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Abstract: Using generalized hypergeometric functions to perform symbolic manipulations of equations is of great

importance to pure and applied scientists. There are in the literature a great number of identities for the Meijer-G

function. On the other hand, when more complex expressions arise, that function is not capable of representing them.

The H-function is an alternative to overcome this issue, as it is a generalization of the Meijer-G function. In the present

paper, a new identity for the H-function is derived. In short, this result enables one to split a particular H-function

into the sum of two other H-functions. The new relation in addition to an old result are applied to the summation of

hypergeometric series. Finally, some relations between H-functions and elementary functions are built.
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1. Introduction

Special functions have proven to be essential tools while dealing with the formal mathematical manipulation

of equations. In fact, most of the computational software programs that perform symbolic operations consider

generalized hypergeometric functions to do so.

Generalized hypergeometric functions of the type pFq have been extensively studied. For example, in

the works of [1, 3, 8, 9], a series of identities have been derived for this function.

These functions, on the other hand, are able to represent just a small share of the mathematical relations

commonly considered in science. Thus, more general hypergeometric functions must be considered. This is the

case of the Meijer-G function [4].

Mathematica software, for example, vastly relies on the Meijer-G function to perform integration, differ-

entiation, and algebraic manipulation of standard and special functions. This comes from the fact that most of

the functions that are used in science are representable in terms of this special function.

When more complex expressions arise, Meijer-G functions are not capable of representing the functional

relations that show up. Thus, a more general function is needed for this task. This is where the H-function,

which is a generalization of the Meijer-G function, can be used. The H-function is a powerful hypergeometric

function whose importance in pure and applied sciences has been considerably discussed [4, 7].
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Useful identities for this special function were presented in [4, 6]. In the present paper, a new identity for

the H-function has been derived. It is shown how this identitiy can be used to provide closed form representations

for hypergeometric summations. New relations between H-functions and elementary functions are also presented.

In order to better familiarize the reader with this special function, the next section presents some basic

concepts regarding the H-function.

2. H-function

The H-function (see [4]) is defined as a contour complex integral that contains gamma functions in its integrands,

by

Hm,n
p,q

[
z

∣∣∣∣ (a1, A), . . . , (an, An), (an+1, An+1), . . . , (ap, Ap)
(b1, B1), . . . , (bm, Bm), (bm+1, Bm+1), . . . , (bq, Bq)

]

=
1

2πi

∫
L

m∏
j=1

Γ(bj +Bjs)

n∏
j=1

Γ(1− aj −Ajs)

q∏
j=m+1

Γ(1− bj −Bjs)

p∏
j=n+1

Γ(aj +Ajs)

z−sds, (1)

where Aj and Bj are assumed to be positive quantities and all the aj and bj may be complex. The contour

L runs from c − i∞ to c + i∞ such that the poles of Γ(bj + Bjs), j = 1, . . . ,m lie to the left of L and the

poles of Γ(1− aj −Ajs), j = 1, . . . , n lie to the right of L .

By performing the variable change s → −r and adjusting the contour L to L∗ , where the integral runs

from c∗ − i∞ to c∗ + i∞ , the H-function can be alternatively defined as:

Hm,n
p,q

[
z

∣∣∣∣ (a1, A), . . . , (an, An), (an+1, An+1), . . . , (ap, Ap)
(b1, B1), . . . , (bm, Bm), (bm+1, Bm+1), . . . , (bq, Bq)

]

=
1

2πi

∫
L∗

m∏
j=1

Γ(bj −Bjr)
n∏

j=1

Γ(1− aj +Ajr)

q∏
j=m+1

Γ(1− bj +Bjr)

p∏
j=n+1

Γ(aj −Ajr)

zrdr, (2)

for which the same parameter domain restrictions apply.

By considering the definition in (2), the H-function can be expressed in computable form as follows [4]:

When the poles of
m∏
j=1

Γ(bj −Bjr) are simple, we have:

Hm n
p q (z) =

m∑
h=1

∞∑
ν=0

m∏
j=1 ̸=h

Γ

(
bj −Bj

bh + ν

Bh

)
q∏

j=m+1

Γ

(
1− bj +Bj

bh + ν

Bh

)
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×

n∏
j=1

Γ

(
1− aj +Aj

bh + ν

Bj

)
p∏

j=n+1

Γ

(
aj −Aj

bh + ν

Bh

) (−1)νz(bh+ν)/Bh

ν!Bh
(3)

for z ̸= 0 if δ > 0 and for 0 < |z| < D−1 if δ = 0, where δ =
∑p

j=1 Bj −
∑q

j=1 Aj and

D =
∏p

j=1 A
Aj

j /
∏q

j=1 B
Bj

j .

When the poles of
n∏

j=1

Γ(1− aj +Ajr) are simple, we have

Hm n
p q (z) =

n∑
h=1

∞∑
ν=0

n∏
j=1 ̸=h

Γ

(
1− aj −Aj

1− ah + ν

Ah

)
p∏

j=n+1

Γ

(
aj +Aj

1− ah + ν

Ah

) ×

×

m∏
j=1

Γ

(
bj +Bj

1− ah + ν

Ah

)
q∏

j=m+1

Γ

(
1− bj −Bj

1− ah + ν

Ah

) (−1)ν(1/z)(1−ah+ν)/Ah

ν!Ah
(4)

for z ̸= 0 if δ < 0 and for |z| > D−1 if δ = 0.

Both representations above apply when the poles of the gamma function in the numerator of the quotients

are simple. When this simplification does not hold, the residue theorem has to be applied. For details about

this theorem, one may refer to [7].

Another hypergeometric function that is of interest in the present paper is pFq , defined as:

pFq

[
a1, . . . , ap
b1, . . . , bq

; z

]
=

∞∑
n=0

(a1)n . . . (ap)n
(b1)n . . . (bq)n

xn

n!
, (5)

where the symbols follow the same constraints as in the case of the H-function. Also, (a)n denotes the

Pochhammer symbol, which can be defined in terms of the gamma function as:

(a)n =
Γ(a+ n)

Γ(a)
. (6)

Both the H-function and the pFq function may be related by the following formula:

pFq

[
a1, . . . , ap
b1, . . . , bq

; z

]
=

∏q
k=1 Γ(bk)∏p
k=1 Γ(ak)

H1,p
p,q+1

[
−z| (1− a1, 1), . . . , (1− ap, 1)

(0, 1), (1− b1, 1), . . . , (1− bq, 1)

]
. (7)
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3. Identities presented in the literature

In the present section, a few identities presented in the literature are shown in order to better familiarize the

reader with the mathematics behind the proofs [2, 4, 5].

k−1∏
j=0

Γ

(
z +

j

k

)
= Γ(kz)(2π)

k−1
2 k

1
2−kz, (8)

where k is a positive integer; kz ∈ C\Z−
0 .

cos(πz) =
π

Γ
(
1
2 + z

)
Γ
(
1
2 − z

) (9)

cos(πz) =
eiπz + e−iπz

2
(10)

Hm,n
p,q

[
z| (ap, Ap)

(bq, Bq)

]
= kHm,n

p,q

[
zk| (ap, kAp)

(bq, kBq)

]
, k > 0. (11)

H1,0
0,1

[
z

∣∣∣∣ −
(0, 1)

]
= e−z (12)

H1,1
1,2

[
−z

∣∣∣∣ (0, 1)
(0, 1), (−1, 1)

]
=

ez − 1

z
(13)

H1,2
2,3

[
−z

∣∣∣∣ (0, 1), (−1, 1)
(0, 1), (−1, 1), (−2, 1)

]
=

ez − 1− z

z2
(14)

In [6], an interesting relation was derived to split an H-function into the sum of two other H-functions.

This relation can be expressed as follows [6]:

Let z ∈ C , and then:

Hm,n
p+1,q+1

[
z

∣∣∣∣ (a1, A1), . . . , (ap, Ap), (α, λ)
(b1, B1), . . . , (bq, Bq), (α, λ)

]
=

1

2πi

(
eiπαHm,n

p,q

[
e−iπλz

∣∣∣∣ (a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bq, Bq)

]
(15)

−e−iπαHm,n
p,q

[
eiπλz

∣∣∣∣ (a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bq, Bq)

])
.

In the present paper, an alternative splitting relation is derived, as shall be seen in the next section.

4. Results

First, one identity for the H-function is presented. Then applications of the new identity derived are shown

together with (15).
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Theorem 1 Let z, α, λ ∈ C , and then:

Hm,n
p,q

[
z

∣∣∣∣ (α, λ), (a2, A2), . . . , (ap, Ap)
(α, λ), (b2, B2), . . . , (bq, Bq)

]
= eiπαHm,n

p,q

[
e−iπλz

∣∣∣∣ (2α, 2λ), (a2, A2), . . . , (ap, Ap)
(2α, 2λ), (b2, B2), . . . , (bq, Bq)

]
+e−iπαHm,n

p,q

[
eiπλz

∣∣∣∣ (2α, 2λ), (a2, A2), . . . , (ap, Ap)
(2α, 2λ), (b2, B2), . . . , (bq, Bq)

]
. (16)

Proof First, by using (1), one shall consider the contour integral representation of the H-function in (16),

given as:

Hm,n
p,q

[
z

∣∣∣∣ (α, λ), . . . , (ap, Ap)
(α, λ), . . . , (bq, Bq)

]
=

=
1

2πi

∫
L

Γ(α+ λs)Γ(1− α− λs)
m∏
j=2

Γ(bj +Bjs)
n∏

j=2

Γ(1− aj −Ajs)

q∏
j=m+1

Γ(1− bj −Bjs)

p∏
j=n+1

Γ(aj +Ajs)

z−sds. (17)

By considering (8), it is easy to see that:

Γ(α+ λs)Γ

(
1

2
+ α+ λs

)
= Γ(2α+ 2λs)(2π)

1
2 2

1
2−2α−2λs

Γ

(
1

2
− α− λs

)
Γ (1− α− λs) = Γ(1− 2α− 2λs)(2π)

1
2 2

1
2−1+2α+2λs. (18)

Also, (18) implies that:

Γ(α+ λs)Γ (1− α− λs) = 2π
Γ(2α+ 2λs)Γ(1− 2α− 2λs)

Γ
(
1
2 + α+ λs

)
Γ
(
1
2 − α− λs

) . (19)

Equation (19) can be further simplified by using (9) and (10), resulting in:

Γ(α+ λs)Γ (1− α− λs) = Γ(2α+ 2λs)Γ(1− 2α− 2λs)(eiπ(α+λs) + e−iπ(α+λs)). (20)

Finally, by inserting (20) into (17), (16) is retrieved.

2

The following two forms of (15) and (16) are easily derived:

• By taking (a1, A1) = (b1, B1) = (α, λ) in (15), one gets:

Hm−1,n−1
p−1,q−1

[
z

∣∣∣∣ (a2, A2), . . . , (ap, Ap)
(b2, B2), . . . , (bq, Bq)

]
=

1

2πi

(
eiπαHm,n

p,q

[
e−iπλz

∣∣∣∣ (α, λ), (a2, A2), . . . , (ap, Ap)
(α, λ), (b2, B2), . . . , (bq, Bq)

]
−e−iπαHm,n

p,q

[
eiπλz

∣∣∣∣ (α, λ), (a2, A2), . . . , (ap, Ap)
(α, λ), (b2, B2), . . . , (bq, Bq)

])
, (21)

for p ≥ n ≥ 1 and q ≥ m ≥ 1.
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• Similarly, taking (ap, Ap) = (bq, Bq) = (α, λ) in (16), one obtains:

Hm−1,n−1
p−2,q−2

[
z

∣∣∣∣ (a2, A2), . . . , (ap−1, Ap−1)
(b2, B2), . . . , (bq−1, Bq−1)

]
= eiπαHm,n

p,q

[
e−iπλz

∣∣∣∣ (2α, 2λ), (a2, A2), . . . , (ap−1, Ap−1), (α, λ)
(2α, 2λ), (b2, B2), . . . , (bq−1, Bq−1), (α, λ)

]
+e−iπαHm,n

p,q

[
eiπλz

∣∣∣∣ (2α, 2λ), (a2, A2), . . . , (ap−1, Ap−1), (α, λ)
(2α, 2λ), (b2, B2), . . . , (bq−1, Bq−1), (α, λ)

]
, (22)

for p− 1 ≥ n ≥ 1 and q − 1 ≥ m ≥ 1.

Equations (15) and (16) may be applied to split H-functions into the sum of the H-function. In the

present paper, an interesting application to the summation of hypergeometric series is described. First, a

general summation may be studied. Then special cases are discussed case by case.

Theorem 2 Let x ∈ R , and then:

∞∑
n=0

xαnβn

Γ(γn+ δ + 1)
=

1

Γ(δ + 1)
1Fγ

[
1

δ+1
γ , δ+2

γ , . . . , δ+γ
γ

;β
xα

γγ

]
. (23)

The left-hand side of (23) is a generalization of the Mittag–Leffler function [2, 4].

Proof The summation in (23) can be expressed in terms of the hypergeometric function pFq by noticing that:

Γ(γn+ δ + 1) =

∏γ−1
k=0 Γ

(
n+ δ+1+k

γ

)
(2π)

γ−1
2 γ− 1

2−γn−δ
. (24)

By combining the left-hand side of equation (23) and equation (24), the former may be rewritten as:

1

Γ(δ + 1)

∞∑
n=0

(βxαγ−γ)n(1)n∏γ−1
k=0

(
δ+1+k

γ

)
n
n!
. (25)

By the representation in (5), equation (25) implies (23). 2

Corollary 3 The summation in (23) can be expressed in terms of the H-function as:

∞∑
n=0

xαnβn

Γ(γn+ δ + 1)
= H1,1

1,2

[
−βxα| (0, 1)

(0, 1), (−δ, γ)

]
. (26)

Proof By means of (7), (23) is expressible in terms of the H-function as:

∞∑
n=0

xαnβn

Γ(γn+ δ + 1)
=

1

Γ(δ + 1)

γ∏
k=1

Γ(
δ + k

γ
)H1,1

1,γ+1

−β
xα

γγ
|

(0, 1)

(0, 1), (1− δ+1
γ , 1), . . . , (1− δ+γ

γ , 1)

 . (27)

On the other hand, by using the contour integral representation (1) of (27) and the multiplication theorem

for the gamma function (8), (26) follows from (27).

2

Based on the general results presented, one shall proceed to the applications sections.
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5. Applications

In the present section, results obtained for the summation of hypergeometric series are presented. These results

are important as they present interesting relations between generalized hypergeometric functions and elementary

functions.

5.1. When γ = 2 and β = −1 in (23)

For the cases where β = −1, the results may be obtained by performing the transformation xα/2 → ixα/2 .

This provides the results in terms of standard trigonometrical functions. Also, these are the cases treated in [8]

for Ωi = 1, ∀i ∈ N , where the parameters considered are γ = 2 (δ = 0 and 1) and γ = 3 (δ = 0, 1 and 2).

Another interesting result may be discussed for the case where γ = 2 and β = −1.

5.1.1. Case when δ = 0

First, let us consider (23) for this case:

∞∑
n=0

xαn(−1)n

Γ(2n+ 1)
= 0F1

[
−
1
2

;−xα

4

]
. (28)

The literature shows that when α = 2, we have [1, eq.(3.2)]:

ex0F1

[
−
1
2

;−x2

4

]
=

∞∑
n=0

2n/2cos
(nπ

4

) xn

n!
. (29)

By considering (9), the right-hand side of (29) may be rewritten as:

ex0F1

[
−
1
2

;−x2

4

]
= π

∞∑
n=0

2n/2

Γ
(
1
2 + n

4

)
Γ
(
1
2 − n

4

) xn

n!
. (30)

Finally, by considering the H-function series representation given in (3), (30) provides:

ex0F1

[
−
1
2

;−x2

4

]
= πH1,0

1,2

[
−
√
2x

∣∣∣∣ ( 12 ,
1
4 )

(0, 1), ( 12 ,
1
4 )

]
. (31)

The alternative representation (26) of the left-hand side of (31) results in the following relations:

ex0F1

[
−
1
2

;−x2

4

]
= exH1,1

1,2

[
x2

∣∣∣∣ (0, 1)
(0, 1), (0, 2)

]
= πH1,0

1,2

[
−
√
2x

∣∣∣∣ ( 12 ,
1
4 )

(0, 1), ( 12 ,
1
4 )

]
. (32)

By considering the transformation x → ix , (32) is also expressible in terms of elementary functions, as

excos(x), upon using results recorded in [2].

5.1.2. Case when δ = 1

For the case where α = 2 and δ = 1, by considering the relation in [1, Eq. (3.3)] and following a similar

procedure as in the case where δ = 0, the following relation is obtained:

ex0F1

[
−
3
2

;−x2

4

]
= exH1,1

1,2

[
x2

∣∣∣∣ (0, 1)
(0, 1), (−1, 2)

]
=

√
2πH1,1

2,3

[
−
√
2x

∣∣∣∣ (0, 1), ( 34 ,
1
4 )

(0, 1), (−1, 1), ( 34 ,
1
4 )

]
. (33)
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On the other hand, by considering the transformation x → ix , (33) can be expressed in terms of

trigonometrical functions, as x−1exsin(x) upon using results recorded in[2].

5.2. When γ = 3 and β = −1 in (23)

For the next subcases, a similar procedure as in the cases where γ = 2 and β = −1 can be followed. Thus,

by considering [1, Eq. (3.4)], [1, Eq. (3.5)], and [1, Eq. (3.6)] for the cases where δ = 0, δ = 1, and δ = 2,

respectively, the following relations between H-functions are retrieved:

ex0F2

[
−

1
3 ,

2
3

;−x3

27

]
= exH1,1

1,2

[
x3

∣∣∣∣ (0, 1)
(0, 1), (0, 3)

]
=

1

3
+

2π

3
H1,0

1,2

[
−
√
3x

∣∣∣∣ ( 12 ,
1
6 )

(0, 1), ( 12 ,
1
6 )

]
, (34)

ex0F2

[
−

2
3 ,

4
3

;−x3

27

]
= exH1,1

1,2

[
x3

∣∣∣∣ (0, 1)
(0, 1), (−1, 3)

]
=

2π√
3
H1,1

2,3

[
−
√
3x

∣∣∣∣ (0, 1), ( 23 ,
1
6 )

(0, 1), (−1, 1), ( 23 ,
1
6 )

]
, (35)

ex0F2

[
−

4
3 ,

5
3

;−x3

27

]
= exH1,1

1,2

[
x3

∣∣∣∣ (0, 1)
(0, 1), (−2, 3)

]
= 4πH1,2

3,4

[
−
√
3x

∣∣∣∣ (0, 1), (−1, 1), ( 56 ,
1
6 )

(0, 1), (−1, 1), (−2, 1), ( 56 ,
1
6 )

]
. (36)

Each of the equations from (34) to (36) can be expressed in terms of elementary functions. This can be

accomplished by using (15) and [2].

5.2.1. Case when δ = 0

By combining (34) and (15), the following is obtained:

1 +
2π

3
H1,0

1,2

[
−
√
3x

∣∣∣∣ ( 12 ,
1
6 )

(0, 1), ( 12 ,
1
6 )

]
= 1 +

1

3i

(
eiπ/2H1,0

0,1

[
−e−iπ/6

√
3x

∣∣∣∣ −
(0, 1)

]
(37)

−e−iπ/2H1,0
0,1

[
−eiπ/6

√
3x

∣∣∣∣ −
(0, 1)

])
.

Using (12) on (37) leads to:

1

3
+

2π

3
H1,0

1,2

[
−
√
3x

∣∣∣∣ ( 12 ,
1
6 )

(0, 1), ( 12 ,
1
6 )

]
=

1

3
+

2

3
e3x/2cos

(√
3x

2

)
, (38)

which is an alternate form of (34) in terms of trigonometrical functions.

5.2.2. Case when δ = 1

When δ = 1, (35) and (15) provide:

2π√
3
H1,1

2,3

[
−
√
3x

∣∣∣∣ (0, 1), ( 23 ,
1
6 )

(0, 1), (−1, 1), ( 23 ,
1
6 )

]
=

1√
3i

(
e2iπ/3H1,1

1,2

[
−e−iπ/6

√
3x

∣∣∣∣ (0, 1)
(0, 1), (−1, 1)

]
(39)

−e−2iπ/3H1,1
1,2

[
−eiπ/6

√
3x

∣∣∣∣ (0, 1)
(0, 1), (−1, 1)

])
.
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By combining (13) and (39), the following result is obtained:

2π√
3
H1,1

2,3

[
−
√
3x

∣∣∣∣ (0, 1), ( 23 ,
1
6 )

(0, 1), (−1, 1), ( 23 ,
1
6 )

]
=

2

3x

(
−1

2
+ e

3x
2 sin

(
5π

6
−

√
3x

2

))
, (40)

which is an alternate form for (35).

5.2.3. Case when δ = 2

In this case, the combination of (36) and (15) leads to:

4πH1,2
3,4

[
−
√
3x

∣∣∣∣ (0, 1), (−1, 1), ( 56 ,
1
6 )

(0, 1), (−1, 1), (−2, 1), ( 56 ,
1
6 )

]
=

2

i

(
e5iπ/6H1,2

2,3

[
−e−iπ/6

√
3x

∣∣∣∣ (0, 1), (−1, 1)
(0, 1), (−1, 1), (−2, 1)

]
(41)

−e−5iπ/6H1,2
2,3

[
−eiπ/6

√
3x

∣∣∣∣ (0, 1), (−1, 1)
(0, 1), (−1, 1), (−2, 1)

])
.

It is clear from (14) that (41) may be rewritten as:

4πH1,2
3,4

[
−
√
3x

∣∣∣∣ (0, 1), (−1, 1), ( 56 ,
1
6 )

(0, 1), (−1, 1), (−2, 1), ( 56 ,
1
6 )

]
=

2

3x2

(
1− 2e

3x
2 cos

(
π

3
+

√
3x

2

))
, (42)

giving an alternate form for (36) in terms of elementary functions.

5.3. When γ = 2 and β = 1 in (23)

The cases where β = 1, γ = 3 (δ = 0, 1 and 2), and γ = 4 (δ = 0, 1, 2 and 3) were explored in [9]. In that

work, by taking Ωi = 1,∀i ∈ N , the authors provided some general results for summations similar to the ones

obtained in the earlier subsections.

In this subsection, we obtain two results not recorded in [9], by taking γ = 2 and β = 1 in (23) and (26)

utilizing (16).

For example, the result (2.1) for Ωi = 1,∀i ∈ N taken in [9] is written in the following form:

exH1,1
1,2

[
−x3

∣∣∣∣ (0, 1)
(0, 1), (0, 3)

]
= ex0F2

[
−

1
3 ,

2
3

;
x3

27

]
(43)

=
2

3

∞∑
m=0

xm

m!

[
2m−1 + cos

(mπ

3

)]

=
e2x

3
+

2π

3
H1,0

1,2

[
−x

∣∣∣∣ ( 12 ,
1
3 )

(0, 1), ( 12 ,
1
3 )

]

=
e2x

3
+

2

3
e

x
2 cos

(√
3x

2

)
.

The first equality in (43) is easily obtained from (23), (26), and (2.1) for Ωi = 1,∀i ∈ N taken in [9]. The

third and fourth inequalities are obtained below:
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We start with:

2

3

∞∑
m=0

xm

m!

[
2m−1 + cos

(mπ

3

)]
=

1

3

∞∑
m=0

(2x)m

m!
+

2

3

∞∑
m=0

xm

m!
cos
(mπ

3

)
(44)

=
e2x

3
+

2π

3

∞∑
m=0

xm

m!Γ
(
1
2 + m

3

)
Γ
(
1
2 − m

3

)
=

e2x

3
+

2π

3
H1,0

1,2

[
−x

∣∣∣∣ ( 12 ,
1
3 )

(0, 1), ( 12 ,
1
3 )

]
,

using the series representation in (3). On the other hand,

e2x

3
+

2π

3
H1,0

1,2

[
−x

∣∣∣∣ ( 12 ,
1
3 )

(0, 1), ( 12 ,
1
3 )

]
=

e2x

3
+

2π

3

excos(π/3)

π
sin
(π
2
− xsin

(π
3

))
(45)

by using [6] as done in §5.1.1. Finally:

e2x

3
+

2π

3
H1,0

1,2

[
−x

∣∣∣∣ ( 12 ,
1
3 )

(0, 1), ( 12 ,
1
3 )

]
=

e2x

3
+

2

3
e

x
2 cos

(√
3x

2

)
. (46)

The other six results given in [9] with Ωi = 1,∀i ∈ N can be written in terms of H-functions by using (3)

or (4) and in elementary functions utilizing [2, 6]. These results are too complicated to be included here.

5.3.1. Case when δ = 0

The case where δ = 0 in (26) implies:

∞∑
n=0

xαn

(2n)!
= H1,1

1,2

[
−xα| (0, 1)

(0, 1), (0, 2)

]
. (47)

On the other hand, the result in (16) provides:

H1,1
1,2

[
−xα| (0, 1)

(0, 1), (0, 2)

]
= H1,1

1,2

[
−e−iπxα

∣∣∣∣ (0, 2)
(0, 2), (0, 2)

]
+H1,1

1,2

[
−eiπxα

∣∣∣∣ (0, 2)
(0, 2), (0, 2)

]
. (48)

Also, by considering the identity (11) with k = 1/2, (48) becomes:

H1,1
1,2

[
−xα| (0, 1)

(0, 1), (0, 2)

]
=

1

2
H1,1

1,2

[
xα/2

∣∣∣∣ (0, 1)
(0, 1), (0, 1)

]
+
1

2
H1,1

1,2

[
−xα/2

∣∣∣∣ (0, 1)
(0, 1), (0, 1)

]
. (49)
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By further manipulating the contour integral representation of the H-functions in (49), it is clear from

(12) that (49) turns to [2]:

H1,1
1,2

[
−xα| (0, 1)

(0, 1), (0, 2)

]
=

1

2
ex

α/2

+
1

2
e−xα/2

= cosh(xα/2). (50)

5.3.2. Case when δ = 1

When δ = 1:

∞∑
n=0

xαn

(2n+ 1)!
= H1,1

1,2

[
−xα| (0, 1)

(0, 1), (−1, 2)

]
. (51)

On the other hand, the result in (16) provides:

H1,1
1,2

[
−xα| (0, 1)

(0, 1), (−1, 2)

]
= H1,1

1,2

[
−e−iπxα

∣∣∣∣ (0, 2)
(0, 2), (−1, 2)

]
+H1,1

1,2

[
−eiπxα

∣∣∣∣ (0, 2)
(0, 2), (−1, 2)

]
. (52)

Also, by considering the identity (11) with k = 1/2, (52) becomes:

H1,1
1,2

[
−xα| (0, 1)

(0, 1), (−1, 2)

]
=

1

2
H1,1

1,2

[
xα/2

∣∣∣∣ (0, 1)
(0, 1), (−1, 1)

]
+
1

2
H1,1

1,2

[
−xα/2

∣∣∣∣ (0, 1)
(0, 1), (−1, 1)

]
. (53)

By using result (13), one may see that (53) turns to [2]:

H1,1
1,2

[
−xα| (0, 1)

(0, 1), (−1, 2)

]
=

(1− e−xα/2

)x−α/2

2
+

(ex
α/2 − 1)x−α/2

2

= x−α/2sinh(xα/2). (54)

6. Conclusions

A new identity that enables one to split certain H-functions into the sum of two other H-functions has been

derived. This new formula has been applied to simplify the summation of hypergeometric series. By using this

identity, new relations between H-functions have been established.
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