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Abstract: In this study, we first classify all topological torus knots lying on the Heegaard torus in lens spaces, and

then we study Legendrian representatives of these knots. We classify oriented positive Legendrian torus knots in the

universally tight contact structures on the lens spaces up to contactomorphism.
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1. Introduction

A Legendrian knot in a contact 3-manifold is a knot that is everywhere tangent to the contact planes. Legendrian

knots are natural objects in contact 3-manifolds and they are used to distinguish contact structures [16], to

detect topological properties of knots [19], and to detect overtwistedness of contact structures [9].

There has been some recent progress in the classification of Legendrian knots in the standard tight

contact structure on S3 after the classification of Legendrian unknots made by Eliashberg and Fraser [6] and

the classification of Legendrian torus knots and the figure eight knot made by Etnyre and Honda [8]. Legendrian

knots in a cabled knot type in S3 were studied in [10] and a complete classification was given in [20]. Recently,

Legendrian twists knots were classified in [11]. Legendrian knots in 3-manifolds other than the 3-sphere S3

are also studied. For example, in [14], Legendrian linear curves in the 3-torus T 3 were classified and in [1, 12],

Legendrian rational unknots in lens spaces were classified.

In this paper, we apply the classification scheme of Etnyre and Honda in [8] to Legendrian knots that are

rationally null-homologous. We focus on Legendrian torus knots in lens spaces. For relatively prime integers a ,

b , an oriented simple closed curve that wraps a times in the meridional direction and b times in the longitudinal

direction on the Heegaard torus is called an (a, b)-torus knot in the lens space. We call (a, b)-torus knots with

a, b > 0 positive torus knots. In Section 2, we study the topological properties of all torus knots in lens spaces.

We find a constraint on when a torus knot is null-homologous. We compute the group of a torus knot that

is defined as the fundamental group of its complement. By studying the diffeotopy group of lens spaces, we

completely classify all torus knots up to isotopy. Lastly, we construct a rational Seifert surface for a torus knot

and we calculate its Euler characteristic.

In section 3, we give a review of the basic concepts in convex surface theory and we fix the notation. In

Section 4, by using convex surface theory tools, we study Legendrian representatives of positive torus knots in

the universally tight contact structures on the lens spaces. We define the rational Legendrian knot invariants
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[1, 3, 12, 18]. We compute the rational Thurston–Bennequin invariants and the rational rotation numbers of

oriented positive Legendrian torus knots by using the rational Seifert surface that we constructed for torus

knots. By following the strategy outlined in [8], we first classify oriented positive Legendrian torus knots with

maximal rational Thurston–Bennequin invariants. Then we show that all oriented positive Legendrian torus

knots with nonmaximal rational Thurston–Bennequin invariants destabilize. We prove:

Theorem 4.4. Two oriented positive Legendrian torus knots in a universally tight contact structure on a lens

space are uniquely realized up to contactomorphism if and only if their oriented knot types, rational Thurston–

Bennequin invariants, and rational rotation numbers agree.

Legendrian knots may be classified up to contact isotopy or up to global contactomorphism. By the work

of Eliashberg we know that the group of coorientation preserving contactomorphisms of the standard tight S3 is

connected [5, Theorem 2.4.2]. Therefore, for Legendrian knots in the standard tight S3 , these two classifications

are equivalent. However, for arbitrary tight contact closed 3-manifolds, the group of coorientation-preserving

contactomorphisms is not well understood. In particular, nothing is known for tight contact lens spaces in

general.

Question 1. Is the group of coorientation-preserving contactomorphisms of universally tight contact structures

on lens spaces connected?

We want to remark that a positive answer to Question 1 together with Theorem 4.4 provides us the

classification of Legendrian torus knots up to Legendrian isotopy in the universally tight contact structures on

the lens spaces.

A transverse knot in a contact 3-manifold is a knot that is everywhere transverse to the contact planes.

There are two types of classical invariants for null-homologous transverse knots: the knot type and the self-

linking number. The self-linking number may be generalized for rationally null-homologous transverse knots

[1]. By [8, Theorem 2.10], two transverse knots in a contact 3-manifold are transversely isotopic if and only

if their Legendrian push-offs are Legendrian isotopic after each has been negatively stabilized some number of

times. As a consequence of Theorem 4.4, we have the following:

Theorem 1.1. Two positive transverse torus knots in a universally tight contact structure on a lens space are

uniquely realized up to contactomorphism if and only if their knot types and rational self-linking numbers agree.

2. Topological torus knots in lens spaces

For fixed relatively prime integers p > q > 0, let (V1, V2) be the genus 1 Heegaard splitting of a lens space

L(p, q), which is described as

L(p, q) = V1 ∪φ V2,

where V1 and V2 are both D2 × S1 . Let µi and λi be a meridian and longitude pair for Vi , i = 1, 2. The

gluing map φ : ∂V1 → ∂V2 is an orientation-reversing map given in standard longitude-meridian coordinates

on the torus by the matrix

(
−q q′

p p′

)
with pq′ + qp′ = 1, p′, q′ ∈ Z . In particular, the image of the meridian µ1 of ∂V1 is the curve −qµ2 + pλ2

in ∂V2 . Note that H1(L(p, q),Z) ∼= Z/pZ is generated by [λ2] . Therefore, any oriented knot K in L(p, q)
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represents b[λ2] for some integer b . Any knot in a lens space L(p, q) is rationally null-homologous and has an

order. The order r of K is defined to be the order of [K] , and hence r = p/gcd(p, b).

By Theorem 1 of [4], one can fix the Heegaard torus up to isotopy in a lens space. This allows us to

define torus knots on the Heegaard torus ∂V2 . For relatively prime integers a , b , an oriented simple closed

curve K(a,b) that wraps a times in the meridional direction and b times in the longitudinal direction on ∂V2 is

called an (a, b)-torus knot in the lens space L(p, q). For a knot K(a,b) of order r in L(p, q), p | rb and K(a,b)

is null-homologous if and only if p | b .

Proposition 2.1. Let K(a,b) be an (a, b)-torus knot on the Heegaard torus ∂V2 in lens space L(p, q) .

1. The group of a torus knot K(a,b) can be presented as

π1(L(p, q)−K(a,b)) =< u, v | ub = vpa+qb > .

2. Two torus knots K(a,b) and K(a′,b′) have isomorphic groups if and only if |b| = |b′| and |pa + qb| =
|pa′ + qb′| or |b| = |pa′ + qb′| and |b′| = |pa+ qb| .

Proof The complement of a neighborhood ν(K(a,b)) of the torus knot K(a,b) in L(p, q) is the union of two

solid tori glued along an annulus A where the core C of the annulus A is isotopic to the torus knot K(a,b) .

Namely, L(p, q) \ ν(K(a,b)) = Ṽ1 ∪ Ṽ2 where Ṽi = Vi \ ν(K(a,b)), i = 1, 2, are two solid tori glued along the

annulus A = (L(p, q) \ ν(K(a,b))) ∩ ∂V2 .

Let µ̃i and λ̃i be a meridian and longitude pair for Ṽi where µ̃i and λ̃i represent the trivial element

and a generator of π1(Ṽi), respectively. Note that the homotopy class [C] = [µ̃1]
−p′a+q′b

[λ̃1]
pa+qb

= [λ̃1]
pa+qb

since K(a,b) is on ∂V2 and

(
−q q′

p p′

)−1 (
a
b

)
=

(
−p′ q′

p q

)(
a
b

)
=

(
−p′a+ q′b
pa+ qb

)

for pq′ + qp′ = 1, p′, q′ ∈ Z . Also, [C] = [µ̃2]
a
[λ̃2]

b
= [λ̃2]

b
. Then, by the Seifert–van Kampen theorem,

π1(K(a,b)) =< u, v | ub = vpa+qb >,

where u = [λ̃1] and v = [λ̃2] . This proves (1).

The subgroup < ub > is the center of the knot group π1(K(a,b)) and π1(K(a,b))/ < ub >= Z|b| ∗Z|pa+qb| .

Note that u and v generate nonconjugate maximal finite cyclic subgroups of order |b| and |pa + qb| of

Z|b| ∗ Z|pa+qb| , respectively. Therefore, if K(a,b) and K(a′,b′) have isomorphic groups, then |b| = |b′| and

|pa + qb| = |pa′ + qb′| or |b| = |pa′ + qb′| and |b′| = |pa + qb| . Now if |b| = |b′| and |pa + qb| = |pa′ + qb′| or
|b| = |pa′+qb′| and |b′| = |pa+qb| , then from (1) it is straightforward that K(a,b) and K(a′,b′) have isomorphic

groups, proving (2).

Lemma 2.2. 1. If K(a,b) and K(a′,b′) are two null-homologous oriented torus knots in L(p, q) that have

isomorphic groups, then (a′, b′) is equal to one of the following pairs:
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• A = (a, b) , −A = (−a,−b) ,

B = (−2qb−pa
p , b) , −B = ( 2qb+pa

p ,−b) ,

C = ( b−qpa−q2b
p , pa+ qb) , −C = (−b+qpa+q2b

p ,−pa− qb) ,

D = ( b+qpa+q2b
p ,−pa− qb) , −D = (−b−qpa−q2b

p , pa+ qb) .

2. If K(a,b) and K(a′,b′) are two rationally null-homologous but not null-homologous oriented torus knots in

L(p, q) that have isomorphic groups, then (a′, b′) is equal to one of the following pairs in the following
cases:

• A = (a, b) , −A = (−a,−b) if p ̸= 2 and q2 ̸≡ ±1 (mod p),

• A = (a, b) , −A = (−a,−b) , C = ( b−qpa−q2b
p , pa + qb) , −C = (−b+qpa+q2b

p ,−pa − qb) if p ̸= 2 and

q2 ≡ 1 (mod p),

• A = (a, b) , −A = (−a,−b) , D = ( b+qpa+q2b
p ,−pa − qb) , −D = (−b−qpa−q2b

p , pa + qb) if p ̸= 2 and

q2 ≡ −1 (mod p),

• A = (a, b) , −A = (−a,−b) , B = (−b−a, b) , −B = (b+a,−b) , C = (−a, 2a+b) , −C = (a,−2a−b) ,

D = (a+ b,−2a− b) , −D = (−a− b, 2a+ b) if p = 2 .

Proof By Proposition 2.1(2) we know that K(a,b) and K(a′,b′) have isomorphic groups if and only if |b| = |b′|
and |pa+qb| = |pa′+qb′| or |b| = |pa′+qb′| and |b′| = |pa+qb| . Case (1) follows from the analysis of these cases

using that p | b . For Case (2), we know that if K(a,b) is not null-homologous then p ∤ b . Therefore, when p ̸= 2

the cases (−2qb−pa
p , b), ( 2qb+pa

p ,−b) do not occur and the cases ( b−qpa−q2b
p , pa + qb), (−b+qpa+q2b

p ,−pa − qb)

occur only if p | (1 − q2). Similarly, the cases ( b+qpa+q2b
p ,−pa − qb), (−b−qpa−q2b

p , pa + qb) occur only if

p | (1 + q2). The case when p = 2 and hence q = 1 is clear.

Let us now classify all topological torus knots in lens spaces up to isotopy. Recall that two knots K1 and

K2 in a 3-manifold M are isotopic if there is a diffeomorphism g : M → M such that g(K1) = K2 and g is

isotopic to the identity map.

Theorem 2.3. The oriented torus knot K(a,b) is isotopic to K(a′,b′) in L(p, q) if and only if (a′, b′) is an

element of one of the following:

1. {(a, b)} if q ̸= 1 or p− 1 ,

2. {(a, b), ( b−qpa−q2b
p , pa+ qb)} if p ̸= 2 and q = 1 or p− 1 ,

3. {(a, b), (−a,−b), (−a, 2a+ b), (a,−2a− b)} if p = 2 .

For the proof of Theorem 2.3 we need the following theorem:

Theorem 2.4 ([4, Theorem 3]). The group of isotopy classes of diffeomorphisms of L(p, q) for p ≥ 2 is given

by
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1. Z2 with generator τ if q2 ̸≡ ±1 (mod p),

2. Z2 ⊕ Z2 with generator τ and σ+ if q2 ≡ 1 and q ̸≡ ±1 (mod p),

3. Z2 with generator τ if q ≡ ±1 (mod p) and p ̸= 2 ,

4. Z4 with generator σ− if q2 ≡ −1 (mod p) and p ̸= 2 ,

5. Z2 with generator σ− if p = 2 .

Let (V1, V2) be the genus 1 Heegaard splitting of the lens space L(p, q) defined as above. In Theorem

2.4, the diffeomorphism τ preserves each of the solid tori Vi = D2 × S1 and acts by a complex conjugation on

each factor (as viewed in C) of each Heegaard torus. Note that τ always exists and if p = 2, then τ is isotopic

to the identity. In general, L(p, q) does not admit a diffeomorphism that exchanges V1 and V2 except when

q2 ≡ ±1 (mod p). If q2 ≡ 1 (mod p), there exists a diffeomorphism σ+ that exchanges the Heegaard tori,

namely σ+ : (u, v) ∈ V1 7→ (u, v) ∈ V2 . If q = 1 or p− 1 then σ+ is isotopic to the identity. Similarly, when

q2 ≡ −1, L(p, q) admits a diffeomorphism σ− that exchanges V1 and V2 , σ− : (u, v) ∈ V1 7→ (ū, v) ∈ V2 and

(u, v) ∈ V2 7→ (u, v̄) ∈ V1 .

Proof [Proof of Theorem 2.3] Let us first consider the case of null-homologous knots; the case of not null-

homologous knots follows from the same argument. Let K(a,b) and K(a′,b′) be two isotopic null-homologous

oriented knots on ∂V2 in L(p, q). We always fix the Heegaard torus ∂V2 in L(p, q) up to isotopy from the very

beginning by using the Theorem 1 of [4] so that the knots are homologous on the Heegaard torus too. Since

K(a,b) and K(a′,b′) have isomorphic groups, from Lemma 2.2, we know that the candidates for (a′, b′) are A ,

−A , B , −B , C , −C , D , and −D .

We are now going to identify the diffeomorphisms that send K(a,b) to possible K(a′,b′) s and then we are

going to analyze when such diffeomorphisms are isotopic to the identity. Clearly, τ sends K(a,b) to K(−a,−b) .

Note that σ+ sends K(a,b) on ∂V2 to K(a,b) on ∂V1 . Then, after applying the gluing map φ : ∂V1 → ∂V2 with

pq′ + qp′ = 1, we get (
−q q′

p p′

)(
a
b

)
=

(
−qa+ q′b
pa+ p′b

)
=

(
a′

b′

)
.

Note that for a′ = −qa+ q′b and b′ = pa+p′b we have pa′+ qb′ = p(−qa+ q′b)+ q(pa+p′b) = (pq′+ qp′)b = b .

By Proposition 2.1(2), it follows that we are in the case when b = pa′+ qb′ and |b′| = |pa+ qb| . More precisely,

b = pa′ + qb′ and b′ = pa + p′b = pa + qb or b = pa′ + qb′ and b′ = pa + p′b = −pa − qb . Since (a, b) = 1,

the latter case does not occur. If we choose p′ such that qp′ ≡ 1 (mod p), then we are left with only the

case b = pa′ + qb′ and b′ = pa + qb and in this case (a′, b′) = ( b−qpa−q2b
p , pa + qb) = C . Therefore, σ+ sends

K(a,b) to KC . In homology one has [K(a,b)] = [KC ] ; that is, b[λ2] = (pa+ qb)[λ2] = qb[λ2] . Thus, the case C

occurs only if q = 1. Now τ ◦ σ+ sends K(a,b) to K−C and by homological reasons the case −C occurs only if

q = p− 1.

By a similar argument, the diffeomorphism σ− sends K(a,b) to KD . Moreover, in homology [K(a,b)] =

[KD] = b[λ2] = (−pa − qb)[λ2] = −qb[λ2] . Thus, the case D occurs only if q = p − 1. τ ◦ σ− sends K(a,b)

to K−D and by similar homological reasons the case −D occurs only if q = 1. However, by Theorem 2.4, the
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diffeomorphism σ− exists only when q2 ≡ −1 (mod p); for this reason, the knot K(a,b) is not isotopic to KD

or K−D via a diffeomorphism that is isotopic to the identity.

We want to remark that there is no diffeomorphism of L(p, q) sending K(a,b) to KB or K−B . We see

that such a diffeomorphism cannot be σ+ or σ− . It cannot be τ either since τ2 = id gives us a contradiction.

Now, using Theorem 2.4, we observe that when p = 2 the diffeomorphisms τ and σ+ are isotopic to the

identity and hence we have Case (3). In Case (2), when p ̸= 2 and q = 1 or p − 1 the knots K(a,b) and KC

are isotopic since in this case only σ+ is isotopic to the identity. In the remaining cases, only τ exists, and

when p ̸= 2, τ is not isotopic to the identity. This proves Case (1).

Lemma 2.5. A torus knot K(a,b) in L(p, q) has a rational Seifert surface SK(a,b)
of Euler characteristic

χ(SK(a,b)
) =

|rb|+ (1− |rb|)|rap+ rbq|
p

where r is the order of K(a,b) .

See [2, Lemma 2.2] for rational Seifert surface construction for torus knots.

Proof Let K(a,b) be a rationally null-homologous torus knot of order r in L(p, q). Considering the

corresponding meridional curves of the Heegaard splitting on ∂V2 , for any torus knot K(a,b) of order r we

have
r[K] = m[µ1] + l [µ2] = m(−q[µ2] + p[λ2]) + l [µ2],

where m = rb
p , l = ra+mq = ra+ rb

p q , and p | rb .

We may construct a rational Seifert surface SK(a,b)
for r copies of K(a,b) by taking |m| parallel copies of

the meridional disk µ1 of ∂V1 and |l| parallel copies of the meridional disk µ2 of ∂V2 and then attaching a half

twisted band at each intersection for a total number of p|l||m| = |l||rb| bands. Then the Euler characteristic

χ(SK(a,b)
) of SK(a,b)

is χ(SK(a,b)
) = #(disks)−#(bands):

χ(SK(a,b)
) = |l|+ |m| − |l||rb|

= |ra+
rbq

p
|+ |rb|

p
− |ra+

rbq

p
||rb|

=
|rb|+ (1− |rb|)|rap+ rbq|

p
.

3. Convex surfaces

An oriented smooth surface Σ in a contact 3-manifold is called convex if there is a contact vector field v that is a

vector field whose flow preserves the contact structure ξ , transverse to Σ. Given a convex surface Σ in a contact

3-manifold with a contact vector field v , the dividing set ΓΣ of Σ is defined as ΓΣ = {x ∈ Σ : v(x) ∈ ξx} .
The dividing set ΓΣ is a multicurve and possibly disconnected. The dividing set ΓΣ is transverse to the

characteristic foliation, splitting Σ into two subsurfaces Σ \ ΓΣ = Σ+ ⊔ Σ− , and there is a vector field w that

expands/contracts a volume form ω on Σ+/ Σ− and w points out of Σ+ .

Theorem 3.1 (Giroux’s tightness criterion). A convex surface Σ in a contact 3-manifold has a tight neigh-

borhood if and only if Σ ̸= S2 and ΓΣ has no homotopically trivial dividing curves or Σ = S2 and ΓΣ is

connected.
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For more information and details, see [13, 15].

3.1. Legendrian knots

The positive stabilization/negative stabilization S+(L)/S−(L) of a Legendrian knot L in the standard tight

contact structure on R3 is obtained by modifying the front projection of L by adding a down cusp/an up

cusp as in Figure 1, respectively. Since stabilizations are performed locally, by Darboux’s theorem this defines

stabilizations of Legendrian knots in any contact 3-manifold.

+

S (L)-

S (L)

L

Figure 1. A positive and a negative stabilization of L .

Proposition 3.2 (Kanda [17]). Let L be a Legendrian curve on a surface Σ and let twΣ(L) denote the twisting

of the contact planes along L measured with respect to the framing on L given by Σ . Then Σ may be made

convex relative to L if and only if twΣ(L) ≤ 0 . If Σ is a convex surface with dividing curve Γ , then

twΣ(L) = −1

2
#(L ∩ Γ), (1)

where #(L ∩ Γ) is the unsigned count of the intersection number of L and Γ . Moreover, if Σ is a Seifert

surface of a single oriented Legendrian curve L , the above formula computes the Thurston–Bennequin invariant

tb(L) of L and in this case the rotation number rot(L) of L is

rot(L) = χ(Σ+)− χ(Σ−). (2)

From Proposition 3.2 we have:

Lemma 3.3. A surface Σ with Legendrian boundary may be made convex if and only if the twisting of contact

planes along each boundary component is less than or equal to zero.

3.2. Convex torus in standard form

For relatively prime integers a , b , the slope of an (a, b)-curve on a torus is b
a . A convex torus (in standard

form) with slope s is a torus whose characteristic foliation consists of 2n lines of singularities with slope s ,

called Legendrian divides, and the rest of the foliation is by nonsingular lines of slope r ̸= s , called Legendrian

rulings where r and s are rational numbers. The 2n curves of the dividing set lie between the Legendrian

divides. By Giroux’s flexibility theorem, [13, 15], any convex torus with slope s in a tight contact 3-manifold

can be put in a standard form with any ruling slope r ̸= s .
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Theorem 3.4 (Classification of tight contact structures on a solid torus, [15]). There are |(r0 + 1) · · · (rk−1 +

1)(rk)| tight contact structures on a solid torus S1 × D2 with standard convex boundary having two dividing

curves of slope −p
q , where p > q > 0 and −p

q = r0 − 1
r1− 1

r2···− 1
rk

for |ri| < −1 . Moreover, all these contact

structures are distinguished by the number of positive regions on a convex meridional disk with Legendrian

boundary.

Proposition 3.5 ([15, Proposition 4.16]). Let ξ be a tight contact structure on T 2 × I with convex boundary

having boundary slopes s0 and s1 on the boundary. Then, for any s between s0 and s1 , there is a convex torus

parallel to the boundary of T 2 × I with slope s .

3.3. Bypasses

Letting Σ be a convex surface in a contact 3-manifold, a bypass for Σ is a convex half disk D (or D with

opposite orientation) with Legendrian boundary such that:

1. ∂D = γ0 ∪ γ1 where γ0 , γ1 are two arcs that intersect at their end points,

2. D ∩ Σ = γ0 ,

3. the characteristic foliation of D has three elliptic singularities along γ0 , two positive elliptic singularities

at the end points of γ0 and one negative elliptic singularity on the interior of γ0 , and only positive

singularity along γ1 , alternating between positive elliptic and positive hyperbolic singularities,

4. γ0 intersects ΓΣ exactly at the three elliptic singularities of γ0 .

The sign of a bypass disk is defined to be the sign of the singularity at the center of the half disk. Figure 2 is

a diagram illustrating a bypass disk.

+

+

+

++

-

�

�

� �

0

1

Figure 2. A bypass disk D .

A dividing curve γ ⊂ ΓΣ is called boundary parallel if γ cuts off a half disk of Σ that contains no other

component of ΓΣ in its interior. A boundary-parallel dividing curve allows us to find bypasses.
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Proposition 3.6 (Honda [15, Proposition 3.18]). Let Σ be a convex surface with Legendrian boundary. If the

dividing set ΓΣ contains a boundary-parallel dividing curve γ , then there exists a bypass for Σ , provided that

Σ is not a disk with tb(∂Σ) = −1 .

Proposition 3.7 (Imbalance Principle, [15, Proposition 3.17]). Let Σ = S1 × [0, 1] be a convex annulus with

Legendrian boundary embedded in a tight contact 3-manifold. If twΣ(S
1 × {0}) < twΣ(S

1 × {1}) ≤ 0 , then

there exists a boundary-parallel curve and hence a bypass along S1 × {0} .

4. Legendrian torus knots in lens spaces

A tight contact structure on a 3-manifold is universally tight if its pullback to the universal cover is tight. In

this section, we classify oriented Legendrian torus knots L(a,b) of knot type K(a,b) for a, b > 0 in universally

tight contact structures on a lens space L(p, q). Legendrian torus knots L(a,b) with a, b > 0 are called positive

Legendrian torus knots.

There are exactly two tight contact structures on L(p, q) with q ̸= p− 1 that are universally tight, and

there is only one if q = p− 1 [15, Proposition 5.1(3)]. According to [15], we can express L(p, q) as the union of

two solid tori V1 and V2 where ∂V1 has dividing curves of slope ∞ . Then we split V2 into a thickened torus

T 2× [0, 1] with two dividing curves of slope s0 = 0 on T 2×{0} and s1 = −p
q on T 2×{1} and a solid torus with

a unique tight contact structure on it. The universally tight contact structures on L(p, q) are induced from the

universally tight contact structures on T 2 × [0, 1]. By Proposition 5.1 (1) of [15] there are two such universally

tight contact structures on T 2× [0, 1] and they satisfy PD(e(ξ, s)) = ±((−q, p)− (−1, 0)). We assume that ξut

is induced from the one with PD(e(ξ, s)) = (−q, p)− (−1, 0). The results in this section similarly hold for the

other case and can be easily written down.

Remark 4.1. By Proposition 3.5, in a universally tight lens space L(p, q) , one can find a convex Heegaard

torus T with two dividing curves of any slope in (−p
q , 0) .

Let L(a,b) be a Legendrian torus knot of knot type K(a,b) of order r in ξut on L(p, q). We define

the rational Legendrian knot invariants, which were defined and studied in [1, 3, 12, 18] for rationally null-

homologous knots. By Equation (1) in Proposition 3.2, by using the set of dividing curves Γ for the Heegaard

torus containing L(a,b) , the twisting of L(a,b) is −1
2#(L(a,b) ∩ Γ). Since L(a,b) is rationally null-homologous,

L(a,b) has a framing given by a rational Seifert surface. By using the rational Seifert surface constructed in

Lemma 2.5, we compute the rational Seifert framing of L(a,b) as 1
r
plm
r = 1

r lb where m = rb
p , l = ra+ rb

p q . The

rational Thurston–Bennequin invariant of L(a,b) is defined as the twisting of L(a,b) with respect to the rational

Seifert framing and it is denoted by tbQ(L(a,b)).

Note that an arbitrary (a, b)-curve and (c, d)-curve on a torus intersect |det
(

a c
b d

)
| times. If the

dividing curves Γ of the Heegaard torus containing L(a,b) have slope − s
t for integers s, t > 0 and if 2n is the

number of dividing curves, then the rational Thurston–Bennequin invariant of L(a,b) is

tbQ(L(a,b)) =
1

r
lb− n|as+ bt|.
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Let L(K) denote the set of all rationally null-homologous Legendrian knots in knot type K . Themaximal

rational Thurston–Bennequin invariant tbQ(K) of the knot type K is defined as

tbQ(K) = max{tbQ(L) | L ∈ L(K)}.

Theorem 4.2. For a, b > 0 relatively prime integers, the maximal rational Thurston–Bennequin invariant

tbQ(K(a,b)) is

tbQ(K(a,b)) = ab− a− b+ b2q/p.

Proof By Remark 4.1, we can find a convex Heegaard torus T with two dividing curves of any slope in

(−p
q , 0). In particular, there is a convex Heegaard torus T with two dividing curves of slope −1. For a, b > 0

relatively prime integers, isotope the Legendrian ruling curves on T to have slope b
a so that the ruling curves

are Legendrian torus knots L(a,b) of knot type K(a,b) . Since the intersection number #(L(a,b)∩Γ) is minimal on

this convex torus T , the rational Thurston–Bennequin invariant is maximal. The maximal rational Thurston–

Bennequin invariant of the knot type K(a,b) is computed as

tbQ(K(a,b)) =
1

r
lb− |a+ b|,

where l = ra+ rb
p q .

The rational rotation number rotQ(L) of an oriented rationally null-homologous Legendrian knot L of

order r is defined as the winding number of TL after trivializing the contact structure along a rational Seifert

surface for L divided by r .

Let L(a,b) be an oriented Legendrian torus knot of order r with maximal rational Thurston–Bennequin

invariant that sits on a convex Heegaard torus T . In what follows, we will explain how to compute the rational

rotation number of L(a,b) in a similar way as Etnyre and Honda computed for Legendrian torus knots in the

standard tight S3 [8].

Let L(p, q) = V1∪T V2 where V1 and V2 are both D2×S1 with meridional curve µ1 and µ2 , respectively.

Define an invariant fT of homology classes of curves on a convex Heegaard torus T as follows: let v be any

globally nowhere zero section of ξut and w a nowhere zero section of ξut|T , which is tangent to the Legendrian

divides and transverse to and twists with ξ along the Legendrian ruling curves. Let fT (γ) equal the rotation

of v relative to w along a closed oriented curve γ on T . For details and the properties of the function fT , see

[7] and [8]. If L is a Legendrian ruling or a Legendrian divide of order r on T then fT (L) = r rotQ(L). The

rational rotation number of L(a,b) of order r on the Heegaard torus ∂V2 = T is

r rotQ(L(a,b)) = mfT (µ1) + lfT (µ2),

where m = rb
p , l = ra+ rb

p q .

Theorem 4.3. Let L(a,b) be an oriented Legendrian torus knot of order r with maximal rational Thurston–

Bennequin invariant. If a, b > 0 , then the range of possible rational rotation numbers rotQ(L(a,b)) is

{±b(1− q + 1

p
)}.
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Proof By the proof of Theorem 4.2, a Legendrian knot L(a,b) with maximal rational Thurston–Bennequin

invariant is on a convex Heegaard torus T with two dividing curves of slope −1 in L(p, q) = V1 ∪T V2 . To

compute the rational rotation number for L(a,b) , we need to compute fT (µ1) and fT (µ2).

fT (µ1) = ±(p − q − 1): Recall that the meridional curve µ1 = ∂DV1 is a (−q, p)–curve on T = ∂V2 .

Isotope the Legendrian ruling curves on T to be (−q, p)–curves so that µ1 is a ruling curve. In this case, the

twisting of the contact planes along µ1 is −(p−q) < 0. Thus, by Lemma 3.3, we may isotope DV1 to be convex.

By the proof of Theorem 4.2, the dividing curves on T have slope −1 and hence they are (−1, 1)–curves and

intersect µ1 2(p − q) times. Therefore, the dividing curves on DV1 intersect µ1 2(p − q) times. By following

the proof of Fact 1 of [8], the dividing curves on DV1 separate off disks of the same sign that contain no other

dividing curves. Then, by Equation (2) of Proposition 3.2, we have fT (µ1) = (p−q)−1 or fT (µ1) = 1−(p−q).

fT (µ2) = 0: Isotope the Legendrian ruling curves on T = ∂V2 to be meridional. Let DV2 be the

meridional disk of V2 where µ2 = ∂DV2 is a ruling curve. Since the twisting of the contact planes along µ2

is −1, by Lemma 3.3, we can isotope DV2 to be convex. We know that the dividing curves on DV2 intersect

µ2 twice. Thus, we have only one possible configuration for the dividing curves of DV2 . By Equation (2) of

Proposition 3.2, fT (µ2) = 0.

Theorem 4.4. Two oriented positive Legendrian torus knots in a universally tight contact structure on a lens

space are uniquely realized up to contactomorphism if and only if their oriented knot types, rational Thurston–

Bennequin invariants, and rational rotation numbers agree.

The following two lemmas provide us the proof of the Theorem 4.4.

Lemma 4.5. Two oriented Legendrian (a, b)-torus knots, a, b > 0 , L and L′ in (L(p, q), ξut) with maximal

rational Thurston–Bennequin invariant are uniquely realized up to contactomorphism if and only if rotQ(L) =

rotQ(L
′) .

Proof Let T and T ′ be standard convex Heegaard tori on which L and L′ respectively sit in L(p, q). Also,

let V1 ∪T V2 and V ′
1 ∪T ′ V ′

2 be the Heegaard splittings associated to T and T ′ . Since tbQ(L) = tbQ(L
′) =

tbQ(K(a,b)), the slopes of the dividing curves on T and T ′ are the same. Then, by Theorem 3.4, by the

classification of tight contact structures on solid tori, there is a contactomorphism g : V1 → V ′
1 such that

g(L) = L′ . By Theorem 3.4 again, the contactomorphism type of a tight contact structure on V2 or V ′
2 is

determined by the number of positive bypasses on meridional disks. If r is the order of L and L′ in L(p, q),

then the number of positive bypasses on meridional disks is determined by r times the rational rotation number

of the Legendrian knots L and L′ , respectively. We can extend the contactomorphism g to all of L(p, q)

provided that L and L′ have the same rational rotation number.

Lemma 4.6. If L(a,b) is a positive Legendrian torus knot in (L(p, q), ξut) with nonmaximal rational Thurston–

Bennequin invariant then there is a Legendrian torus knot L′
(a,b) such that L(a,b) is a stabilization of L′

(a,b) .

Proof Let T be a standard convex Heegaard torus on which the positive Legendrian torus knot L(a,b) sits.

Let − s
t for s, t > 0 be the slope of the dividing curves ΓT on T and let 2n be the number of dividing curves.

By Theorem 4.2, Legendrian torus knots with maximal rational Thurston–Bennequin invariant sit on a convex

Heegaard torus with two dividing curves of slope −1. Since tbQ(L(a,b)) < tbQ(K(a,b)), we have two cases for

the slope and the number of dividing curves of ΓT on T : − s
t = −1 and n > 1 or − s

t ̸= −1 and n ≥ 1.
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We are now going to show that we can find a bypass disk in both cases. By Remark 4.1, we know that

there is a convex torus T ′ with two dividing curves of slope −1. In fact, by [15], we can assume that T ′ is a

standardly embedded convex torus parallel and disjoint from T . Now take the T 2× [0, 1] region between T and

T ′ and take the annulus A = L(a,b) × [0, 1] between T = T 2 × {0} and T ′ = T 2 × {1} . Furthermore, isotope

the ruling curves on both boundary components of T 2 × [0, 1] to have slope b
a . Then ∂A = L(a,b) ∪ L′

(a,b) are

Legendrian ruling curves on the boundary of T 2× [0, 1] and the twisting of contact planes along each boundary

component will be less than zero. Therefore, by Lemma 3.3, we can make A convex. The dividing curves on

T = T 2 × {0} are (−t, s)-curves and intersect A in 2n|det
(

a −t
b s

)
| = 2n(sa+ tb) points and the dividing

curves on T ′ = T 2 × {1} are (−1, 1)-curves and intersect A in 2|det
(

a −1
b 1

)
| = 2(a + b) points. In both

cases, when − s
t = −1 and n > 1 or when − s

t ̸= −1 and n ≥ 1, we have 2n(sa+ tb) > 2(a+ b). Thus, there

is a boundary parallel dividing curve along T = T 2 × {0} and hence by Proposition 3.7 a bypass for L(a,b) . In

other words, L(a,b) destabilizes.
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