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Abstract: A variant of Weyl- and Horn-type inequalities for cyclically compact operators on Kaplansky–Hilbert modules

is given.
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1. Introduction

Kaplansky–Hilbert modules (or AW ∗ -modules) were initiated and investigated by Kaplansky ([7]), who proved

some deep and elegant results for such structures, which share many properties common to Hilbert spaces. In

[9, 10], Kusraev introduced the cyclical compactness notion and proved some important structural properties

of cyclically compact sets and operators. In addition, cyclically compact operators hold a general form in

Kaplansky–Hilbert modules, which resembles the Schmidt representation of compact operators on a Hilbert

space (see also [11, 12]). A detailed investigation of the class of cyclically compact operators has henceforth

arisen due intrinsically to Kusraev’s results. With this motivation in hand, cyclically compact operators have

been recently investigated by the author in a series of papers [2–5] (see also [8]).

Two well-known inequalities, the Weyl and the Horn inequalities, which derive an interesting connection

between the sequences of eigenvalues and singular numbers of compact operators acting on a Hilbert space,

were proved in [6, 13] (cf. [1]). In the present note, we will derive vector-valued versions of these inequalities.

The main technical tool used in the work is the functional representations of Kaplansky–Hilbert modules and

bounded linear operators on them (see [12, Theorem 7.4.12, 7.5.10, and 7.5.12]). The unexplained terminology

and notation can be found in [12].

2. Preliminaries

A Stone algebra is a commutative C∗ -algebra (with unity) whose self-adjoint part is a Dedekind-complete Riesz

space with respect to its natural partial ordering. In the literature, Stone algebra is known as commutative

AW ∗ -algebra, a term coined by Kaplansky.

Let Λ be a Stone algebra. The set of all projections of Λ, which is a complete Boolean algebra, is denoted

by the symbol P(Λ). A disjoint subset (ei)i∈I of P(Λ) is refered to as a partition of unity if 1 = sup {ei : i ∈ I} ,
where 1 is the unit element of Λ. The symbol [a] := inf {π ∈ P(Λ) : πa = a} is called the support of a in Λ.
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Let X be a unitary module over Λ. The function ⟨· | ·⟩ : X × X → Λ is said to be a Λ-valued inner

product if the following are satisfied for each x, y, z in X and a in Λ:

(i) ⟨x | x⟩ ≥ 0; ⟨x | x⟩ = 0 if and only if x = 0;

(ii) ⟨ax+ y | z⟩ = a ⟨x | z⟩+ ⟨z | y⟩∗ .

The unitary module X over Λ, which is complete with respect to the scalar-valued norm |||x||| := ∥⟨x | x⟩∥
1
2 ,

is called a Kaplansky–Hilbert module over Λ provided that the following are fulfilled:

(1) Let (ei)i∈I be a partition of unity in P(Λ), and let x be in X with eix = 0 for all i ∈ I , then x = 0;

(2) Let (ei)i∈I be a partition of unity in P(Λ), and let (xi)i∈I be a norm-bounded family in X , then there

is an element x ∈ X such that eix = eixi for all i ∈ I .

Using (1), the element x of (2) is unique: it is denoted as x = mixi∈I (eixi). A norm-bounded subset C of X

will be called mix-complete if for any index set J , mixj∈J (ejxj) is an element of C for each partition of unity

(ej)j∈J in P(Λ) and (xj)j∈J in C . As a simple corollary of (2), the closed unit ball of X is mix-complete.

In addition to the scalar-valued norm, we can define a vector-valued norm
x :=

√
⟨x | x⟩ . Throughout this

paper, we assume that if for some a ∈ Λ and for every x ∈ X , ax = 0, then a = 0.

A family (xi)i∈I ⊂ X is said to be bo-summable if we have an element x and a net ei ↓ 0 in Λ such

that for each i there is a finite F ⊂ I whose every subset L satisfies
∑j∈L xj − x

 ≤ ei . Besides, it is

conventional to write x = bo-
∑

i∈I xi . Note that if (xi)i∈I and (ei)i∈I are chosen as in (2), then we have

mixi∈I (eixi) = bo-
∑

i∈I eixi . On the other hand, we write x = o-
∑

i∈I xi in the case of x, xi in Λ.

A nonempty subset E of X is called projection orthonormal provided that ⟨x | y⟩ = 0, and ⟨x | x⟩ is a

nonzero projection for all distinct x, y ∈ E .

Denote by PrtN the family of all sequences in P(Λ) that are partitions of unity. For π1, π2 ∈ PrtN , the

expression π1 ≪ π2 means the following:

if k, l ∈ N and π1(k) ∧ π2(l) ̸= 0, then k < l .

Let (sk)k∈N be a bounded sequence in X and π ∈ PrtN . Then we can define an element sπ := mixn∈N (π(n)sn)

in X . Using this method, for each sequence (πk)k∈N ⊂ PrtN with πk ≪ πk+1 , one may derive a new sequence

(sπk
)k∈N , which is referred to as cyclic subsequence of (sk)k∈N . A mix-complete subset K of X is called

cyclically compact whenever every sequence in K has a cyclic subsequence converging to an element of K . A

subset of X that is contained in a cyclically compact set is said to be relatively cyclically compact. A continuous

Λ-linear operator T from X into Y is called cyclically compact provided that the image of the closed unit ball

of X under T is relatively cyclically compact in Y .

A nonzero element λ of Λ is called a global eigenvalue of an operator T if Tx = λx and [λ] ≤
[x]

hold for some x in X . A sequence (λk)k∈N that satisfies the following conditions is called a global eigenvalue

sequence of T :

(i) λk is either a global eigenvalue of T or zero in Λ for each k ∈ N ;

(ii) |λk| ≤
T, [λk] ≥ [λk+1] (k ∈ N), and o-limk→∞ λk = 0;
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(iii) πλk+m ̸= πλk for every nonzero projection π ≤ [λk] and for all m, k ∈ N ;

(iv) if λ is a global eigenvalue of T , then there is a partition (pk)k∈N of [λ] with λ = mixk∈N (pkλk).

It is known [3, Theorem 4.10] that a global eigenvalue sequence exists for all cyclically compact operators on

X . Now we recall the definition of the multiplicity of a global eigenvalue λ of cyclically compact operator

T . From [3, Corollary 4.4] and subsequent consequences, we have a unique sequence (τλ,l(n))l,n∈N in P(Λ)

such that τλ,l(n) ≤ τλ,l+1(n) and τλ,l(n) ∧ τλ,k(m) = 0 for all k, l,m, n ∈ N with m ̸= n . Moreover,

τλ,l(n)
(∪

k∈N Ker (T − λI)k
)

= τλ,l(n)Ker (T − λI)l is an n -homogeneous Kaplansky–Hilbert module over

τλ,l(n)Λ. The multiplicity of the global eigenvalue λ is defined as follows:

τλ := o-
∑
n∈N

n sup
l∈N

{τλ,l(n)} = sup
l,n∈N

{nτλ,l(n)} ∈ (ReΛ)∞,

where the universally complete vector lattice (ReΛ)∞ is the universal completion of ReΛ. One may consult

[3, 4] for further information about global eigenvalues.

Now we recall the spaces C# (Q,H) and SC# (Q,B(H)) used in the representation of Kaplansky–Hilbert

modules and bounded linear operators on them (see [12, 7.4.8 and 7.5.9] for full details). Let Q be a Stonean

space and (H, ⟨·, ·⟩) be a Hilbert space. Vector-functions x : dom(x) → H and y : dom(y) → H are equivalent

if x(t) = y(t) is satisfied for all t ∈ dom(x) ∩ dom(y) where dom(x) and dom(y) are comeager subsets of

Q . (Recall that a set is called comeager if its complement is of first category.) The set of the equivalence

classes of all bounded continuous vector-functions is represented by C# (Q,H), which can be equipped with

the form of a module over C (Q), and we can introduce a C(Q)-valued inner product in C# (Q,H) as follows:

if x̃, ỹ ∈ C# (Q,H), then the function

q 7→ ⟨x(q), y(q)⟩ (q ∈ dom(x) ∩ dom(y))

, being continuous and admitting a unique continuous extention z ∈ C(Q), assigns ⟨x̃ | ỹ⟩ := z . By [12, 7.4.8

(1)], C# (Q,H) is a Kaplansky–Hilbert module over C(Q). Furthermore, every Kaplansky–Hilbert module is

represented nearly as a direct sum of these spaces [12, 7.4.12].

Denote by SC# (Q,B(H)) the set of all equivalence classes ũ such that the operator-function u :

dom(u) → B(H) is defined on the comeager subset of Q and is continuous in the strong operator topology,

and the set
{̃uh : ∥h∥ ≤ 1, h ∈ H

}
is bounded in C(Q), where ũh ∈ C# (Q,H) is the equivalence class of the

function uh : q 7→ u(q)h (q ∈ dom(u)). Since
̃uh coincides with the function q 7→ ∥u(q)h∥ (q ∈ dom(u)),

the membership ũ ∈ SC# (Q,B(H)) means that the mapping q 7→ ∥u(q)∥ (q ∈ dom(u)) is bounded and

continuous on some comeager set. Hence, there are an element
̃u ∈ C(Q) and a comeager set Q0 ⊂ Q

satisfying
̃u(q) = ∥u(q)∥ (q ∈ Q0). Moreover, SC# (Q,B(H)) can be equipped with the structure of a

∗ -algebra and a unitary C(Q)-module, and hence becomes an AW ∗ -algebra. (See [12, 7.5.10].)

Given ũ ∈ SC# (Q,B(H)), one may define for each x̃ ∈ C# (Q,H) the element ũx̃ := ũx ∈ C# (Q,H),

with ux : q 7→ u(q)x(q) (q ∈ dom(u) ∩ dom(x)). Denote the operator x̃ 7→ ũx̃ by Sũ , and note thatSũx̃
≤

̃ũx. By [12, 7.5.12], the set of all continuous Λ-linear operators on X , or shortly BΛ(X), which is

an AW ∗ -algebra of type I with center isomorphic to Λ ([7, Theorem 7]), is represented nearly as a direct sum

of SC# (Q,B(H)) spaces.
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3. The main result

Whenever a cyclically compact operator T is given, the family (sk(T ))k∈N in Λ satisfying the representation

theorem [12, 8.5.6. Theorem] is called the singular numbers of T . Moreover, sequences (ẽk)k∈N and (f̃k)k∈N

in C# (Q,H) will verify the statements of [12, 8.5.6. Theorem] for the cyclically compact operator U on

C# (Q,H).

Proposition 3.1 Let U = Sũ be a cyclically compact operator on C# (Q,H) . Then for some comeager subset

Q0 ⊂ Q , the numbers sk(U)(q) are the singular numbers of the compact operator u(q) on H for each q ∈ Q0 .

Moreover, the following representation is satisfied for all q ∈ Q0 :

u(q)h =
∞∑
k=1

sk(U)(q) ⟨h, ek(q)⟩ fk(q).

Proof Let x̃ ∈ C# (Q,H) and n ∈ N . Since (sk(U))k∈N is a decreasing sequence, we haveUx̃−
n∑

k=1

sk(U) ⟨x̃ | ẽk⟩ f̃k


2

=

bo-
∑
k∈Nn

sk(U) ⟨x̃ | ẽk⟩ f̃k


2

=

⟨
bo-
∑
k∈Nn

sk(U) ⟨x̃ | ẽk⟩f̃k

∣∣∣∣∣ bo-∑
k∈Nn

sk(U) ⟨x̃ | ẽk⟩f̃k

⟩

= o-
∑
k∈Nn

sk(U)2 |⟨x̃ | ẽk⟩|2
f̃k

≤ sn+1(U)2

(
o-
∑
k∈Nn

|⟨x̃ | ẽk⟩|2
)

≤ sn+1(U)2
x2,

where Nn := {k ∈ N : k > n} . As infk∈N sk(U) = 0 holds in C(Q), there is a comeager set Q1 in Q with

infk∈N sk(U)(q) = 0 for all q ∈ Q1 . Define

Q0 := Q1 ∩ dom(u) ∩

(∩
k∈N

dom(ek)

)
∩

(∩
k∈N

dom(fk)

)
,

and note that Q0 is a comeager set in Q . We then see that {ek(q) : k ∈ N, ek(q) ̸= 0} and {fk(q) : k ∈ N, fk(q) ̸= 0}
are orthonormal sets in H for all q ∈ Q0 . Let now h ∈ H be given. Define the function z : q 7→ h (q ∈ Q),

and note that
̃z(q) = ∥h∥ (q ∈ Q) and dom(z) = Q . Therefore, for each q ∈ Q0 , the inequality∥∥∥∥∥u(q)h−

n∑
k=1

sk(U)(q) ⟨h, ek(q)⟩ fk(q)

∥∥∥∥∥ =

Uz̃ −
n∑

k=1

sk(U) ⟨z̃ | ẽk⟩ f̃k

(q)

≤ sn+1(U)(q)
̃z(q) = sn+1(U)(q) ∥h∥

holds. Thus, we deduce that for each q ∈ Q0 , one has

u(q)h =
∞∑
k=1

sk(U)(q) ⟨h, ek(q)⟩ fk(q),
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from which the numbers sk(U)(q) are the singular numbers of the compact operator u(q) by [1, Theorem

15.7.1]. 2

The following result is a vector version of Weyl- and Horn-type inequalities for cyclically compact

operators on Kaplansky–Hilbert modules.

Theorem 3.2 Let T be a cyclically compact operator on X and (λk(T ))k∈N be a global eigenvalue sequence

of T with the multiplicity sequence (τk(T ))k∈N . Then the following hold:

(1) (Weyl inequality) If (πsk(T ))k∈N is o-summable in Λ for some projection π , then one has

o-
∑
k∈N

πτk(T )|λk(T )| ≤ o-
∑
k∈N

πsk(T ).

(2) (Horn inequality) Suppose that Tk is a cyclically compact operator on X for 1 ≤ k ≤ K . Then

N∏
i=1

si(TK · · ·T1) ≤
K∏

k=1

N∏
i=1

si(Tk) (N ∈ N).

Proof The proof will be carried over for the case X = C# (Q,H) and T = Sũ . The general case is obtained

directly by invoking the functional representation of Kaplansky–Hilbert modules and bounded linear operators

on them given in [12, Theorems 7.4.12. and 7.5.12.]. Let (λk(U))k∈N be a global eigenvalue sequence of U with

the multiplicity sequence (τk(U))k∈N . From [3, Corollary 4.8, Theorem 4.10] and Proposition 3.1, there exists

a comeager set Q0 such that for each q ∈ Q0 , the following statements hold:

(i) the numbers sk(U)(q) are the singular numbers of compact operator u(q);

(ii) Sp∗(u(q)) = {λn(U)(q) : λn(U)(q) ̸= 0} ;

(iii) λn(U)(q) ̸= λm(U)(q) if λn(U)(q) ̸= 0 or λm(U)(q) ̸= 0 for n ̸= m ;

(iv) if λk(U)(q) ̸= 0, then τk(U)(q) = m(λk(U)(q)) ∈ N , where m(λk(U)(q)) is the algebraic multiplicity of

λk(U)(q).

Moreover, sk(U)(q) ̸= 0 implies ∥ek(q)∥ = ∥fk(q)∥ = 1.

(1) Let (πsk(U))k∈N be o-summable for some projection π . Using (i), (ii), (iii), (iv), and Weyl’s inequality for

the compact operator u(q), one observes that

∞∑
k=1

τk(U)(q)|λk(U)(q)| =
∞∑
k=1

m(λk(U)(q))|λk(U)(q)| ≤
∞∑
k=1

sk(U)(q)

holds on a comeager set Q0 . This implies

o-
∑
k∈N

πτk(U)|λk(U)| ≤ o-
∑
k∈N

πsk(U)

since
∑∞

k=1 π(q)sk(U)(q) is finite for each q ∈ Q .
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(2) Observe that SũK
· · ·Sũ1

= SũK ···ũ1
and (uK · · ·u1)(q) = uK(q) · · ·u1(q). Define Uk := Sũk

, 1 ≤ k ≤ K .

Using (i), there exists a comeager set Q0 such that for each q ∈ Q0 the numbers sk(UK · · ·U1)(q)

and sk(Uk)(q) are the singular numbers of compact operators uK(q) · · ·u1(q) and uk(q) (1 ≤ k ≤ K ),

respectively. Therefore, from Horn’s inequality for compact operators uk(q) with 1 ≤ k ≤ K , one gets the

validity of

N∏
i=1

si(UK · · ·U1)(q) ≤
K∏

k=1

N∏
i=1

si(Uk)(q)

for all q ∈ Q0 . Thus, the desired inequality follows.

2
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