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Abstract: Let E be a Banach space, λ a perfect sequence space, and M an Orlicz function. Denote by λ (E,M)r

the space of all weakly (M,λ)-summable sequences from E that are the limit of their finite sections. In this paper, we

describe the continuous linear functionals on λ (E,M)r in terms of strongly (N,λ∗)-summable sequences in the dual

E∗ of E , and then we give a characterization of the reflexivity of λ (E,M) in terms of that of λ and of E and the

AK-property.
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1. Introduction

In connection with the nuclearity of a locally convex space E , Pietsch [13] introduced the spaces ℓp(E) and

ℓp{E} respectively of weakly ℓp -summable and absolutely ℓp -summable sequences in E . This allowed him also

to introduce and study absolutely p -summing operators. He introduced and studied also the spaces λ{E} and

λ(E) of λ -summable and weakly λ -summable sequences in E , λ being a perfect sequence space in the sense

of Köthe endowed with its normal topology.

Later, Rosier considered in [14] the general case where λ is no longer equipped with the normal topology,

but with a general polar one. He obtained many results, among them a complete description of the dual space

of λ{E} . Florencio and Paúl [3] and [4] considered a general polar topology on λ and obtained interesting

results on λ(E). In particular, using the AK property, they represent the elements of the completion λ⊗̃ϵE of

the injective tensor product λ⊗ϵ E as weakly λ− summable sequences in E .

In [10], the authors extend to the locally convex setting the definition of the strong summability introduced

first by Cohen [1] in the case when E is a normed space. They made use of this notion to describe the continuous

dual space of λ(E). Many other results on λ(E) have been obtained in [11], [9], and [12].

Ghosh and Srivastava in [5] deal with an Orlicz function M to extend the notion of absolute λ−summability.

They introduce and study the space F (E,M) of those sequences (xn)n in a Banach space E for which

(M(∥xn∥E/ρ))n ∈ F , for some ρ > 0, where F is a normal sequence space. In this paper, we introduce the space

λ (E,M) of all weakly (M,λ)-summable sequences (xn)n from a Banach space E ; that is (αna(xn))n ∈ ℓM ,

for all (αn) ∈ λ∗ and a ∈ E∗ , where ℓM is the Orlicz sequence space associated with the Orlicz function M .

For M(t) = t the spaces λ(E,M) and λ(E) coincide.
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2. Definitions and preliminaries

In the sequel, if V is a normed space then V ∗ , ∥ · ∥V ∗ , and BV ∗ will denote respectively the topological dual,

the norm, and the closed unit ball of V .

Let ω denote the vector space of all real or complex sequences for the usual coordinate operations. For

all k ∈ N, ek will denote the k -th unit vector of ω . We mean by a sequence space any linear subspace of ω .

If λ is a sequence space, we denote by λ∗ its α -dual defined by

λ∗ =

{
(βn) ∈ ω :

∞∑
n=1

|αnβn| converges, for all (αn)n ∈ λ

}
.

We see that λ ⊂ λ∗∗ = (λ∗)∗, and λ is said to be perfect if λ = λ∗∗. Throughout this paper, λ stands for a

Banach perfect sequence space whose norm ∥ · ∥λ satisfies

(1) for all α and β in λ, if α ≤ β then ∥α∥λ ≤ ∥β∥λ .

(2) λ is an AK-space. This means that every (αn)n ∈ λ is the ∥·∥λ− limit of its finite sections (α1, . . . , αn, 0, . . .),

n ∈ N .

In this case the topological dual of λ coincides with its α−dual. The norm of λ∗ is then defined by

∥β∥λ∗ = sup

{ ∞∑
n=1

|αnβn|, α ∈ λ and ∥α∥λ ≤ 1

}
.

We assume moreover that (λ∗, ∥ · ∥λ∗) is also an AK-space. In particular, λ is a reflexive Banach space.

An Orlicz function is a continuous, convex, nondecreasing function M defined from [0,∞) to itself such

that M(0) = 0,M(x) > 0 for x > 0 and M(x) → ∞ as x→ ∞.

An Orlicz function M can always be represented in the following integral form

M(x) =

∫ x

0

µ(t)dt.

Define, for s ≥ 0,

ν(s) = sup{t : µ(t) ≤ s}.

Then ν possesses the same properties as µ and the function N defined by

N(x) =

∫ x

0

ν(t)dt

is an Orlicz function. The functions M and N are called mutually complementary Orlicz functions and satisfy

the Young inequality,

uv ≤M(u) +N(v), for u, v ≥ 0. (2.1)

The Orlicz sequence space ℓM , introduced in [8], is defined by
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ℓM =

{
(αn)n ∈ ω,

∞∑
n=1

M

(
|αn|
ρ

)
<∞, for some ρ > 0

}
.

ℓM is a Banach space with respect to the norm

∥(αn)n∥M = inf

{
ρ > 0,

∞∑
n=1

M

(
|αn|
ρ

)
≤ 1

}
.

For M(t) = tp, 1 ≤ p <∞, the space ℓM coincides with the classical sequence space ℓp.

An Orlicz function M satisfies the condition that M(ηx) ≤ ηM(x), if 0 ≤ η ≤ 1. It is said to satisfy

∆2−condition if there exists a constant K > 0, such that, for every x ≥ 0, M(2x) ≤ KM(x). In this case,

ℓ∗M = ℓN (see e.g. [6], Corollary 4.2).

3. The space λ(E,M)

Let E stand for a Banach space and ω(E) denote the linear space of all E -valued sequences. Define the space

λ(E,M) of weakly (M,λ)− summable sequences of E by

λ(E,M) = {x = (xn)n ⊂ E : for all a ∈ E∗, (αn)n ∈ λ∗, (αna(xn)) ∈ ℓM} .

We have

Theorem 3.1 With the usual coordinate operations, λ(E,M) is a vector space on which

∥x∥λ(E,M) = sup {∥(αna(xn))∥M : a ∈ BE∗ , α ∈ Bλ∗}

= sup
a∈BE∗ ,α∈Bλ∗

inf

{
ρ > 0 :

∞∑
n=1

M(|αna(xn)|/ρ) ≤ 1

}
,

for x = (xn)n ∈ λ(E,M) , defines a norm.

Proof For all a ∈ E∗ and (αn)n ∈ λ∗, define φa,α : ω(E) → ω by φa,α(x) = (αna(xn)), for all

x = (xn) ∈ λ(E,M).

It is clear that φa,α is linear and that

λ(E,M) =
∩

(a,α)∈E∗×λ∗

φ−1
a,α(ℓM ).

Thus, λ(E,M) is a vector space.

For the second part of the theorem, we prove only that ∥x∥λ(E,M) is finite. Fix x = (xn)n ∈ λ(E,M)

and define the family of linear mappings fα : E∗ → ℓM by fα(a) = (αna(xn)), for α = (αn) ∈ Bλ∗ . Then fα is

linear and continuous by the closed graph theorem. The same argument shows that ga(α) = fα(a) : λ
∗ → ℓM

is continuous for every a ∈ E∗. On the other hand, for every a ∈ E∗ ,

sup
α∈Bλ∗

∥fα(a)∥M = sup
α∈Bλ∗

∥ga(α)∥M = ∥ga∥L(λ∗,ℓM ) <∞.
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By the uniform boundedness principle,

sup {∥(αna(xn))∥M : a ∈ BE∗ , α ∈ Bλ∗} = sup
α∈Bλ∗

∥fα∥L(E∗,ℓM ) <∞,

and ∥x∥λ(E,M) is finite. 2

We establish now the continuity of the projections.

Lemma 3.2 For k ∈ N, let πk denote the projection from λ(E,M) on E defined by

πk(x) = xk, for all x = (xn) ∈ λ(E,M).

Then πk is linear and continuous.

Proof Fix k ∈ N, a ∈ BE∗ , and (αn)n ∈ Bλ∗ with αk > 0. Let κ = 1/(αk∥ek∥M ). For all x = (xn) ∈
λ(E,M), we have

αk|a(xk)|∥ek∥M = ∥αka(xk)ek∥M ≤ ∥(a(αnxn))n∥M
≤ ∥(xn)n∥λ(E,M).

Thus, ∥xk∥E ≤ κ∥x∥λ(E,M) for all x = (xn) ∈ λ(E,M) and πk is continuous. 2

Theorem 3.3 The normed space λ(E,M) is complete and E is isomorphic to a closed linear subspace of it.

Proof Consider a nonzero α = (αn)n ∈ λ . We will show that

∥(αnt)n∥λ(E,M) ≤M(1)∥α∥λ∥t∥E , for all α = (αn)n ∈ λ and t ∈ E. (3.1)

The inequality is obvious if t = 0. Suppose that t ̸= 0 and set ρ0 = M(1)∥α∥λ∥t∥E . If β = (βn)n ∈ λ∗ with

∥β∥λ∗ ≤ 1 and a ∈ E∗ with ∥a∥E∗ ≤ 1, then by the convexity of M ,

∞∑
n=1

M

(
|αnβna(t)|

ρ0

)
≤

∞∑
n=1

|αnβn||a(t)|
ρ0

M(1) ≤ 1.

Thus, ∥(βnαna(t))n∥M ≤ ρ0 . However,

∥(αnt)n∥λ(E,M) = sup
a∈BE∗ ,α∈Bλ∗

inf

{
ρ > 0 :

∞∑
n=1

M(|αna(xn)|/ρ) ≤ 1

}
≤ ρ0 =M(1)∥α∥λ∥t∥E .

For a fixed γ = (γn)n ∈ λ, with γ ̸= 0 the mapping t ∈ E → (γnt)n ∈ λ(E,M) is well defined, injective,

and continuous by (3.1). Let (tk)k be a sequence in E such that (γtk)k converges in λ(E,M) to x = (xn)n .

For every m ∈ N with γm ̸= 0, the sequence (tk)k converges to 1
γm
xm , by Lemma 3.2. If t denotes the limit

of (tk)k then xn = t if γn ̸= 0 and xn = 0 otherwise, and so x = γt , and the range of E is closed in λ(E,M).

Let xk = (xkn), k = 1, 2, . . . , be a Cauchy sequence in λ(E,M). For a fixed n ∈ N , by Lemma 3.2,

xkn, k = 1, 2, . . . , is a Cauchy sequence in E ; let xn ∈ E be its limit. We will prove that x = (xn)n ∈ λ(E,M)
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and that (xk)k converges to x. Fix α = (αn) ∈ λ∗ and a ∈ E∗. It is clear that the mapping φα,a : y = (yn) ∈
λ(E,M) → (αna(yn)) ∈ ℓM is linear and continuous. Thus, φα,a(x

k) = (αna(x
k
n)), k = 1, 2, . . . , is a Cauchy

sequence in the Banach space ℓM . Let β = (βn) be its limit in ℓM . For every n ∈ N, we have

αna(xn) = αna

(
lim
k→∞

xkn

)
= lim

k→∞
αna(x

k
n) = βn.

Hence, (αna(xn)) = β ∈ ℓM . Thus, x ∈ λ(E,M). It remains to show that (xk)k converges to x.

For ε > 0, there exists N ∈ N such that, for all q ≥ p ≥ N, α = (αn) ∈ Bλ∗ and a ∈ BE∗ , there exists

0 < ρ < ε that satisfies

sup
K∈N

K∑
n=1

M(|αna(x
p
n − xqn)|/ρ) =

∞∑
n=1

M(|αna(x
p
n − xqn)|/ρ) ≤ 1.

Since M is continuous, letting q → ∞, we get
∑K

n=1M(|αna(x
p
n − xn)|/ε) ≤ 1 for K ≥ N ; and then

∥xp − x∥λ(E,M) = sup
a∈BE∗ ,α∈B∗

λ

inf

{
ρ > 0 :

∞∑
n=1

M(|αna(x
p
n − xn)|/ρ) ≤ 1.

}
≤ ε,

for every p ≥ N. This completes the proof. 2

4. The space λ⟨E,M⟩

A sequence (xn)n is said to be strongly (M,λ)-summable in E, if for every (an)n ∈ λ∗(E∗, N), one has

(an(xn))n ∈ ℓ1. The space of these sequences will be denoted λ⟨E,M⟩.
That is

λ⟨E,M⟩ = {x = (xn)n ⊂ E : for all a = (an)n ∈ λ∗(E∗, N), (an(xn))n ∈ ℓ1} .

If we endow λ⟨E,M⟩ with the standard coordinate operations λ⟨E,M⟩ is a vector space over K that contains

the finite sequences of E . Indeed, if a = (an)n ∈ λ∗(E∗, N), the map φa from ω(E) into ω defined by

φa(x) = (an(xn)), for all x = (xn) ∈ λ⟨E,M⟩ is linear such that

λ⟨E,M⟩ =
∩

a∈λ∗(E∗,N),

φ−1
a (ℓ1).

Although many properties of the spaces λ(E,M) and λ⟨E,M⟩ are similar, the techniques of their proofs

are different.

Next, we define a norm on λ⟨E,M⟩.

Theorem 4.1 For x = (xn)n ∈ λ⟨E,M⟩ set

∥x∥λ⟨E,M⟩ = sup

{ ∞∑
n=1

|an(xn)| : a = (an)n ∈ λ∗(E∗, N), ∥a∥λ∗(E∗,N) ≤ 1

}
.

Then ∥x∥λ⟨E,M⟩ defines a norm on λ⟨E,M⟩.
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Proof Fix x = (xn)n ∈ λ⟨E,M⟩ and define the family of linear mappings φx : λ∗(E∗, N) → ℓ1 by

φx(a) = (an(xn)), for all a = (an) ∈ λ∗(E∗, N).

Then φx is linear and it is easy to check that the graph of φx is closed. As λ∗(E∗, N) is a Banach space by

Theorem 3.3, φx is continuous. This proves that ∥x∥λ⟨E,M⟩ is finite.

The other properties of the norm derive from that of ∥ · ∥M and the supremum. 2

Next, we establish the continuity of the projections.

Lemma 4.2 For k ∈ N, let πk denote the projection from λ⟨E,M⟩ on E defined by

πk(x) = xk, for all x = (xn) ∈ λ⟨E,M⟩.

Then πk is linear and continuous.

Proof Fix k ∈ N. Let x∗ ∈ E∗ such that ∥x∗∥E∗ ≤ 1. Set

δk = sup {∥αkek∥N : α = (αn)n ∈ λ and ∥α∥λ ≤ 1} .

Define a = 1/δkx
∗ek. It is easy to check that a ∈ λ∗(E∗, N) with ∥a∥λ∗(E∗,N) ≤ 1 and |x∗(xk)| ≤ δk∥x∥λ⟨E,M⟩,

for every x = (xn) ∈ λ⟨E,M⟩. Since this is satisfied for any x∗ ∈ E∗ such that ∥x∗∥E∗ ≤ 1, we have

∥xk∥E ≤ δk∥x∥λ⟨E,M⟩, for every x = (xn) ∈ λ⟨E,M⟩.

This shows the continuity of πk . 2

Theorem 4.3 The normed space λ⟨E,M⟩ is complete and E is isomorphic to a closed linear subspace of it.

Proof Fix p ∈ N and define θp : E → λ⟨E,M⟩ by θp(t) = tep for every t ∈ E. It is clear that θ is linear and

injective. Suppose that ∥t∥E < 1 and choose α = (αn)n ∈ λ with ∥α∥λ ≤ 1 and αp > 0. Let κ = 1/∥αpep∥N
and a ∈ λ∗(E∗, N) with ∥a∥λ∗(E∗,N) ≤ 1. Then we have

|ap(t)|∥αpep∥N = ∥αpap(t)ep∥N ≤ 1.

However, ∥tep∥λ⟨E,M⟩ = sup
{
|ap(t)| : ∥a∥λ∗(E∗,N) ≤ 1

}
≤ κ. This means that ∥tep∥λ⟨E,M⟩ ≤ κ∥t∥E for every

t ∈ E and then θ is continuous. On the other hand, it is easy to check that ∥tep∥λ⟨E,M⟩ ≥ ∥t∥E∥ep∥λ for every

t ∈ E and θ is open.

For the completeness of λ⟨E,M⟩ , let xk = (xkn), k = 1, 2, . . . be a Cauchy sequence in λ⟨E,M⟩. For a

fixed n ∈ N , by Lemma 4.2, the sequence xkn, k = 1, 2, . . . is Cauchy in E and then converges to an xn ∈ E. Set

x = (xn). We will prove that x ∈ λ⟨E,M⟩ and that (xk)k converges to x in λ⟨E,M⟩ . Let X denote the unit

ball of λ∗(E∗, N). For every k ∈ N, let fk : X → ℓ1 be defined by fk(a) = (an(x
k
n))n for all a = (an)n ∈ X.

Since (fk)k is a uniformly Cauchy sequence and ℓ1 is a Banach space, (fk)k must converge uniformly on X

to a function f : X → ℓ1 . Let a = (an)n ∈ X and α = (αn)n = f(a). Then α ∈ ℓ1. On the other hand, for

every n ∈ N, the sequence an(x
k
n), k = 1, 2, . . . converges to an(xn). However, fk(a) = (an(x

k
n))n converges to

f(a) = α. This gives (an(xn))n ∈ ℓ1 and then x ∈ λ⟨E,M⟩ . Since (fk)k converges uniformly on X to f , the

sequence (xk)k converges in λ⟨E,M⟩ to x . 2
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5. Dual space of λ(E,M)

If x = (xn) ∈ ω(E) then we denote by x(k) = (x1, x2, . . . , xk, 0 . . .) the sequence of the finite sections of x . If

x ∈ λ(E,M), then x(k) ∈ λ(E,M) for all k ∈ N . Using the notation x(k) =
∑k

n=1 xnen , we see that if x is

the limit of its finite sections, then

x = lim
k→∞

x(k) =
∞∑

n=1

xnen. (5.1)

If λ(E,M)r denotes the subspace of λ(E,M) of the sequences of λ(E,M), which are the limit of their

finite sections, then λ(E,M) is said to have the AK-property if λ(E,M) = λ(E,M)r .

We have

Theorem 5.1 λ(E,M)r is a closed subspace of λ(E,M) .

Proof It is easy to check that if x = (xn) ∈ λ(E,M) then ∥x(k)∥λ(E,M) ≤ ∥x∥λ(E,M) . Suppose that x is in

the closure of λ(E,M)r and ε > 0. There exist y ∈ λ(E,M)r and K ∈ N such that ∥x− y∥λ(E,M) < ε/3 and

∥y(k) − y∥λ(E,M) < ε/3 for all k ≥ K . Now,

∥x(k) − x∥λ(E,M) ≤ ∥x(k) − y(k)∥λ(E,M) + ∥y − y(k)∥λ(E,M) + ∥x− y∥λ(E,M)

< 2∥x− y∥λ(E,M) + ε/3 < ε,

for all k ≥ K . Then x ∈ λ(E,M)r 2

The following theorem gives an analogue of a result of [10] given for M(t) = t, when λ and E are Banach
spaces.

Theorem 5.2 Let F be a continuous linear functional on λ(E,M) and, for every n ∈ N and t ∈ E ,

an(t) = F (ten) . Then the sequence (an)n is strongly (N,λ∗)-summable in E∗.

Proof Since F is continuous, there exists κ > 0 such that

|F (x)| ≤ κ∥x∥λ(E,M), for all x = (xn)n ∈ λ(E,M).

Fix n ∈ N and t ∈ E . We have

|an(t)| = |F (ten)| ≤ κ∥ten∥λ(E,M) ≤ κM(1)∥en∥λ∥t∥E .

This means that (an)n ⊂ E∗ .

It remains to show that (an)n ∈ λ∗⟨E∗, N⟩. To this end, let (fn)n ∈ λ(E∗∗,M), k ∈ N , and δ >

0 be given. Then, due to the principle of local reflexivity (cf. [2]), there exists a continuous operator

uk : span{f1, f2, . . . , fk} → E such that ∥uk∥E∗∗∗ ≤ 1 + δ and an(ukfn) = fn(an) for all n ∈ {1, 2, . . . , k} .

Since every an is continuous, there exist 0 < δn ≤ δ

k(1 + ∥en∥λ)
and xn ∈ E such that ∥xn − ukfn∥E ≤ δn
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and |an(xn − ukfn)| ≤
δ

k(1 + ∥en∥λ)
. Now,

∣∣∣∣∣
k∑

n=1

fn(an)

∣∣∣∣∣ =

∣∣∣∣∣
k∑

n=1

an(ukfn)

∣∣∣∣∣
≤

∣∣∣∣∣
k∑

n=1

an(xn − ukfn)

∣∣∣∣∣+
∣∣∣∣∣

k∑
n=1

an(xn)

∣∣∣∣∣
≤

k∑
n=1

|an(xn − ukfn)|+

∣∣∣∣∣F
(

k∑
n=1

xnen

)∣∣∣∣∣
≤ δ + κ

∥∥∥∥∥
k∑

n=1

xnen

∥∥∥∥∥
λ(E,M)

.

However, for α = (αn)n ∈ λ∗, with ∥α∥λ∗ ≤ 1 and a ∈ E∗, with ∥a∥E∗ ≤ 1,

∥∥∥∥∥
k∑

n=1

αna(xn)en

∥∥∥∥∥
M

≤

∥∥∥∥∥
k∑

n=1

αna(xn − ukfn)en

∥∥∥∥∥
M

+

∥∥∥∥∥
k∑

n=1

αna(ukfn)en

∥∥∥∥∥
M

. (5.2)

On one hand,

k∑
n=1

M(|αna(xn − ukfn)|/δ) ≤
k∑

n=1

M(|αn|/k(1 + ∥en∥λ))

≤
k∑

n=1

(|αn|/k(1 + ∥en∥λ)M(1/k)

≤ k
|αn|
∥en∥λ

M(1/k) ≤ kM(1/k) ≤M(1).

Thus,
∥∥∥∑k

n=1 αna(xn − ukfn)en

∥∥∥
M

≤ δ , if M(1) ≤ 1, and
∥∥∥∑k

n=1 αna(xn − ukfn)en

∥∥∥
M

≤ M(1)δ , if M(1) ≥

1. Replacing δ by M(1)δ if necessary, we may suppose that

∥∥∥∥∥
k∑

n=1

αna(xn − ukfn)en

∥∥∥∥∥
M

≤ δ. (5.3)

On the other hand,∥∥∥∥∥
k∑

n=1

αna(xn − ukfn)en

∥∥∥∥∥
M

≤ (1 + δ)

∥∥∥∥∥
k∑

n=1

fnen

∥∥∥∥∥
λ(E∗∗,M)

≤ (1 + δ) ∥(fn)n∥λ(E∗∗,M) . (5.4)

Combining (5.3) and (5.4) in (5.2) and taking the supremum on BE∗ and Bλ∗ , we get
∥∥∥∑k

n=1 xnen

∥∥∥
λ(E,M)

≤

δ + (1 + δ) ∥(fn)n∥λ(E∗∗,M) .
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Hence ∣∣∣∣∣
k∑

n=1

fn(an)

∣∣∣∣∣ ≤ δ(κ+ 1) + κ(1 + δ) ∥(fn)n∥λ(E∗∗,M) , (fn)n ∈ λ(E∗∗,M), δ > 0, and k ∈ N.

Further, let (ϵn)n be such that |fn(an)| = ϵnfn(an), n ∈ N . Then (ϵnfn)n ∈ λ(E∗∗,M) and

k∑
n=1

|fn(an)| =
k∑

n=1

ϵnfn(an) ≤ δ(κ+ 1) + κ(1 + δ) ∥(fn)n∥λ(E∗∗,M) .

It follows that (fn(an))n ∈ ℓ1 and (an)n ∈ λ∗⟨E∗, N⟩. 2

Remark 5.3 From the preceding proof, since δ is arbitrary, one gets

∞∑
n=1

|fn (an)| ≤ κ ∥(fn)n∥λ(E∗∗,M) , for all (fn)n ∈ λ(E∗∗,M). (5.5)

Therefore, ∥(an)n∥λ∗⟨E∗,N⟩ ≤ ∥F∥λ(E,M)∗ .

In order to establish the converse of the last result we need the following characterization of weakly

(M,λ)-summable sequences in E∗ .

Lemma 5.4

λ(E∗,M) = {(an)n ⊂ E∗ : (an(αnx))n ∈ ℓM , for all x ∈ E, (αn) ∈ λ∗}

Proof Let a = (an)n ∈ λ(E∗,M). For all x ∈ E , the evaluation δx(u) = u(x) can be regarded as an element

of E∗∗ . Then, for every (αn)n ∈ λ∗ , (αnδx(an))n = (an(αnx))n ∈ ℓM . Conversely, assume that for all x ∈ E ,

(αn)n ∈ λ∗ , (αnan(x))n ∈ ℓM and let f ∈ E∗∗ . We shall use the fact that ℓM is perfect, since M is supposed to

satisfy ∆2 condition. Let (γn)n ∈ ℓ∗M be given. It suffices to show that the series
∑

|γnαnf(an)| is convergent.
Choose (ϵn)n so that ϵnf(γnαnan) = |f(γnαnan)| for all n and set

A =

{
p∑

n=1

ϵnγnαnan : p ∈ N

}
.

For all p ∈ N and all x ∈ E , one has

p∑
n=1

|ϵnγnαnan(x)| ≤
∞∑

n=1

|γnαnan(x)| ,

which is finite since (αnan(x))n ∈ ℓM . The set A is then weak∗ -bounded in E∗ , and so A is weakly bounded

in E∗ . Hence there exists ρf > 0 such that
∑p

n=1 ϵnγnαnf(an) ≤ ρf , for all p ∈ N . This proves that the series∑
|γnαnf(an)| is convergent and that (αnf(an))n ∈ ℓM . 2

We establish now the converse of Theorem 5.2.
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Theorem 5.5 For every a = (an)n ∈ λ∗⟨E∗, N⟩ , the mapping

fa : x 7→
∞∑

n=1

an(xn)

defines a continuous linear functional on λ(E,M) .

Proof Let a = (an)n ∈ λ∗⟨E∗, N⟩ and x = (xn)n ∈ λ(E,M). We have (δn)n ⊂ E∗∗ , where δn is the

evaluation u 7→ u(xn) at xn , u ∈ E∗ . Thanks to lemma 5.4, since (αnδn(u))n ∈ ℓM , for every (αn)n ∈ λ∗, we

have (δn)n ∈ λ(E∗∗,M). Hence
∑

|δn(an)| converges and fa is well defined.

Next consider the map φa defined from λ(E,M) into ℓ1 by φa((fn)n) = (fn(an))n . Then φa is well defined.

Moreover, suppose that (xi)i∈N ∈ λ(E,M) converges to x := (xn)n and (φa(x
i))i converges in ℓ1 to (αn)n . By

the continuity of the projections (Lemma 3.2), (xin)i∈N converges to xn for every n ∈ N and then (an(x
i
n))i∈N

converges to an(xn) as well. It follows that (an(xn))n = (αn)n , showing that the graph of φa is closed and

then that φa is continuous, since λ(E,M) is a Banach space (Theorem 6.4). Then there exists c > 0 so that

∞∑
n=1

|an(xn)| ≤ c∥(xn)n∥λ(E,M), for all (xn)n ∈ λ(E,M).

This shows that fa is continuous on λ(E,M). 2

We now obtain the promised characterization of continuous linear functionals on λ(E,M)r .

Theorem 5.6 The following equality holds algebraically and topologically

(λ(E,M)r)
∗ = λ∗⟨E∗, N⟩. (5.6)

Proof Consider the mapping φ : a 7→ fa from λ∗⟨E∗, N⟩ to (λ (E,M)r)
∗ defined in Theorem 5.5. φ is clearly

linear. Suppose that there exists a = (an)n ∈ λ∗⟨E∗, N⟩ such that fa(x) = 0, for every x = (xn)n ∈ λ(E,M)r.

Fix k ∈ N and t ∈ E. We have ak(t) = fa(ten) = 0, which means that ak = 0. Since k was arbitrary,

a = (an)n = 0 and φ is one to one. Conversely, if f ∈ (λ(E,M)r)
∗ then let a = (an)n ∈ λ∗⟨E∗, N⟩ as

defined in Theorem 5.2. If x = (xn)n ∈ λ(E,M)r, then x =
∑∞

n=1 xnen by (5.1). As f is continuous,

f(x) =
∑∞

n=1 f(xnen) =
∑∞

n=1 an(xn), which gives φ(a) = f and φ is onto, and (5.6) holds algebraically.

Since φ−1 is defined between Banach spaces (Theorems 3.3 and 4.3), and is continuous by (5.5), φ is an

isomorphism by the open mapping theorem. 2

6. Reflexivity of λ(E,M)

In the sequel, we denote by λ⟨E,M⟩r the subspace of λ⟨E,M⟩ formed by the sequences of λ⟨E,M⟩ , which are

the limit of their finite sections.

The proof of the following theorem is along the same lines as that of Theorem 5.2; we give it for the sake of

completeness.

Theorem 6.1 Let G be a continuous linear functional on λ⟨E,M⟩ and, for every n ∈ N and t ∈ E ,

an(t) = G(ten) . Then the sequence (an)n is weakly (N,λ∗)-summable in E∗.
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Proof Since G is continuous, there exists η > 0 such that

|G(x)| ≤ η∥x∥λ⟨E,M⟩, for all x = (xn)n ∈ λ⟨E,M⟩.

Fix n ∈ N and t ∈ E , and put

an(t) = G(ten) = G(0, . . . , t, 0, . . .).

Then an is a linear functional on E with

G ◦ θn = an,

where
θn : E −→ λ ⟨E,M⟩ , t −→ (0, . . . , t, 0, . . .).

It follows from Theorem 4.3, that an is continuous and then (an)n ⊂ E∗ .

It remains to show that (an)n ∈ λ∗(E∗, N). To this end, let (αn)n ∈ Bλ and u ∈ BE . We shall show that

(αnan(u))n ∈ ℓN . Let (βn)n ∈ ℓM and for every n ∈ N , εn be such that |βnαnan(u)| = εnβnαnan(u). Fix

k ∈ N . Then

k∑
n=1

|βnαnan(u)| = G

(
k∑

n=1

εnβnαnuen

)
≤ η∥

k∑
n=1

εnβnαnuen∥λ⟨E,M⟩

= η sup

{
k∑

n=1

|βnαnbn(u)| : ∥(b)n∥λ∗(E∗,N) ≤ 1

}
.

For every ε > 0, there exists b = (bn)n ∈ λ∗(E∗, N) such that ∥(bn)n∥λ∗(E∗,N) < 1 with ∥
∑k

n=1 εnβnαnuen∥λ⟨E,M⟩ ≤

ε+
∑k

n=1 |βnαnbn(u)|.

However, from (2.1), we have

k∑
n=1

|βnαnbn(u)| ≤
k∑

n=1

M(|βn|) +
k∑

n=1

N(|αnbn(u)|) ≤
∞∑

n=1

M(|βn|) +
∞∑

n=1

N(|αnbn(u)|).

Since ∥(bn)n∥λ∗(E∗,N) < 1, we have ∥(αnbn(u))n∥N < 1 and then there exists 0 < ρ < 1 such that∑∞
n=1N(|αnbn(u)|) ≤

∑∞
n=1N(|αnbn(u)|/ρ) ≤ 1. Therefore,

∑k
n=1 |βnαnan(u)| ≤ η(ε +

∑∞
n=1M(|βn|) + 1),

for every k ∈ N .

Hence, the series
∑∞

n=1 βnαnbn(u) converges, and (αnan(u))n ∈ (ℓM )∗ = ℓN . That is, (an)n ∈ λ∗(E∗, N). 2

Remark 6.2 From the preceding proof, since ε is arbitrary, one gets

∞∑
n=1

|βnαnan(u)| ≤ 2η, for all (αn)n ∈ Bλ, (βn)n ∈ BℓM , u ∈ BE .

Therefore, ∥(an)n∥λ∗(E∗,N) ≤ 2∥G∥λ⟨E,M⟩∗ .

We establish now the converse of Theorem 6.1.
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Theorem 6.3 For every a = (an)n ∈ λ∗(E∗, N) , the mapping

ga : x 7→
∞∑

n=1

an(xn)

defines a continuous linear functional on λ⟨E,M⟩ .

Proof Let a = (an)n ∈ λ∗(E∗, N). Then, for every x ∈ λ⟨E,M⟩, (an(xn))n ∈ ℓ1 , by the definition of

λ⟨E,M⟩. Therefore ga is well defined. Suppose that (xi)i∈N ∈ λ⟨E,M⟩ converges to x := (xn)n and (φa(x
i))i

converges in ℓ1 to (αn)n . By the continuity of the projections (Lemma 4.2), (xin)i∈N converges to xn for every

n ∈ N and then (an(x
i
n))i∈N converges to an(xn) as well. It follows that (an(xn))n = (αn)n and that the

graph of φa is closed. This shows that φa is continuous. Hence ga is continuous on λ⟨E,M⟩ . 2

We now state the characterization of continuous linear functionals on λ⟨E,M⟩r .

Theorem 6.4 The following equality holds algebraically and topologically

(λ⟨E,M⟩r)∗ = λ∗(E∗, N). (6.1)

Proof Consider the mapping ψ : a 7→ ga from λ∗(E∗, N) to (λ⟨E,M⟩r)∗ defined in Theorem 6.3. It is

clear that ψ is linear. Suppose that there exists a = (an)n ∈ λ∗(E∗, N) such that ga(x) = 0, for every

x = (xn)n ∈ λ⟨E,M⟩r. Fix k ∈ N and t ∈ E. We have ak(t) = ga(ten) = 0, which means that ak = 0. Since

k was arbitrary, a = (an)n = 0 and ψ is one to one.

Conversely, let g ∈ (λ⟨E,M⟩r)∗ and a = (an)n ∈ λ∗(E∗, N) as defined in Theorem 6.1. If x = (xn)n ∈
λ⟨E,M⟩r, then x =

∑∞
n=1 xnen . As g is continuous, g(x) =

∑∞
n=1 g(xnen) =

∑∞
n=1 an(xn), and ψ(a) = g.

Thus ψ is onto. The equality (6.1) holds algebraically.

However, according to Remark 6.2, ∥(an)n∥λ∗(E∗,N) ≤ 2∥ga∥λ⟨E,M⟩∗ and then ψ is open. Since ψ is bijective

between Banach spaces (Theorems 3.3, 4.3), ψ is continuous by the open mapping theorem. This finishes the

proof. 2

We give our main result in the following

Theorem 6.5 If M and N possess the ∆2-condition, then λ(E,M) is reflexive if and only if the following

assertions hold:

(i) E is reflexive,

(ii) λ(E,M) is an AK-space,

(iii) λ∗⟨E∗, N⟩ is an AK-space.

Proof If λ(E,M) is reflexive, then E is reflexive as a closed subspace of λ(E,M), by Theorem 3.3. Hence,

(i) holds.

By [7, 23.5(10)] and our Theorem 5.1, λ(E,M)r is also reflexive as a closed subspace of λ(E,M). It is then

weakly quasi-complete by [7, 23.5(2)]. Thus, λ(E,M)r is weakly sequentially complete.

Let x = (xn)n ∈ λ(E,M). Then the sequence (x(k))k∈N consisting of the finite sections of x is contained in
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λ(E,M)r and is weakly Cauchy in it. In fact, let a be in (λ(E,M)r)
∗ . By Theorem 5.5, the series

∑
an(xn)

converges, and (⟨x(k), a⟩)k = (
∑k

n=1 an(xn))k is then a Cauchy sequence; hence (x(k))k∈N converges weakly to

a limit y = (yn)n ∈ λ(E,M)r and it is obvious that x = y so that (ii) holds.

Now, since λ(E,M)r is reflexive, the same holds for its dual λ∗⟨E∗, N⟩ and the argumentation above still works

to infer that (iii) holds.

Conversely, assume that (i), (ii), and (iii) are satisfied. Then, since λ and E are reflexive, an application of

Theorems 5.6 and 6.4 gives, algebraically and topologically,

(λ(E,M))
∗∗

= (λ(E,M)r)
∗∗
, (by (ii))

= (λ∗ ⟨E∗, N⟩)∗ = (λ∗ ⟨E∗, N⟩r)
∗
, (by (iii))

= λ∗∗ (E∗∗,M) , (by Theorem 6.4)

= λ (E,M) , (by (i)).

Then λ(E,M) is reflexive. 2
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