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Abstract: According to the generalized Mellin derivative, we introduce a new family of polynomials called higher order

generalized geometric polynomials and obtain some arithmetical properties of them. Then we investigate the relationship

of these polynomials with degenerate Bernoulli, degenerate Euler, and Bernoulli polynomials. Finally, we evaluate several

series and integrals in closed forms.
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1. Introduction

The operator
(
x d
dx

)n
, called the Mellin derivative [6], has a long mathematical history. As far back as 1740,

Euler used the operator as a tool in his work [20]. After that, the Mellin derivative and its generalizations

were used to obtain a new class of polynomials [5, 18, 19, 26, 34], to evaluate some power series in closed forms

[5, 8, 18, 19, 26, 28, 34], and to calculate some integrals [6, 8]. One generalization of the Mellin derivative is [26]

(
βx1−α/βD

)n [
xr/βf (x)

]
= x(r−nα)/β

n∑
k=0

S (n, k;α, β, r)βkxkf (k) (x) , (1.1)

where f is any n -times differentiable function and S (n, k;α, β, r) are a generalized Stirling number pair

with three free parameters (see Section 2). Stirling numbers and their generalizations have many interesting

combinatorial interpretations. These numbers are also connected with some well-known special polynomials

and numbers [11, 12, 17, 23, 29–32, 35, 39, 40]. For example, the following interesting formulas for Bernoulli

numbers Bn and Euler polynomials En (x) appeared in [21]: for all n ≥ 0,

Bn =

n∑
k=0

(−1)
k k!

k + 1

{
n

k

}
, En (0) =

n∑
k=0

(−1)
k k!

2k

{
n

k

}
. (1.2)

From all these motivations, using (1.1), we introduce a new family of polynomials, namely higher order

generalized geometric polynomials, and study some properties of them such as a recurrence relation, an explicit

formula, and a generating function. In view of these properties, we extend the formula (1.2) for degenerate

Bernoulli and degenerate Euler polynomials. We derive new explicit formulas for degenerate Bernoulli and
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classical Bernoulli polynomials and then we give closed formulas for the evaluation of Carlitz’s [10, Eq. (5.4)]

and Howard’s [24, Eq. (4.3)] sums. Finally, we calculate some integrals in terms of these polynomials. Moreover,

we evaluate several power series in closed forms, one of which is the following:

∞∑
k=1

ζ (k + 1) (r + kβ | α)n x
k = − (r | α)n (ψ (1− x) + γ) +

n∑
k=1

S (n, k;α, β, r) k!ζ (k + 1, 1− x) (βx)
k
,

where ζ (s) and ζ (s, a) are Riemann and Hurwitz zeta functions, respectively.

The summary by sections is as follows: Section 2 is the preliminary section where we give definitions and

known results needed. In Section 3, we define higher order generalized geometric polynomials and study their

properties. In the final section, we give several examples for the evaluation of some series and integrals.

Throughout this paper, we assume that α, β , and r are real or complex numbers.

2. Preliminaries

The generalized Stirling numbers of the first kind S1 (n, k;α, β, r) and of the second kind S2 (n, k;α, β, r) for

nonnegative integer m and real or complex parameters α, β , and r, with (α, β, r) ̸= (0, 0, 0) are defined by

means of the generating function [25](
(1 + βt)

α/β − 1

α

)k

(1 + βt)
r/β

= k!
∞∑

n=0

S1 (n, k;α, β, r)
tn

n!
,

(
(1 + αt)

β/α − 1

β

)k

(1 + αt)
−r/α

= k!
∞∑

n=0

S2 (n, k;α, β, r)
tn

n!
,

with the convention S1 (n, k;α, β, r) = S2 (n, k;α, β, r) = 0 when k > n.

As Hsu and Shiue pointed out, the definitions or generating functions generalize various Stirling-type

numbers studied previously, such as:

i. {S1 (n, k; 0, 1, 0) , S2 (n, k; 0, 1, 0)} = {s (n, k) , S (n, k)} =
{
(−1)

n−k [n
k

]
,
{
n
k

}}
are the Stirling numbers of both kinds [13],[21, Chapter 6];

ii. {S1 (n, k;α, 1,−r) , S2 (n, k;α, 1,−r)} =
{
(−1)

n−k
S1 (n, k, r + α | α) , S2 (n, k, r | α)

}
are the Howard degenerate weighted Stirling numbers of both kinds [22];

iii. {S1 (n, k;α, 1, 0) , S2 (n, k;α, 1, 0)} =
{
(−1)

n−k
S1 (n, k | α) , S2 (n, k | α)

}
are the Carlitz degenerate Stirling numbers of both kinds [10];

iv. {S1 (n, k; 0,−1, r) , S2 (n, k; 0, 1, r)} =
{
(−1)

n−k [n+r
k+r

]
r
,
{
n+r
k+r

}
r

}
are the r -Stirling numbers of both kinds [9];
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v. {S1 (n, k; 0, β,−1) , S2 (n, k; 0, β, 1)} = {wβ (n, k) , Wβ (n, k)}

are the Whitney numbers of both kinds [4];

vi. {S1 (n, k; 0, β,−r) , S2 (n, k; 0, β, r)} = {wβ,r (n, k) , Wβ,r (n, k)}

are the r -Whitney numbers of both kinds [32], and so on.

According to the generalization of Stirling numbers, Hsu and Shiue [25] defined the generalized exponential

polynomials Sn (x) as follows:

Sn (x) =
n∑

k=0

S (n, k;α, β, r)xk. (2.1)

Later, Kargin and Corcino [26] gave an equivalent definition for Sn (x) as

Sn (x) =
[(
xnα−re−x

)]1/β (
βx1−α/βD

)n [
(xrex)

1/β
]
, (2.2)

and using the series

ex/β =
∞∑
k=0

xk

βkk!
,

in (2.2), they obtained the general Dobinksi-type formula

ex/βSn (x) =
∞∑
k=0

(kβ + r | α)n xk

βkk!
. (2.3)

Here, (z | α)n is called the generalized factorial of z with increment α , defined by (z | α)n = z (z − α) · · · (z − nα+ α)

for n = 1, 2, . . . , and (z | α)0 = 1. In particular, we have (z | 1)n = (z)n .

Some other properties of Sn (x) can be found in [15, 16, 25, 38].

Generalized geometric polynomials wn (x;α, β, r) are defined by means of the generalized Mellin deriva-

tive as (
βx1−α/βD

)n [ xr/β
1− x

]
=
x(r−nα)/β

1− x
wn

(
x

1− x
;α, β, r

)
.

These polynomials have an explicit formula,

wn (x;α, β, r) =
n∑

k=0

S (n, k;α, β, r)βkk!xk, (2.4)

and a generating function,

∞∑
n=0

wn (x;α, β, r)
tn

n!
=

(1 + αt)
r/α

1− x
(
(1 + αt)

β/α − 1
) , αβ ̸= 0. (2.5)

See [26] for details.
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Higher order degenerate Euler polynomials are defined by means of the generating function in [10]:

∞∑
n=0

E(s)
n (α;x)

tn

n!
=

(
2

(1 + αt)
1/α

+ 1

)s

(1 + αt)
x/α

. (2.6)

From (2.6), we have

lim
α→0

E(s)
n (α;x) = E(s)

n (x) ,

where E
(s)
n (x) is the nth higher order Euler polynomial, which is defined by the generating function

∞∑
n=0

E(s)
n (x)

tn

n!
=

(
2

et + 1

)s

ext. (2.7)

In some special cases,

E(1)
n (α;x) = En (α;x) , E(1)

n (x) = En (x) ,

where En (α;x) and En (x) are the degenerate Euler and Euler polynomials, respectively.

Degenerate Bernoulli polynomials of the second kind are defined by means of the generating function in

[27]:

∞∑
n=0

Bn (x | α) t
n

n!
=

1
α log (1 + αt)

(1 + αt)
1/α − 1

(1 + αt)
x/α

. (2.8)

Indeed, we have

lim
α→0

Bn (x | α) = Bn (x) ,

where Bn (x) is the nth Bernoulli polynomial, which is defined by the generating function

∞∑
n=0

Bn (x)
tn

n!
=

t

et − 1
ext,

with Bn (0) = Bn is nth Bernoulli number.

Finally, we want to mention Carlitz’s degenerate Bernoulli polynomials, defined by means of the gener-

ating function in [10]:

∞∑
n=0

βn (α, x)
tn

n!
=

t

(1 + αt)
1/α − 1

(1 + αt)
x/α

,

with the relation

lim
α→0

βn (α, x) = Bn (x) and βn (α, 0) ,= βn (α)

where βn (α) is nth degenerate Bernoulli number.
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3. Higher order generalized geometric polynomials

In this section, the definition of higher order generalized geometric polynomials and some properties are given.

New explicit formulas for degenerate Bernoulli and Euler polynomials are also derived. Some special cases of

these results are studied.

For every s ≥ 0, taking f (x) = 1/ (1− x)
s+1

in (1.1) and using

∂k

∂xk
f (x) =

(s+ 1) (s+ 2) . . . (s+ k)

(1− x)
s+k+1

,

we have (
βx1−α/βD

)n [ xr/β

(1− x)
s+1

]
=

x(r−nα)/β

(1− x)
s+1

n∑
k=0

S (n, k;α, β, r)

(
s+ k

k

)
k!βk

(
x

1− x

)k

.

If we define the polynomials w
(s+1)
n (x;α, β, r) by

w(s+1)
n (x;α, β, r) =

n∑
k=0

S (n, k;α, β, r)

(
s+ k

k

)
k!βkxk, (3.1)

we reach (
βx1−α/βD

)n [ xr/β

(1− x)
s+1

]
=

x(r−nα)/β

(1− x)
s+1w

(s+1)
n

(
x

1− x
;α, β, r

)
. (3.2)

Note that if (s, α, β, r) = (0, α, β, r) , we obtain generalized geometric polynomials in [26]; if (s, α, β, r) =

(s, 0, 1, 0) , we have general geometric polynomials in [5]; if (s, α, β, r) = (0, 0, 1, 0) , we obtain geometric

polynomials in [5]; and if (s, α, β, r) = (0, 0, β, 1) , we have Tanny–Dowling polynomials in [4]. Therefore,

we call higher order generalized geometric polynomials for w
(s+1)
n (x;α, β, r). On the other hand, x = 1 and

s = 0 in (3.1) give the numbers

w(1)
n (1;α, β, r) = Bn (α, β, r) =

n∑
k=0

S (n, k;α, β, r)βkk!xk,

as defined by Corcino et al. in [14]. The combinatorial interpretation and some other properties can be found in

[14, 15]. Moreover, w
(s+1)
n (x;α, β, r) reduce to barred preferential arrangement numbers rn,s defined by [2, 5]

w(s+1)
n (1; 0, 1, 0) = rn,s =

n∑
k=0

{
n

k

}(
s+ k

k

)
k!,

which have interesting combinatorial meaning. Therefore, we may call generalized barred preferential arrange-

ment number pair with three free parameters for

B(s+1)
n (α, β, r) =

n∑
k=0

S (n, k;α, β, r)

(
s+ k

k

)
k!βk.

The combinatorial interpretation of these numbers may also be studied.
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Since

⟨x⟩n
n!

=

(
x+ n− 1

n

)
,

we can write w
(s+1)
n (x;α, β, r) in the form

w(s+1)
n (x;α, β, r) =

n∑
k=0

S (n, k;α, β, r) ⟨s+ 1⟩k β
kxk,

where ⟨x⟩n is the rising factorial defined by ⟨x⟩n = x (x+ 1) · · · (x+ n− 1) , for n = 1, 2, . . . , with ⟨x⟩0 = 1.

Furthermore, using the relation

⟨−x⟩n = (−1)
n
(x)n , (3.3)

we can define w
(−s)
n (x;α, β, r) for every real s > 0 as

w(−s)
n (x;α, β, r) =

n∑
k=0

S (n, k;α, β, r) (s)k (−β)
k
xk.

Thus, taking f (x) = (1− x)
s
in (1.1), we have

(
βx1−α/βD

)n [
xr/β (1− x)

s
]
= x(r−nα)/β (1− x)

s
w(−s)

n

(
x

1− x
;α, β, r

)
. (3.4)

We turn back to w
(−s)
n (x;α, β, r) again in Section 4.

Now we want to deal with the properties of w
(s)
n (x;α, β, r) , but first we give the relation between higher

order generalized geometric polynomials and generalized exponential polynomials in the following theorem.

Theorem 1 For every nonnegative integer n and s > 0, the generalized exponential polynomials and w
(s)
n (x;α, β, r)

are connected by the relation

w(s)
n (x;α, β, r) =

1

Γ (s)

∞∫
0

zs−1Sn (xβz) e
−zdz. (3.5)

Proof Setting xβz in (2.1), we have

Sn (xβz) =
n∑

k=0

S (n, k;α, β, r)βkxkzk.

Then multiplying both sides of the above equation with zs−1e−z, integrating it with respect to z from zero to

infinity, and using the well-known identity of the gamma function

Γ (s+ k)

Γ (s)
=

(
s+ k − 1

k

)
, s, k ∈ N,
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we arrive at

∞∫
0

zs−1e−zSn (xβz;α, β, r) dz =
n∑

k=0

S (n, k;α, β, r)βkxk
∞∫
0

e−zzs+k−1dz

= Γ (s)
n∑

k=0

S (n, k;α, β, r)

(
s+ k − 1

k

)
βkxk

= Γ (s)w(s)
n (x;α, β, r) .

2

From Theorem 1, we can derive the properties of w
(s)
n (x;α, β, r) from those of Sn (x). For example, if

we use the extension of Spivey’s Bell number formula to Sn (x) in [26, 38],

Sn+m (x) =
n∑

k=0

m∑
j=0

(
n

k

)
S (m, j;α, β, r) (jβ −mα | α)n−k Sk (x)x

j ,

in (3.5), we derive a recurrence relation as

w
(s)
n+m (x;α, β, r) =

n∑
k=0

m∑
j=0

(
n

k

)
S (m, j;α, β, r) (jβ −mα | α)n−k ⟨s+ 1⟩j β

jw
(s+j)
k (x;α, β, r)xj .

As another application of Theorem 1, we give the following theorem.

Theorem 2 The exponential generating function for w
(s)
n (x;α, β, r) is

∞∑
n=0

w(s)
n (x;α, β, r)

tn

n!
=

 1

1− x
(
(1 + αt)

β/α − 1
)
s

(1 + αt)
r/α

, (3.6)

where αβ ̸= 0.

Proof From [25, Eq. (12)], let us write the generating function for Sn (x) in the form of

∞∑
n=0

Sn (xβz)
tn

n!
= (1 + αt)

r/α
exp

[
xz
(
(1 + αt)

β/α − 1
)]
.

Then we multiply both sides by zs−1e−z and integrate it with respect to z from zero to infinity. In view of

(3.5), we have

∞∑
n=0

w(s)
n (x;α, β, r)

tn

n!
=

(1 + αt)
r/α

Γ (s)

∞∫
0

zs−1e−z(1−x((1+αt)β/α−1))dz.

Calculating the integral on the right-hand side completes the proof. 2

Setting x = −1 in (3.6), we have

w(s)
n (−1;α, β, r) =

n∑
k=0

S (n, k;α, β, r)

(
s+ k

k

)
k! (−β)k = (r − βs | α)n .
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Some other properties of w
(s)
n (x;α, β, r) can be derived from (3.6), but now we attend to the connection

of w
(s)
n (x;α, β, r) with some degenerate special polynomials. If we take x = −1/2 in (3.6) for β = 1 and

compare it with (2.6), we have

w(s)
n

(
−1

2
;α, 1, r

)
= E(s)

n (α; r) .

Thus, using (3.1) yields an explicit formula for higher order degenerate Euler polynomials in the following

corollary.

Corollary 3 For every s ≥ 0, we have

E(s+1)
n (α; r) =

n∑
k=0

S2 (n, k, r | α)
(−1)

k ⟨s+ 1⟩k
2k

. (3.7)

When s = 0 , this becomes

En (α; r) =
n∑

k=0

S2 (n, k, r | α)
(−1)

k
k!

2k
. (3.8)

Now we indicate that (3.7) and (3.8) are new results. Besides, for α→ 0, setting x = −1/2 in (3.6), we

have [35, Theorem 3].

Secondly, if we integrate both sides of (2.5) with respect to x from −1 to 0, we have

∞∑
n=0

tn

n!

0∫
−1

wn (x;α, β, r) dx =
β
α log (1 + αt)

(1 + αt)
β/α − 1

(1 + αt)
r/α

. (3.9)

In view of (2.8), for β = 1, the above equation becomes

∞∑
n=0

tn

n!

0∫
−1

wn (x;α, 1, r) dx =
∞∑

n=0

Bn (r | α)
tn

n!
.

Comparing the coefficients of tn

n! gives

0∫
−1

wn (x;α, 1, r) dx = Bn (r | α) .

Finally, using (2.4) yields the following theorem.

Theorem 4 The following equation holds for degenerate Bernoulli polynomials of the second kind:

Bn (r | α) =
n∑

k=0

S2 (n, k, r | α)
(−1)

k
k!

k + 1
.
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We note that for α→ 0, (3.9) can be written as

lim
α→0

∞∑
n=0

tn

n!

0∫
−1

wn (x;α, β, r) dx =
βt

eβt − 1
ert

=
∞∑

n=0

Bn

(
r

β

)
βn t

n

n!
.

Comparing the coefficients of tn

n! in the above equation, we obtain

lim
α→0

0∫
−1

wn (x;α, β, r) dx = Bn

(
r

β

)
βn.

Thus, we achieve

Bn

(
r

β

)
=

n∑
k=0

Wβ,r (n, k)
(−1)

k
k!

βn−k (k + 1)
,

which was also given in [35] with a different proof.

The next result is on the explicit formulas for Carlitz’s degenerate Bernoulli polynomials.

Theorem 5 For every s ≥ 0, we have

βn+1 (α, r)− βn+1 (α, r − s) = (n+ 1)
n∑

k=0

S2 (n, k, r | α)
(−1)

k ⟨s⟩k+1

k + 1
. (3.10)

When s = r and s = α , this becomes

βn+1 (α, r) = βn+1 (α) + (n+ 1)
n∑

k=0

S2 (n, k, r | α)
(−1)

k ⟨r⟩k+1

k + 1
(3.11)

and

βn (α, r − α) =
n∑

k=0

S2 (n, k, r | α)
(−1)

k ⟨α+ 1⟩k
k + 1

, (3.12)

respectively.

Proof If we integrate both sides of (3.6) with respect to x from −1 to 0, we have

∞∑
n=0

tn

n!

0∫
−1

w(s+1)
n (x;α, β, r) dx =

1

st

[
t (1 + αt)

r/α

(1 + αt)
β/α − 1

− t (1 + αt)
(r−βs)/α

(1 + αt)
β/α − 1

]
. (3.13)

For β = 1, the above equation becomes

∞∑
n=0

tn

n!

0∫
−1

w(s+1)
n (x;α, 1, r) dx =

1

s

[ ∞∑
n=0

βn+1 (α, r)− βn+1 (α, r − s)

n+ 1

]
tn

n!
.
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Equating the coefficients of tn

n! in the above equation, we obtain

0∫
−1

w(s+1)
n (x;α, 1, r) dx =

βn+1 (α, r)− βn+1 (α, r − s)

s (n+ 1)
.

Finally, using (3.1) yields (3.10).

Setting s = α in (3.10) and using the identity [10, Eq. (5.10)]

βn (α, z + α) = βn (α, z) + αnβn−1 (α, z) ,

we get (3.12). 2

Let us return to (3.13) again. For α→ 0, (3.13) can be written as

lim
α→0

∞∑
n=0

tn

n!

0∫
−1

w(s+1)
n (x;α, β, r) dx =

1

st

[
tert

eβt − 1
− te(r−βs)t

eβt − 1

]

=
1

s

 ∞∑
n=0

Bn+1

(
r
β

)
−Bn+1

(
r
β − s

)
n+ 1

βn+1

 tn
n!
.

Since S2 (n, k; 0, β, r) =Wβ,r (n, k) , we derive the values of Bernoulli polynomials at rational arguments in the

following theorem.

Theorem 6 For every s ≥ 0 and β ̸= 0, we have

Bn+1

(
r

β

)
−Bn+1

(
r

β
− s

)
= (n+ 1)

n∑
k=0

Wβ,r (n, k)
(−1)

k ⟨s⟩k+1

βn+1−k (k + 1)
. (3.14)

For s = r/β , this becomes

Bn+1

(
r

β

)
= Bn+1 + (n+ 1)

n∑
k=0

Wβ,r (n, k)
(−1)

k ⟨r | β⟩k+1

βn+2 (k + 1)
, (3.15)

where ⟨x | α⟩n = x (x+ α) · · · (x+ (n− 1)α) , for n = 1, 2, . . . , with ⟨x | α⟩0 = 1.

Note that setting β = 1 and r = 0 in (3.14), replacing −s with x in that equation, and using (3.3) gives

the well-known identity for Bernoulli polynomials [37, Eq. (15.39)]:

Bn+1 (x) = Bn+1 +
n∑

k=0

(n+ 1)

k + 1

{
n

k

}
(x)k+1 .

On the other hand, taking s = r in (3.15) gives a different representation of the above equation as

Bn+1 (r) = Bn+1 +
n∑

k=0

(−1)
k
(n+ 1)

k + 1

{
n+ r

k + r

}
r

⟨r⟩k+1 .
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For the consequences of Theorem 5 and Theorem 6, we deal with Carlitz’s identity [10, Eq. (5.4)]:

r−1∑
j=0

(j | α)m =
1

m+ 1
[βm+1 (α, r)− βm+1 (α)] ,

and Howard’s identity [24, Eq. (4.3)]:

m−1∑
j=0

(r + βj)
n
=

βn

n+ 1

[
Bn+1

(
m+

r

β

)
−Bn+1

(
r

β

)]
,

respectively. From (3.11), we reach a new representation for Carlitz’s identity. On the other hand, replacing

−s with m in (3.14) and then using (3.3) gives a new representation for Howard’s identity, as in the following

corollary.

Corollary 7 For every integers > 0, we have

r−1∑
j=0

(j | α)n =
n∑

k=0

S2 (n, k, r | α)
(−1)

k ⟨r⟩k+1

k + 1
.

For n and m that are nonnegative integers with m > 0 and β ̸= 0, we have

m−1∑
j=0

(r + βj)
n
=

n∑
k=0

Wβ,r (n, k)
βk−1 (m)k+1

k + 1
.

4. Some examples of series and integrals evaluation

In this section, we extend some results given in [5, 8, 26, 34] and present additional examples.

The following two examples are on the generalized exponential polynomials. Consider the function

f (x) = cosh (x/β) =
∞∑
k=0

x2k

β2k (2k)!
.

From (1.1), we have(
βx1−α/βD

)n [
xr/β

(
ex/β + e−x/β

)]
= 2

∞∑
k=0

1

β2k (2k)!

(
βx1−α/βD

)n [
x(2kβ+r)/β

]

= 2x(r−nα)/β
∞∑
k=0

(2kβ + r | α)n
β2k (2k)!

x2k.

Using (2.2), the left-hand side of the above equation can be written as(
βx1−α/βD

)n [
xr/β

(
ex/β + e−x/β

)]
=
(
βx1−α/βD

)n [
xr/βex/β

]
+
(
βx1−α/βD

)n [
xr/βe−x/β

]
= x(r−nα)/βex/βSn (x) + x(r−nα)/βe−x/βSn (−x) .
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Combining these two identities gives

2
∞∑
k=0

(2kβ + r | α)n
β2k (2k)!

x2k = ex/βSn (x) + e−x/βSn (−x) .

Similarly, taking f (x) = sinhx in (1.1) gives

2
∞∑
k=0

((2k + 1)β + r | α)n
β2k+1 (2k + 1)!

x2k+1 = ex/βSn (x)− e−x/βSn (−x)

Finally, setting x = 2πiβ in the above equations yields our first example.

Example 8 We have

∞∑
k=0

(2kβ + r | α)n
(−1)

k
(2π)

2k

(2k)!
=

⌊n/2⌋∑
j=1

S (n, 2j;α, β, r) (−1)
j
(2πβ)

2j
, (4.1)

and

∞∑
k=0

((2k + 1)β + r | α)n
(−1)

k
(2π)

2k

(2k + 1)!
= β

⌊n/2⌋∑
j=1

S (n, 2j + 1;α, β, r) (−1)
j
(2πβ)

2j
. (4.2)

Note that for α = 0, (4.1) and (4.2) reduce to [34, p. 403].

Example 9 In [7, Eq. (8.4)], we have

∞∑
k=1

xk

βkk!
[1p + 2p + . . .+ kp] = ex/β

p∑
j=1

{
p+ 1

j

}
xj

jβj
.

Multiplying both sides of the above equation by xr/β and applying the operator
(
βx1−α/βD

)n
, we obtain

∞∑
k=1

(
βx1−α/βD

)n [
xk+r/β

]
βkk!

[1p + 2p + . . .+ kp] =

p∑
j=1

{
p+ 1

j

}(
βx1−α/βD

)n [
xj+r/βex/β

]
jβj

.

From (2.2), the right-hand side becomes

p∑
j=1

{
p+ 1

j

}(
βx1−α/βD

)n [
xj+r/βex/β

]
jβj

= x(r−nα)/βex/β
p∑

j=1

{
p+ 1

j

}
Sn (x;α, β, r + j)

xj/β

jβj
.

Then we have the following closed formula:

∞∑
k=1

(r + kβ | α)n xk

βkk!
[1p + 2p + . . .+ kp] = ex/β

p∑
j=1

{
p+ 1

j

}
Sn (x;α, β, r + j)

xj/β

jβj
.

For (α, β, r) = (0, 1, 0) , the above result becomes

∞∑
k=1

knxk

k!
[1p + 2p + . . .+ kp] = ex

p∑
j=1

{
p+ 1

j

}
Bn,j (x)

xj

j
,

where Bn,r (x) is the n th r -Bell polynomial in [33].
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In the following proposition, we extend the following series [26]:

∞∑
k=0

(r + kβ | α)n x
k =

1

(1− x)
wn

(
x

1− x
;α, β, r

)
, (4.3)

and [8, Eq. 9]
∞∑
k=0

(
s

k

)
knxk = (1 + x)

s
w(−s)

n

(
−x
1 + x

)
.

Proposition 10 For any nonnegative integers n and s > 0, we have

∞∑
k=0

(
s+ k

k

)
(r + kβ | α)n x

k =
1

(1− x)
s+1w

(s+1)
n

(
x

1− x
;α, β, r

)
, (4.4)

and
∞∑
k=0

(
s

k

)
(r + kβ | α)n x

k = (1 + x)
s
w(−s)

n

(
−x
1 + x

;α, β, r

)
. (4.5)

Proof Let us apply (1.1) to both sides of the function

1

(1− x)
s+1 =

∞∑
k=0

(
s+ k

k

)
xk.

From (3.2), we obtain

x(r−nα)/β

(1− x)
s+1w

(s+1)
n

(
x

1− x
;α, β, r

)
=

∞∑
k=0

(
s+ k

k

)(
βx1−α/βD

)n [
xk+r/β

]

= x(r−nα)/β
∞∑
k=0

(
s+ k

k

)
(r + kβ | α)n x

k.

Then, simplifying x(r−nα)/β on both side yields the desired equation.

For the proof of (4.5), for every s > 0, we take

f (x) = (1 + x)
s
=

∞∑
k=0

(
s

k

)
xk

in (1.1) and use (3.4). 2

The next result is on a closed form for the evaluation of a power series that has the coefficients including

the Riemann zeta function.

Theorem 11 For |x| < 1, we give

∞∑
k=1

ζ (k + 1) (r + kβ | α)n x
k = − (r | α)n (ψ (1− x) + γ) +

n∑
k=1

S (n, k;α, β, r) k!ζ (k + 1, 1− x) (βx)
k
. (4.6)
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As a consequence of Theorem 11, the following sums are obtained:

For (α, β, r) = (0, β, r) ,

∞∑
k=1

ζ (k + 1) (r + kβ)
n
xk = −rn (ψ (1− x) + γ) +

n∑
k=1

Wβ,r (n, k) k!ζ (k + 1, 1− x) (βx)
k
. (4.7)

For (α, β, r) = (0, 1, r) ,

∞∑
k=1

ζ (k + 1) (r + k)
n
xk = −rn (ψ (1− x) + γ) +

n∑
k=1

{
n+ r

k + r

}
r

k!ζ (k + 1, 1− x)xk.

For (α, β, r) = (0, 1, 1) , using the relation
{
n
k

}
0
=
{
n
k

}
1
=
{
n
k

}
,

∞∑
k=1

ζ (k + 1) (k + 1)
n
xk = − (ψ (1− x) + γ) +

n∑
k=1

{
n+ 1

k + 1

}
k!ζ (k + 1, 1− x)xk. (4.8)

Note that for x = −1/2, (4.7) reduces to [34]. Besides, (4.8) is a special case of [8, Proposition 20].

Proof [Proof of Theorem 11]Let us take f (x) = ψ (x) in (1.1), where ψ (x) is the digamma function, which

can be given by [1, Eq. 6.3.14]

ψ (x+ 1) = −γ +

∞∑
k=1

ζ (k + 1) (−1)
k+1

xk, |x| < 1. (4.9)

Here, γ is Euler’s constant. Then we have

(
βx1−α/βD

)n [
xr/βψ (x+ 1)

]
= x(r−nα)/β

n∑
k=0

S (n, k;α, β, r)βkxkψ(k) (x+ 1) , (4.10)

where ψ(m) (x) is the polygamma function, and it can be written more compactly as [1, Eq. 6.4.10]

ψ(m) (x) = (−1)
m+1

m!ζ (m+ 1, x) . (4.11)

Here m > 0, and x is any complex number not equal to a negative integer. Using (4.9) and (4.11) in (4.10),

we have the desired equation. 2

Now we want to add some examples for the evaluation of integrals. Before giving the examples, we need

to mention that we use the well-known estimate for the gamma function in the rest of this section:

|Γ (x+ iy)| ∼
√
2π |y|x−

1
2 e−x−π

2 |y|,

( |y| → ∞) for any fixed real x. This explains the behavior of the gamma function on vertical lines

{t = a+ iz : −∞ < z <∞, 0 < a < 1} in [8].

Theorem 12 For every s ≥ 0, every 0 < x < 1 , and 0 < a < 1, we have

1

(1 + x)
s+1w

(s+1)
n

(
−x
1 + x

;α, β, r

)
=

1

2πiΓ (s+ 1)

a+i∞∫
a−i∞

(r − βt | α)n x
−tΓ (t) Γ (s+ 1− t) dt. (4.12)
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Besides, for all x > 0, Re (β) > 0, Re (r) > 0, n = 0, 1, 2, . . . , and a > n+ 1,

e−rx

1− e−βx
wn

(
e−βx

1− e−βx
;α, β, r

)
=

1

2πi

a+i∞∫
a−i∞

x−t
∞∑
k=0

(kβ + r | α)n
(kβ + r)

t Γ (t) dt. (4.13)

The interesting part of (4.13) appears when α = 0 as

e−rx

1− e−βx
wn

(
e−βx

1− e−βx
; 0, β, r

)
=

βn

2πi

a+i∞∫
a−i∞

(βx)
−t
ζ

(
t− n,

r

β

)
Γ (t) dt, (4.14)

where wn (x; 0, β, r) =
∑n

k=0Wβ,r (n, k)β
kk!xk.

For β = 1 and n = 0 in (4.14), we have the well-known inverse Mellin transformation of the Hurwitz zeta

function in [3, Theorem 12.2]. Moreover, (4.12) and (4.14) are the generalization of identities in [8, Proposition

16].

Proof [Proof of Theorem 12]Let us start from [36, Formula 5.37]

1

(1 + x)
s+1 =

1

2πiΓ (s+ 1)

a+i∞∫
a−i∞

x−tΓ (t) Γ (s+ 1− t) dt,

where s ≥ 0, 0 < x < 1. Apply (1.1) to both sides of the above integral to obtain

(
βx1−α/βD

)n [ xr/β

(1 + x)
s+1

]
=

x(r−nα)/β

2πiΓ (s+ 1)

a+i∞∫
a−i∞

(r − βt | α)n x
−tΓ (t) Γ (s+ 1− t) dt.

For the left-hand side of the above equation, we derive

(
βx1−α/βD

)n [ xr/β

(1 + x)
s+1

]
=

∞∑
k=0

(
s+ k

k

)
(−1)

k
(
βx1−α/βD

)n
x(kβ+r)/β

= x(r−nα)/β
∞∑
k=0

(
s+ k

k

)
(r + kβ | α)n (−x)

k

=
x(r−nα)/β

(1 + x)
s+1w

(s+1)
n

(
−x
1 + x

;α, β, r

)
.

Therefore, we have (4.12).

Replacing x by (r + kβ)x , multiplying both sides by (r + kβ | α)n , and summing for k = 0, 1, . . . , in

the integral

e−x =
1

2πi

a+i∞∫
a−i∞

x−tΓ (t) dt,
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we have

e−rx
∞∑
k=0

(r + kβ | α)n
(
e−βx

)k
=

1

2πi

a+i∞∫
a−i∞

x−t
∞∑
k=0

(kβ + r | α)n
(kβ + r)

t Γ (t) dt.

Using (4.3) in the above integral gives (4.13). 2
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