneitz curvature of the new metric \bar{g} (for details one can see $[6,10,13,15]$ and the references therein).

The concentration phenomena for second-order elliptic equations (P_{ε}) involving a nearly subcritical exponent $(\varepsilon \in(1-p, 0))$ were studied in $[11,15,17]$ for $K \not \equiv 1$ and $[5,8]$ for $K \equiv 1$ only.

In the critical case (when $\varepsilon=0$), the limiting problem exhibits a lack of compactness. In fact, van der Vorst showed in $[22,23]$ that $\left(P_{0}\right)$ has no positive solutions if Ω is a star-shaped domain, whereas Ebobisse and Ould Ahmedou proved in [14] that $\left(P_{0}\right)$ has a positive solution provided that some homology group of Ω is nontrivial. This topological condition is sufficient, but not necessary, as examples of contractible domains Ω on which a positive solution exists shows [16].

[^0]
OULD BOUH/Turk J Math

For the supercritical case, $\varepsilon>0$ and K is a constant, it was proved in [19] that for ε small, $\left(P_{\varepsilon}\right)$ has no sign-changing solutions that blow up at two points. This result shows that the situation is different from the subcritical one. In this paper, we consider the case in which K is a nonconstant function and we seek to understand the influence of the function K in the study of the sign-changing solutions of $\left(P_{\varepsilon}\right)$. We note that, when the biharmonic operator in $\left(P_{\varepsilon}\right)$ is replaced by the Laplacian one, there are many works devoted to the study of the solutions of the counterpart of $\left(P_{\varepsilon}\right)$, for example $[3,4,7,9,12,18]$.

To state our results, we need to introduce some notations and assumptions that we are using. We denote by G the Green function of Δ^{2}, that is,

$$
\forall x \in \Omega, \quad \Delta^{2} G(x, .)=c_{n} \delta_{x} \quad \text { in } \quad \Omega, \quad \Delta G(x, .)=G(x, .)=0 \quad \text { on } \quad \partial \Omega,
$$

where δ_{x} is the Dirac mass at x and $c_{n}=(n-4)(n-2) w_{n}$, with w_{n} the area of the unit sphere of \mathbb{R}^{n}. We denote by H the regular part of G, that is,

$$
H\left(x_{1}, x_{2}\right)=\left|x_{1}-x_{2}\right|^{4-n}-G\left(x_{1}, x_{2}\right) \quad \text { for } \quad\left(x_{1}, x_{2}\right) \in \Omega^{2} .
$$

Let

$$
\begin{equation*}
\delta_{(a, \mu)}(x)=c_{0} \frac{\mu^{(n-4) / 2}}{\left(1+\mu^{2}|x-a|^{2}\right)^{(n-4) / 2}}, \quad c_{0}=\left(n(n-4)\left(n^{2}-4\right)\right)^{(n-4) / 8}, \mu>0, a \in \mathbb{R}^{n} \tag{1.1}
\end{equation*}
$$

and $P \delta_{(a, \mu)}$ denotes the projection of the $\delta_{(a, \mu)}$ s onto $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$. It is defined by

$$
\Delta^{2} P \delta_{(a, \mu)}=\Delta^{2} \delta_{(a, \mu)} \quad \text { in } \Omega ; \quad \Delta P \delta_{(a, \mu)}=P \delta_{(a, \mu)}=0 \quad \text { on } \partial \Omega .
$$

Notice that the family $\delta_{(a, \mu)}$ comprises the only minimizers of the Sobolev inequality on the whole space, that is,

$$
S=\left\{\|\Delta u\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}\|u\|_{L^{\frac{2 n}{n-4}\left(\mathbb{R}^{n}\right)}}^{-2}, \text { such that } \Delta u \in L^{2}, u \in L^{\frac{2 n}{n-4}}, u \neq 0\right\} .
$$

The space $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ is equipped with the norm $\|$.$\| and its corresponding inner product \langle.,$.$\rangle defined by$

$$
\begin{equation*}
\|u\|=\left(\int_{\Omega}|\Delta u|^{2}\right)^{1 / 2} \quad \text { and } \quad\langle u, v\rangle=\int_{\Omega} \Delta u \Delta v, \quad u, v \in H^{2}(\Omega) \times H_{0}^{1}(\Omega) . \tag{1.2}
\end{equation*}
$$

Let:
$\left(H_{1}\right)$ For each critical point y of K, we have

$$
c_{1} H(y, y)-\frac{c_{3} \Delta K(y)}{36 K(y)} \neq 0 \quad \text { if } n=6 \quad \text { and } \quad \Delta K(y) \neq 0 \quad \text { if } n \geq 7,
$$

where c_{1}, c_{3} are positive constants defined in Proposition 2.4.
$\left(H_{2}\right) \quad$ All the critical points of K are in Ω, i.e. there exists positive constant c so that $|\nabla K(y)| \geq c$, for each $y \in \partial \Omega$.

In the first result, we prove that there are no sign-changing solutions of $\left(P_{\varepsilon}\right)$ with $\varepsilon>0$ that have two peaks concentrated at the same point. More precisely, we have:

Theorem 1.1 Let Ω be a smooth bounded domain in $\mathbb{R}^{n}, n \geq 6$, and the assumptions $\left(H_{1}-H_{2}\right)$ hold. Then there exists $\varepsilon_{0}>0$ such that, for each $\varepsilon \in\left(0, \varepsilon_{0}\right)$, problem $\left(P_{\varepsilon}\right)$ has no sign-changing solutions u_{ε} that satisfy

$$
\begin{align*}
u_{\varepsilon}= & P \delta_{\left(a_{\varepsilon, 1}, \mu_{\varepsilon, 1}\right)}-P \delta_{\left(a_{\varepsilon, 2}, \mu_{\varepsilon, 2}\right)}+v_{\varepsilon}, \quad \text { with }\left|u_{\varepsilon}\right|_{\infty}^{\varepsilon} \text { is bounded, } \tag{1.3}\\
& \left\{\begin{array}{l}
a_{\varepsilon, i} \in \Omega, \mu_{\varepsilon, i} d\left(a_{\varepsilon, i}, \partial \Omega\right) \rightarrow \infty \text { for } i=1,2, \\
\left\langle P \delta_{\left(a_{\varepsilon, 1}, \mu_{\varepsilon, 1}\right)}, P \delta_{\left(a_{\varepsilon, 2}, \mu_{\varepsilon, 2}\right)}\right\rangle \rightarrow 0,\left\|v_{\varepsilon}\right\| \rightarrow 0 \text { as } \varepsilon \rightarrow 0,
\end{array}\right. \tag{1.4}
\end{align*}
$$

and $\left|a_{\varepsilon, 1}-a_{\varepsilon, 2}\right|<\sigma$ where σ is a positive constant such that $\sigma<(1 / 2) \inf \left\{\left|y_{i}-y_{j}\right|, i \neq j, \nabla K\left(y_{l}\right)=0, l=i, j\right\}$.
In the following result, we give a sufficient condition on the function K to ensure the nonexistence of signchanging solutions of $\left(P_{\varepsilon}\right)$ with $\varepsilon>0$.

Theorem 1.2 Let Ω be a smooth bounded domain in $\mathbb{R}^{n}, n \geq 6$, and the assumptions $\left(H_{1}-H_{2}\right)$ hold. Assume that there exists at most one critical point y of K satisfying

$$
\begin{equation*}
c_{1} H(y, y)-\frac{c_{3} \Delta K(y)}{16 K(y)}<0 \quad \text { if } n=6, \quad \text { and } \quad \Delta K(y)>0 \quad \text { if } n \geq 7 . \tag{1.5}
\end{equation*}
$$

Then there exists $\varepsilon_{0}>0$ such that, for each $\varepsilon \in\left(0, \varepsilon_{0}\right)$, problem $\left(P_{\varepsilon}\right)$ has no sign-changing solutions u_{ε} that satisfy (1.3) and (1.4).

Remark 1.3 We notice that Theorems 1.1, 1.2 of [19], which are proved in the case $K \equiv 1$, are also true for all C^{3} function K in dimension 5.

Observe that, in the case of the Laplacian operator, all positive solutions blow up with comparable speeds, but for sign-changing solutions, Pistoia and Weth [20] constructed solutions (u_{ε}) with many bubbles blowing up at the same point, "bubble-tower solutions" $\left(\mu_{i} / \mu_{j} \rightarrow \infty\right.$ or 0), which cannot appear in the case of the positive solutions (by using the Harnack inequalities). This is a new phenomenon for sign-changing solutions compared with the positive one. In our case, we prove that this phenomenon cannot appear when $\varepsilon>0$. In fact, we prove that:

Theorem 1.4 Let Ω be a smooth bounded domain in $\mathbb{R}^{n}, n \geq 6$, and the assumptions ($H_{1}-H_{2}$) hold. Then there exists $\varepsilon_{0}>0$, such that, for each $\varepsilon \in\left(0, \varepsilon_{0}\right)$, problem $\left(P_{\varepsilon}\right)$ has no sign-changing solutions u_{ε} of the form

$$
\begin{align*}
& u_{\varepsilon}=\sum_{i=1}^{p} \gamma_{i} P \delta_{\left(a_{\varepsilon, i}, \mu_{\varepsilon, i}\right)}+v_{\varepsilon}, \quad \text { with } \gamma_{i} \in\{1,-1\},\left|u_{\varepsilon}\right|_{\infty}^{\mid} \text {is bounded, } \tag{1.6}\\
& \left\{\begin{array}{l}
p \geq 2, \mu_{\varepsilon, i} / \mu_{\varepsilon, i+1} \rightarrow 0, a_{\varepsilon, i} \in \Omega, \mu_{\varepsilon, i} d\left(a_{\varepsilon, i}, \partial \Omega\right) \rightarrow \infty \text { for } 1 \leq i \leq p, \\
\left|a_{\varepsilon, i}-a_{\varepsilon, j}\right|<\sigma,\left\langle P \delta_{\left(a_{\varepsilon, i}, \mu_{\varepsilon, i}\right)}, P \delta_{\left(a_{\varepsilon, j}, \mu_{\varepsilon, j}\right)}\right\rangle \rightarrow 0, i \neq j,\left\|v_{\varepsilon}\right\| \rightarrow 0 \text { as } \varepsilon \rightarrow 0,
\end{array}\right. \tag{1.7}
\end{align*}
$$

and $\exists q_{1}, q_{2}\left(q_{1}<q_{2}\right), \mu_{\varepsilon, q_{1}}\left|a_{\varepsilon, q_{1}}-a_{\varepsilon, q_{2}}\right|$ is bounded, $\gamma_{i} \neq \gamma_{p}$ for $q_{1} \leq i<p$.
Theorem 1.5 Let Ω be a smooth bounded domain in $\mathbb{R}^{n}, n \geq 6$, and the assumptions ($H_{1}-H_{2}$) hold. Then there exists $\varepsilon_{0}>0$ such that, for each $\varepsilon \in\left(0, \varepsilon_{0}\right)$, problem $\left(P_{\varepsilon}\right)$ has no sign-changing solutions u_{ε} that satisfy (1.6), (1.7), and there exists $q, \mu_{\varepsilon, q}\left|a_{\varepsilon, q}-a_{\varepsilon, q+1}\right|$ is bounded, $\gamma_{q} \neq \gamma_{q+1}$, and $\mu_{\varepsilon, q}\left|a_{\varepsilon, q}-a_{\varepsilon, i}\right| \rightarrow+\infty$ for $i>q+1$.

OULD BOUH/Turk J Math

We notice that if $\mu_{\varepsilon, i}\left|a_{\varepsilon, i}-a_{\varepsilon, j}\right|$ is bounded for $i<j$, then q in the previous theorem is equal to $p-1$ and the set $\{i>q+1\}$ is empty in this case. Furthermore, if $\gamma_{p-1}=\gamma_{p}$, Theorem 1.5 also holds in this case by adding the following assumption : $\mu_{\varepsilon, l}\left|a_{\varepsilon, l}-a_{\varepsilon, l+1}\right|$ is very small if $l \neq p-2$ where $l=\min \left\{r: \gamma_{r}=\ldots=\gamma_{p}\right\}$

The remainder of the present paper is organized as follows. In Section 2, we assume that there exist solutions u_{ε} of $\left(P_{\varepsilon}\right)$ that satisfy (1.3) and (1.4). Using some information about this solution, we derive some useful estimates. In Section 3, combining the estimates obtained in the last section, we prove sign-changing solution results by contradiction. In Section 4, we prove bubble-tower solution results (Theorems 1.4, 1.5).

2. Preliminary results

In this section, we assume that there exist solutions $\left(u_{\varepsilon}\right)$ of $\left(P_{\varepsilon}\right)$ that satisfy

$$
\begin{equation*}
u_{\varepsilon}=P \delta_{\left(a_{(\varepsilon, 1)}, \mu_{(\varepsilon, 1)}\right)}-P \delta_{\left(a_{(\varepsilon, 2)}, \mu_{(\varepsilon, 2)}\right)}+v_{\varepsilon} \tag{2.1}
\end{equation*}
$$

with $\left|u_{\varepsilon}\right|_{\infty}^{\varepsilon}$ is bounded, $a_{\varepsilon, i} \in \Omega$, for $i=1,2$, and $\left\|v_{\varepsilon}\right\| \rightarrow 0,\left\langle P \delta_{\left(a_{(\varepsilon, 1)}, \mu_{(\varepsilon, 1)}\right)}, P \delta_{\left(a_{(\varepsilon, 2)}, \mu_{(\varepsilon, 2)}\right)}\right\rangle \rightarrow 0$, $\mu_{(\varepsilon, i)} d\left(a_{(\varepsilon, i)}, \partial \Omega\right) \rightarrow+\infty$ as $\varepsilon \rightarrow 0$.

First, arguing as in $[2,21]$, we see that for u_{ε} satisfying (2.1), there is a unique way to choose α_{i}, a_{i}, μ_{i}, and v such that

$$
\begin{equation*}
u_{\varepsilon}=\alpha_{1} P \delta_{\left(a_{1}, \mu_{1}\right)}-\alpha_{2} P \delta_{\left(a_{2}, \mu_{2}\right)}+v \tag{2.2}
\end{equation*}
$$

with as $\varepsilon \rightarrow 0$

$$
\left\{\begin{array}{l}
\alpha_{i} \in \mathbb{R}, \quad \frac{\alpha_{i}^{8 /(n-4)} K\left(a_{i}\right)}{\alpha_{j}^{8 /(n-4)} K\left(a_{j}\right)} \rightarrow 1 \tag{2.3}\\
a_{i} \in \Omega, \quad \mu_{i} \in \mathbb{R}_{+}^{*}, \quad \mu_{i} d\left(a_{i}, \partial \Omega\right) \rightarrow+\infty \\
v \rightarrow 0 \quad \text { in } H^{2}(\Omega) \times H_{0}^{1}(\Omega), \quad v \in E
\end{array}\right.
$$

where E denotes the subspace of $H_{0}^{1}(\Omega)$ defined by

$$
\begin{equation*}
E:=\left\{w:\langle w, \varphi\rangle=0 \quad \forall \varphi \in\left\{P \delta_{i}, \partial P \delta_{i} / \partial \mu_{i}, \partial P \delta_{i} / \partial a_{i}^{j}, i \leq 2 ; j \leq n\right\}\right\} \tag{2.4}
\end{equation*}
$$

Here, a_{i}^{j} denotes the j th component of a_{i} and in the sequel, in order to simplify the notations, we set

$$
a_{(\varepsilon, i)}=a_{i}, \mu_{(\varepsilon, i)}=\mu_{i}, \delta_{\left(a_{i}, \mu_{i}\right)}=\delta_{i}, \text { and } P \delta_{\left(a_{i}, \mu_{i}\right)}=P \delta_{i}
$$

In the following, we always assume that u_{ε} (which satisfies (2.1)) is written as in (2.2) and (2.3) holds.
Lemma 2.1 Let u_{ε} satisfy the assumption of the theorems. μ_{i} occurring in (2.2) satisfies

$$
\mu_{i}^{\varepsilon} \rightarrow 1 \quad \text { as } \varepsilon \rightarrow 0, \quad \text { for each } \quad i=1,2 .
$$

Proof The proof is the same as that of Lemma 2.2 of [19], so we omit it.

Remark 2.2 From Lemma 2.1, we remark that:
(i) Since Ω is bounded and $\mu_{i}^{\varepsilon} \rightarrow 1$ as $\varepsilon \rightarrow 0$ it is easy to derive that $\varepsilon \log \left(1+\mu_{i}^{2}\left|x-a_{i}\right|^{2}\right)$ tends to 0 as $\varepsilon \rightarrow 0$ and therefore we get:

$$
\delta_{i}^{\varepsilon}(x)-c_{0}^{\varepsilon} \mu_{i}^{\varepsilon(n-4) / 2}=O\left(\varepsilon \log \left(1+\mu_{i}^{2}\left|x-a_{i}\right|^{2}\right)\right) \quad \text { in } \Omega
$$

OULD BOUH/Turk J Math

(ii) We also point out that it follows from assumption that $\left|u_{\varepsilon}\right|_{\infty}^{\varepsilon}$ is bounded and $\mu_{i}^{\varepsilon} \rightarrow 1$ as $\varepsilon \rightarrow 0$ that $\left|v_{\varepsilon}\right|_{\infty}^{\varepsilon}$ is bounded, a fact that is used in the proof of Lemma 2.3 and Proposition 2.4 below.

As usual in these types of problems, we first deal with the v-part of u in order to show that it is negligible with respect to the concentration phenomenon. Namely, we have the following estimate:

Lemma 2.3 The function v defined in (2.2) satisfies the following estimate:

$$
\|v\| \leq c \varepsilon+c\left\{\begin{array}{cl}
\sum_{i}\left(\frac{\left|\nabla K\left(a_{i}\right)\right|}{\mu_{i}}+\frac{1}{\mu_{i}^{2}}+\frac{1}{\left(\mu_{i} d_{i}\right)^{n-4}}\right)+\varepsilon_{12}\left(\log \varepsilon_{12}^{-1}\right)^{\frac{n-4}{n}} & \text { if } n<12, \\
\sum_{i}\left(\frac{\left|\nabla K\left(a_{i}\right)\right|}{\mu_{i}}+\frac{1}{\mu_{i}^{2}}+\frac{1}{\left(\mu_{i} d_{i}\right)^{(n+4) / 2-\varepsilon(n-4)}}\right)+\varepsilon_{12}^{\frac{n+4}{2(n-4)}}\left(\log \varepsilon_{12}^{-1}\right)^{\frac{n+4}{2 n}} & \text { if } n \geq 12,
\end{array}\right.
$$

where $d_{i}:=d\left(a_{i}, \partial \Omega\right)$ and ε_{12} is defined by

$$
\begin{equation*}
\varepsilon_{12}=\left(\frac{\mu_{1}}{\mu_{2}}+\frac{\mu_{2}}{\mu_{1}}+\mu_{1} \mu_{2}\left|a_{1}-a_{2}\right|^{2}\right)^{(4-n) / 2} \tag{2.5}
\end{equation*}
$$

Proof Since $u_{\varepsilon}=\alpha_{1} P \delta_{1}-\alpha_{2} P \delta_{2}+v$ is a solution of $\left(P_{\varepsilon}\right)$ and $v \in E$ (see (2.4)), we obtain

$$
\begin{aligned}
\int_{\Omega}-\Delta u_{\varepsilon} v=\|v\|^{2}=\int_{\Omega} K\left|u_{\varepsilon}\right|^{p-1+\varepsilon} u_{\varepsilon} v= & \int_{\Omega} K\left|\alpha_{1} P \delta_{1}-\alpha_{2} P \delta_{2}\right|^{p-1+\varepsilon}\left(\alpha_{1} P \delta_{1}-\alpha_{2} P \delta_{2}\right) v \\
& +p \int_{\Omega} K\left|\alpha_{1} P \delta_{1}-\alpha_{2} P \delta_{2}\right|^{p-1+\varepsilon} v^{2}+o\left(\|v\|^{2}\right)
\end{aligned}
$$

Hence, we have

$$
\begin{equation*}
Q(v, v)=f(v)+o\left(\|v\|^{2}\right) \tag{2.6}
\end{equation*}
$$

where

$$
\begin{aligned}
Q(v, v) & =\|v\|^{2}-p \int_{\Omega} K\left|\alpha_{1} P \delta_{1}-\alpha_{2} P \delta_{2}\right|^{p-1+\varepsilon} v^{2} \\
f(v) & =\int_{\Omega} K\left|\alpha_{1} P \delta_{1}-\alpha_{2} P \delta_{2}\right|^{p-1+\varepsilon}\left(\alpha_{1} P \delta_{1}-\alpha_{2} P \delta_{2}\right) v
\end{aligned}
$$

Using Remark 2.2 and according to [1], it is easy to see that

$$
Q(v, v)=\|v\|^{2}-p \sum_{i=1,2} \alpha_{i}^{p-1+\varepsilon} K\left(a_{i}\right) \int_{\Omega}\left(P \delta_{i}\right)^{p-1+\varepsilon} v^{2}+o\left(\|v\|^{2}\right)
$$

is positive definite, that is, there exists $c>0$ independent of ε, satisfying $Q(v, v) \geq c\|v\|^{2}$, for each $v \in E$. Then, from (2.6), we get

$$
\|v\|^{2}=O(\|f(v)\|)
$$

Now, using Lemma 2.1, we obtain

$$
\begin{equation*}
f(v)=\int_{\Omega} K\left(\left(\alpha_{1} P \delta_{1}\right)^{p+\varepsilon}-\left(\alpha_{2} P \delta_{2}\right)^{p+\varepsilon}\right) v+O\left(\int_{\Omega}\left(\delta_{i} \delta_{j}\right)^{\frac{p}{2}}|v|+\sum_{i \neq j} \int_{\Omega} \delta_{i}^{p-1} \delta_{j}|v|(\text { if } n<6)\right) \tag{2.7}
\end{equation*}
$$

OULD BOUH/Turk J Math

Using Remark 2.2 and the fact that $v \in E$, we get

$$
\begin{align*}
& \left|\int_{\Omega} K P \delta_{i}^{p+\varepsilon} v\right|=\left|\int K \delta_{i}^{p+\varepsilon} v\right|+O\left(\int \delta_{i}^{p-1+\varepsilon} \theta_{i}|v|\right) \\
& \quad \leq \int K\left(c_{0}^{\varepsilon} \mu_{i}^{\varepsilon}+O\left(\varepsilon \log \left(1+\mu_{i}^{2}\left|x-a_{i}\right|^{2}\right)\right)\right) \delta_{i}^{p}|v|+c\left|\theta_{i}\right|_{L^{\infty}} \int \delta_{i}^{p-1+\varepsilon}|v| \\
& \quad \leq c\|v\|\left(\varepsilon+\frac{\left|\nabla K\left(a_{i}\right)\right|}{\mu_{i}}+\frac{1}{\mu_{i}^{2}}+\frac{1}{\left(\mu_{i} d_{i}\right)^{n-4}}(\text { if } n<12)+\frac{1}{\left(\mu_{i} d_{i}\right)^{n+4 / 2+\varepsilon(n-4)}}(\text { if } n \geq 12)\right) \tag{2.8}
\end{align*}
$$

where $\theta_{i}:=\theta_{a_{i}, \mu_{i}}:=\delta_{i}-P \delta_{i}$.
For the other integrals of (2.7), we use Holder's inequality and we obtain for $i \neq j$

$$
\begin{equation*}
\int_{\Omega}\left(\delta_{i} \delta_{j}\right)^{p / 2}|v| \leq c\|v\|\left(\int_{\Omega}\left(\delta_{i} \delta_{j}\right)^{n /(n-4)}\right)^{(n+4) / 2 n} \leq c\|v\| \varepsilon_{i j}^{(n+4) / 2(n-4)}\left(\log \varepsilon_{i j}^{-1}\right)^{(n+4) / 2 n} \tag{2.9}
\end{equation*}
$$

and if $n<12$, we have $p-1=8 /(n-4)>1$; therefore,

$$
\begin{equation*}
\int_{\Omega} \delta_{i}^{p-1} \delta_{j}|v| \leq c\|v\|\left(\int_{\Omega}\left(\delta_{i} \delta_{j}\right)^{n /(n-4)}\right)^{(n-4) / n} \leq c\|v\| \varepsilon_{i j}\left(\log \varepsilon_{i j}^{-1}\right)^{(n-4) / n} \tag{2.10}
\end{equation*}
$$

Combining (2.7), \ldots, (2.10), the proof follows.
Now we are able to obtain the following result, which is a crucial point in the proof of our theorems.

Proposition 2.4 Assume that $n \geq 5$ and let α_{i}, a_{i}, and μ_{i} be the variables defined in (2.2). We have

$$
\begin{gather*}
1-\alpha_{i}^{8 /(n-4)+\varepsilon} K\left(a_{i}\right)=O\left(\varepsilon \log \mu_{i}+\sum_{i} \frac{1}{\left(\mu_{i} d_{i}\right)^{n-4}}+\varepsilon_{12}+\|v\|^{2}\right), \tag{2.11}\\
\left|\alpha_{i} c_{1} \frac{H\left(a_{i}, a_{i}\right)}{\mu_{i}^{n-4}}-\alpha_{i} \frac{c_{3}}{n^{2}} \frac{\Delta K\left(a_{i}\right)}{K\left(a_{i}\right) \mu_{i}^{2}}-\alpha_{j} c_{1}\left(\frac{2 \mu_{i}}{n-4} \frac{\partial \varepsilon_{12}}{\partial \mu_{i}}+\frac{H\left(a_{1}, a_{2}\right)}{\left(\mu_{1} \mu_{2}\right)^{(n-4) / 2}}\right)+\alpha_{i} c_{2} \varepsilon\right| \\
\leq c\left(\varepsilon^{2}+\frac{1}{\mu_{i}^{3}}+\|v\|^{2}\right)+c\left\{\begin{array}{l}
\sum_{k} \frac{\log \left(\mu_{k} d_{k}\right)}{\left(\mu_{k} d_{k}\right)^{n-1}}+\varepsilon_{12}^{\frac{n}{n-4}} \log \varepsilon_{12}^{-1}(\text { if } n \geq 6), \\
\sum_{k} \frac{1}{\left(\mu_{k} d_{k}\right)^{2}}+\varepsilon_{12}^{2}\left(\log \varepsilon_{12}^{-1}\right)^{\frac{2}{5}}(\text { if } n=5),
\end{array}\right. \tag{2.12}
\end{gather*}
$$

where $i, j \in\{1,2\}$ with $i \neq j$ and c_{1}, c_{2}, c_{3} are positive constants defined by

$$
\begin{gathered}
c_{1}=c_{0}^{\frac{2 n}{n-4}} \int_{\mathbb{R}^{n}} \frac{d x}{\left(1+|x|^{2}\right)^{(n+4) / 2}}, \quad c_{2}=\frac{n-4}{2} c_{0}^{\frac{2 n}{n-4}} \int_{\mathbb{R}^{n}} \log \left(1+|x|^{2}\right) \frac{|x|^{2}-1}{\left(1+|x|^{2}\right)^{n+1}} d x \\
\text { and } \quad c_{3}=c_{0}^{\frac{2 n}{n-4}} \int_{\mathbb{R}^{n}} \frac{|x|^{2}}{\left(1+|x|^{2}\right)^{n}} d x .
\end{gathered}
$$

Proof It suffices to prove the proposition for $i=1$. Multiplying (P_{ε}) by $\mu_{1} \partial P \delta_{1} / \partial \mu_{1}$ and integrating on Ω, we obtain

$$
\begin{equation*}
\alpha_{1} \int_{\Omega} \delta_{1}^{p} \mu_{1} \frac{\partial P \delta_{1}}{\partial \mu_{1}}-\alpha_{2} \int_{\Omega} \delta_{2}^{p} \mu_{1} \frac{\partial P \delta_{2}}{\partial \mu_{2}}=\int_{\Omega} K\left|u_{\varepsilon}\right|^{p-1+\varepsilon} u_{\varepsilon} \mu_{1} \frac{\partial P \delta_{1}}{\partial \mu_{1}} \tag{2.13}
\end{equation*}
$$

From [1], we know that

$$
\begin{align*}
\int_{\Omega} \delta_{1}^{p} \mu_{1} \frac{\partial P \delta_{1}}{\partial \mu_{1}} & =\frac{n-4}{2} c_{1} \frac{H\left(a_{1}, a_{1}\right)}{\mu_{1}^{n-4}}+O\left(\frac{\log \left(\mu_{1} d_{1}\right)}{\left(\mu_{1} d_{1}\right)^{n-1}}\right) \tag{2.14}\\
\int_{\Omega} \delta_{2}^{p} \mu_{1} \frac{\partial P \delta_{1}}{\partial \mu_{1}} & =c_{1}\left(\mu_{1} \frac{\partial \varepsilon_{12}}{\partial \mu_{1}}+\frac{n-4}{2} \frac{H\left(a_{1}, a_{2}\right)}{\left(\mu_{1} \mu_{2}\right)^{(n-4) / 2}}\right)+R \tag{2.15}
\end{align*}
$$

where R satisfies

$$
\begin{equation*}
R=O\left(\sum_{k=1,2} \frac{\log \left(\mu_{k} d_{k}\right)}{\left(\mu_{k} d_{k}\right)^{n-1}}+\varepsilon_{12}^{\frac{n}{n-4}} \log \varepsilon_{12}^{-1}\right) \tag{2.16}
\end{equation*}
$$

For the other term of (2.13), we have

$$
\begin{align*}
& \int_{\Omega} K\left|u_{\varepsilon}\right|^{p-1+\varepsilon} u_{\varepsilon} \mu_{1} \frac{\partial P \delta_{1}}{\partial \mu_{1}}=\int_{\Omega} K\left|\alpha_{1} P \delta_{1}-\alpha_{2} P \delta_{2}\right|^{p-1+\varepsilon}\left(\alpha_{1} P \delta_{1}-\alpha_{2} P \delta_{2}\right) \mu_{1} \frac{\partial P \delta_{1}}{\partial \mu_{1}} \\
&+(p+\varepsilon) \int_{\Omega} K\left|\alpha_{1} P \delta_{1}-\alpha_{2} P \delta_{2}\right|^{p-1+\varepsilon} v \mu_{1} \frac{\partial P \delta_{1}}{\partial \mu_{1}}+O\left(\|v\|^{2}+\varepsilon_{12}^{\frac{n}{n-4}} \log \varepsilon_{12}^{-1}\right) \tag{2.17}
\end{align*}
$$

Concerning the last integral, it can be written as

$$
\begin{align*}
\int_{\Omega} K\left|\alpha_{1} P \delta_{1}-\alpha_{2} P \delta_{2}\right|^{p-1+\varepsilon} v \mu_{1} \frac{\partial P \delta_{1}}{\partial \mu_{1}}= & \int_{\Omega} K\left(\alpha_{1} P \delta_{1}\right)^{p-1+\varepsilon} v \mu_{1} \frac{\partial P \delta_{1}}{\partial \mu_{1}} \\
& +O\left(\int_{\Omega \backslash A} P \delta_{2}^{p-1} P \delta_{1}|v|+\int_{A} P \delta_{1}^{p-1} P \delta_{2}|v|\right) \tag{2.18}
\end{align*}
$$

where $A=\left\{x: 2 \alpha_{2} P \delta_{2} \leq \alpha_{1} P \delta_{1}\right\}$.
Observe that, for $n \geq 12$, we have $p-1=8 /(n-4) \leq 1$; thus,

$$
\begin{align*}
\int_{\Omega \backslash A} P \delta_{2}^{p-1} P \delta_{1}|v|+\int_{A} P \delta_{1}^{p-1} P \delta_{2}|v| & \leq c \int_{\Omega}|v|\left(\delta_{1} \delta_{2}\right)^{(n+4) / 2(n-4)} \\
& \leq c\|v\| \varepsilon_{12}^{(n+4) / 2(n-4)}\left(\log \varepsilon_{12}^{-1}\right)^{(n+4) / 2 n} \tag{2.19}
\end{align*}
$$

However, for $n \leq 11$, we have

$$
\begin{equation*}
\int_{\Omega \backslash A} P \delta_{2}^{p-1} P \delta_{1}|v|+\int_{A} P \delta_{1}^{p-1} P \delta_{2}|v| \leq c \varepsilon_{12}\left(\log \varepsilon_{12}^{-1}\right)^{(n-4) / n}\|v\| \tag{2.20}
\end{equation*}
$$

For the other integral in (2.18), using [1, 21] and Remark 2.2, we get

$$
\int_{\Omega} K P \delta_{1}^{p-1+\varepsilon} v \mu_{1} \frac{\partial P \delta_{1}}{\partial \mu_{1}}=O\left(\|v\|\left[\varepsilon+\left(\frac{1}{\left(\mu_{1} d_{1}\right)^{\inf (n-4,(n+4) / 2)}}(\text { ifn } n \neq 12)+\frac{\log \left(\mu_{1} d_{1}\right)}{\left(\mu_{1} d_{1}\right)^{4}}(\text { ifn } n=12)\right)\right]\right)
$$

It remains to estimate the second integral of (2.17). We have

$$
\begin{align*}
\int_{\Omega} K \mid \alpha_{1} P \delta_{1}- & \left.\alpha_{2} P \delta_{2}\right|^{p-1+\varepsilon}\left(\alpha_{1} P \delta_{1}-\alpha_{2} P \delta_{2}\right) \mu_{1} \frac{\partial P \delta_{1}}{\partial \mu_{1}} \\
& =\int_{\Omega} K\left(\alpha_{1} P \delta_{1}\right)^{p+\varepsilon} \mu_{1} \frac{\partial P \delta_{1}}{\partial \mu_{1}}-\int_{\Omega} K\left(\alpha_{2} P \delta_{2}\right)^{p+\varepsilon} \mu_{1} \frac{\partial P \delta_{1}}{\partial \mu_{1}} \tag{2.21}\\
& -(p+\varepsilon) \int_{\Omega} K \alpha_{2} P \delta_{2}\left(\alpha_{1} P \delta_{1}\right)^{p-1+\varepsilon} \mu_{1} \frac{\partial P \delta_{1}}{\partial \mu_{1}}+O\left(\varepsilon_{12}^{\frac{n}{n-4}} \log \varepsilon_{12}^{-1}\right)
\end{align*}
$$

Now, using Remark 2.2 and [1], we have

$$
\begin{align*}
& \int_{\Omega} K P \delta_{1}^{p+\varepsilon} \mu_{1} \frac{\partial P \delta_{1}}{\partial \mu_{1}}= \frac{n-4}{2}\left(K\left(a_{1}\right) c_{2} \varepsilon-c_{3} \frac{\Delta K\left(a_{1}\right)}{n^{2} \mu_{1}^{2}}+2 c_{1} K\left(a_{1}\right) \frac{H\left(a_{1}, a_{1}\right)}{\mu_{1}^{n-4}}\right) \\
&+O\left(\varepsilon^{2}+\frac{1}{\mu_{1}^{3}}+\frac{\log \left(\mu_{1} d_{1}\right)}{\left(\mu_{1} d_{1}\right)^{n-1}}+\frac{1}{\left(\mu_{1} d_{1}\right)^{2}}(\text { if } n=5)\right) \tag{2.22}\\
& \int_{\Omega} K P \delta_{2}^{p+\varepsilon} \mu_{1} \frac{\partial P \delta_{1}}{\partial \mu_{1}}=c_{1} K\left(a_{2}\right)\left(\mu_{1} \frac{\partial \varepsilon_{12}}{\partial \mu_{1}}+\frac{n-4}{2} \frac{H\left(a_{1}, a_{2}\right)}{\left(\mu_{1} \mu_{2}\right)^{(n-4) / 2}}\right)+R_{1}, \tag{2.23}\\
& p \int_{\Omega} K P \delta_{2} P \delta_{1}^{p-1+\varepsilon} \mu_{1} \frac{\partial P \delta_{1}}{\partial \mu_{1}}=c_{1} K\left(a_{1}\right)\left(\mu_{1} \frac{\partial \varepsilon_{12}}{\partial \mu_{1}}+\frac{n-4}{2} \frac{H\left(a_{1}, a_{2}\right)}{\left(\mu_{1} \mu_{2}\right)^{(n-4) / 2}}\right)+R_{1}, \tag{2.24}
\end{align*}
$$

where $R_{1}=R+O\left(\varepsilon \varepsilon_{12}\left(\log \varepsilon_{12}^{-1}\right)^{(n-4) / n}\right)$, and R is defined by (2.16).
Therefore, combining (2.13), $\ldots,(2.24)$, and Lemma 2.3, the proof of Proposition 2.4 follows.

Proposition 2.5 Let α_{i}, a_{i}, and μ_{i} be the variables defined in (2.2). Then, for $n \geq 6$, we have

$$
\begin{aligned}
& c_{1} \alpha_{i} \frac{1}{\mu_{i}^{n-3}} \frac{\partial H\left(a_{i}, a_{i}\right)}{\partial a_{i}}-c_{4} \alpha_{i} \frac{\nabla K\left(a_{i}\right)}{\mu_{i}}+2 c_{1} \frac{\alpha_{j}}{\mu_{i}}\left(\frac{\partial \varepsilon_{12}}{\partial a_{i}}-\frac{\partial H}{\partial a_{i}}\left(a_{1}, a_{2}\right) \frac{1}{\left(\mu_{1} \mu_{2}\right)^{(n-4) / 2}}\right) \\
& \quad=O\left(\sum_{k=1,2} \frac{1}{\left(\mu_{k} d_{k}\right)^{n-2}}+\varepsilon_{12}^{\frac{n}{n-4}} \log \varepsilon_{12}^{-1}+\varepsilon \varepsilon_{12}\left(\log \varepsilon_{12}^{-1}\right)^{\frac{n-4}{n}}+\frac{\varepsilon}{\left(\mu_{i} d_{i}\right)^{n-3}}+\frac{1}{\mu_{i}^{3}}+\|v\|^{2}\right)
\end{aligned}
$$

where $i, j \in\{1,2\}, j \neq i$.
Proof The proof is similar to the proof of Proposition 2.4, but there exist some integrals that have different estimates. In fact, the equations (2.13), (2.17), $\ldots,(2.21)$ are also true if we change $\mu_{1} \partial \delta_{1} / \partial \mu_{1}$ by $\mu_{1}^{-1} \partial \delta_{1} / \partial a_{1}$. For the other integrals, we use Remark 2.2 and [1] and Proposition 2.5 follows.

3. Proof of sign-changing solution results

We remark that, if we suppose that the problem $\left(P_{\varepsilon}\right)$ has a solution u_{ε} as stated in (1.3) and (1.4), then this solution has to satisfy (2.2), and from Proposition 2.4, we have

$$
\begin{aligned}
\left(E_{i}\right) \quad c_{1} \frac{H\left(a_{i}, a_{i}\right)}{\mu_{i}^{n-4}} & -\frac{c_{3}}{n^{2}} \frac{\Delta K\left(a_{i}\right)}{K\left(a_{i}\right) \mu_{i}^{2}}-c_{1}\left(\frac{2 \mu_{i}}{n-4} \frac{\partial \varepsilon_{12}}{\partial \mu_{i}}+\frac{H\left(a_{1}, a_{2}\right)}{\left(\mu_{1} \mu_{2}\right)^{(n-4) / 2}}\right)+c_{2} \varepsilon \\
& =O\left(\frac{\left|\nabla K\left(a_{i}\right)\right|^{2}}{\mu_{i}^{2}}\right)+o\left(\varepsilon+\frac{1}{\mu_{i}^{2}}+\sum_{k=1,2} \frac{1}{\left(\mu_{k} d_{k}\right)^{n-4}}+\varepsilon_{12}\right), \quad \text { for } i=1,2
\end{aligned}
$$

From Proposition 2.5, we get

$$
\begin{aligned}
c_{1} \frac{1}{\mu_{i}^{n-1}} \frac{\partial H\left(a_{i}, a_{i}\right)}{\partial a_{i}} & -c_{4} \frac{\nabla K\left(a_{i}\right)}{\mu_{i}}+2 c_{1} \frac{1}{\mu_{i}}\left(\frac{\partial \varepsilon_{12}}{\partial a_{i}}-\frac{\partial H}{\partial a_{i}}\left(a_{1}, a_{2}\right) \frac{1}{\left(\mu_{1} \mu_{2}\right)^{(n-2) / 2}}\right) \\
& =o\left(\sum_{k=1,2} \frac{1}{\left(\mu_{k} d_{k}\right)^{n-3}}+\varepsilon_{12}^{\frac{n-3}{n-4}}+\varepsilon^{\frac{n-3}{n-4}}+\frac{1}{\mu_{i}}\right)
\end{aligned}
$$

OULD BOUH/Turk J Math

Thus,

$$
\left(F_{i}\right) \quad c_{4} \frac{\left|\nabla K\left(a_{i}\right)\right|}{\mu_{i}}+O\left(\frac{1}{\left(\mu_{i} d_{i}\right)^{n-3}}+\varepsilon_{12}\right)=o\left(\sum_{k=1,2} \frac{1}{\left(\mu_{k} d_{k}\right)^{n-3}}+\varepsilon_{12}^{\frac{n-3}{n-4}}+\varepsilon^{\frac{n-3}{n-4}}+\frac{1}{\mu_{i}}\right)
$$

Furthermore, an easy computation shows that

$$
\begin{equation*}
\mu_{i} \frac{\partial \varepsilon_{12}}{\partial \mu_{i}}=-\frac{n-4}{2} \varepsilon_{12}\left(1-2 \frac{\mu_{j}}{\mu_{i}} \varepsilon_{12}^{2 / n-4}\right), \quad \text { for } i, j=1,2, j \neq i \tag{3.1}
\end{equation*}
$$

Before starting the proof of the other results, we give the following crucial proposition, which is a key point in the proof of Theorems 1.1 and 1.2.

Proposition 3.1 Let $n \geq 6$ and the assumptions $\left(H_{1}-H_{2}\right)$ hold. Let $\left(u_{\varepsilon}\right)$ be a family of sign-changing solutions of $\left(P_{\varepsilon}\right)$ that satisfy (1.3), (1.4). Then, for $i=1,2$, we have $a_{\varepsilon, i} \rightarrow y_{j_{i}}$ as $\varepsilon \rightarrow 0$, such that $y_{j_{i}}$ is a critical point of K. Moreover, (1.5) is satisfied for $i=1,2$.

Proof Let $\left(u_{\varepsilon}\right)$ be a family of sign-changing solutions of $\left(P_{\varepsilon}\right)$ as stated in Proposition 3.1. Without loss of generality, we can assume that $\mu_{1} \leq \mu_{2}$. We distinguish two cases.

Case 1. $M \mu_{1}<\mu_{2}$, where M is a large positive constant.
Since $H\left(a_{1}, a_{2}\right) \leq c d_{1}^{4-n}$, then

$$
\begin{equation*}
\frac{H\left(a_{1}, a_{2}\right)}{\left(\mu_{1} \mu_{2}\right)^{(n-4) / 2}}=o\left(\frac{1}{\left(\mu_{1} d_{1}\right)^{n-4}}\right) \tag{3.2}
\end{equation*}
$$

Furthermore, using (3.1) and the fact that $\mu_{2} \geq \mu_{1}$, an easy computation shows that

$$
\begin{equation*}
\pm \mu_{1} \frac{\partial \varepsilon_{12}}{\partial \mu_{1}}-2 \mu_{2} \frac{\partial \varepsilon_{12}}{\partial \mu_{2}} \geq \frac{n-4}{2} \varepsilon_{12} \tag{3.3}
\end{equation*}
$$

Arguing by contradiction, first, we suppose that $\left|\nabla K\left(a_{1}\right)\right| \geq c>0$.
Multiplying $\left(F_{i}\right)$ for $i=1$ by a small positive constant m and adding to $\left(E_{1}\right)$ and $\left(E_{2}\right):\left(m F_{1}+E_{1}+\right.$ $2 E_{2}$), using (3.2) and (3.3), we get

$$
c_{1}\left(\frac{H\left(a_{1}, a_{1}\right)}{\mu_{1}^{n-4}}+2 \frac{H\left(a_{2}, a_{2}\right)}{\mu_{2}^{n-4}}\right)+c_{1}^{\prime} \varepsilon_{12}+3 c_{2} \varepsilon+c_{4}^{\prime} \frac{\left|\nabla K\left(a_{1}\right)\right|}{\mu_{1}}=o\left(\varepsilon+\sum_{k=1,2} \frac{1}{\left(\mu_{k} d_{k}\right)^{n-4}}+\varepsilon_{12}+\frac{1}{\mu_{1}}\right) .
$$

Then we derive a contradiction. Hence, $a_{1} \rightarrow y_{j_{1}}$, where $y_{j_{1}}$ is a critical point of K and therefore $d_{1}=$ $d\left(a_{1}, \partial \Omega\right) \geq c>0$.

If now $\left|\nabla K\left(a_{2}\right)\right| \geq c>0$, then multiplying $\left(F_{2}\right)$ by a small positive constant m and adding to $\left(E_{2}\right)$, using (3.1) and (3.2), we obtain

$$
c_{1} \frac{H\left(a_{2}, a_{2}\right)}{\mu_{2}^{n-2}}+c_{1}^{\prime} \varepsilon_{12}+c_{2} \varepsilon+c_{4}^{\prime} \frac{\left|\nabla K\left(a_{2}\right)\right|}{\mu_{2}}=o\left(\varepsilon+\sum_{k=1,2} \frac{1}{\left(\mu_{k} d_{k}\right)^{n-2}}+\varepsilon_{12}+\frac{1}{\mu_{2}}\right) .
$$

Thus,

$$
\begin{equation*}
\varepsilon=o\left(\left(\mu_{1} d_{1}\right)^{4-n}\right) \quad \text { and } \varepsilon_{12}=o\left(\left(\mu_{1} d_{1}\right)^{4-n}\right) \tag{3.4}
\end{equation*}
$$

Using $\left(E_{1}\right)$, we derive

$$
c_{1} \frac{H\left(a_{1}, a_{1}\right)}{\mu_{1}^{n-4}}-\frac{c_{3}}{n^{2}} \frac{\Delta K\left(a_{1}\right)}{K\left(a_{1}\right) \mu_{1}^{2}}=o\left(\frac{1}{\mu_{1}^{2}}+\frac{1}{\left(\mu_{1} d_{1}\right)^{n-4}}\right)
$$

which is a contradiction with the assumption $\left(H_{1}\right)$. Then $a_{2} \rightarrow y_{j_{2}}$, where $y_{j_{2}}$ is a critical point of K and therefore $d_{2}=d\left(a_{2}, \partial \Omega\right) \geq c>0$.

For the other part of the claim, let us suppose that $y_{j_{2}}$ does not satisfy (1.5). From $\left(E_{2}\right)$, it is easy to obtain (3.4), which gives a contradiction in $\left(E_{1}\right)$.

Finally, assume that $y_{j_{1}}$ does not satisfy (1.5). Using $\left(H_{1}\right)$ and the fact that $a_{i} \rightarrow y_{j_{i}}$, we get

$$
\begin{equation*}
\frac{\Delta K\left(a_{2}\right)}{\mu_{2}^{2}}=o\left(\left|\frac{c_{1} H\left(a_{1}, a_{1}\right)}{\mu_{1}^{2}}-\frac{c_{3} \Delta K\left(a_{1}\right)}{36 K\left(a_{1}\right) \mu_{1}^{2}}\right|\right) \text { if } n=6 \text { and } \frac{\Delta K\left(a_{2}\right)}{\mu_{2}^{2}}=o\left(\frac{\left|\Delta K\left(a_{1}\right)\right|}{\mu_{1}^{2}}\right) \text { if } n>6 \tag{3.5}
\end{equation*}
$$

Now, using (3.2), (3.3) and adding $\left(E_{1}\right)$ to $2\left(E_{2}\right)$, we obtain

$$
2 c_{1} \frac{H\left(a_{2}, a_{2}\right)}{\mu_{2}^{n-4}}+\left(c_{1} \frac{H\left(a_{1}, a_{1}\right)}{\mu_{1}^{n-4}}-\frac{c_{3}}{n^{2}} \frac{\Delta K\left(a_{1}\right)}{K\left(a_{1}\right) \mu_{1}^{2}}\right)+c_{1} \varepsilon_{12}+3 c_{2} \varepsilon=o\left(\varepsilon+\frac{1}{\mu_{1}^{2}}+\sum_{k=1,2} \frac{1}{\left(\mu_{k} d_{k}\right)^{n-4}}+\varepsilon_{12}\right) .
$$

Hence, we get a contradiction. Thus, case 1 cannot occur.
Case 2. $\mu_{2}<M \mu_{1}$. In this case, it is easy to show that

$$
\begin{equation*}
\varepsilon_{12}=\frac{1}{\left(\mu_{1} \mu_{2}\left|a_{1}-a_{2}\right|^{2}\right)^{(n-4) / 2}}+o\left(\varepsilon_{12}\right) \tag{3.6}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\mu_{i} \frac{\partial \varepsilon_{12}}{\partial \mu_{i}}=-\frac{n-4}{2} \frac{1}{\left(\mu_{1} \mu_{2}\left|a_{1}-a_{2}\right|^{2}\right)^{(n-4) / 2}}+o\left(\varepsilon_{12}\right) \quad \text { for } \quad i=1,2 . \tag{3.7}
\end{equation*}
$$

Then $\left(E_{i}\right)$ becomes

$$
\begin{equation*}
c_{1} \frac{H\left(a_{i}, a_{i}\right)}{\mu_{i}^{n-4}}-\frac{c_{3}}{n^{2}} \frac{\Delta K\left(a_{i}\right)}{K\left(a_{i}\right) \mu_{i}^{2}}+c_{2} \varepsilon+c_{1}\left(\varepsilon_{12}-\frac{H\left(a_{1}, a_{2}\right)}{\left(\mu_{1} \mu_{2}\right)^{\frac{n-4}{2}}}\right)=o\left(\varepsilon+\frac{1}{\mu_{i}^{2}}+\sum_{k=1,2} \frac{1}{\left(\mu_{k} d_{k}\right)^{n-4}}+\varepsilon_{12}\right) \tag{3.8}
\end{equation*}
$$

If $\left|\nabla K\left(a_{i}\right)\right| \geq c>0$, multiplying $\left(F_{i}\right)$ by a small positive constant m and adding to $\left(E_{i}\right)$ for $i=1,2$: $\left(m F_{i}+E_{1}+E_{2}\right)$, we get

$$
\begin{equation*}
c_{1}\left(\frac{H\left(a_{1}, a_{1}\right)}{\mu_{1}^{n-4}}+\frac{H\left(a_{2}, a_{2}\right)}{\mu_{2}^{n-4}}\right)+c_{1}^{\prime} \frac{G\left(a_{1}, a_{2}\right)}{\left(\mu_{1} \mu_{2}\right)^{\frac{n-4}{2}}}+2 c_{2} \varepsilon+c_{4}^{\prime} \frac{\left|\nabla K\left(a_{i}\right)\right|}{\mu_{i}}=o\left(\varepsilon+\sum_{k=1,2} \frac{1}{\left(\mu_{k} d_{k}\right)^{n-4}}+\varepsilon_{12}+\frac{1}{\mu_{i}}\right) \tag{3.9}
\end{equation*}
$$

Using the fact that $G\left(a_{1}, a_{2}\right):=\left|a_{1}-a_{2}\right|^{4-n}-H\left(a_{1}, a_{2}\right)>0$ and

$$
\begin{equation*}
\varepsilon_{12}=O\left(\frac{H\left(a_{1}, a_{2}\right)}{\left(\mu_{1} \mu_{2}\right)^{(n-4) / 2}}+\frac{G\left(a_{1}, a_{2}\right)}{\left(\mu_{1} \mu_{2}\right)^{(n-4) / 2}}\right) \tag{3.10}
\end{equation*}
$$

(3.9) gives a contradiction. Hence, each concentration point converges to a critical point.

OULD BOUH/Turk J Math

For the other part of the claim, let us suppose that there exists i that does not satisfy (1.5). From (E_{i}), we have

$$
\varepsilon=o\left(\frac{1}{\left(\mu_{i} d_{i}\right)^{n-4}}\right) \quad \text { and } \frac{G\left(a_{1}, a_{2}\right)}{\left(\mu_{1} \mu_{2}\right)^{(n-4) / 2}}=o\left(\frac{1}{\left(\mu_{i} d_{i}\right)^{n-4}}\right)
$$

and then using $\left(E_{j}\right)$, we also derive a contradiction with the assumption $\left(H_{1}\right)$. Hence, the proof of our theorem is thereby completed.

Proof of Theorem 1.1 Arguing by contradiction, let us suppose that the problem $\left(P_{\varepsilon}\right)$ has a solution u_{ε} as stated in Theorem 1.1. From Proposition 3.1, we deduce that, for $i=1,2$, we have $a_{i} \rightarrow y_{j_{i}}$, such that $y_{j_{i}}$ is a critical point of K that satisfies (1.5). From the definition of σ the a_{i} points have to converge to the same critical point.

Without loss of generality, we can assume that $\mu_{2} \geq \mu_{1}$. Two cases may occur.
Case 1. $M \mu_{1}<\mu_{2}$, where M is a large positive constant.
Multiplying $\left(E_{2}\right)$ by 2 and adding to $\left(-E_{1}\right):\left(2 E_{2}-E_{1}\right)$, we obtain:

$$
\begin{align*}
& 2\left(c_{1} \frac{H\left(a_{2}, a_{2}\right)}{\mu_{2}^{n-4}}-\frac{c_{3}}{n^{2}} \frac{\Delta K\left(a_{2}\right)}{K\left(a_{2}\right) \mu_{2}^{2}}\right)-\left(c_{1} \frac{H\left(a_{1}, a_{1}\right)}{\mu_{1}^{n-4}}-\frac{c_{3}}{n^{2}} \frac{\Delta K\left(a_{1}\right)}{K\left(a_{1}\right) \mu_{1}^{2}}\right) \\
& \quad+\frac{2 c_{1}}{n-4}\left(\mu_{1} \frac{\partial \varepsilon_{12}}{\partial \mu_{1}}-2 \mu_{2} \frac{\partial \varepsilon_{12}}{\partial \mu_{2}}\right)-\frac{c_{1} H\left(a_{1}, a_{2}\right)}{\left(\mu_{1} \mu_{2}\right)^{(n-4) / 2}}+c_{2} \varepsilon \\
& \quad=o\left(\varepsilon+\sum_{k=1,2} \frac{1}{\mu_{k}^{2}}+\sum_{k=1,2} \frac{1}{\left(\mu_{k} d_{k}\right)^{n-4}}+\varepsilon_{12}\right) . \tag{3.11}
\end{align*}
$$

Now, combining (3.2), (3.3), (3.5), and (3.11), we derive a contradiction.
Case 2. $M \mu_{1} \geq \mu_{2}$. In this case, we see that ε_{12} is written as (3.6) and therefore $\left(E_{i}\right)$ becomes

$$
\begin{equation*}
c_{1} \frac{H\left(a_{i}, a_{i}\right)}{\mu_{i}^{n-4}}-\frac{c_{3}}{n^{2}} \frac{\Delta K\left(a_{i}\right)}{K\left(a_{i}\right) \mu_{i}^{2}}+c_{2} \varepsilon+c_{1}\left(\varepsilon_{12}-\frac{H\left(a_{1}, a_{2}\right)}{\left(\mu_{1} \mu_{2}\right)^{(n-4) / 2}}\right)=o\left(\varepsilon+\frac{1}{\mu_{i}^{2}}+\sum_{k=1,2} \frac{1}{\left(\mu_{k} d_{k}\right)^{n-4}}+\varepsilon_{12}\right) . \tag{3.12}
\end{equation*}
$$

Since $\mu_{i}\left|a_{1}-a_{2}\right| \rightarrow \infty$ for $i=1,2$ and $\left|a_{1}-a_{2}\right|<\sigma$, it is easy to show that there is at least i such that $\mu_{i}^{-2}=o\left(\left|\nabla K\left(a_{i}\right)\right| / \mu_{i}\right)$. Multiplying $\left(F_{i}\right)$ for $i=1,2$ by a small positive constant m and adding to (E_{i}) for $i=1,2:\left(m\left(F_{1}+F_{2}\right)+E_{1}+E_{2}\right)$, we get

$$
\begin{aligned}
\frac{c_{1}}{2}\left(\frac{H\left(a_{i}, a_{i}\right)}{\mu_{i}^{n-4}}\right. & \left.+\frac{H\left(a_{i}, a_{i}\right)}{\mu_{i}^{n-4}}\right)+\frac{c_{1}^{\prime}}{\left(\mu_{1} \mu_{2}\right)^{(n-4) / 2}}\left(\frac{1}{\left|a_{1}-a_{2}\right|^{(n-4) / 2}}-H\left(a_{1}, a_{2}\right)\right)+c_{2} \varepsilon \\
& +c_{4}^{\prime} \sum_{k=1,2} \frac{\left|\nabla K\left(a_{i}\right)\right|}{\mu_{i}}=o\left(\varepsilon+\sum_{k=1,2} \frac{1}{\left(\mu_{k} d_{k}\right)^{n-4}}+\varepsilon_{12}+\sum_{k=1,2} \frac{1}{\mu_{i}}\right)
\end{aligned}
$$

Finally, using the fact that $G\left(a_{1}, a_{2}\right)>0$ and (3.10), we derive a contradiction in this case. Our proof is thereby completed.

Proof of Theorem 1.2 Arguing by contradiction, let us assume that problem $\left(P_{\varepsilon}\right)$ has solutions $\left(u_{\varepsilon}\right)$ as stated in Theorem 1.2. By Theorem 1.1, we deduce that, $\left|a_{1}-a_{2}\right|>\sigma$. Proposition 3.1 implies that (1.5) holds for $i=1,2$, which is a contradiction with the assumption of Theorem 1.2.

OULD BOUH/Turk J Math

4. Proof of bubble-tower solution results

In this section, we assume that problem $\left(P_{\varepsilon}\right)$ has solutions $\left(u_{\varepsilon}\right)$ that satisfy (1.6) and (1.7), which means u_{ε} is written as

$$
u_{\varepsilon}=\sum_{i=1}^{p} \gamma_{i} P \delta_{\left(a_{\varepsilon, i}, \mu_{\varepsilon, i}\right)}+v_{\varepsilon}, \quad \text { with } \quad \gamma_{i} \in\{-1,1\} .
$$

Observe that, as in Section 2, there is a unique way to choose a_{i} and μ_{i} such that v_{ε} is orthogonal to each $P \delta_{\left(a_{i}, \mu_{i}\right)}$ and their derivatives with respect to μ_{i} and $\left(a_{i}\right)_{j}$, where $\left(a_{i}\right)_{j}$ denotes the j th component of a_{i}. As in Lemma 2.1, we get $\mu_{i}^{\varepsilon} \rightarrow 1$ as $\varepsilon \rightarrow 0$ for each $i=1, \ldots, p$.

Arguing also as in the proof of Propositions 2.4 and 2.5, we have, for each $i=1, \ldots, p$,

$$
\begin{aligned}
\left(E_{i}\right) \frac{H\left(a_{i}, a_{i}\right)}{\mu_{i}^{n-4}} & -\frac{c_{3}}{n^{2}} \frac{\Delta K\left(a_{i}\right)}{K\left(a_{i}\right) \mu_{i}^{2}}+c_{1} \sum_{j \neq i} \gamma_{i} \gamma_{j}\left(\frac{2 \mu_{i}}{n-4} \frac{\partial \varepsilon_{i j}}{\partial \mu_{i}}+\frac{H\left(a_{i}, a_{j}\right)}{\left(\mu_{i} \mu_{j}\right)^{(n-4) / 2}}\right)+c_{2} \varepsilon \\
& =O\left(\frac{\left|\nabla K\left(a_{i}\right)\right|^{2}}{\mu_{i}^{2}}\right)+o\left(\varepsilon+\frac{1}{\mu_{i}^{2}}+\sum_{j=1}^{p} \frac{1}{\left(\mu_{j} d_{j}\right)^{n-4}}+\sum_{r \neq j} \varepsilon_{r j}\right)
\end{aligned}
$$

and

$$
\begin{gathered}
\left(F_{i}\right) c_{1} \frac{1}{\mu_{i}^{n-3}} \frac{\partial H\left(a_{i}, a_{i}\right)}{\partial a_{i}}-c_{4} \frac{\nabla K\left(a_{i}\right)}{\mu_{i}}-2 c_{1} \sum_{j \neq i} \gamma_{i} \gamma_{j} \frac{1}{\mu_{i}}\left(\frac{\partial \varepsilon_{i j}}{\partial a_{i}}-\frac{\partial H}{\partial a_{i}}\left(a_{i}, a_{j}\right) \frac{1}{\left(\mu_{i} \mu_{j}\right)^{(n-4) / 2}}\right) \\
=O\left(\sum_{k=1}^{p} \frac{1}{\left(\mu_{k} d_{k}\right)^{n-2}}+\sum_{r \neq j} \varepsilon_{r j}^{\frac{n}{n-4}} \log \varepsilon_{r j}^{-1}+\varepsilon \sum_{r \neq j} \varepsilon_{r j}\left(\log \varepsilon_{r j}^{-1}\right)^{\frac{n-4}{2}}+\frac{1}{\mu_{i}^{3}}\right) .
\end{gathered}
$$

Observe that

$$
\begin{equation*}
\left|\frac{\Delta K\left(a_{i}\right)}{\mu_{i}^{2}}\right|+\frac{\left|\nabla K\left(a_{i}\right)\right|^{2}}{\mu_{i}^{2}}=o\left(\frac{1}{\mu_{1}^{2}}\right) \forall i>1 \text { and } \frac{H\left(a_{i}, a_{j}\right)}{\left(\mu_{i} \mu_{j}\right)^{\frac{n-2}{2}}}=o\left(\frac{1}{\left(\mu_{i} d_{i}\right)^{n-2}}\right) \forall i<j \tag{4.1}
\end{equation*}
$$

First we start by proving the following crucial proposition, which is a key point in the proof of Theorems 1.4 and 1.5.

Lemma 4.1 Let $i<j<k$, such that $\mu_{i}\left|a_{r}-a_{l}\right| \rightarrow+\infty$ for $r, l=i, j, k$. Then $\varepsilon_{i k}=o\left(\varepsilon_{i j}\right)$ or $\varepsilon_{j k}=o\left(\varepsilon_{i j}\right)$.
Proof Assume that there exists $c>0$ such that $\varepsilon_{i k} \geq c \varepsilon_{i j}$ and $\varepsilon_{j k} \geq c \varepsilon_{i j}$. Thus, we derive that $\mu_{j}\left|a_{i}-a_{j}\right|^{2} \geq c \mu_{k}\left|a_{i}-a_{k}\right|^{2}$ and $\mu_{i}\left|a_{i}-a_{j}\right|^{2} \geq c \mu_{k}\left|a_{j}-a_{k}\right|^{2}$. Hence, we get $\left|a_{i}-a_{k}\right|^{2} /\left|a_{i}-a_{j}\right|^{2} \leq c^{-1}\left(\mu_{j} / \mu_{k}\right) \rightarrow 0$ and $\left|a_{j}-a_{k}\right|^{2} /\left|a_{i}-a_{j}\right|^{2} \leq c^{-1}\left(\mu_{i} / \mu_{k}\right) \rightarrow 0$, which is a contradiction, and our lemma follows.

Proposition 4.2 Let Ω be a smooth bounded domain in \mathbb{R}^{n}, $n \geq 6$, and the assumptions ($H_{1}-H_{2}$) hold. If $\varepsilon=o\left(\sum_{i \neq j} \varepsilon_{i j}+\sum\left(\mu_{i} d_{i}\right)^{4-n}+\mu_{1}^{-2}\right)$, then there exists $\varepsilon_{0}>0$ such that, for each $\varepsilon \in\left(0, \varepsilon_{0}\right)$, problem $\left(P_{\varepsilon}\right)$ has no sign-changing solutions u_{ε} that satisfy (1.6) and (1.7).
Proof The proof is based on the estimate $\left(E_{i}\right)$. First, using $\left(E_{p}\right)$, we prove that all the terms containing the index p are small with respect to the others. Hence, we can drop the index p from the other $\left(E_{i}\right)$. Step by step, we derive that all the $\varepsilon_{i j}$ s and $\left(\mu_{i} d_{i}\right)^{4-n}$ for $i \geq 2$ are small with respect to $\left(\mu_{1} d_{1}\right)^{4-n}$. Finally, from $\left(E_{1}\right)$, we conclude. More precisely, let $m \leq p, T_{m}=\left\{i<m / \mu_{i}\left|a_{i}-a_{m}\right| \rightarrow+\infty\right\}$ and $j_{m}:=\max \left\{j<m, j \notin T_{m}\right\}$.

OULD BOUH/Turk J Math

We remark that, from Lemma 4.1 and the estimate of $\varepsilon_{i m}$ if $i \notin T_{m}$ and $i<m$,

$$
\begin{equation*}
\exists i_{m} \in T_{m} \text { s.t. } \forall i \in T_{m} \backslash\left\{i_{m}\right\}, \varepsilon_{i m}=o\left(\varepsilon_{i_{m} m}\right) \text { and } \forall i \notin T_{m}, i<j_{m}, \varepsilon_{i m}=o\left(\varepsilon_{j_{m} m}\right) \tag{4.2}
\end{equation*}
$$

Note that the set T_{m} can be empty (resp. $T_{m}=\{1, \ldots, m-1\}$), and then i_{m} (resp. j_{m}) does not appear.
Now, using (4.1) and (4.2) with $m=p$, the equation $\left(E_{p}\right)$ becomes

$$
\left(E_{p}^{\prime}\right) \quad c_{1} \frac{H\left(a_{p}, a_{p}\right)}{\mu_{p}^{n-4}}-c_{1} \gamma_{i_{p}} \gamma_{p} \varepsilon_{i_{p} p}-\gamma_{j_{p}} \gamma_{p} \varepsilon_{j_{p} p}=o\left(\frac{1}{\mu_{1}^{2}}+\sum_{j=1}^{p} \frac{1}{\left(\mu_{j} d_{j}\right)^{n-4}}+\sum_{r \neq j} \varepsilon_{r j}\right)
$$

Observe that, if $\mu_{j_{p}}\left|a_{i_{p}}-a_{p}\right| \rightarrow+\infty$, then $\varepsilon_{i_{p} p}=o\left(\varepsilon_{j_{p} p}\right)$, and if $\mu_{j_{p}}\left|a_{i_{p}}-a_{p}\right|$ is bounded, it follows that $j_{p}<i_{p}$ and $\mu_{j_{p}}\left|a_{j_{p}}-a_{i_{p}}\right|$ is bounded and therefore $\varepsilon_{j_{p} p}=o\left(\varepsilon_{j_{p} i_{p}}\right)$.

Hence, there exists $i_{0} \in\left\{i_{p}, j_{p}\right\}$ such that

$$
\left(E_{p}^{\prime}\right) \quad c_{1} \frac{H\left(a_{p}, a_{p}\right)}{\mu_{p}^{n-4}}-c_{1} \gamma_{i_{0}} \gamma_{p} \varepsilon_{i_{0} p}=o\left(\frac{1}{\mu_{1}^{2}}+\sum_{j=1}^{p} \frac{1}{\left(\mu_{j} d_{j}\right)^{n-4}}+\sum_{r \neq j} \varepsilon_{r j}\right)
$$

Now, if $d_{p}>c d_{i_{0}}$ for some positive constant c, we get

$$
\frac{H\left(a_{p}, a_{p}\right)}{\mu_{p}^{n-4}}=o\left(\sum_{j=1}^{p-1} \frac{1}{\left(\mu_{j} d_{j}\right)^{n-4}}\right) \text { and } \varepsilon_{i_{0} p}=o\left(\frac{1}{\mu_{1}^{2}}+\sum_{j=1}^{p-1} \frac{1}{\left(\mu_{j} d_{j}\right)^{n-4}}+\sum_{r \neq j} \varepsilon_{r j}\right) .
$$

In the other case, $d_{p} / d_{i_{0}} \rightarrow 0$, this implies that $\left|a_{i_{0}}-a_{p}\right| \sim d_{i_{0}}$ and $\varepsilon_{i_{0} p}=\left(\mu_{i_{0}} \mu_{p}\left|a_{i_{0}}-a_{p}\right|^{2}\right)^{(4-n) / 2}=$ $o\left(\left(\mu_{i_{0}} d_{i_{0}}\right)^{4-n}\right)$. Then from $\left(E_{p}^{\prime}\right)$, we derive, for $i<p$

$$
\varepsilon_{i p}=o\left(\frac{1}{\mu_{1}^{2}}+\sum_{j=1}^{p-1} \frac{1}{\left(\mu_{j} d_{j}\right)^{n-4}}+\sum_{r \neq j} \varepsilon_{r j}\right) \text { and } \frac{H\left(a_{p}, a_{p}\right)}{\mu_{p}^{n-4}}=o\left(\frac{1}{\mu_{1}^{2}}+\sum_{j=1}^{p-1} \frac{1}{\left(\mu_{j} d_{j}\right)^{n-4}}+\sum_{r \neq j} \varepsilon_{r j}\right) .
$$

Thus, we remove the index p from the system and we repeat the same argument with $p-1, \ldots, 2$. Hence, we derive that

$$
\frac{H\left(a_{i}, a_{i}\right)}{\mu_{i}^{n-4}}=o\left(\frac{1}{\mu_{1}^{2}}+\frac{1}{\left(\mu_{1} d_{1}\right)^{n-4}}\right) \text { for } i>1 \text { and } \varepsilon_{i j}=o\left(\frac{1}{\mu_{1}^{2}}+\frac{1}{\left(\mu_{1} d_{1}\right)^{n-4}}\right) \text { for } i \neq j
$$

Thus, $\left(E_{1}\right)$ and $\left(F_{1}\right)$ become

$$
\begin{aligned}
& \left(E_{1}^{\prime}\right) \quad c_{1} \frac{H\left(a_{1}, a_{1}\right)}{\mu_{1}^{n-4}}-\frac{c_{3}}{n^{2}} \frac{\Delta K\left(a_{1}\right)}{K\left(a_{1}\right) \mu_{1}^{2}}=O\left(\frac{\left|\nabla K\left(a_{i}\right)\right|^{2}}{\mu_{i}^{2}}\right)+o\left(\frac{1}{\mu_{1}^{2}}+\frac{1}{\left(\mu_{1} d_{1}\right)^{n-4}}\right), \\
& \left(F_{1}^{\prime}\right) \quad c_{4} \frac{\left|\nabla K\left(a_{1}\right)\right|}{\mu_{1}}+O\left(\frac{1}{\left(\mu_{1} d_{1}\right)^{n-3}}\right)=o\left(\frac{1}{\left(\mu_{1} d_{1}\right)^{n-3}}+\frac{1}{\mu_{1}}\right)
\end{aligned}
$$

Finally, if $\left|\nabla K\left(a_{1}\right)\right|>c$, using $\left(E_{1}^{\prime}+F_{1}^{\prime}\right)$, we get a contradiction.
If $\left|\nabla K\left(a_{1}\right)\right| \rightarrow 0$, using $\left(E_{1}^{\prime}\right)$ and the assumption $\left(H_{1}\right)$, we also derive a contradiction.
The proof of our proposition is thereby completed.

Proof of Theorem 1.4 Arguing by contradiction, let us assume that problem $\left(P_{\varepsilon}\right)$ has solutions $\left(u_{\varepsilon}\right)$ as stated in Theorem 1.4.

From the definition of q_{1} and q_{2}, we have $\varepsilon_{q_{1} q_{2}} \geq c\left(\mu_{q_{1}} / \mu_{q_{2}}\right)^{(n-4) / 2}$, and this implies that, for $i<q_{1}$,

$$
\begin{equation*}
\varepsilon_{i p} \leq c\left(\mu_{i} / \mu_{p}\right)^{(n-4) / 2}=o\left(\varepsilon_{q_{1} q_{2}}\right) \tag{4.3}
\end{equation*}
$$

Regarding the equation $\left(E_{p}\right)$, using (4.1), (4.3), and the fact that $\gamma_{i} \neq \gamma_{p}$ for $i \geq q_{1}$, we obtain

$$
c_{1} \frac{H\left(a_{p}, a_{p}\right)}{\mu_{p}^{n-4}}+c_{2} \varepsilon+c_{1} \sum_{i=q_{1}}^{p} \varepsilon_{i p}=o\left(\frac{1}{\mu_{1}^{2}}+\sum_{j=1}^{p} \frac{1}{\left(\mu_{j} d_{j}\right)^{n-4}}+\sum_{r \neq j} \varepsilon_{r j}\right)
$$

This gives an estimate of ε, and using Proposition 4.2, we derive a contradiction. Hence, our theorem is proved.

Proof of Theorem 1.5 Arguing by contradiction, let us assume that $\left(P_{\varepsilon}\right)$ has solutions $\left(u_{\varepsilon}\right)$ as stated in Theorem 1.5. From the definition of q, we have $\varepsilon_{q(q+1)} \geq c\left(\mu_{q} / \mu_{q+1}\right)^{(n-4) / 2}$, and this implies that

$$
\begin{equation*}
\varepsilon_{i(q+1)}=o\left(\varepsilon_{q(q+1)}\right) \text { for } i<q \quad \text { and } \quad \varepsilon_{(q+1) i}=o\left(\varepsilon_{q(q+1)}\right) \text { for } i>q+1 \tag{4.4}
\end{equation*}
$$

Now, regarding the equation $\left(E_{q+1}\right)$, using (4.1), (4.4), and the fact that $\gamma_{q} \neq \gamma_{q+1}$, we have

$$
c_{1} \frac{H\left(a_{q+1}, a_{q+1}\right)}{\mu_{q+1}^{n-4}}+c_{2} \varepsilon+c_{1} \varepsilon_{q(q+1)}=o\left(\frac{1}{\mu_{1}^{2}}+\sum_{j=1}^{p} \frac{1}{\left(\mu_{j} d_{j}\right)^{n-4}}+\sum_{r \neq j} \varepsilon_{r j}\right)
$$

Then we get an estimate of ε, and using Proposition 4.2, we derive a contradiction, and the proof of our theorem is thereby completed.

References

[1] Bahri A. Critical Point at Infinity in Some Variational Problems. Volume 182 of Pitman Research Notes in Mathematics Series. Harlow, UK: Longman, 1989.
[2] Bahri A, Coron JM. On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of topology of the domain. Commun Pur Appl Math 1988; 41: 255-294.
[3] Bahri A, Li YY, Rey O. On a variational problem with lack of compactness: the topological effect of the critical points at infinity. Calc Var Partial Dif 1995; 3: 67-94.
[4] Bartsch T, Weth T. A note on additional properties of sign-changing solutions to superlinear elliptic equations. Topol Method Nonl An 2003; 22: 1-14.
[5] Ben Ayed M, El Mehdi K. On a biharmonic equation involving nearly critical exponent. Nonlinear Differ Equ Appl 2006; 13: 485-509.
[6] Ben Ayed M, El Mehdi K. The Paneitz curvature problem on lower dimensional spheres. Ann Glob Anal Geom 2007; 31: 1-36.
[7] Ben Ayed M, El Mehdi K, Grossi M, Rey O. A nonexistence result of single peaked solutions to a supercritical nonlinear problem. Commun Contemp Math 2003; 2: 179-195.
[8] Ben Ayed M, Ghoudi R. Profile and existence of sign-changing solutions to an elliptic subcritical equation. Commun Contemp Math 2008; 10: 1183-1216.

OULD BOUH/Turk J Math

[9] Ben Ayed M, Ould Bouh K. Nonexistence results of sign-changing solution to a supercritical nonlinear problem. Commun Pur Appl Anal 2008; 7: 1057-1075.
[10] Chang SA. On a Paneitz operator - a fourth order differential operator in conformal geometry. In: Christ M, Kenig C, Sadorsky C, editors. Harmonic Analysis and Partial Differential Equations; Essays in Honor of Alberto P. Calderon. Chicago, IL, USA: University of Chicago Press, 1999, pp. 127-150.
[11] Chou KS, Geng D. Asymptotics of positive solutions for a biharmonic equation involving critical exponent. Differ Integral Equ 2000; 13: 921-940.
[12] Del Pino M, Felmer P, Musso M. Two bubbles solutions in the supercritical Bahri-Coron's problem. Calc Var Partial Dif 2003; 16: 113-145.
[13] Djadli Z, Hebey E, Ledoux M. Paneitz type operators and applications. Calc Duke Math J 2000; 104: 129-169.
[14] Ebobisse F, Ould Ahmedou M. On a nonlinear fourth order elliptic equation involving the critical Sobolev exponent. Nonlinear Anal-Theor 2003; 52: 1535-1552.
[15] El Mehdi K, Hammami M. Blowing up solutions for a biharmonic equation with critical nonlinearity. Asymptotic Anal 2005; 45: 485-509.
[16] Gazzola F, Grunau HC, Squassina M. Existence and nonexistence results for critical growth biharmonic elliptic equations. Cal Var Partial Dif 2003; 18: 117-143.
[17] Ghoudi R. Blowing up of sign-changing solutions to an elliptic subcritical equation. J Partial Dif Equ 2012; 25: 368-388.
[18] Ould Bouh K. Nonexistence result of sign-changing solutions for a supercritical problem of the scalar curvature type. Adv Nonlinear Stud 2012; 12: 149-171.
[19] Ould Bouh K. Sign-changing solutions of a fourth-order elliptic equation with supercritical exponent. Electron J Diff Equ 2014; 77: 1-13.
[20] Pistoia A, Weth T. Sign-changing bubble-tower solutions in a slightly subcritical semilinear Dirichlet problem. Ann I H Poincare-An 2007; 24: 325-340.
[21] Rey O. The role of Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent. J Funct Anal 1990; 89: 1-52.
[22] van der Vorst RCAM. Variational identities and applications to differential systems. Arch Rat Mech Anal 1991; 116: 375-398.
[23] van der Vorst RCAM. Fouth order elliptic equations with critical growth. C R Acad Sci Paris 1995; 320: 295-299.

[^0]: *Correspondence: hbouh@taibahu.edu.sa
 2000 AMS Mathematics Subject Classification: 35J20, 35J60

