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1. Introduction

Throughout this paper, the following notations will be used:

• C is an open convex subset of a Banach space X ,

• F is a Fréchet differentiable operator at each point of C with values in a Banach space Y ,

• Br[x] = {y ∈ X : ||y − x|| ≤ r} , for any x ∈ X and r > 0,

• Br(x) = {y ∈ X : ||y − x|| < r} , for any x ∈ X and r > 0,

• B(Y,X) is the space of all bounded linear operators from Y to X ,

• N denotes all positive integers including zero.

Many problems that arise in engineering and scientific disciplines can be modeled by the following

nonlinear operator equation:

F (x) = 0. (1)

Several problems about studying the solvability of (1) are brought forward (see [3, 13]). To solve this equation,

the iterative approximation method is considered as one of the main tools in fixed point theory. Therefore,

many iterative methods have been defined and studied by numerous mathematicians (see [7, 10, 11, 14]).
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In 2011 Sahu et al. [17] introduced the normal-S iteration process for finding solutions of constrained

minimization problems and split feasibility problems as follows:

Let E be a normed space, B be a nonempty, convex subset of E and A : B → B be an operator. Then,

for an arbitrary x0 ∈ B,

xn+1 = A((1− αn)xn + αnAxn) n ∈ N, (2)

where{αn} is a sequence in (0, 1).

Gürsoy [9] introduced Picard-S iterative process as follows:

Let B be a closed convex subset of a Banach space X and T : B → B be an operator. Then, for an

arbitrary x0 ∈ B


xn+1 = Tyn

yn = (1− αn)Txn + αnTzn

zn = (1− βn)xn + βnTxn (n ∈ N),
(3)

where {αn}∞n=0 , {βn}∞n=0 ∈ [0,1] .

For solving nonlinear operator equation (1), many authors present several generalizations of the Newton

method (see [3] and [21]). The Newton method is given as follows:

{
x0 ∈ C

xn+1 = xn − F
′−1
xn

F (xn), ∀n ∈ N
(4)

where F
′

x denotes the Fréchet derivative of F at the point x ∈ C .

In the Newton method (4), the functional value of the inverse of the derivative is required at each step.

A natural question is how to modify the Newton iteration process (4) so that the computation of the inverse of

the derivative at each step in the Newton method (4) can be avoided. Argyros [1], Bartle [4], Dennis [6], and

Rheinboldt [16] discussed the following modified Newton method,

xn+1 = xn − F
′−1
x0

F (xn), n ∈ N. (5)

Let x∗ ∈ C be a solution of (1) such that F
′−1
x∗ ∈ B(Y,X). For some x0 ∈ C , assume that F

′−1
x∗ and F satisfy

the following: ∥∥F ′
x − F ′

x0

∥∥ ≤ K0 ∥x− x0∥ , ∀x ∈ C and for some K0 > 0, (6)

∥∥∥F ′−1
x∗

(
F ′
x − F ′

x0

)∥∥∥ ≤ K1 ∥x− x0∥ , ∀x ∈ C and for some K1 > 0, (7)

and ∥∥∥F ′−1
x∗ (F ′

x − F ′
x∗)

∥∥∥ ≤ K2 ∥x− x∗∥ , ∀x ∈ C and for some K2 > 0. (8)

In [2] and [15], the authors proved theorems for semilocal and local convergence analysis of (5) to solve the

operator equation (4).
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Recently, Sahu et al. [18] introduced the following Newton-like S-iteration processes (SIP) for solving

equation (1): 
x0 ∈ C,

xn+1 = yn − F
′−1
x0

F (yn)

yn = (1− α)xn + αzn

zn = xn − F
′−1
x0

F (xn) n ∈ N,

(9)

and 
x0 ∈ C,

xn+1 = yn − F
′−1
y0

F (yn)

yn = (1− α)xn + αzn

zn = xn − F
′−1
x0

F (xn) n ∈ N,

(10)

where α ∈ (0, 1).

In the following theorems, they also proved semilocal as well as local convergence analysis of (9) and (10)

and obtained that these iterative algorithms are faster than (5).

Theorem 1 [18] Let F be a Fréchet differentiable operator defined on an open convex subset C of a Banach

space X with values in a Banach space Y . For some x0 ∈ C , let F ′−1
x0

∈ B(Y,X) and the operator F satisfy

(6) and the following conditions:

i)
∥∥F ′−1

x0
F (x0)

∥∥ ≤ η , for some η > 0;

ii)
∥∥F ′−1

x0

∥∥ ≤ β , for some β > 0 .

Assume that α ∈ (0, 1) , h = ηβK0 < 1
2 and Br [x0] ⊆ C such that r = 1−

√
1−2h
h η . Then, under the

above restrictions, the following assertions are true:

a) The operator A : Br[x0] → X , defined by

Ax = x− F ′−1
x0

F (x), x ∈ Br[x0],

is a contraction self-operator on Br[x0] with Lipschitz constant βrK0 and the operator of Equation (1)

has a unique solution in Br[x0] .

b) The S-operator Aα : Br[x0] → X generated by α and A is a contraction self-operator on Br[x0] with

Lipschitz constant βrK0(1− α+ αβrK0) .

Theorem 2 [18] Let F be a Fréchet differentiable operator defined on an open convex subset C of a Banach

space X with values in a Banach space Y . Suppose that λ ∈ (0, 1] and x∗ ∈ C is a solution of (1) such

that F ′−1
x∗ ∈ B(Y,X) . For some x0 ∈ C , let F ′−1

x∗ and F satisfy the conditions (7) and (8). Assume that

Br1(x
∗) ⊆ C , where r1 = 2

K2
. For x0 ∈ Br(x

∗) with r = 2
2K2+3K1

, let Aλ be an operator defined by

Aλ (x) = x− λF ′−1
x0

F (x), ∀x ∈ Br (x
∗) .

Then we have the following:
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i) For x ∈ Br(x
∗) , we have

||Aλ(x)− x∗|| ≤ (λδx + 1− λ)||x− x∗||,

where δx = K1

2(1−rK2)
(∥x− x∗∥+ 2 ∥x0 − x∗∥) .

ii) Aλ is a quasi-contraction and self-operator on Br(x
∗) with constant 1−(1−δ)λ , where δ = sup

x∈Br(x∗)

{δx} .

Motivated by the above studies, we introduce new Newton-like iteration processes as follows:
x0 ∈ C,

xn+1 = yn − F
′−1
x0

F (yn)

yn = (1− α) [xn − F
′−1
x0

F (xn)] + α[zn − F
′−1
x0

F (zn)]

zn = (1− θ)xn + θ[xn − F
′−1
x0

F (xn)] n ∈ N,

(11)

and 
x0 ∈ C,

xn+1 = yn − F
′−1
y0

F (yn)

yn = (1− α) [xn − F
′−1
x0

F (xn)] + α[zn − F
′−1
z0 F (zn)]

zn = (1− θ)xn + θ[xn − F
′−1
x0

F (xn)] n ∈ N,

(12)

where α, θ ∈ (0, 1).

In the present study, we obtain semilocal and local convergence results of (11) and (12). Moreover, we

compare the rates of convergence of the modified Newton method (5), the SIP of Newton-like iterative processes

(9)–(10) , and our Newton-like iterative processes (11)-(12).

2. Preliminaries

Definition 1 Let C be a nonempty subset of normed space X . A mapping T : C → X is said to be:

i) Contraction if there exists a constant δ ∈ (0, 1) such that

∥Tx− Ty∥ ≤ δ ∥x− y∥ , ∀x, y ∈ C.

ii) Quasi-contraction [19] if there exists a constant δ ∈ (0, 1) and FT = {x ∈ C : Tx = x} ̸= ∅ such that

∥Tx− p∥ ≤ δ ∥x− p∥ , ∀x ∈ C and p ∈ FT .

Definition 2 [17] Let C be a nonempty convex subset of a normed space X and T : C → C an operator. The

operator G : C → C is said to be S-operator generated by α ∈ (0, 1) , T , and identity mapping I if

G = T [(1− α) I + αT ] .

Definition 3 [5] Let {an}∞n=0 and {bn}∞n=0 be nonnegative real convergent sequences with limits a and b ,

respectively. Then {an}∞n=0 converges faster than {bn}∞n=0 if

lim
n→∞

∣∣∣∣an − a

bn − b

∣∣∣∣ = 0.
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Lemma 1 [1] Let R be a bounded linear operator on a Banach space X . Then the following assumptions are

equivalent:

i) There is a bounded linear operator S on X such that S−1 exists and

∥S −R∥ =
1

∥S−1∥
.

ii) R−1 exists.

Furthermore, if R−1 exists, then

∥∥R−1
∥∥ ≤

∥∥S−1
∥∥

1− ∥1− S−1R∥
≤

∥∥S−1
∥∥

1− ∥S−1∥ ∥S −R∥
.

Lemma 2 [19] Let F be a Fréchet differentiable operator defined on an open convex subset D of a Banach

space X with values in a Banach space Y . Let x∗ ∈ D be a solution of (1) such that F
′−1
x∗ ∈ B(Y,X) and the

operator F satisfies the conditions (8). Assume that Br(x
∗) ⊆ D , where r = 1

K2 . Then, for any x ∈ Br(x
∗) ,

Fx is invertible and the following estimate holds:∥∥∥∥(F ′−1
x∗ F ′

x

)−1
∥∥∥∥ ≤ 1

1−K2 ∥x− x∗∥
.

Lemma 3 [12] Let (X, d) be a complete metric space and T : X → X a contraction mapping. Then T has a

unique fixed point in X .

Lemma 4 [20] Let F be a Fréchet differentiable operator defined on an open convex subset D of a Banach

space X with values in a Banach space Y . Then, for all x, y ∈ D , we have

Fx− Fy =

1∫
0

F ′
y+t(x−y) (x− y) dt.

3. Main results

3.1. Semilocal convergence analysis

In this subsection, we give semilocal convergence analysis of algorithm (11) .

Theorem 3 Let F be a Fréchet differentiable operator defined on an open convex subset D of a Banach space

X with values in a Banach space Y. For some x0 ∈ D let F ′−1
x0

∈ B(Y,X) . Assume that F ′−1
x0

and F satisfy

(6), (7), and (8) with the following conditions:

i)
∥∥F ′−1

x0
F (x0)

∥∥ ≤ η , for some η > 0 .

ii)
∥∥F ′−1

x0

∥∥ ≤ β , for some β > 0 .
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Assume that γ, α, θ ∈ (0, 1) , h = ηβK0 < 1
2 , and Br [x0] ⊆ D such that r = 1−

√
1−2h
h η . Then, under

the above restrictions, the following assertions are true.

a) The Sp -operator Kα : Br[x0] → X generated by α , θ , A , and Aθ is a contraction self-operator on

Br [x0] with Lipschitz constant γ2 [1− α (1 + γθ) (1− γ)] such that

Kαx = A [(1− α)Ax+ αAAθx] .

b) Equation (1) has a unique solution x∗ ∈ Br[x0] .

c) The sequence {xn} generated by Algorithm (11) is in Br[x0] and it converges strongly to x∗ .

d) The following error estimate holds:

||xn+1 − x∗|| ≤ κ2(n+1)||x0 − x∗||, ∀n ∈ N,

where κ = γ [1− α (1 + γθ) (1− γ)] and γ = βrK0.

Proof By Theorem (1) and Theorem (2), we know that the following inequalities are provided for (12) and

(11), and we have

∥Ax−Ay∥ ≤ γ ∥x− y∥ ,

∥Aλx− x∗∥ ≤ (1− λ (1− δx)) ∥x− x∗∥ ,

and

∥Aθx−Aθy∥ ≤ γ (1− θ (1− γ)) ∥x− y∥ .

a) We show that Kα is a contraction as follows:

∥Kαx−Kαy∥ = ∥A [(1− α)Ax+ αAAθx]−A [(1− α)Ay + αAAθy]∥

≤ γ ∥(1− α)Ax+ αAAθx− (1− α)Ay − αAAθy∥

≤ γ (1− α) ∥Ax−Ay∥+ γα ∥AAθx−AAθy∥

≤ γ2 (1− α) ∥x− y∥+ γ3α (1− θ (1− γ)) ∥x− y∥

= γ2 [(1− α) + γα (1− θ (1− γ))] ∥x− y∥

= γ2 [1− α (1 + γθ) (1− γ)] ∥x− y∥ .

b) It is clear from Theorem (1).

c) From (11), we have

∥xn+1 − x∗∥ = ∥Kαxn −Kαx
∗∥

≤ γ2 [1− α (1 + γθ) (1− γ)] ∥xn − x∗∥ .
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By induction, we obtain

∥xn+1 − x∗∥ ≤ γ2 [1− α (1 + γθ) (1− γ)] ∥xn − x∗∥

∥xn − x∗∥ ≤ γ4 [1− α (1 + γθ) (1− γ)]
2 ∥xn−1 − x∗∥

∥xn−1 − x∗∥ ≤ γ6 [1− α (1 + γθ) (1− γ)]
3 ∥xn−2 − x∗∥

... ≤
...

∥xn+1 − x∗∥ ≤ γ2(n+1) [1− α (1 + γθ) (1− γ)]
n+1 ∥x0 − x∗∥ .

This implies that x → x∗ as n → ∞ .

d) Since κ = γ [1− α (1 + γθ) (1− γ)] and γ = βrK0 , we have

||xn+1 − x∗|| ≤ κ2(n+1)||x0 − x∗||, ∀n ∈ N.

2

3.2. Local convergence analysis

The following theorems present results about the local convergence analysis of (11) and (12) .

Theorem 4 Let F be a Fréchet differentiable operator defined on an open convex subset D of a Banach space

X with values in a Banach space Y . Assume that α, θ ∈ (0, 1) and x∗ ∈ D is a solution of (1) . For some

x0 ∈ D let F ′−1
x0

∈ B(Y,X) , and F ′−1
x0

and F satisfy (7) and (8) . Assuming that Br1 (x
∗) ⊆ D , where r1 = 2

K2
,

then we have the following:

i) For initial x0 ∈ Br (x
∗) with r = 2

2K2+3K1
, the sequence {xn} generated by algorithm (11) is in Br (x

∗)

and converges strongly to the unique solution x∗ in Br1 (x
∗) .

ii) The following error estimate holds:

||xn+1 − x∗|| ≤ (κ′)
2(n+1) ||x0 − x∗||, ∀n ∈ N,

where κ′ = δ0 [1− α (1 + δ0θ) (1− δ0)] and δ0 = ||x0−x∗||
r .

Proof

i) First we show that x∗ is a unique solution of (1) in Br1 (x
∗) . For contradiction, suppose that y∗ is

another solution of (1) in Br1 (x
∗) . Then we have

0 = F (x∗)− F (y∗) =

1∫
0

F ′
y∗+t(x∗−y∗) (x

∗ − y∗) dt.

Define an operator L such that

L (h) =

1∫
0

F ′
y∗+t(x∗−y∗)hdt, ∀h ∈ X.
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Hence, we have

∥F ′
x∗ − L∥ =

∥∥∥∥∥∥
1∫

0

F ′
x∗dt−

1∫
0

F ′
y∗+t(x∗−y∗)dt

∥∥∥∥∥∥
=

∥∥∥∥∥∥
1∫

0

(
F ′
x∗ − F ′

y∗+t(x∗−y∗)

)
dt

∥∥∥∥∥∥
and

∥∥I − F ′−1
x∗ L

∥∥ =

∥∥∥∥∥∥
1∫

0

F ′−1
x∗

(
F ′
x∗ − F ′

y∗+t(x∗−y∗)

)
dt

∥∥∥∥∥∥
≤

1∫
0

∥∥∥F ′−1
x∗

(
F ′
x∗ − F ′

y∗+t(x∗−y∗)

)∥∥∥ dt
≤ K2

2
∥x∗ − y∗∥

<
r1K2

2
= 1.

By Lemma 1, L is an invertible operator and hence x∗ = y∗ is a contradiction. It implies that x∗ is the

unique solution of (1) in Br1 (x
∗).

Now we examine that xn → x∗ as n → ∞ . By Theorem 3, we know that Kα is a quasi-contraction

self-operator on mapping Br (x
∗). Therefore, xn ∈ Br (x

∗) and

∥xn+1 − x∗∥ = ∥Kα (xn)−Kα (x∗)∥ (13)

≤ δ2xn
[1− α (1 + δxnθ) (1− δxn)] ∥xn − x∗∥ ,

where δxn is defined in Theorem 2-b. Since δxn < 1, then for all n ∈ N0 we obtain

∥xn+1 − x∗∥ ≤ ∥x0 − x∗∥ .

From the definition of δx , we have

δxn =
K1

2 (1− rK2)
(∥xn − x∗∥+ 2 ∥x0 − x∗∥)

≤ 3K1 ∥x0 − x∗∥
2 (1− rK2)

≤ ∥x0 − x∗∥
r

= δ0.

Hence, from (13), we obtain

∥xn+1 − x∗∥ ≤
(
δ20 [1− α (1 + δ0θ) (1− δ0)]

)n+1 ∥x0 − x∗∥ , (14)

which implies that xn → x∗ as n → ∞ . This complete the proof.
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ii) We conclude from (14) that for all n ∈ N , we have

||xn+1 − x∗|| ≤ (κ′)
2(n+1) ||x0 − x∗||.

2

Theorem 5 Let F be a Fréchet differentiable operator defined on an open convex subset D of a Banach space

X with values in a Banach space Y . Assume that α, θ ∈ (0, 1) and x∗ ∈ D is solution of (1) . For some

x0 ∈ D, let F ′−1
x∗ ∈ B(Y,X) , and F ′−1

x∗ and F satisfy the conditions (7) and (8) , and for all x ∈ D , some

K3 > 0, ∥∥∥F ′−1
x∗

(
F ′
x − F ′

y0

)∥∥∥ ≤ K3 ∥x− y0∥ , (15)

such that K3 ≤ K1 . Assume that Br1 (x
∗) ⊆ D , where r1 = 2

K2
and x0, y0, z0 ∈ Br (x

∗) , where r = 2
2K2+3K1

.

For all x ∈ Br (x
∗) , consider three operators such that

Vy0(x) = x− F
′−1
y0

F (x) ,

Vz0(x) = x− F
′−1
z0 F (x) ,

and
ℑα (x) = Vy0 [(1− α)A (x) + αVz0Aθ (x)] .

Then we have the following:

i) For all x ∈ Br (x
∗) , we obtain

∥Vy0(x)− x∗∥ ≤ δ′x ∥x− x∗∥ ,

where δ′x = K3

2(1−rK2)
(∥x− x∗∥+ 2 ∥y0 − x∗∥) .

ii) Vy0 is a quasi-contraction and self-operator on Br (x
∗) with constant δ′ , where δ′ = sup

x∈Br(x∗)

{δ′x} .

iii) For all x ∈ Br (x
∗) , we obtain

∥Vz0(x)− x∗∥ ≤ δ′′x ∥x− x∗∥ ,

where δ′′x = K3

2(1−rK2)
(∥x− x∗∥+ 2 ∥z0 − x∗∥) .

iv) Vz0 is a quasi-contraction and self-operator on Br (x
∗) with constant δ′′ , where δ′′ = sup

x∈Br(x∗)

{δ′′x} .

v) The sequence {xn} generated by Algorithm 12 is in Br (x
∗) and it converges strongly to the a unique

solution x∗ in Br1 (x
∗) .

vi) The following error estimate holds:

∥xn+1 − x∗∥ ≤ (κ′′)
(n+1) ∥x0 − x∗∥ ,

where κ′′ = δ′0 ((1− α) δ0 + αδ′′0 (1− θ (1− δ0))) and δ′0 = δ′′0 = 3K3||x0−x∗||
2(1−rK2)

.
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Proof

i) For all x ∈ Br (x
∗), by Lemma 2 and (15), we obtain

∥Vy0(x)− x∗∥ =
∥∥∥x− F

′−1
y0

F (x)− x∗
∥∥∥

=
∥∥∥F ′−1

y0

[
F (x)− F (x∗)− F ′

y0
(x− x∗)

]∥∥∥
≤

∥∥∥(F ′−1
x∗ F ′

y0

)−1
∥∥∥ 1∫

0

∥∥∥F ′−1
x∗

(
F ′
x∗+t(x−x∗) − F ′

y0
(x− x∗)

)∥∥∥ dt
≤ K3 ∥x− x∗∥ [∥x− x∗∥+ 2 ∥y0 − x∗∥]

2 (1− rK2)

≤ δ′x ∥x− x∗∥ .

ii)

δ′ = sup
x∈Br(x∗)

{δ′x} =

K3

[
sup

x∈Br(x∗)

∥x− x∗∥+ 2 ∥y0 − x∗∥

]
2 (1− rK2)

≤ K3 [r + 2 ∥y0 − x∗∥]
2 (1− rK2)

≤ K3 [r + 2r]

2 (1− rK2)

<
3rK1

2 (1− rK2)

= 1.

Thus, the operator Vy0 is a quasi-contraction self-mapping on Br(x
∗).

iii) Similarly, for all x ∈ Br (x
∗), by Lemma 2 and (15), we obtain

∥Vz0(x)− x∗∥ =
∥∥∥x− F

′−1
z0 F (x)− x∗

∥∥∥
=

∥∥∥F ′−1
z0

[
F (x)− F (x∗)− F ′

z0 (x− x∗)
]∥∥∥

≤
∥∥∥(F ′−1

x∗ F ′
z0

)−1
∥∥∥ 1∫

0

∥∥∥F ′−1
x∗

(
F ′
x∗+t(x−x∗) − F ′

z0 (x− x∗)
)∥∥∥ dt

≤ K3 ∥x− x∗∥ [∥x− x∗∥+ 2 ∥z0 − x∗∥]
2 (1− rK2)

≤ δ′′x ∥x− x∗∥ .
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iv)

δ′′ = sup
x∈Br(x∗)

{δ′′x} =

K3

[
sup

x∈Br(x∗)

∥x− x∗∥+ 2 ∥z0 − x∗∥

]
2 (1− rK2)

≤ K3 [r + 2 ∥z0 − x∗∥]
2 (1− rK2)

≤ K3 [r + 2r]

2 (1− rK2)

<
3rK1

2 (1− rK2)

= 1.

Thus, the operator Vz0 is a quasi-contraction self-mapping on Br(x
∗).

v) If we define an operator Aθ by

Aθ (x) = x− θF
′−1
x0

F (x) , ∀x ∈ Br (x
∗) ,

then Aθ is a quasi-contraction self-map on Br (x
∗) and the following satisfies:

∥Aθ (x)− x∗∥ ≤ (1− θ (1− δx)) ∥x− x∗∥ , ∀x ∈ Br (x
∗) .

As in Theorem 4, x∗ is the unique solution of (1) in Br1 (x
∗). Therefore, by Algorithm 12, we obtain

y0 = (1− α)Ax+ αVz0Aθx0 ∈ Br (x
∗)

and

z0 = Aθx0 ∈ Br (x
∗) .

Also, we can rearrange Algorithm 12 as follows:

xn+1 = ℑα (xn) = Vy0 [(1− α)A (xn) + αVz0Aθ (xn)] .

Now we show that the sequence {xn} generated by Algorithm 12 is in Br (x
∗) and it converges strongly

to the unique solution x∗ in Br1 (x
∗). For all n ∈ N , we have

∥xn+1 − x∗∥ = ∥ℑα (xn)− x∗∥ = ∥Vy0 [(1− α)A (xn) + αVz0Aθ (xn)]− x∗∥

≤ δ′yn
∥(1− α)A (xn) + αVz0Aθ (xn)− x∗∥ (16)

≤ δ′yn
(1− α) ∥A (xn)− x∗∥+ δ′yn

α ∥Vz0Aθ (xn)− x∗∥

≤ δ′yn
(1− α) δx ∥xn − x∗∥+ δ′yn

αδ′′zn ∥Aθ (xn)− x∗∥

≤ δ′yn
(1− α) δxn ∥xn − x∗∥+ δ′yn

αδ′′zn (1− θ (1− δxn)) ∥xn − x∗∥

= δ′yn

[
(1− α) δxn + αδ′′zn (1− θ (1− δxn))

]
∥xn − x∗∥ .
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From the definitions of δ′′x and δ′x , we obtain

δ′′zn =
K3

2 (1− rK2)
(∥Aθ (xn)− x∗∥+ 2 ∥x0 − x∗∥)

≤ K3

2 (1− rK2)
((1− θ (1− δxn)) ∥xn − x∗∥+ 2 ∥x0 − x∗∥)

≤ K3

2 (1− rK2)
(∥x0 − x∗∥+ 2 ∥x0 − x∗∥)

≤ 3K1 ∥x0 − x∗∥
2 (1− rK2)

= δ′′0

≤ ∥x0 − x∗∥
r

= δ0.

Similarly,

δ′yn
=

K3

2 (1− rK2)
(∥(1− α)A (xn) + αVz0Uθ (xn)− x∗∥+ 2 ∥x0 − x∗∥)

≤ K3

2 (1− rK2)

(
(1− α) δxn + αδ′′zn (1− θ (1− δxn)) ∥xn − x∗∥+ 2 ∥x0 − x∗∥

)
≤ K3

2 (1− rK2)
(∥x0 − x∗∥+ 2 ∥x0 − x∗∥)

≤ 3K1 ∥x0 − x∗∥
2 (1− rK2)

= δ′0

≤ ∥x0 − x∗∥
r

= δ0.

Hence, from (16), we obtain

∥xn+1 − x∗∥ ≤ [δ′0 ((1− α) δ0 + αδ′′0 (1− θ (1− δ0)))]
n+1 ∥x0 − x∗∥ , (17)

and it implies that xn → x∗ as n → ∞ .

vi) For all n ∈ N0 , it is concluded from (17) that ||xn+1 − x∗|| ≤ (κ′′)
(n+1) ||x0 − x∗|| .

2

3.3. The rate of convergence

Theorem 6 Let F be a Fréchet differentiable operator defined on an open convex subset D of a Banach space

X with values in a Banach space Y. For some x0 ∈ D let F ′−1
x0

∈ B(Y,X) . Assume that F ′−1
x0

and F satisfy

(6) with the following conditions:
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i)
∥∥F ′−1

x0
F (x0)

∥∥ ≤ η , for some η > 0 .

ii)
∥∥F ′−1

x0

∥∥ ≤ β , for some β > 0 .

Assume that γ, α, θ ∈ (0, 1) , h = ηβK0 < 1
2 , and Br [x0] ⊆ D such that r = 1−

√
1−2h
h η .

Under the above restrictions, for given u0 = x0 ∈ D , consider the iterative sequences {xn}∞n=0 and

{un}∞n=0 defined by (11) and (9), respectively. Then {xn}∞n=0 converges to x∗ faster than {un}∞n=0 does in

Br [x0] .

Proof Respectively, by Theorems 1 and Theorem 3, we have the following inequalities:

∥un+1 − x∗∥ ≤ γn+1 (1− α (1− γ))
n+1 ∥u0 − x∗∥ ,

and

∥xn+1 − x∗∥ ≤ γ2(n+1) [1− α (1 + γθ) (1− γ)]
n+1 ∥x0 − x∗∥ .

Define

an = γ2(n+1) [1− α (1 + γθ) (1− γ)]
n+1 ∥x0 − x∗∥ ,

bn = γn+1 (1− α (1− γ))
n+1 ∥u0 − x∗∥ ,

and

℘n =
an
bn

=
γ2(n+1) [1− α (1 + γθ) (1− γ)]

n+1 ∥x0 − x∗∥
γn+1 (1− α (1− γ))

n+1 ∥u0 − x∗∥

= γn+1

(
1− α (1 + γθ) (1− γ)

1− α(1− γ)

)n+1

.

Since γ , α, θ ∈ (0,1), we have [
γ

(
1− α (1 + γθ) (1− γ)

1− α(1− γ)

)]
< 1.

Therefore, limn→∞ ℘n = 0. From Definition 3, we obtain that {xn}∞n=0 converges faster than {un}∞n=0 . 2

Theorem 7 Let F be a Fréchet differentiable operator defined on an open convex subset D of a Banach space

X with values in a Banach space Y . Assume that α, θ ∈ (0, 1) and x∗ ∈ D is a solution of (1) . For some

x0 ∈ D, let F ′−1
x∗ ∈ B(Y,X) , and F ′−1

x∗ and F satisfy the conditions (7) and (8) , and for all x ∈ D , some

K3 > 0, ∥∥∥F ′−1
x∗

(
F ′
x − F ′

y0

)∥∥∥ ≤ K3 ∥x− y0∥ , (18)

such that K3 ≤ K1 . Assume that Br1 (x
∗) ⊆ D , where r1 = 2

K2
and x0, y0, z0 ∈ Br (x

∗) , where r = 2
2K2+3K1

.

Under the above restrictions, for given u0 = x0 ∈ D , consider the iterative sequences {xn}∞n=0 and

{un}∞n=0 defined by (12) and (10), respectively. Then {xn}∞n=0 converges to x∗ faster than {un}∞n=0 does in

Br1 (x
∗) .
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Proof Respectively, by Theorems 2 and Theorem 5, we have the following inequalities:

∥un+1 − x∗∥ ≤
(
δ
′

0 (1− α (1− δ0))
)n+1

∥u0 − x∗∥ ,

and

∥xn+1 − x∗∥ ≤ [δ′0 ((1− α) δ0 + αδ′′0 (1− θ (1− δ0)))]
n+1 ∥x0 − x∗∥ .

Define

an = [δ′0 ((1− α) δ0 + αδ′′0 (1− θ (1− δ0)))]
n+1 ∥x0 − x∗∥ ,

bn =
(
δ
′

0 (1− α (1− δ0))
)n+1

∥u0 − x∗∥ ,

and

℘n =
an
bn

=
[δ′0 ((1− α) δ0 + αδ′′0 (1− θ (1− δ0)))]

n+1 ∥x0 − x∗∥(
δ
′
0 (1− α (1− δ0))

)n+1 ∥u0 − x∗∥

=
[(1− α) δ0 + αδ′′0 (1− θ (1− δ0))]

n+1

(1− α (1− δ0))
n+1 .

Since

δ′′0 ≤ δ0

and γ , α, θ ∈ (0,1), we have

[(1− α) δ0 + αδ′′0 (1− θ (1− δ0))]
n+1

(1− α (1− δ0))
n+1 < 1.

Therefore, limn→∞ ℘n = 0. From Definition 3, we obtain that {xn}∞n=0 converges faster than {un}∞n=0 . 2

Example 1 [18] Let X = R , C = (−1, 1) , and F : C → R an operator defined by

F (x) = ex − 1, ∀x ∈ C.

Then F is Fréchet differentiable and its Fréchet derivative F ′
x at any point x ∈ C is given by

F ′
x = ex.

For x0 = 0, 26 , we get

F ′−1
x =

1

e0,26
.

It is easy to see that β = 0.771051585803566, η = 0.228948414196434 , and K0 = 2.718281828459046 . Then

h = ηβK0 <
1

2
.

Therefore, we have:

i)
∥∥F ′−1

x0
F (x0)

∥∥ ≤ η0 ,
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ii)
∥∥F ′−1

x0

∥∥ ≤ β0 ,

iii)
∥∥F ′

x − F ′
x0

∥∥ ≤ K0 ∥x− x0∥ .
Consequently, all conditions of Theorem 3 hold. Therefore, the sequence {xn} generated by (11) is in Br[x0]

and converges to x∗ ∈ Br[x0] . For given u0 = x0 ∈ C , Figure 1, Figure 2, and the Table show that the

sequence {xn} defined by (11) is faster than the sequence {un} generated by (9) .

Table. Comparison rate of convergence

xn Sahu Newton type Picard-S Newton type

x0 0.260000000000000 0.260000000000000

x1 0.017117996475976 0.004551903139995

x2 0.001613569978360 0.000134045775368

x3 0.000155439797062 0.000003977964746

x4 0.000015004477715 0.000000118077485

x5 0.000001448654022 0.000000003504904

x6 0.000000139867460 0.000000000104036

x7 0.000000013504220 0.000000000003088

x8 0.000000001303834 0.000000000000092

x9 0.000000000125885 0.000000000000003

x10 0.000000000012154 0.000000000000000

x11 0.000000000001174 0.000000000000000

x12 0.000000000000113 0.000000000000000

x13 0.000000000000011 0.000000000000000

x14 0.000000000000001 0.000000000000000

x15 0.000000000000000 0.000000000000000

The Table shows that our iteration reaches a fixed point at the 10th step while the Sahu Newton-like

iteration reaches it at the 15th step.

Figures 1 and 2 are the graphical presentations of the Table.

Figure 1. Comparison of the iteration processes defined by (1.9) and (1.11).
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Figure 2. Derivative comparison of the iteration processes defined by (1.9) and (1.11).

Corollary 1 (9) is shown to be faster than the iteration method of (5). In Example 1, (11) iterations were

shown to be faster than (9) . For this reason, it is proved that the (11) iteration method is faster than the (5)

iteration method.

An interesting result is that Newton’s method works for complex valued functions. Having seen that

Newton’s method behaves differently for different starting points, converging to different roots or possibly not

converging at all, what happens at problem areas in the complex plane? For example, consider the case of

starting points that are equidistant to multiple different roots. Using the Newton method one can attempt to

visualize the convergence of each possible starting complex number, resulting in a fractal pattern.

Example 2 [8] Figures 3 and 4 present examples of fractal polynomiography obtained using the two iteration

methods 9 and 11 by taking the following parameters: P (z) = z7 + z2 − 1 , M = 15 , standard convergence

test with ε = 0.001 , A = [−1.5, 1.5]× [−1.5, 1.5] , and fixing the coefficients as follows: Picard-S: α = 0.9 + i ,

β = 0.6− 0.5i , Sahu α = 0.9 + i .

Figure 3. Picard-S-Newton-like. Figure 4. Sahu-Newton-like.
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We notice that in each polynomiograph we find seven main areas with different forms and colors. The

fractal boundaries represent the seven solutions of the polynomial. Further, the colors in Figures 3 and 4 show

how long it took the starting point to reach the convergence point. In the darker colored spots the convergence

is faster than in lighter colored ones.
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