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Abstract: This article is devoted to the study of the initial-boundary value problem for the strongly damped nonlinear

Klein–Gordon equation. It is proved that the solution depends continuously on changes in the damping terms, diffusion,

mass, and nonlinearity effect term in the H1 norm.

Key words: Structural stability, nonlinear Klein–Gordon equation, continuous dependence

1. Introduction

For a reasonable model it is expected that some controls over its structural stability should exist. One of those

controls is to examine the dependency on the coefficients of the solutions of the governing model. Recently, many

important works have been done on deriving stability estimates. In these calculations changes in coefficients

are permitted or even the model itself can be changed. Such works were examined in books [1,4] and articles

[7,10] and the references therein.

In this article, the question of structural stability for the following initial-boundary value problem (IBVP)

for the strongly damped Klein–Gordon equation is investigated:

utt − α∆ut + βut − σ∆u+m2u+ λ|u|p−1u = 0 in Ω× (0,∞), (1)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω, (2)

u = 0 on ∂Ω× (0,∞). (3)

Here α , β , σ , m > 0 , λ ∈ R are physical constants that represent the first of two gradients of damping,

diffusion, mass, and nonlinearity effects; ∆ is a Laplacian; and p > 0 is a source. Ω ⊂ Rn is a bounded

domain with smooth enough boundary ∂Ω, and 1 < p ≤ ∞ if n = 1, 2 and 1 < p ≤ n
n−2 if n ≥ 3.

In 1926, Oskar Klein and Walter Gordon independently proposed one of the nonlinear wave equations

emerging from the relativistic motion of electrons. Since then, this equation has been known as the Klein–

Gordon equation.

Equations with no damping terms (α = β = 0) have been considered by many authors; see [3,6,9,12,13,15,

18] and the references therein. For these undamped equations there exists adequate knowledge about the local
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solution in time for the initial value problem (1) [6,13,18]. Furthermore, for small enough initial data it is

known that the global solutions of this equation exist in time; see [6,9,12,17] and the references therein. In

1985, Cezaneve [5] proved that all global solutions must remain uniformly (in time) bounded in the energy

phase space.

For an equation with weak damping (α = 0, β > 0), the existence and uniqueness of a time periodic

solution was proved by Gao and Guo [8]. In this, the Galerkin method and Leray–Schauder fixed point theorem

were employed. Nakao [14] obtained energy decay estimates for the global solutions of equation (1). Moreover,

the existence and uniqueness of solutions were analyzed by Ha and Park [11]. In this analysis, the Faedo–Galerkin

method in a noncylindrical domain was used. By this, the exponential decay rate of the global solutions was

proved. Polat and Taskesen [16] also investigated the existence of solutions globally for equation (1), where

α = 0, β = 1 by using the potential well method. Moreover, asymptotic behavior of global solutions was

obtained by Xu [19].

For equations with strong damping (α > 0, β > 0), much less is known about solutions. The reader

referred to the work by Avrin [2] in 1987, who studied the equation (1) in R3 and demonstrated a global weak

solution v with α = 0 for p > 3. By the application of the global strong solutions for each α > 0, a global weak

solution can be approximated closely. Furthermore, Xu and Ding in [20] investigated the existence of solutions

globally and asymptotic behavior of the corresponding solutions for the IBVP of equation (1).

However, a number of unsolved problems like the structural stability question for the Klein–Gordon

equation (1) exist. Therefore, in this article, our main goal is to know whether small changes in coefficients α ,

β , σ , m , λ separately will lead to a dramatic change in the behavior of the corresponding solution.

The inequalities that can be considered as fundamental tools in the analysis here are listed below.

• Cauchy inequality with ϵ :

For any a, b ≥ 0 and any ϵ > 0 we have the inequality

ab ≤ ϵa2 +
b2

4ϵ
.

• Sobolev embedding theorem:

Suppose that 1 ≤ p ≤ n, p∗ = np
n−p , and u ∈ W 1,p(Rn). Then u ∈ Lp∗

(Rn), and there exist C ≥ 0 such

that

||u||Lp∗ ≤ C||∇u||Lp .

2. A priori estimates

In this section, a priori estimates on solutions of (1) are derived. This will be used to prove the continuous

dependency for the parameters.

Theorem 2.1 For any (u0, u1) ∈ H1
0 (Ω) × L2(Ω) , there exists a solution u ∈ H1

0 (Ω) of the problem (1)–(3).

Moreover, here the following estimates are held:

||ut||2 ≤ D1, ||∇u||2 ≤ D2, ||u||2 ≤ D3 (4)
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and ∫ t

0

||∇us(x, s)||2ds ≤ D4, (5)

where D1, D2, D3, D4 > 0 are constants that depend on the initial data and the parameters of (1)

Proof Multiplying (1) by ut in L2(Ω), we get

d

dt

[1
2
||ut||2 +

σ

2
||∇u||2 + m2

2
||u||2 + λ

p+ 1
||u||p+1

p+1

]
+ α||∇ut||2 + β||ut||2 = 0. (6)

It follows from (6) that

Eu(t) =
1

2
||ut||2 +

σ

2
||∇u||2 + m2

2
||u||2 + λ

p+ 1
||u||p+1

p+1 ≤ Eu(0). (7)

Hence, (4) follows from (6). From (6) it is also known that

d

dt
Eu(t) + α||∇ut||2 ≤ 0

and if we integrate this over [0,t] then we find (2.2) since Eu(t) > 0. 2

3. Continuous dependence on coefficients

In this part, it will be shown that the solution of the problem (1)–(3) depends continuously on coefficients α ,

m , and λ .

Continuous dependence on the damping term α :

Suppose that u is the solution of (1)–(3) and v is the solution of

vtt − (α+a)∆vt + βvt − σ∆v +m2v + λ|v|p−1v = 0 in Ω× (0,∞),

v(x, 0) = u0(x), vt(x, 0) = u1(x) in Ω,

v = 0 on ∂Ω× (0,∞).

The difference w = u− v of the solutions of these problems is the solution of the following IBVP:

wtt − α∆wt + a∆vt + βwt − σ∆w +m2w + λ(|u|p−1u− |v|p−1v) = 0 in Ω× (0,∞), (8)

w(x, 0) = 0, wt(x, 0) = 0 in Ω, (9)

w = 0 on ∂Ω× (0,∞). (10)

Theorem 3.1 The solution w of problem (8)–(10) satisfies the inequality

1

2
||wt||2 +

σ

2
||∇w||2 + m2

2
||w||2 ≤ eM1tD4

α
a2 ∀t > 0, (11)

where D4 > 0 , M1 > 0 are constants that depend on the parameters and initial data of (1).
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Proof Multiplying (8) by wt in L2(Ω) , we obtain

d

dt

[1
2
||wt||2 +

σ

2
||∇w||2 + m2

2
||w||2

]
+ α||∇wt||2 − a(∇vt,∇wt) + β||wt||2

+ λ

∫
Ω

(|u|p−1u− |v|p−1v)wtdx = 0, (12)

d

dt

[1
2
||wt||2 +

σ

2
||∇w||2 + m2

2
||w||2

]
+ α||∇wt||2 + β||wt||2 ≤ a|(∇vt,∇wt)|+

λ
∣∣∣ ∫

Ω

(
|u|p−1u− |v|p−1v

)
wtdx

∣∣∣. (13)

Using the Cauchy–Schwarz inequality and the Cauchy inequality with ϵ , the following is obtained:

a||∇vt||||∇wt|| ≤ ϵ||∇wt||2 +
a2||∇vt||2

4ϵ
. (14)

Notice that, after using the mean value theorem and Hölder and Sobolev inequalities, respectively, the following

is derived:

λ
∣∣∣ ∫

Ω

(
|u|p−1u− |v|p−1v

)
wtdx

∣∣∣ ≤ λp

∫
Ω

|w||wt|
(
|u|p−1 + |v|p−1)dx

≤ λp||wt||||w|| 2n
n−2

(
||u||p−1

(p−1)n + ||v||p−1
(p−1)n

)
≤ λp||wt||C1||∇w||C2

(
||∇u||p−1 + ||∇v||p−1

)
. (15)

Putting all of these estimates into inequality (13), we obtain

d

dt
Ew(t) + α||∇wt||2 + β||wt||2 ≤ ϵ||∇wt||2 +

a2

4ϵ
||∇vt||2 + λpC1||wt||||∇w||C22D

p−1
2

2

≤ ϵ||∇wt||2 +
a2

4ϵ
||∇vt||2 +

C3

2
||wt||2 +

C3

2
||∇w||2

+
m2

2
||w||2, (16)

where ϵ = α
4 , C3 = 2λpC1C2D

p−1
2

2 , and

Ew(t) =
1

2
||wt||2 +

σ

2
||∇w||2 + m2

2
||w||2. (17)

Inequality (3.9) implies

d

dt
Ew(t) ≤ M1Ew(t) +

a2

α
||∇vt||2, (18)

where M1 = max
{
1, C3

σ , C3

}
.
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Using Gronwall’s inequality, the desired result is found:

Ew(t) ≤
eM1tD4

α
a2. (19)

2

Continuous dependence on the coefficient m :

Let u be the solution of (1) and v be the solution of the following IVBP:

vtt − α∆vt + βvt − σ∆v + (m2 + µ)v + λ|v|p−1v = 0 in Ω× (0,∞),

v(x, 0) = u0(x), vt(x, 0) = u1(x) in Ω,

v = 0 on ∂Ω× (0,∞).

Hence, w = u− v is a solution of the following IBVP:

wtt − α∆wt + βwt − σ∆w +m2w − µv + λ(|u|p−1u− |v|p−1v) = 0 in Ω× (0,∞), (20)

w(x, 0) = 0, wt(x, 0) = 0 in Ω, (21)

w = 0 on ∂Ω× (0,∞). (22)

Theorem 3.2 Let w be the solution of the problem (20)–(22). Then w satisfies the inequality

1

2
||wt||2 +

σ

2
||∇w||2 + m2

2
||w||2 ≤ eM2tD3t

2
µ2, ∀t > 0, (23)

where D3 > 0 and M2 > 0 are constants that depend on the initial data and the parameters of (1).

Proof Let us take an inner product of (20) with wt in L2(Ω); then we have

d

dt
Ew(t) + α||∇wt||2 + β||wt||2 ≤ µ|(v, wt)|+ λ

∣∣∣ ∫
Ω

(|u|p−1u− |v|p−1v)wtdx
∣∣∣

≤ µ2

2
||v||2 + 1

2
||wt||2 +

C3

2
||wt||2 +

C3

2
||∇w||2

+
m2

2
||w||2.

Then d
dtEw(t) ≤ D3

2 µ2 +M2Ew(t) where M2 = max
{
1, C3

σ , 1 + C3,
}
.

That is,

Ew(t) ≤
eM2tD3t

2
µ2,

which indicates continuous dependency on m : 2

Continuous dependence on the coefficient λ .

Let u be the solution of the problem (1)–(3) and v be the solution of the following IBVP:
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vtt − α∆vt + βvt − σ∆v +m2v + (λ+ L)|v|p−1v = 0 in Ω× (0,∞),

v(x, 0) = u0(x), vt(x, 0) = u1(x) in Ω,

v = 0 on ∂Ω× (0,∞).

Now w = u− v is a solution of the following IBVP:

wtt − α∆wt + βwt − σ∆w +m2w + λ(|u|p−1u− |v|p−1v)− L|v|p−1v = 0, (24)

w(x, 0) = 0, wt(x, 0) = 0 in Ω, (25)

w = 0 on ∂Ω× (0,∞). (26)

Theorem 3.3 Assume that w is the solution of the problem (24)–(26). Then w satisfies

1

2
||wt||2 +

σ

2
||∇w||2 + m2

2
||w||2 ≤ eM3tDp

2t

2
L2, ∀t > 0, (27)

where M3 > 0 and D2 > 0 are constants depending on the parameters and the initial data for the equation (1).

Proof Multiplying equation (24) by wt in the L2 sense and employing useful inequalities that were used

before, the following is obtained:

d

dt
Ew(t) + α||∇wt||2 + β||wt||2 ≤ λ

∣∣∣∫
Ω

(
|u|p−1u− |v|p−1v

)
wtdx

∣∣∣+ L
∣∣∣(|v|p−1v, wt

)∣∣∣
≤ C3

2
||wt||2 +

C3

2
||∇w||2 + L2

2
||v||2p2p +

1

2
||wt||2

≤ C3

2
||wt||2 +

C3

2
||∇w||2 + L2

2
C||∇v||2p + 1

2
||wt||2

≤ C3

2
||wt||2 +

C3

2
||∇w||2 + CDp

2

2
L2 +

1

2
||wt||2 +

m2

2
||w||2.

The last inequality implies

d

dt
Ew(t) ≤ M3Ew(t) +

CDp
2

2
L2,

where M3 = max
{
1, C3

σ , 1 + C3

}
. Therefore, we obtain

Ew(t) ≤
eM3tCDp

2t

2
L2.

Hence, the proof is completed. 2

Remark 3.1 Besides the above approach, continuous dependency on the coefficients β and σ can also be

studied in the similarly proved calculations for the other coefficients.
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4. Conclusion

In this paper, from the assessment of (4), it is shown by the multiplier method that the solution of the Klein–

Gordon equation (1) depends continuously on its coefficients.
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