Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2018) 42: 752-762
(c) TÜBİTAK
doi:10.3906/mat-1702-89

On biquaternion algebras with orthogonal involution

Amir Hossein NOKHODKAR*
Department of Pure Mathematics, Faculty of Science, University of Kashan, Kashan, Iran

Received: 20.02.2017 \quad Accepted/Published Online: 03.07.2017 \quad - Final Version: 08.05 .2018

Abstract

We investigate the Pfaffians of decomposable biquaternion algebras with involution of orthogonal type. In characteristic two, a classification of these algebras in terms of their Pfaffians and some other related invariants is studied. Also, in arbitrary characteristic, a criterion is obtained for an orthogonal involution on a biquaternion algebra to be metabolic.

Key words: Biquaternion algebra, Pfaffian, orthogonal involution

1. Introduction

A biquaternion algebra is a tensor product of two quaternion algebras. Every biquaternion algebra is a central simple algebra of degree 4 and exponent 2 or 1 . A result proved by Albert shows that the converse is also true (see $[8,(16.1)]$). An Albert form of a biquaternion algebra A is a 6 -dimensional quadratic form with trivial discriminant whose Clifford algebra is isomorphic to $M_{2}(A)$. According to [8, (16.3)], two biquaternion algebras over a field F are isomorphic if and only if their Albert forms are similar.

The Albert form of a biquaternion algebra with involution arises naturally as the quadratic form induced by a Pfaffian (see [11, (3.3)]). In [11], a Pfaffian of certain modules over Azumaya algebras was defined and used to find a decomposition criterion for involutions on a rank 16 Azumaya algebra, which contains 2 as a unit. A similar criterion for involutions on a biquaternion algebra in arbitrary characteristic was also obtained in [9].

It is known that symplectic involutions on a biquaternion algebra A can be classified, up to conjugation, by their Pfaffian norms (see $[8,(16.19)]$). For orthogonal involutions the situation is a little more complicated. In characteristic $\neq 2$, using $[11,(5.3)]$, one can find a classification of decomposable orthogonal involutions on A in terms of the Pfaffian and the Pfaffian adjoint (introduced in [11]). This classification was originally stated in [11] for the more general case where A is an Azumaya algebra that contains 2 as a unit.

In this work we study decomposable biquaternion algebras with orthogonal involution. We start with some general observations on the Pfaffian and the Pfaffian adjoint. For a decomposable orthogonal involution σ we consider the Pfaffian q_{σ} and certain subsets $\operatorname{Alt}(A, \sigma)^{+}$and $\operatorname{Alt}(A, \sigma)^{-}$of $\operatorname{Alt}(A, \sigma)$, introduced in [9]. It is shown in (3.8) that the union of $\operatorname{Alt}(A, \sigma)^{+}$and $\operatorname{Alt}(A, \sigma)^{-}$coincides with the set of all square-central elements in $\operatorname{Alt}(A, \sigma)$. At the end of Section 3, we study in more detail the classification of orthogonal involutions on biquaternion algebras in characteristic $\neq 2$, obtained in [11]. Although this result was already presented in [11],

[^0]it is useful to rephrase it to enable comparison with the corresponding result in characteristic 2 (see (3.14) and (4.11)).

The classification problem in characteristic 2 is a little more complicated. Moreover, the results themselves have some substantial differences in this case. For example, the restriction q_{σ}^{+}of q_{σ} to $\operatorname{Alt}(A, \sigma)^{+}$is totally singular in characteristic 2 , rather than a regular subform of the Pfaffian q_{σ}. Considering these remarks, our approach is to study the relation between the form q_{σ}^{+}and the Pfister invariant of (A, σ), introduced in [4]. This relation is used in (4.11) to obtain necessary and sufficient conditions for orthogonal involutions to be conjugate to each other.

Finally, we study in Section 5 metabolic involutions on biquaternion algebras. Using some results of previous sections, we obtain various criteria for an orthogonal involution on a biquaternion algebra to be metabolic (see (5.2) and (5.4)). As a final application, we shall see in (5.5) how the Pfaffian can be used to characterize the transpose involution on a split biquaternion algebra.

2. Preliminaries

Let V be a finite dimensional vector space over a field F. A quadratic form over F is a map $q: V \rightarrow F$ such that $(i) q(a v)=a^{2} q(v)$ for every $a \in F$ and $v \in V ;(i i)$ the map $\mathfrak{b}_{q}: V \times V \rightarrow F$ defined by $\mathfrak{b}_{q}(u, v)=q(u+v)-q(u)-q(v)$ is a bilinear form. The map \mathfrak{b}_{q} is called the polar form of q. Note that for every $v \in V$ we have $\mathfrak{b}_{q}(v, v)=2 q(v)$. In particular, if char $F=2$, then $\mathfrak{b}_{q}(v, v)=0$ for all $v \in V$, i.e. \mathfrak{b}_{q} is an alternating form. The orthogonal complement of a subspace $W \subseteq V$ is defined as $W^{\perp}=\left\{x \in V \mid b_{q}(x, y)=0\right.$ for all $\left.y \in W\right\}$.

A quadratic form q (resp. a bilinear form \mathfrak{b}) on V is called isotropic if there exists a nonzero vector $v \in V$ such that $q(v)=0$ (resp. $\mathfrak{b}(v, v)=0$). For $\alpha \in F$, we say that q (resp. \mathfrak{b}) represents α if there exists a nonzero vector $v \in V$ such that $q(v)=\alpha($ resp. $\mathfrak{b}(v, v)=\alpha)$. The sets of all elements of F represented by q and \mathfrak{b} are denoted by $D_{F}(q)$ and $D_{F}(\mathfrak{b})$, respectively. For $\alpha \in F^{\times}$, the scaled quadratic form $\alpha \cdot q$ is defined as $\alpha \cdot q(v)=\alpha q(v)$ for every $v \in V$.

For $a_{1}, \cdots, a_{n} \in F$, the isometry class of the quadratic form $\sum_{i=1}^{n} a_{i} x_{i}^{2}$ is denoted by $\left\langle a_{1}, \cdots, a_{n}\right\rangle_{q}$. Also, the isometry class of the bilinear form $\sum_{i=1}^{n} a_{i} x_{i} y_{i}$ is denoted by $\left\langle a_{1}, \cdots, a_{n}\right\rangle$. Finally, the form $\left\langle\left\langle a_{1}, \cdots, a_{n}\right\rangle\right\rangle:=\left\langle 1, a_{1}\right\rangle \otimes \cdots \otimes\left\langle 1, a_{n}\right\rangle$ is called a bilinear n-fold Pfister form.

An involution on a central simple F-algebra A is an antiautomorphism σ of A of order 2 . We say that σ is of the first kind if $\left.\sigma\right|_{F}=\mathrm{id}$. An involution σ of the first kind is said to be symplectic if over a splitting field of A it becomes adjoint to an alternating bilinear form. Otherwise, σ is called orthogonal. The set of alternating elements of A is defined as $\operatorname{Alt}(A, \sigma)=\{a-\sigma(a) \mid a \in A\}$. If A is of even degree $2 m$, the discriminant of an orthogonal involution σ on A is defined as $\operatorname{disc} \sigma=(-1)^{m} \operatorname{Nrd}_{A}(x) F^{\times 2} \in F^{\times} / F^{\times 2}$, where $x \in \operatorname{Alt}(A, \sigma)$ is a unit and $\operatorname{Nrd}_{A}(x)$ is the reduced norm of x in A. Note that by $[8,(7.1)]$, the discriminant does not depend on the choice of $x \in \operatorname{Alt}(A, \sigma)$.

A quaternion algebra over a field F is a central simple algebra Q of degree 2 . The canonical involution γ on Q is defined by $\gamma(x)=\operatorname{Trd}_{Q}(x)-x$ for $x \in Q$, where $\operatorname{Trd}_{A}(x)$ is the reduced trace of x in A. The canonical involution on Q is the unique involution of symplectic type on Q and it satisfies $\gamma(x) x \in F$ for every $x \in Q$ (see [8, Ch. 2]). The map $N_{Q}: Q \rightarrow F$ defined by $N_{Q}(x)=\gamma(x) x$ is called the norm form of Q. An element $x \in Q$ is called a pure quaternion if $\operatorname{Trd}_{Q}(x)=0$. The set of all pure quaternions of Q is a

3-dimensional subspace of Q denoted by Q_{0}. Note that an element $x \in Q$ lies in Q_{0} if and only if $\gamma(x)=-x$, or equivalently, $N_{Q}(x)=-x^{2}$.

A central simple F-algebra with involution (A, σ) is called totally decomposable if it decomposes as a tensor product of σ-invariant quaternion F-algebras. If A is a biquaternion algebra, we will use the term decomposable instead of totally decomposable. Note that a biquaternion algebra with orthogonal involution (A, σ) is decomposable if and only if $\operatorname{disc} \sigma$ is trivial (see $[9,(3.7)]$).

3. The Pfaffian and the Pfaffian adjoint

We begin our discussion by looking at the special cases of $[10,(2.1)]$ and $[10,(3.1)]$.

Theorem 3.1 Let (A, σ) be a biquaternion algebra with orthogonal involution over a field F and let $d_{\sigma} \in F^{\times}$ be a representative of the class $\operatorname{disc} \sigma \in F^{\times} / F^{\times 2}$. There exists a map $p f_{\sigma}: \operatorname{Alt}(A, \sigma) \rightarrow F$ such that $p f_{\sigma}(x)^{2}=d_{\sigma} \operatorname{Nrd}_{A}(x)$ for every $x \in \operatorname{Alt}(A, \sigma)$. The map $p f_{\sigma}$ is uniquely determined up to a sign. Moreover, there exists an F-linear map $\pi_{\sigma}: \operatorname{Alt}(A, \sigma) \rightarrow \operatorname{Alt}(A, \sigma)$ such that $x \pi_{\sigma}(x)=\pi_{\sigma}(x) x=p f_{\sigma}(x)$ and $\pi_{\sigma}^{2}(x)=d_{\sigma} x$ for every $x \in \operatorname{Alt}(A, \sigma)$.

Remark 3.2 The map π_{σ} in (3.1) is uniquely determined by $p f_{\sigma}$. Indeed, it is easily seen by scalar extension to a splitting field that $\operatorname{Alt}(A, \sigma)$ has a basis \mathcal{B} consisting of invertible elements. For every $x \in \mathcal{B}$, we must have $\pi_{\sigma}(x)=x^{-1} p f_{\sigma}(x)$. As π_{σ} is F-linear, it is uniquely defined on $\operatorname{Alt}(A, \sigma)$.

Definition 3.3 A map $p f_{\sigma}$ as in (3.1) is called a Pfaffian of (A, σ). We also call the map π_{σ}, the Pfaffian adjoint of $p f_{\sigma}$.

Note that by $[11,(3.3)]$, every Pfaffian of (A, σ) is an Albert form of A.

Notation 3.4 Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F. Since $\operatorname{disc} \sigma$ is trivial, by (3.1) there is a unique, up to a sign, Pfaffian $p f_{\sigma}$ satisfying $p f_{\sigma}(x)^{2}=\operatorname{Nrd}_{A}(x)$ for $x \in \operatorname{Alt}(A, \sigma)$. We denote this Pfaffian by q_{σ}. We also denote by p_{σ} the Pfaffian adjoint of q_{σ}; hence,

$$
q_{\sigma}(x)^{2}=\operatorname{Nrd}_{A}(x), \quad x p_{\sigma}(x)=p_{\sigma}(x) x=q_{\sigma}(x) \quad \text { and } \quad p_{\sigma}^{2}(x)=x
$$

for every $x \in \operatorname{Alt}(A, \sigma)$. We also use the following notation:

$$
\begin{aligned}
& \operatorname{Alt}(A, \sigma)^{+}:=\left\{x+p_{\sigma}(x) \mid x \in \operatorname{Alt}(A, \sigma)\right\} \\
& \operatorname{Alt}(A, \sigma)^{-}:=\left\{x-p_{\sigma}(x) \mid x \in \operatorname{Alt}(A, \sigma)\right\}
\end{aligned}
$$

Note that if char $F=2$, then $\operatorname{Alt}(A, \sigma)^{+}=\operatorname{Alt}(A, \sigma)^{-}$. Also, as proved in [11, p. 597] and [9, (3.5)], $\operatorname{Alt}(A, \sigma)^{+}$and $\operatorname{Alt}(A, \sigma)^{-}$are 3 -dimensional subspaces of $\operatorname{Alt}(A, \sigma)$. Since $p_{\sigma}^{2}=\mathrm{id}$, we have $p_{\sigma}(x)=x$ for every $x \in \operatorname{Alt}(A, \sigma)^{+}$and $p_{\sigma}(x)=-x$ for every $x \in \operatorname{Alt}(A, \sigma)^{-}$. The converse is also true, i.e.

$$
\begin{align*}
& \operatorname{Alt}(A, \sigma)^{+}=\left\{x \in \operatorname{Alt}(A, \sigma) \mid p_{\sigma}(x)=x\right\} \tag{1}\\
& \operatorname{Alt}(A, \sigma)^{-}=\left\{x \in \operatorname{Alt}(A, \sigma) \mid p_{\sigma}(x)=-x\right\} \tag{2}
\end{align*}
$$

Indeed, if char $F \neq 2$, then for every $x \in \operatorname{Alt}(A, \sigma)$ with $p_{\sigma}(x)=x$ we have $x=\frac{1}{2}\left(x+p_{\sigma}(x)\right) \in \operatorname{Alt}(A, \sigma)^{+}$. Similarly, if $p_{\sigma}(x)=-x$, then $x=\frac{1}{2}\left(x-p_{\sigma}(x)\right) \in \operatorname{Alt}(A, \sigma)^{-}$. If char $F=2$, then the relation (1) follows from the dimension formula for the image and the kernel of the linear map $p_{\sigma}+\mathrm{id}$.

The next result is implicitly contained in [8, pp. 249-250].
Lemma 3.5 Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F. Then p_{σ} is an isometry of $\left(\operatorname{Alt}(A, \sigma), q_{\sigma}\right)$. Furthermore, $\mathfrak{b}_{q_{\sigma}}(x, y)=x p_{\sigma}(y)+y p_{\sigma}(x)$, for $x, y \in \operatorname{Alt}(A, \sigma)$.

Proof For every $x \in \operatorname{Alt}(A, \sigma)$ we have $q_{\sigma}\left(p_{\sigma}(x)\right)=p_{\sigma}\left(p_{\sigma}(x)\right) p_{\sigma}(x)=x p_{\sigma}(x)=q_{\sigma}(x)$. Thus, p_{σ} is an isometry. The second assertion is easily obtained from the relations $q_{\sigma}(x)=x p_{\sigma}(x)$ and $\mathfrak{b}_{q_{\sigma}}(x, y)=$ $q_{\sigma}(x+y)-q_{\sigma}(x)-q_{\sigma}(y)$.

Lemma 3.6 Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F. Then $\operatorname{Alt}(A, \sigma)^{+}=\left(\operatorname{Alt}(A, \sigma)^{-}\right)^{\perp} \subseteq C_{A}\left(\operatorname{Alt}(A, \sigma)^{-}\right)$.

Proof Let $\mathfrak{b}=\mathfrak{b}_{q_{\sigma}}$ and let $x \in \operatorname{Alt}(A, \sigma)^{+}$. By (3.5), p_{σ} is an isometry of $\left(\operatorname{Alt}(A, \sigma), q_{\sigma}\right)$, and hence $\mathfrak{b}(x, y)=\mathfrak{b}\left(p_{\sigma}(x), p_{\sigma}(y)\right)=\mathfrak{b}\left(x, p_{\sigma}(y)\right)$ for every $y \in \operatorname{Alt}(A, \sigma)$. Thus, $\mathfrak{b}\left(x, y-p_{\sigma}(y)\right)=0$, i.e. Alt $(A, \sigma)^{+} \subseteq$ $\left(\operatorname{Alt}(A, \sigma)^{-}\right)^{\perp}$. By dimension count we obtain $\operatorname{Alt}(A, \sigma)^{+}=\left(\operatorname{Alt}(A, \sigma)^{-}\right)^{\perp}$. Now let $z \in \operatorname{Alt}(A, \sigma)^{-}$. By (3.5) we have $0=\mathfrak{b}(x, z)=-x z+z x$. Thus, $x z=z x$, which implies that $\operatorname{Alt}(A, \sigma)^{+}$commutes with $\operatorname{Alt}(A, \sigma)^{-}$, i.e. $\operatorname{Alt}(A, \sigma)^{+} \subseteq C_{A}\left(\operatorname{Alt}(A, \sigma)^{-}\right)$.

Lemma 3.7 Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F and let $x \in \operatorname{Alt}(A, \sigma)$. If $x^{2} \in F$, then $p_{\sigma}(x)= \pm x$.

Proof Set $\alpha=x^{2} \in F$ and $\beta=q_{\sigma}(x) \in F$. Then $\beta^{2}=q_{\sigma}(x)^{2}=\operatorname{Nrd}_{A}(x)= \pm \alpha^{2}$. Thus, $\beta=\lambda \alpha$ for some $\lambda \in F$ with $\lambda^{4}=1$, i.e. $q_{\sigma}(x)=\lambda x^{2}$. If $\alpha \neq 0$, then multiplying $x p_{\sigma}(x)=q_{\sigma}(x)=\lambda x^{2}$ on the left by x^{-1} we obtain $p_{\sigma}(x)=\lambda x$. The relation $p_{\sigma}^{2}=$ id then implies that $\lambda= \pm 1$ and we are done. Suppose that $\alpha=0$, i.e. $x^{2}=0$. By (3.5) we have $\mathfrak{b}_{q_{\sigma}}\left(p_{\sigma}(x), x\right)=p_{\sigma}(x)^{2}+x^{2}=p_{\sigma}(x)^{2}$, and hence $p_{\sigma}(x)^{2} \in F$. On the other hand, the relations $x p_{\sigma}(x)=q_{\sigma}(x)=\lambda x^{2}=0$ show that $p_{\sigma}(x)$ is not invertible. Thus,

$$
\begin{equation*}
p_{\sigma}(x)^{2}=0 \tag{3}
\end{equation*}
$$

Suppose that $p_{\sigma}(x) \neq x$; hence, $x \notin \operatorname{Alt}(A, \sigma)^{+}$. In view of (3.6) one can find $w \in \operatorname{Alt}(A, \sigma)^{-}$such that $\mathfrak{b}_{q_{\sigma}}(x, w)=1$. By (3.5) we have

$$
\begin{equation*}
-x w+w p_{\sigma}(x)=1 \tag{4}
\end{equation*}
$$

Multiplying (4) on the left by x we get $x w p_{\sigma}(x)=x$. Using (4), it follows that $\left(w p_{\sigma}(x)-1\right) p_{\sigma}(x)=x$, which yields $p_{\sigma}(x)=-x$ by (3). This completes the proof (note that if char $F=2$, this argument shows that the assumption $p_{\sigma}(x) \neq x$ leads to the contradiction $p_{\sigma}(x)=-x$ and hence $\left.p_{\sigma}(x)=x\right)$.

The next result follows from (3.7) and the relations (1) and (2) below (3.4).
Proposition 3.8 Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F and let $\operatorname{Alt}(A, \sigma)^{0}=\operatorname{Alt}(A, \sigma)^{+} \cup \operatorname{Alt}(A, \sigma)^{-}$. Then $\operatorname{Alt}(A, \sigma)^{0}=\left\{x \in \operatorname{Alt}(A, \sigma) \mid p_{\sigma}(x)= \pm x\right\}=\{x \in$ $\left.\operatorname{Alt}(A, \sigma) \mid x^{2} \in F\right\}$.

Notation 3.9 For a decomposable biquaternion algebra with involution of orthogonal type (A, σ) over a field F, we use the notation $Q(A, \sigma)^{+}=F+\operatorname{Alt}(A, \sigma)^{+}$and $Q(A, \sigma)^{-}=F+\operatorname{Alt}(A, \sigma)^{-}$. We will simply denote $Q(A, \sigma)^{+}$by Q^{+}and $Q(A, \sigma)^{-}$by Q^{-}, if the pair (A, σ) is clear from the context.

Lemma $3.10([9])$ Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F.
(1) If $\operatorname{char} F \neq 2$, then Q^{+}and Q^{-}are two σ-invariant quaternion subalgebras of A with $Q_{0}^{+}=\operatorname{Alt}(A, \sigma)^{+}$ and $Q_{0}^{-}=\operatorname{Alt}(A, \sigma)^{-}$. Furthermore, we have $(A, \sigma) \simeq\left(Q^{+},\left.\sigma\right|_{Q^{+}}\right) \otimes\left(Q^{-},\left.\sigma\right|_{Q^{-}}\right)$, where $\left.\sigma\right|_{Q^{+}}$and $\left.\sigma\right|_{Q^{-}}$ are the canonical involutions of Q^{+}and Q^{-}, respectively.
(2) If char $F=2$, then $Q^{+}=Q^{-}$is a maximal commutative subalgebra of F satisfying $x^{2} \in F$ for every $x \in Q^{+}$.

Proof Assume first that char $F \neq 2$. As observed in $[9,(3.5)], Q^{+}$is a σ-invariant quaternion subalgebra of A and $\left.\sigma\right|_{Q^{+}}$is of symplectic type. By dimension count and (3.6) we obtain $Q^{-}=C_{A}\left(Q^{+}\right)$; hence, $A \simeq Q^{+} \otimes_{F} Q^{-}$. By $[8,(2.23(1))],\left.\sigma\right|_{Q^{-}}$is of symplectic type. Finally, since $\operatorname{Trd}_{Q^{+}}(x)=0$ for every $x \in \operatorname{Alt}(A, \sigma)^{+}$, we have $Q_{0}^{+}=\operatorname{Alt}(A, \sigma)^{+}$. Similarly $Q_{0}^{-}=\operatorname{Alt}(A, \sigma)^{-}$. This proves the first part. The second part follows from $[9$, (3.6)].

Notation 3.11 Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F. We denote by q_{σ}^{+}and q_{σ}^{-}the restrictions of q_{σ} to $\operatorname{Alt}(A, \sigma)^{+}$and $\operatorname{Alt}(A, \sigma)^{-}$, respectively.

Lemma 3.12 Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F.
(1) Every unit $u \in \operatorname{Alt}(A, \sigma)^{+}$(resp. $\left.u \in \operatorname{Alt}(A, \sigma)^{-}\right)$can be extended to a basis (u, v, w) of $\operatorname{Alt}(A, \sigma)^{+}$ (resp. $\left.\operatorname{Alt}(A, \sigma)^{-}\right)$such that $w=u v$.
(2) Every basis (u, v, w) of $\operatorname{Alt}(A, \sigma)^{+}$(resp. $\left.\operatorname{Alt}(A, \sigma)^{-}\right)$with $w=u v$ is orthogonal with respect to the polar form of $q_{\sigma}^{+}\left(\right.$resp. $\left.q_{\sigma}^{-}\right)$.
(3) If char $F \neq 2$, then $N_{Q^{+}} \simeq\langle 1\rangle_{q} \perp(-1) \cdot q_{\sigma}^{+}$and $N_{Q^{-}} \simeq\langle 1\rangle_{q} \perp q_{\sigma}^{-}$.
(4) If char $F=2$ and $(A, \sigma) \simeq\left(Q_{1}, \sigma_{1}\right) \otimes\left(Q_{2}, \sigma_{2}\right)$ is a decomposition of (A, σ), then $q_{\sigma}^{+} \simeq\langle\alpha, \beta, \alpha \beta\rangle_{q}$, where $\alpha \in F^{\times}$and $\beta \in F^{\times}$are representatives of the classes $\operatorname{disc} \sigma_{1} \in F^{\times} / F^{\times 2}$ and $\operatorname{disc} \sigma_{2} \in F^{\times} / F^{\times 2}$, respectively.

Proof We just prove the result for q_{σ}^{+}. The proof for q_{σ}^{-}is similar.
(1) Choose an element $u^{\prime} \in \operatorname{Alt}(A, \sigma)^{+} \backslash F u$ and set $\alpha=u^{2} \in F^{\times} . \operatorname{By}(3.10), u u^{\prime} \in Q^{+}=F+\operatorname{Alt}(A, \sigma)^{+}$. Thus, there exist $\lambda \in F$ and $w \in \operatorname{Alt}(A, \sigma)^{+}$such that $u u^{\prime}=\lambda+w$. Set $v=u^{\prime}-\lambda \alpha^{-1} u \in \operatorname{Alt}(A, \sigma)^{+}$. Then $u v=w \in \operatorname{Alt}(A, \sigma)^{+}$. Thus, (u, v, w) is the desired basis.
(2) Let $\mathcal{B}=(u, v, w)$ be a basis of $\operatorname{Alt}(A, \sigma)^{+}$with $w=u v$. Then $v u=\sigma(u v)=-u v$. Using (3.5) we obtain $\mathfrak{b}(u, v)=u v+v u=0$, where \mathfrak{b} is the polar form of q_{σ}^{+}. Similarly, $\mathfrak{b}(u, w)=\mathfrak{b}(v, w)=0$.

NOKHODKAR/Turk J Math

(3) Let (u, v, w) be a basis of $\operatorname{Alt}(A, \sigma)^{+}$with $w=u v$. By $(2), q_{\sigma}^{+} \simeq\langle\alpha, \beta,-\alpha \beta\rangle_{q}$, where $\alpha=u^{2} \in F$ and $\beta=v^{2} \in F$. Since $v u=-u v,(1, u, v, w)$ is a quaternion basis of Q^{+}. Thus, $N_{Q^{+}} \simeq\langle 1,-\alpha,-\beta, \alpha \beta\rangle_{q}$ by [5, (9.6)].
(4) Let $u \in \operatorname{Alt}\left(Q_{1}, \sigma_{1}\right)$ and $v \in \operatorname{Alt}\left(Q_{2}, \sigma_{2}\right)$ be two units and set $\alpha=u^{2} \in F^{\times}, \beta=v^{2} \in F^{\times}$, and $w=u v$. By (3.8) we have $u, v \in \operatorname{Alt}(A, \sigma)^{+}$. Also, $\operatorname{disc} \sigma_{1}=\alpha F^{\times 2} \in F^{\times} / F^{\times 2}$ and $\operatorname{disc} \sigma_{2}=\beta F^{\times 2} \in F^{\times} / F^{\times 2}$. Since $w \in \operatorname{Alt}(A, \sigma)$ and $w^{2} \in F$, by (3.8) we obtain $w \in \operatorname{Alt}(A, \sigma)^{+}$, and so (u, v, w) is a basis of $\operatorname{Alt}(A, \sigma)^{+}$ and $q_{\sigma}^{+} \simeq\langle\alpha, \beta, \alpha \beta\rangle_{q}$.

Proposition 3.13 (Compare $[11,(5.3)])$ Let (A, σ) and $\left(A^{\prime}, \sigma^{\prime}\right)$ be decomposable biquaternion algebras with orthogonal involution over a field F. If $(A, \sigma) \simeq\left(A^{\prime}, \sigma^{\prime}\right)$, then either $q_{\sigma} \simeq q_{\sigma^{\prime}}$ and $q_{\sigma}^{+} \simeq q_{\sigma^{\prime}}^{+}$or $q_{\sigma} \simeq(-1) \cdot q_{\sigma^{\prime}}$ and $q_{\sigma}^{+} \simeq q_{\sigma^{\prime}}^{-}$.

Proof Let $\varphi:(A, \sigma) \xrightarrow{\sim}\left(A^{\prime}, \sigma^{\prime}\right)$ be an isomorphism of F-algebras with involution. Then $\varphi(\operatorname{Alt}(A, \sigma))=$ $\operatorname{Alt}\left(A^{\prime}, \sigma^{\prime}\right)$ and

$$
q_{\sigma^{\prime}}(\varphi(x))^{2}=\operatorname{Nrd}_{A^{\prime}}(\varphi(x))=\operatorname{Nrd}_{A}(x)=q_{\sigma}(x)^{2}, \quad \text { for } x \in \operatorname{Alt}(A, \sigma)
$$

Thus, $q_{\sigma}^{\prime} \circ \varphi= \pm q_{\sigma}$. Suppose first that $q_{\sigma}^{\prime} \circ \varphi=q_{\sigma}$. Then φ restricts to an isometry $f:\left(\operatorname{Alt}(A, \sigma), q_{\sigma}\right) \rightarrow$ ($\left.\operatorname{Alt}\left(A^{\prime}, \sigma^{\prime}\right), q_{\sigma^{\prime}}\right)$. Set $h=f \circ p_{\sigma} \circ f^{-1}$. Then h is an endomorphism of $\operatorname{Alt}\left(A^{\prime}, \sigma^{\prime}\right)$. We claim that $h=p_{\sigma^{\prime}}$. For every $x \in \operatorname{Alt}\left(A^{\prime}, \sigma^{\prime}\right)$ we have $h^{2}(x)=f \circ p_{\sigma}^{2} \circ f^{-1}(x)=f \circ \operatorname{id} \circ f^{-1}(x)=x$ and

$$
\begin{aligned}
x h(x) & =x f\left(p_{\sigma}\left(f^{-1}(x)\right)\right)=x \varphi\left(p_{\sigma}\left(f^{-1}(x)\right)\right)=\varphi\left(f^{-1}(x)\right) \varphi\left(p_{\sigma}\left(f^{-1}(x)\right)\right) \\
& =\varphi\left(f^{-1}(x) p_{\sigma}\left(f^{-1}(x)\right)\right)=\varphi\left(q_{\sigma}\left(f^{-1}(x)\right)\right)=\varphi\left(q_{\sigma^{\prime}}(x)\right)=q_{\sigma^{\prime}}(x)
\end{aligned}
$$

Similarly, we have $h(x) x=q_{\sigma^{\prime}}(x)$ for every $x \in \operatorname{Alt}\left(A^{\prime}, \sigma^{\prime}\right)$. Thus, $h=p_{\sigma^{\prime}}$ and the claim is proved. It follows that $p_{\sigma^{\prime}} \circ f=f \circ p_{\sigma}$. Now, if $x \in \operatorname{Alt}(A, \sigma)^{+}$, then $p_{\sigma}(x)=x$, which yields $p_{\sigma^{\prime}}(f(x))=f\left(p_{\sigma}(x)\right)=f(x)$. It follows that $f(x) \in \operatorname{Alt}\left(A^{\prime}, \sigma^{\prime}\right)^{+}$, i.e. f restricts to an isometry $q_{\sigma}^{+} \simeq q_{\sigma^{\prime}}^{+}$. A similar argument shows that if $q_{\sigma}^{\prime} \circ \varphi=-q_{\sigma}$, then $q_{\sigma}^{+} \simeq q_{\sigma^{\prime}}^{-}$.

The next result complements [11, (5.3)] for biquaternion algebras.
Theorem 3.14 Let (A, σ) and $\left(A^{\prime}, \sigma^{\prime}\right)$ be two decomposable biquaternion algebras with orthogonal involution over a field F of characteristic different from 2. Let $Q^{+}=Q(A, \sigma)^{+}, Q^{-}=Q(A, \sigma)^{-}, Q^{+}=Q\left(A^{\prime}, \sigma^{\prime}\right)^{+}$, and $Q^{\prime-}=Q\left(A^{\prime}, \sigma^{\prime}\right)^{-}$. The following statements are equivalent.
(1) $(A, \sigma) \simeq\left(A^{\prime}, \sigma^{\prime}\right)$.
(2) Either $q_{\sigma} \simeq q_{\sigma^{\prime}}$ and $q_{\sigma}^{+} \simeq q_{\sigma^{\prime}}^{+}$or $q_{\sigma} \simeq(-1) \cdot q_{\sigma^{\prime}}$ and $q_{\sigma}^{+} \simeq q_{\sigma^{\prime}}^{-}$.
(3) $A \simeq A^{\prime}$ and either $q_{\sigma}^{+} \simeq q_{\sigma^{\prime}}^{+}$or $q_{\sigma}^{+} \simeq q_{\sigma^{\prime}}^{-}$.
(4) $A \simeq A^{\prime}$ and either $Q^{+} \simeq Q^{+}$or $Q^{+} \simeq Q^{-}$.

Proof The implication (1) \Rightarrow (2) follows from (3.13). Since q_{σ} and $q_{\sigma^{\prime}}$ are Albert forms of (A, σ) and $\left(A^{\prime}, \sigma^{\prime}\right)$, respectively, the condition $q_{\sigma} \simeq q_{\sigma^{\prime}}\left(\right.$ resp. $\left.q_{\sigma} \simeq(-1) \cdot q_{\sigma^{\prime}}\right)$ implies that $A \simeq A^{\prime}$, proving $(2) \Rightarrow(3)$.

The implication $(3) \Rightarrow(4)$ follows from $(3.12(3))$ and [12, Ch. III, (2.5)]. To prove $(4) \Rightarrow(1)$ assume first $Q^{+} \simeq Q^{\prime+}$. By $(3.10(1))$ we have $C_{A}\left(Q^{+}\right)=Q^{-}$and $C_{A^{\prime}}\left(Q^{\prime+}\right)=Q^{\prime-}$. Thus, the isomorphisms $Q^{+} \simeq_{F} Q^{\prime+}$ and $A \simeq_{F} A^{\prime}$ imply that $Q^{-} \simeq_{F} Q^{\prime-}$. Since the restrictions of σ to Q^{+}and Q^{-}and the restrictions of σ^{\prime} to $Q^{\prime+}$ and $Q^{\prime-}$ are all symplectic, we obtain

$$
\begin{aligned}
(A, \sigma) & \simeq_{F}\left(Q^{+},\left.\sigma\right|_{Q^{+}}\right) \otimes_{F}\left(Q^{-},\left.\sigma\right|_{Q^{-}}\right) \\
& \simeq_{F}\left(Q^{\prime+},\left.\sigma^{\prime}\right|_{Q^{\prime+}}\right) \otimes_{F}\left(Q^{\prime-},\left.\sigma^{\prime}\right|_{Q^{\prime-}}\right) \simeq_{F}\left(A^{\prime}, \sigma^{\prime}\right)
\end{aligned}
$$

A similar argument works if $Q^{+} \simeq Q^{\prime-}$.

4. Relation with the Pfister invariant in characteristic two

Throughout this section, F is a field of characteristic 2 .

Definition 4.1 Let A be a finite-dimensional associative F-algebra. The minimum number r such that A can be generated as an F-algebra by r elements is called the minimum rank of A and is denoted by $r_{F}(A)$.

Theorem $4.2([13])$ Let (A, σ) be a totally decomposable algebra with involution of orthogonal type over F. There exists a symmetric and self-centralizing subalgebra $S \subseteq A$ such that $x^{2} \in F$ for every $x \in S$ and $\operatorname{dim}_{F} S$ $=2^{n}$, where $n=r_{F}(S)$. Furthermore, for every subalgebra S with these properties, we have $S=F+S_{0}$, where $S_{0}=S \cap \operatorname{Alt}(A, \sigma)$. In particular, $S \subseteq F+\operatorname{Alt}(A, \sigma)$. Finally, the subalgebra S is uniquely determined up to isomorphism.

Proof See [13, (4.6) and (5.10)].

Notation 4.3 We denote the algebra S in (4.2) by $\Phi(A, \sigma)$.
The next result shows that for biquaternion algebras with orthogonal involution, the subalgebra $\Phi(A, \sigma)$ is unique as a set.

Corollary 4.4 Let (A, σ) be a decomposable biquaternion algebra with involution of orthogonal type over F. Then $\Phi(A, \sigma)=Q^{+}$.

Proof Write $\Phi(A, \sigma)=F+S_{0}$, where $S_{0}=\Phi(A, \sigma) \cap \operatorname{Alt}(A, \sigma)$. Since every element of $\Phi(A, \sigma)$ is square-central, using (3.8) we have $S_{0} \subseteq \operatorname{Alt}(A, \sigma)^{+}$. Then $S_{0}=\operatorname{Alt}(A, \sigma)^{+}$by dimension count, and hence $\Phi(A, \sigma)=F+\operatorname{Alt}(A, \sigma)^{+}=Q^{+}$.

Lemma 4.5 Let (A, σ) be a totally decomposable algebra of degree 2^{n} with orthogonal involution over F. If there exists a set $\left\{u_{1}, \cdots, u_{n}\right\} \subseteq \operatorname{Alt}(A, \sigma)$ consisting of pairwise commutative square-central units such that $u_{i_{1}} \cdots u_{i_{l}} \in \operatorname{Alt}(A, \sigma)$ for every $1 \leq l \leq n$ and $1 \leq i_{1}<\cdots<i_{l} \leq n$, then $\Phi(A, \sigma) \simeq F\left[u_{1}, \cdots, u_{n}\right]$.

Proof By $[7,(2.2 .3)], S:=F\left[u_{1}, \cdots, u_{n}\right]$ is self-centralizing. The other required properties of S, stated in (4.2), are easily verified.

Definition 4.6 A set $\left\{u_{1}, \cdots, u_{n}\right\} \subseteq \operatorname{Alt}(A, \sigma)$ as in (4.5) is called a set of alternating generators of $\Phi(A, \sigma)$.
We recall the following definition from [4].

Definition 4.7 Let $(A, \sigma)=\left(Q_{1}, \sigma_{1}\right) \otimes \cdots \otimes\left(Q_{n}, \sigma_{n}\right)$ be a totally decomposable algebra with orthogonal involution over F. Let $\alpha_{i} \in F^{\times}, i=1, \cdots, n$, be a representative of the class $\operatorname{disc} \sigma_{i} \in F^{\times} / F^{\times 2}$. The bilinear n-fold Pfister form $\left\langle\left\langle\alpha_{1}, \cdots, \alpha_{n}\right\rangle\right\rangle$ is called the Pfister invariant of (A, σ) and is denoted by $\mathfrak{P f}(A, \sigma)$.

Note that by $[4,(7.5)], \mathfrak{P f}(A, \sigma)$ is independent of the decomposition of (A, σ). Also, as observed in [13, pp. 223-224], $\mathfrak{P f}(A, \sigma) \simeq\left\langle\left\langle\alpha_{1}, \cdots, \alpha_{n}\right\rangle\right\rangle$ if and only if there exists a set of alternating generators $\left\{u_{1}, \cdots, u_{n}\right\}$ of $\Phi(A, \sigma)$ such that $u_{i}^{2}=\alpha_{i} \in F^{\times}, i=1, \cdots, n$.

Lemma 4.8 Let $\langle\langle\alpha, \beta\rangle\rangle$ be an isotropic bilinear Pfister form over F. If $\alpha \beta \neq 0$, then $\langle\langle\alpha, \beta\rangle\rangle \simeq\left\langle\left\langle\alpha, \beta+\alpha^{-1} \lambda^{2}\right\rangle\right\rangle$ for every $\lambda \in F$.

Proof Since $\langle\langle\alpha, \beta\rangle\rangle$ is isotropic, by [5, (4.14)] either $\alpha \in F^{\times 2}$ or $\beta \in D_{F}\langle 1, \alpha\rangle$. If $\alpha \in F^{\times 2}$, using [5, (4.15 $(2))]$ and $[5,(4.15(1))]$ we obtain

$$
\begin{aligned}
\langle\langle\alpha, \beta\rangle\rangle & \simeq\left\langle\left\langle\beta+\alpha^{-1} \lambda^{2}, \alpha \beta\right\rangle\right\rangle \simeq\left\langle\left\langle\beta+\alpha^{-1} \lambda^{2}, \alpha \beta\left(\alpha^{-1} \lambda^{2}-\left(\beta+\alpha^{-1} \lambda^{2}\right)\right)\right\rangle\right\rangle \\
& \simeq\left\langle\left\langle\beta+\alpha^{-1} \lambda^{2}, \alpha \beta^{2}\right\rangle\right\rangle \simeq\left\langle\left\langle\alpha, \beta+\alpha^{-1} \lambda^{2}\right\rangle\right\rangle .
\end{aligned}
$$

If $\beta \in D_{F}\langle 1, \alpha\rangle$, then there exist $b, c \in F$ such that $\beta=b^{2}+c^{2} \alpha$. Let $s=\alpha^{-1} \beta^{-1} \lambda \in F$. Using [5, (4.15 (1))] we obtain

$$
\begin{aligned}
\langle\langle\alpha, \beta\rangle\rangle & \simeq\left\langle\left\langle\alpha, \beta\left((1+c s \alpha)^{2}-(b s)^{2} \alpha\right)\right\rangle\right\rangle \simeq\left\langle\left\langle\alpha, \beta\left(1+c^{2} s^{2} \alpha^{2}+b^{2} s^{2} \alpha\right)\right\rangle\right\rangle \\
& \simeq\left\langle\left\langle\alpha, \beta+s^{2} \alpha \beta\left(c^{2} \alpha+b^{2}\right)\right\rangle\right\rangle \simeq\left\langle\left\langle\alpha, \beta+s^{2} \alpha \beta^{2}\right\rangle\right\rangle \simeq\left\langle\left\langle\alpha, \beta+\alpha^{-1} \lambda^{2}\right\rangle\right\rangle
\end{aligned}
$$

Lemma 4.9 Let (A, σ) be a decomposable biquaternion algebra with involution of orthogonal type over F and let $\alpha, \beta \in F^{\times}$. Then $\mathfrak{P f}(A, \sigma) \simeq\left\langle\langle\alpha, \beta\rangle\right.$ if and only if $q_{\sigma}^{+} \simeq\langle\alpha, \beta, \alpha \beta\rangle_{q}$.

Proof If $\mathfrak{P f}(A, \sigma) \simeq\langle\langle\alpha, \beta\rangle\rangle$, then there exists a set of alternating generators $\{u, v\}$ of $\Phi(A, \sigma)$ such that $u^{2}=\alpha$ and $v^{2}=\beta . \quad$ By (4.4) and (3.12 (2)), $(u, v, u v)$ is an orthogonal basis of $\operatorname{Alt}(A, \sigma)^{+}$and hence $q_{\sigma}^{+} \simeq\langle\alpha, \beta, \alpha \beta\rangle_{q}$.

To prove the converse, choose a basis (x, y, z) of $\operatorname{Alt}(A, \sigma)^{+}$with $x^{2}=\alpha, y^{2}=\beta$, and $z^{2}=\alpha \beta$. Consider the element $x y \in \Phi(A, \sigma)$. By (4.4), $\Phi(A, \sigma)=F+\operatorname{Alt}(A, \sigma)^{+}$. Thus, there exist $a, b, c, d \in F$ such that

$$
\begin{equation*}
x y=a+b x+c y+d z \tag{5}
\end{equation*}
$$

If $a=0$ then $x y=b x+c y+d z \in \operatorname{Alt}(A, \sigma)^{+}$, which implies that $\{x, y\}$ is a set of alternating generators of $\Phi(A, \sigma)$. As $x^{2}=\alpha$ and $y^{2}=\beta$ we obtain $\mathfrak{P f}(A, \sigma) \simeq\langle\langle\alpha, \beta\rangle\rangle$. Suppose that $a \neq 0$. By squaring both sides of (5), we obtain $\alpha \beta=a^{2}+b^{2} \alpha+c^{2} \beta+d^{2} \alpha \beta$, which yields

$$
1+\left(b a^{-1}\right)^{2} \alpha+\left(c a^{-1}\right)^{2} \beta+\left((d+1) a^{-1}\right)^{2} \alpha \beta=0
$$

Therefore, the form $\langle\langle\alpha, \beta\rangle\rangle$ is isotropic. Set $y^{\prime}=y+\alpha^{-1} a x \in \operatorname{Alt}(A, \sigma)^{+}$. By (5) we have $x y^{\prime}=x y+a=$ $b x+c y+d z \in \operatorname{Alt}(A, \sigma)^{+}$; hence, $\left\{x, y^{\prime}\right\}$ is a set of alternating generators of $\Phi(A, \sigma)$. As $x^{2}=\alpha$ and $y^{\prime 2}=\beta+\alpha^{-1} a^{2}$, we obtain $\mathfrak{P f}(A, \sigma) \simeq\left\langle\left\langle\alpha, \beta+\alpha^{-1} a^{2}\right\rangle\right\rangle$. Thus, $\mathfrak{P f}(A, \sigma) \simeq\langle\langle\alpha, \beta\rangle\rangle$ by (4.8).

Using (4.9) and (3.12 (4)), we obtain the following relation between the Pfister invariant and the quadratic form q_{σ}^{+}.

Proposition 4.10 Let (A, σ) and $\left(A^{\prime}, \sigma^{\prime}\right)$ be decomposable biquaternion algebras with orthogonal involution over F. Then $q_{\sigma}^{+} \simeq q_{\sigma^{\prime}}^{+}$if and only if $\mathfrak{P j}(A, \sigma) \simeq \mathfrak{P j}\left(A^{\prime}, \sigma^{\prime}\right)$.

The following result is analogous to (3.14).

Theorem 4.11 Let (A, σ) and $\left(A^{\prime}, \sigma^{\prime}\right)$ be decomposable biquaternion algebras with orthogonal involution over F. Then the following statements are equivalent:
(1) $(A, \sigma) \simeq\left(A^{\prime}, \sigma^{\prime}\right)$.
(2) $q_{\sigma} \simeq q_{\sigma^{\prime}}$ and $q_{\sigma}^{+} \simeq q_{\sigma^{\prime}}^{+}$.
(3) $A \simeq A^{\prime}$ and $q_{\sigma}^{+} \simeq q_{\sigma^{\prime}}^{+}$.
(4) $A \simeq A^{\prime}$ and $\mathfrak{P f}(A, \sigma) \simeq \mathfrak{P f}\left(A^{\prime}, \sigma^{\prime}\right)$.

Proof The implications (1) \Rightarrow (2) follow from (3.13).
$(2) \Rightarrow(3)$: Since q_{σ} and $q_{\sigma^{\prime}}$ are Albert forms of (A, σ) and $\left(A^{\prime}, \sigma^{\prime}\right)$, respectively, $q_{\sigma} \simeq q_{\sigma^{\prime}}$ implies that $A \simeq A^{\prime}$ by [8, (16.3)].

The implication $(3) \Rightarrow(4)$ and $(4) \Rightarrow(1)$ follows from (4.10) and $[13,(6.5)]$, respectively.

Lemma 4.12 If $\langle\langle\alpha, \beta\rangle\rangle$ is an anisotropic bilinear Pfister form over F, then $\langle\langle\alpha, \beta\rangle \neq\langle\langle\alpha+1, \beta\rangle\rangle$.
Proof As proved in [1, p. 16], two bilinear Pfister forms are isometric if and only if their pure subforms are isometric. Thus, it is enough to show that the pure subform of $\langle\langle\alpha, \beta\rangle\rangle$ does not represent $\alpha+1$. If $\alpha+1 \in D_{F}(\langle\alpha, \beta, \alpha \beta\rangle)$, then there exist $a, b, c \in F$ such that $a^{2} \alpha+b^{2} \beta+c^{2} \alpha \beta=\alpha+1$. Thus, $1+(a+1)^{2} \alpha+b^{2} \beta+c^{2} \alpha \beta=0$, i.e. $\langle\langle\alpha, \beta\rangle\rangle$ is isotropic, which contradicts the assumption.

Definition 4.13 For $\alpha \in F^{\times}$, define an involution $T_{\alpha}: M_{2}(F) \rightarrow M_{2}(F)$ via

$$
T_{\alpha}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
a & c \alpha^{-1} \\
b \alpha & d
\end{array}\right) .
$$

Note that T_{α} is of orthogonal type and $\operatorname{disc} T_{\alpha}=\alpha F^{\times 2} \in F^{\times} / F^{\times 2}$.
The following example shows that if char $F=2$, the conditions $A \simeq_{F} A^{\prime}$ and $Q^{+} \simeq_{F} Q^{\prime+}$ do not necessarily imply that $(A, \sigma) \simeq\left(A^{\prime}, \sigma^{\prime}\right)$ (compare (3.14)).

Example 4.14 Let $\langle\alpha \alpha, \beta\rangle$ be an anisotropic Pfister form over a field F of characteristic 2 and let $A=$ $M_{4}(F)$. Consider the involutions $\sigma=T_{\alpha} \otimes T_{\beta}$ and $\sigma^{\prime}=T_{\alpha+1} \otimes T_{\beta}$ on A. Then $\mathfrak{P f}(A, \sigma) \simeq\langle\langle\alpha, \beta\rangle\rangle$ and $\mathfrak{P f}\left(A, \sigma^{\prime}\right) \simeq\left\langle\langle\alpha+1, \beta\rangle\right.$, and hence $\mathfrak{P f}(A, \sigma) \not \approx \mathfrak{P f}\left(A, \sigma^{\prime}\right)$ by (4.12). Using (4.11), we obtain $(A, \sigma) \not 千\left(A, \sigma^{\prime}\right)$.

On the other hand, there exists a set of alternating generators $\{u, v\}$ (resp. $\left\{u^{\prime}, v^{\prime}\right\}$) of $\Phi(A, \sigma)$ (resp. $\Phi\left(A, \sigma^{\prime}\right)$) such that $u^{2}=\alpha$ and $v^{2}=\beta$ (resp. $u^{\prime 2}=\alpha+1$ and $v^{\prime 2}=\beta$). Then $\Phi(A, \sigma) \simeq F[u, v]$ and $\Phi\left(A, \sigma^{\prime}\right) \simeq F\left[u^{\prime}, v^{\prime}\right]$. The linear map $f: F[u, v] \rightarrow F\left[u^{\prime}, v^{\prime}\right]$ induced by $f(1)=1, f(u)=u^{\prime}+1$, $f(v)=v^{\prime}$, and $f(u v)=\left(u^{\prime}+1\right) v^{\prime}$ is an F-algebra isomorphism. Thus, $\Phi(A, \sigma) \simeq \Phi\left(A, \sigma^{\prime}\right)$, which implies that $Q(A, \sigma)^{+} \simeq Q\left(A, \sigma^{\prime}\right)^{+}$by (4.4).

5. Metabolic involutions

Let (A, σ) be an algebra with involution over a field F of arbitrary characteristic. An idempotent $e \in A$ is called hyperbolic (resp. metabolic) with respect to σ if $\sigma(e)=1-e($ resp. $\sigma(e) e=0$ and $(1-e)(1-\sigma(e))=0)$. The pair (A, σ) is called hyperbolic (resp. metabolic) if A contains a hyperbolic (resp. metabolic) idempotent with respect to σ. Every hyperbolic involution σ is metabolic but the converse is not always true. If σ is symplectic or char $F \neq 2$, the involution σ is metabolic if and only if it is hyperbolic (see [3, (4.10)] and [2, (A.3)]).

Lemma 5.1 Let (A, σ) be a central simple algebra with orthogonal involution over a field F. If $e \in A$ is a metabolic idempotent, then $(e-\sigma(e))^{2}=1$.

Proof This follows from the relations $(1-e)(1-\sigma(e))=0$ and $\sigma(e) e=0$.

Theorem 5.2 Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F. The following statements are equivalent:
(1) (A, σ) is metabolic.
(2) Q^{+}or Q^{-}splits.
(3) $1 \in D_{F}\left(q_{\sigma}^{+}\right)$or $-1 \in D_{F}\left(q_{\sigma}^{-}\right)$.
(4) q_{σ}^{+}or q_{σ}^{-}is isotropic.

Proof If char $F \neq 2$, by (3.10 (1)) we have $(A, \sigma) \simeq\left(Q^{+},\left.\sigma\right|_{Q^{+}}\right) \otimes\left(Q^{-},\left.\sigma\right|_{Q^{-}}\right)$, where $\left.\sigma\right|_{Q^{+}}$and $\left.\sigma\right|_{Q^{-}}$are the canonical involutions of Q^{+}and Q^{-}, respectively. Thus, the equivalence (1) $\Leftrightarrow(2)$ follows from [6, (3.1)]. The equivalences $(2) \Leftrightarrow(3)$ and $(2) \Leftrightarrow(4)$ both follow from (3.12 (3)) and [12, Ch. III, (2.7)].

Now, let char $F=2$. Then the equivalence (1) $\Leftrightarrow(2)$ follows from [13, (6.6)].
$(1) \Rightarrow(3)$: Let e be a metabolic idempotent with respect to σ and let $x=e-\sigma(e)$. By (5.1), we have $x^{2}=1$. Since $x \in \operatorname{Alt}(A, \sigma),(3.8)$ implies that $x \in \operatorname{Alt}(A, \sigma)^{+}$and hence $q_{\sigma}^{+}(x)=1$.
$(3) \Rightarrow(4)$: Suppose that $q_{\sigma}^{+}(u)=1$ for some $u \in \operatorname{Alt}(A, \sigma)^{+}$. By (3.12 (1)) and (3.12 (2)), the element u extends to an orthogonal basis (u, v, w) of $\operatorname{Alt}(A, \sigma)^{+}$with $w=u v$. According to (3.10 (2)), Q^{+}is commutative. Thus, $q_{\sigma}^{+}(v+w)=(v+w)^{2}=v^{2}+(u v)^{2}=0$, i.e. q_{σ}^{+}is isotropic.
$(4) \Rightarrow(2):$ If q_{σ}^{+}is isotropic, then there exists a nonzero $x \in \operatorname{Alt}(A, \sigma)^{+} \subseteq Q^{+}$such that $x^{2}=0$ and hence Q^{+}splits.

Corollary 5.3 Let (A, σ) be a central simple algebra with involution over a field F. If σ is metabolic, then $\operatorname{disc} \sigma$ is trivial.

Proof The result follows from (5.1) if char $F=2$ and $[2,(2.3)]$ if char $F \neq 2$.
Proposition 5.4 Let (A, σ) be a biquaternion algebra with involution of orthogonal type over a field F. Then σ is metabolic if and only if there exists $u \in \operatorname{Alt}(A, \sigma)$ such that $u^{2}=1$.

Proof If σ is metabolic, then by (5.3), $\operatorname{disc} \sigma$ is trivial. Thus, σ is decomposable and the result follows from (5.2). Conversely, suppose that there exists $u \in \operatorname{Alt}(A, \sigma)$ such that $u^{2}=1$. Then $\operatorname{disc} \sigma=\operatorname{Nrd}_{A}(u) F^{\times 2}$ is trivial, so (A, σ) is decomposable by $[9,(3.7)]$. Since $u^{2}=1 \in F$ and $u \in \operatorname{Alt}(A, \sigma)$, by (3.8) we have $u \in \operatorname{Alt}(A, \sigma)^{+} \cup \operatorname{Alt}(A, \sigma)^{-}$. Therefore, either $u \in \operatorname{Alt}(A, \sigma)^{+}$(i.e. $\left.q_{\sigma}^{+}(u)=1\right)$ or $u \in \operatorname{Alt}(A, \sigma)^{-}$(i.e. $\left.q_{\sigma}^{-}(u)=-1\right)$. By (5.2), σ is metabolic.

Proposition 5.5 Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F. Then $(A, \sigma) \simeq\left(M_{4}(F), t\right)$ if and only if $q_{\sigma}^{+} \simeq\langle-1,-1,-1\rangle_{q}$ and $q_{\sigma}^{-} \simeq\langle 1,1,1\rangle_{q}$.

Proof If char $F=2$, the result follows from [13, (5.7)] and (4.9). Suppose that char $F \neq 2$. As observed in [7, p. 235], $Q\left(M_{4}(F), t\right)^{+}$has an F-basis $(1, u, v, w)$ subject to the relations $u^{2}=-1, v^{2}=-1$ and $w=u v=-v u$. By $(3.12(2))$ we obtain $q_{t}^{+} \simeq\langle-1,-1,-1\rangle_{q}$. A similar argument shows that $q_{t}^{-} \simeq\langle 1,1,1\rangle_{q}$. Thus, the result follows from (3.14).

References

[1] Arason J, Baeza R. Relations in I^{n} and $I^{n} W_{q}$ in characteristic 2. J Algebra 2007; 314: 895-911.
[2] Bayer-Fluckiger E, Shapiro DB, Tignol JP. Hyperbolic involutions. Math Z 1993; 214: 461-476.
[3] Dolphin A. Metabolic involutions. J Algebra 2011; 336: 286-300.
[4] Dolphin A. Orthogonal Pfister involutions in characteristic two. J Pure Appl Algebra 2014; 218: 1900-1915.
[5] Elman R, Karpenko N, Merkurjev A. The Algebraic and Geometric Theory of Quadratic Forms. Providence, RI, USA: American Mathematical Society, 2008.
[6] Haile DE, Morandi PJ. Hyperbolicity of algebras with involution and connections with Clifford algebras. Commun Algebra 2001; 29: 5733-5753.
[7] Jacobson N. Finite-Dimensional Division Algebras over Fields. Berlin, Germany: Springer-Verlag, 1996.
[8] Knus MA, Merkurjev AS, Rost M, Tignol JP. The Book of Involutions. Providence, RI, USA: American Mathematical Society, 1998.
[9] Knus MA, Parimala R, Sridharan R. Involutions on rank 16 central simple algebras. J Indian Math Soc 1991; 57: 143-151.
[10] Knus MA, Parimala R, Sridharan R. On the discriminant of an involution. Bull Soc Math Belg 1991; 43: 89-98.
[11] Knus MA, Parimala R, Sridharan R. Pfaffians, central simple algebras and similitudes. Math Z 1991; 206: 589-604.
[12] Lam TY. Introduction to Quadratic Forms over Fields. Providence, RI, USA: American Mathematical Society, 2005.
[13] Mahmoudi MG, Nokhodkar AH. On totally decomposable algebras with involution in characteristic two. J Algebra 2016; 451: 208-231.

[^0]: *Correspondence: a.nokhodkar@kashanu.ac.ir
 2010 AMS Mathematics Subject Classification: 11E88, 15A63, 16W10

