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doi:10.3906/mat-1703-52

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

The Cauchy–Kowalevski theorem applied for counting connections with a

prescribed Ricci tensor

Barbara OPOZDA, W lodzimierz M. MIKULSKI∗

Faculty of Mathematics and Computer Science, Jagiellonian University, Cracow, Poland

Received: 14.03.2017 • Accepted/Published Online: 29.05.2017 • Final Version: 24.03.2018
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1. Introduction

Our study is inspired by the recent paper by Dušek and Kowalski [3]. Roughly speaking, the question is how

many structures of a prescribed type exist. By a satisfactory answer we mean a theorem saying that the set

of such structures is parametrized by some families (finite) of arbitrarily chosen functions. We consider the

local setting of the question. It turns out that the theorem of Cauchy–Kowalevski can be used as a tool in

answering it. Of course, using this tool implies that we must restrict ourselves to analytic structures. However,

the advantage is that the tool belongs to the fundamentals of mathematics and a procedure of getting structures

is explicit modulo solving a Cauchy–Kowalevski system of differential equations. On the other hand, it seems

that the method fits only very special situations.

More precisely, the main goal of the present paper is to determine the number of analytic functions that

define an analytic connection with a prescribed Ricci tensor. One can say that this is an ’inverse type problem’:

given a Ricci tensor, find a connection.

The question of existence of connections with a prescribed Ricci tensor was studied, for instance, in

[1, 2, 4, 5]. In particular, it was proved in [5] that if n ≥ 2 then any analytic symmetric tensor of type (0, 2) on

an n-manifold can be locally realized as the symmetric part of the Ricci tensor of some torsion-free connection.

We extend this result to not necessarily symmetric prescribed tensors and the whole Ricci tensors. Namely, we

observe that a necessary condition for a tensor of type (0, 2) to be (locally) the Ricci tensor of some torsion-free

connection is that its antisymmetric part is a closed form. If n ≥ 2 then for an analytic tensor field on an

n -manifold the closedness of the antisymmetric part is also a sufficient condition for a local realization as the

Ricci tensor of a torsion-free connection. Moreover, we show that if n ≥ 2 then the set of germs at a point

in Rn of all analytic torsion-free connections ∇ with a prescribed Ricci tensor (whose antisymmetric part

is closed) depends bijectively on n3−3n
2 + 1 analytic functions of n variables and n2+n

2 analytic functions of

(n− 1) variables. In particular, the functions of n variables are some Christoffel symbols of ∇ . Choosing them
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in special ways one can produce structures with additional properties. In the case of connections with arbitrary

torsion we prove, modifying the proof of the main theorem from [3], that if n ≥ 2 then the set of germs of

all analytic connections with a prescribed Ricci tensor depends bijectively on n3 − n2 analytic functions of n

variables and n2 functions on n − 1 variables. In particular, if n ≥ 2 we get that any analytic tensor field of

type (0, 2) around 0 ∈ Rn can be realized locally around 0 as the Ricci tensor of an analytic connection. We

also consider the case where the trace of the torsion vanishes.

A remarkable paper concerning the topic under consideration is [2]. In [2] more advanced techniques

(than the Cauchy–Kowalevski theorem) are used and the analyticity assumption can be dropped. Moreover,

the global setting of the problem is considered. On the other hand, the paper deals only with the Riemannian

case and manifolds of dimension at least 3. In the present paper we put emphasis on the generality of the

situation (arbitrary affine connections with Ricci tensor of any algebraic type) and the simplicity of the method.

The method also allows us to give an answer to the considered problem in the Riemannian case for 2-dimensional

manifolds. More precisely, an answer is provided in the 2-dimensional case for nondegenerate Ricci tensors. Here

the Cauchy–Kowalevski theorem of the second order is used.

2. Preliminaries

Recall the theorem of Cauchy–Kowalevski in the version we need for our considerations. We adopt the notation

(f)i = ∂f
∂xj , (f)jk = ∂2f

∂xj∂xk for a function on a domain endowed with a coordinate system (x1, ..., xn). All

coordinate systems used in this paper are analytic.

Theorem 2.1 Consider a system of differential equations for unknown functions U1, ...., UN in a neighborhood

of 0 ∈ Rn and of the form

(U1)1 = H1(x1, ..., xn, U1, ..., UN , (U1)2, ..., (U
1)n, ..., (U

N )2, ..., (U
N )n),

(U2)1 = H2(x1, ..., xn, U1, ..., UN , (U1)2, ..., (U
1)n, ..., (U

N )2, ..., (U
N )n),

...

(UN )1 = HN (x1, ..., xn, U1, ..., UN , (U1)2, ..., (U
1)n, ..., (U

N )2, ..., (U
N )n),

where Hi , i = 1, ..., N , are analytic functions of all variables in a neighborhood of (0, ..., 0, φ1(0), ...,

φN (0), (φ1)2(0), ..., (φ
1)n(0), ..., (φ

N )2(0), ..., (φ
N )n(0)) ∈ R(N+1)n for analytic functions φ1, ..., φN given in

a neighborhood of 0 ∈ Rn−1 .

Then the system has a unique solution (U1(x1, ..., xn), ..., UN (x1, ..., xn)) that is analytic around 0 ∈ Rn

and satisfies the initial conditions

U i(0, x2, ..., xn) = φi(x2, ..., xn) for i = 1, ..., N.

In the second-order Cauchy–Kowalewski theorem we additionally prescribe analytic functions ψ1, ..., ψN

defined in a neighborhood of 0 ∈ Rn−1 . We have (U1)11, ..., (U
N )11 on the left-hand sides and we add to the

set of arguments of H1, ...,HN on the right-hand sides the first derivatives (U1)1, ..., (U
N )1 and the second

derivatives (U i)jk for i = 1, ..., N , j = 1, ..., n and k = 2, ..., n . To the initial conditions we add the conditions
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(U i)1(0, x
2, ..., xn) = ψi(x2, ..., xn)

for the prescribed functions ψi , i = 1, ..., N .

Since the problems we study are of local nature, we shall locate geometric structures in open neighbor-

hoods of 0 ∈ Rn . For the beginning a neighborhood can be equipped with any analytic coordinate system, for

instance, the canonical one.

In the following theorems, when we write about objects in a neighborhood of 0 ∈ Rn , for instance

connections, tensor fields, functions, we mean, in fact, their germs at 0.

3. How many connections are there with a prescribed Ricci tensor?

For a fixed coordinate system (x1, ..., xn) the Ricci tensor Ric of a linear connection ∇ with Christoffel symbols

Γi
jk is expressed by the formula

Ric (∂i, ∂j) =

n∑
k=1

[(Γk
ij)k − (Γk

kj)i] +

n∑
k,l=1

[Γl
ijΓ

k
kl − Γl

kjΓ
k
il]. (1)

Let r be an analytic tensor field of type (0, 2) around 0 ∈ Rn . Set rij = r(∂i, ∂j). Modifying arguments from

[3] we will prove how many real analytic linear connections ∇ exist such that Ric = r .

The condition Ric = r is equivalent to the system of equations

n∑
k=1

[(Γk
ij)k − (Γk

kj)i] =
n∑

k,l=1

[Γl
kjΓ

k
il − Γl

ijΓ
k
kl] + rij , i, j = 1, ..., n. (2)

Set

Λij =
n∑

k,l=1

[Γl
kjΓ

k
il − Γl

ijΓ
k
kl] (3)

and rewrite the system (2) in the form

[(Γ1
ij)1 + ...+ (Γn

ij)n]− [(Γ1
1j)i + ...+ (Γn

nj)i] = Λij + rij , i, j = 1, ..., n. (4)

For i = 1 and j = 1, ..., n , we keep each derivative (Γn
nj)1 on the left-hand side of the corresponding equation.

We denote the sum of all remaining terms on the left-hand side of the corresponding equation by Λ′
1j and move

it to the right-hand side. For i > 1 and j = 1, ..., n , we keep each derivative (Γ1
ij)1 on the left-hand side of the

corresponding equation. We denote the sum of all remaining terms on the left-hand side of the corresponding

equation by Λ′
ij and move it to the right-hand side. Then we obtain the (equivalent) system

(Γn
nj)1 = −Λ1j − r1j + Λ′

1j , j = 1, ..., n,

(Γ1
ij)1 = Λij + rij − Λ′

ij , i = 2, ..., n , j = 1, ..., n .
(5)

We see that the first derivatives on the left-hand sides of this system are not present in any terms on the

right-hand sides.
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Theorem 3.1 Let n ≥ 2 and r be an analytic tensor field of type (0, 2) around 0 ∈ Rn . The family of all

analytic linear connections ∇ defined around 0 with the Ricci tensor Ric = r depends bijectively on n3 − n2

analytic functions of n variables and n2 analytic functions of n− 1 variables.

Proof We can choose n3 − n2 Christoffel symbols Γk
ij not present on the left-hand side of (5) as arbitrary

analytic functions. Then n2 analytic functions of n − 1 variables appear by solving the system (5) using the

Cauchy–Kowalevski theorem. 2

For a linear connection ∇ with torsion T(X,Y ) = ∇XY −∇YX − [X,Y ] , we have the 1-form τ given

by

τ(Y ) = tr (X → T(X,Y )) . (6)

Using a similar method as above, given an analytic tensor field r around 0 ∈ Rn , we will describe all analytic

linear connections Γ such that τ = 0 and Ric = r .

Clearly, this problem is equivalent to finding all solutions of the system consisting of the system (5) and

n∑
i=1

(Γi
ik − Γi

ki) = 0 , k = 1, ..., n . (7)

Theorem 3.2 Let n ≥ 3 and r be an analytic tensor field of type (0, 2) around 0 ∈ Rn . The family of all

analytic linear connections ∇ with τ = 0 and Ric = r depends bijectively on n3 −n2 −n analytic functions of

n variables and n2 analytic functions of n− 1 variables.

Proof From (7) we have

Γk+1
k,k+1 =−

k−1∑
i=1

Γi
ki −

n∑
i=k+2

Γi
ki

+
k−1∑
i=1

Γi
ik +

n∑
i=k+1

Γi
ik, k = 1, ..., n− 1, (8)

Γn−1
n,n−1 =−

n−2∑
i=1

Γi
ni +

n−1∑
i=1

Γi
in.

Since n ≥ 3, the Christoffel symbols on the left-hand sides of (8) are not present on the left-hand sides of the

n2 equalities of (5). We substitute the above n equalities (8) into the n2 equalities of (5). We obtain

(Γn
nj)1 = −Λ̃1j − r1j + Λ̃′

1j , j = 1, ..., n ,

(Γ1
ij)1 = Λ̃ij + rij − Λ̃′

ij , i = 2, ..., n , j = 1, ..., n ,
(9)

where Λ̃1j , Λ̃
′
1j , Λ̃ij , Λ̃

′
ij are Λ1j , Λ

′
1j , Λij , Λ

′
ij respectively, after the substitutions. It is easy to see that the

first derivatives on the left-hand sides of the system (9) are not present on the right-hand sides. We can now

choose n3 − n2 − n Christoffel symbols Γi
jk not present on the left-hand sides of (9) and of (8) as arbitrary

analytic functions. Then n2 analytic functions of n − 1 variables appear by solving (9) by means of the

Cauchy–Kowalevski theorem. 2
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If n = 2 then the condition τ = 0 yields T = 0. Hence the connection is torsion-free. We shall now

study this case for any dimension. Set

Dj = div∇∂j = tr (X → ∇X∂j) =

n∑
k=1

Γk
kj . (10)

Then the formula for the Ricci tensor can be written as follows:

Ric (∂i, ∂j) =

n∑
k=1

(Γk
ij)k − (Dj)i + Λij . (11)

We decompose the Ricci tensor into its symmetric and antisymmetric parts, that is, Ric = s+ a , where

s(X,Y ) =
Ric (X,Y ) + Ric (Y,X)

2
, a(X,Y ) =

Ric (X,Y )− Ric (Y,X)

2
. (12)

For a torsion-free connection the portions
∑n

k=1(Γ
k
ij)k and Λij are symmetric for i and j . Hence for a torsion-

free connection we have

aij = a(∂i, ∂j) =
(Di)j − (Dj)i

2
, (13)

sij = s(∂i, ∂j) =
n∑

k=1

(Γk
ij)k − (Dj)i + (Di)j

2
+ Λij . (14)

In [6] the following proposition was proved. Since its proof is short, we cite it here.

Proposition 3.3 For a torsion-free connection on a paracompact manifold M the antisymmetric part of its

Ricci tensor is exact.

Proof By the first Bianchi identity we have

trR(X,Y ) = Ric (Y,X)− Ric (X,Y )

for a torsion-free connection ∇ , where R is its curvature tensor. Let ∇′ be any torsion-free connection whose

Ricci tensor Ric ′ is symmetric. It can be the Levi-Civita connection of some metric. Denote by Q the difference

tensor between ∇ and ∇′ , that is, Q(X,Y ) = QXY = ∇XY −∇′
XY . Define the 1-form δ on M by

δ(X) = trQX .

Then

dδ(X,Y ) =
1

2
{tr∇′Q(X,Y, ·)− tr∇′Q(Y,X, ·)}.

The curvature tensors R and R′ for ∇ and ∇′ are related by the formula

R(X,Y )Z = R′(X,Y )Z +∇′Q(X,Y, Z)−∇′Q(Y,X,Z) +QXQY Z −QYQXZ.

It follows that trR(X,Y ) = trR′(X,Y ) + 2dδ(X,Y ) = 2dδ(X,Y ). 2

Since we study problems of local nature, we replace the exactness of the form in the above theorem by

its closedness. We shall prove
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Theorem 3.4 Let n ≥ 2 . An analytic tensor field r around 0 ∈ Rn of type (0, 2) can be locally realized

as the Ricci tensor of a torsion-free connection if and only if its antisymmetric part a , that is, a(X,Y ) =

r(X,Y )−r(Y,X)
2 , is closed. For a given tensor field r in a neighborhood of 0 ∈ Rn satisfying the above conditions

the set of all analytic torsion-free connections defined around 0 ∈ Rn and whose Ricci tensor is r depends

bijectively on n3−3n
2 +1 arbitrarily chosen analytic functions of n variables and n2+n

2 arbitrarily chosen analytic

functions of n− 1 variables.

Proof Let s stand for the symmetric part of r . The functions aij = a(∂i, ∂j), sij = s(∂i, ∂j) are given.

Since the form a is closed and r is analytic, around the fixed point 0 there is an analytic 1-form α such that

a = −dα . The 1-form α is chosen up to one function, that is, α can be replaced by α + dϕ for any analytic

function ϕ . Let α = α1dx
1 + ...+αndx

n . We have 2aij = −2dα(∂i, ∂j) = (αi)j − (αj)i . Suppose that r is the

Ricci tensor of some torsion-free connection whose Christoffel symbols Γk
ij are unknown. Then

(Di)j + (Dj)i
2

= aij + (Dj)i (15)

for i, j = 1, ..., n . Set Di = αi for i = 1, , , ., n . We have already used (13) and from now on the functions

D1, ..., Dn are given.

All the conditions from (14) must be satisfied. We have

s11 =

n∑
k=1

(Γk
11)k − (D1)1 + Λ11,

and hence

(Γ1
11 + Γ2

21 + ...+ Γn
n1)1 = (Γ1

11)1 + (Γ2
11)2 + ...+ (Γn

11)n + Λ11 − s11.

We can write it equivalently as

(Γ2
12)1 =

n∑
k=2

(Γk
11)k −

n∑
k=3

(Γk
k1)1 + Λ11 − r11. (16)

For i > 1 we have

s1i =
n∑

k=1

(Γk
1i)k − (Di)1 + (D1)i

2
+ Λ1i.

By using (15) we get

(Γ1
1i)1 = −(Γ2

1i)2 − ...− (Γn
1i)n − Λ1i + ai1 + (D1)i + si1.

We can write it as follows:

(Γ1
1i)1 = −(Γ2

1i)2 − ...− (Γn
1i)n − Λ1i + (D1)i + ri1. (17)

For i, j , where 1 < i ≤ j ≤ n , we have

sij =
n∑

k=1

(Γk
ij)k − (Dj)i + (Di)j

2
+ Λij ,
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that is,

sij = (Γ1
ij)1 + (Γ2

ij)2 + ...+ (Γn
ij)n − aij − (Dj)i + Λij .

We shall write it as follows:

(Γ1
ij)1 = −(Γ2

ij)2 − ...− (Γn
ij)n − Λij + (Dj)i + rij . (18)

Collecting the equations from (16)–(18) we get the following Cauchy–Kowalevski system of n(n+1)
2 equations

(equivalent to (14)):

(Γ2
12)1 =

∑n
k=2(Γ

k
11)k −

∑n
k=3(Γ

k
1k)1 + Λ11 − r11,

(Γ1
1i)1 = −(Γ2

1i)2 − ...− (Γn
1i)n − Λ1i + (D1)i + ri1, i > 1,

(Γ1
ij)1 = −(Γ2

ij)2 − ...− (Γn
ij)n − Λij + (Dj)i + rij , 1 < i ≤ j ≤ n.

(19)

The quantities r11 , (D1)i + ri1 , (Dj)i + rij are given.

Except for the dependence given by (19) the Christoffel symbols are related by the following system of

equations:

D1 = Γ1
11 + [Γ2

21] + ...+ Γn
n1,

D2 = [Γ1
12] + Γ2

22 + ...+ Γn
n2,

...

Dn = [Γ1
1n] + Γ2

2n + ...+ Γn
nn,

(20)

where, by using brackets, we marked the Christoffel symbols from the right-hand side of (20) that appear on

the left-hand side of (19). Observe also that on the right-hand sides of (20) there are no Christoffel symbols

that repeat because of the symmetry of Γk
ij in lower indices.

From each of the equations in (20) we want to determine one Christoffel symbol and then insert it into

(19) by the expression obtained from (20). Of course, we should not determine and substitute any marked

symbol. Moreover, we have to do it in such a way that, after the substitution into (19), the derivatives from

the left-hand side of (19) will not appear on the right-hand side of (19). Therefore, from the first equation of

(20) we can only take Γ1
11 = D1 − Γ2

21 − ...− Γn
n1 . From the next equations we can take Γk

kk (but here it is not

necessary to do it in this way).

For the modified system (19) (after the substitutions) we can apply the Cauchy–Kowalevski theorem.

We shall now count how many Christoffel symbols can be chosen arbitrarily. Note that all Christoffel

symbols for which the upper index is equal to one or two of lower indices are on the right-hand side of (20).

We see that from (20) we can choose n(n − 2) symbols arbitrarily. Consider now the Christoffel symbols for

which the upper index is different than each of the lower indices. Consider first the symbols whose upper

index is 1. All of them appear on the left-hand side of (19) and so we cannot choose them. Finally consider

those Christoffel symbols whose upper index is k , where 1 < k ≤ n , and k is different than any of the lower

indices. They do not appear either on the left-hand side of (19) or on the right-hand side of (20). All of

them can be chosen arbitrarily. There are (n − 1) (n−1)n
2 = (n−1)2n

2 such symbols. Therefore, we can choose

n(n− 2) + (n−1)2n
2 = n3−3n

2 Christoffel symbols arbitrarily. The function ϕ from the beginning of the proof is

also an arbitrarily chosen function of n variables. 2
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Remark 3.5 For n = 2 we have

D1 = Γ1
11 + [Γ2

12],

D2 = [Γ1
21] + Γ2

22.
(21)

None of the Christoffel symbols from the right-hand side of (21) can be chosen arbitrarily (in the above

procedure). We have n3−3n
2 = 1. The only Christoffel symbol that can be arbitrarily chosen in this case

is Γ2
11 . In particular, we can choose it as 0 and then the vector field ∇∂1∂1 is parallel to ∂1 (but we cannot

assume that ∇∂1∂1 vanishes). For any dimension the functions Γk
11 for k = 2, ..., n are up to choice. In

particular, one can choose them as 0, which means that ∇∂1∂1 is parallel to ∂1 . However, we cannot assume

that Γ1
11 = 0. From the last equation of (19) it is clear that we cannot assume that for some i > 1 we have

Γk
ii = 0 for all indices k , because we cannot choose Γ1

ii arbitrarily.

We shall now give an easy proof to the question of how many Levi-Civita connections on a 2-dimensional

domain are those whose Ricci tensor is a prescribed symmetric tensor r of type (0, 2).

For a metric tensor field g (not necessarily positive definite) the Christoffel symbols of its Levi-Civita

connection are given by

Γs
ij =

1

2

n∑
k=1

gsk ((gki)j + (gjk)i − (gji)k) ,

where gij = g(∂i, ∂j) and (gsk) is the inverse matrix of the matrix (gij). If n = 2 and the matrix (gij) has a

diagonal form in the coordinate system then

Γ1
11 = 1

2g
11(g11)1, Γ

2
11 = − 1

2g
22(g11)2, Γ

1
21 = Γ1

12 = 1
2g

11(g11)2,

Γ2
21 = Γ2

12 = 1
2g

22(g22)1, Γ
1
22 = − 1

2g
11(g22)1, Γ2

22 = 1
2g

22(g22)2,
(22)

where g11 = 1
g11

and g22 = 1
g22

. The Ricci tensor Ric of the Levi-Civita connection for g satisfies the equality

Ric = fg , where f is the Gaussian curvature of g . Using (22), by a straightforward computation one gets

f = − 1
2g

11g22[(g11)22 + (g22)11]

+1
4g

11(g22)2[(g22)2(g11)2 + ((g22)1)
2]

+1
4 (g

11)2g22[(g11)1(g22)1 + ((g11)2)
2].

(23)

Note that for an analytic metric tensor field on a 2-dimensional manifold there is an analytic orthogonal

coordinate system around each point of the domain of the metric tensor field.

Theorem 3.6 Let r be an analytic nondegenerate tensor field of type (0, 2) such that its matrix is diagonal in

an analytic coordinate system (x1, x2) on a neighborhood of 0 ∈ R2 . The set of all analytic metric tensor fields

around 0 such that their Ricci tensors are equal to r depends bijectively on arbitrarily chosen pairs (φ,ψ) of

analytic functions of one variable with φ(0) ̸= 0 .

Proof Suppose that g is an analytic metric tensor field around 0 ∈ R2 such that its Ricci tensor Ric is equal

to r . Then g = hr for some analytic map h around 0 ∈ R2 with h(0) ̸= 0. By (23) the equality Ric = r is
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equivalent to the partial differential equation

− 1

2hr22
[(hr11)22 + (hr22)11]

+
1

4(hr22)2
[(hr22)2(hr11)2 + ((hr22)1)

2] (24)

+
1

4h2r11r22
[(hr11)1(hr22)1 + ((hr11)2)

2] = r11.

Applying the Leibniz rule one sees that this equation can be transformed equivalently into the one of the forms

(h)11 = F (x, h, (h)1, (h)2, (h)12, (h)22)

for some analytic map F . Our theorem now follows from the Cauchy–Kowalevski theorem of order 2, where

two analytic functions φ , ψ of one variable are prescribed and the initial conditions are: h(0, x2) = φ ,

(h)1(0, x
2) = ψ . 2
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