
Turk J Math

(2018) 42: 752 – 762

c⃝ TÜBİTAK

doi:10.3906/mat-1702-89

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

On biquaternion algebras with orthogonal involution

Amir Hossein NOKHODKAR∗

Department of Pure Mathematics, Faculty of Science, University of Kashan, Kashan, Iran

Received: 20.02.2017 • Accepted/Published Online: 03.07.2017 • Final Version: 08.05.2018

Abstract: We investigate the Pfaffians of decomposable biquaternion algebras with involution of orthogonal type. In

characteristic two, a classification of these algebras in terms of their Pfaffians and some other related invariants is

studied. Also, in arbitrary characteristic, a criterion is obtained for an orthogonal involution on a biquaternion algebra

to be metabolic.
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1. Introduction

A biquaternion algebra is a tensor product of two quaternion algebras. Every biquaternion algebra is a central

simple algebra of degree 4 and exponent 2 or 1. A result proved by Albert shows that the converse is also true

(see [8, (16.1)]). An Albert form of a biquaternion algebra A is a 6-dimensional quadratic form with trivial

discriminant whose Clifford algebra is isomorphic to M2(A). According to [8, (16.3)], two biquaternion algebras

over a field F are isomorphic if and only if their Albert forms are similar.

The Albert form of a biquaternion algebra with involution arises naturally as the quadratic form induced

by a Pfaffian (see [11, (3.3)]). In [11], a Pfaffian of certain modules over Azumaya algebras was defined and

used to find a decomposition criterion for involutions on a rank 16 Azumaya algebra, which contains 2 as a

unit. A similar criterion for involutions on a biquaternion algebra in arbitrary characteristic was also obtained

in [9].

It is known that symplectic involutions on a biquaternion algebra A can be classified, up to conjugation,

by their Pfaffian norms (see [8, (16.19)]). For orthogonal involutions the situation is a little more complicated.

In characteristic ̸= 2, using [11, (5.3)], one can find a classification of decomposable orthogonal involutions on

A in terms of the Pfaffian and the Pfaffian adjoint (introduced in [11]). This classification was originally stated

in [11] for the more general case where A is an Azumaya algebra that contains 2 as a unit.

In this work we study decomposable biquaternion algebras with orthogonal involution. We start with

some general observations on the Pfaffian and the Pfaffian adjoint. For a decomposable orthogonal involution σ

we consider the Pfaffian qσ and certain subsets Alt(A, σ)+ and Alt(A, σ)− of Alt(A, σ), introduced in [9]. It is

shown in (3.8) that the union of Alt(A, σ)+ and Alt(A, σ)− coincides with the set of all square-central elements

in Alt(A, σ). At the end of Section 3, we study in more detail the classification of orthogonal involutions on

biquaternion algebras in characteristic ̸= 2, obtained in [11]. Although this result was already presented in [11],
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it is useful to rephrase it to enable comparison with the corresponding result in characteristic 2 (see (3.14) and

(4.11)).

The classification problem in characteristic 2 is a little more complicated. Moreover, the results them-

selves have some substantial differences in this case. For example, the restriction q+σ of qσ to Alt(A, σ)+ is

totally singular in characteristic 2, rather than a regular subform of the Pfaffian qσ . Considering these remarks,

our approach is to study the relation between the form q+σ and the Pfister invariant of (A, σ), introduced in

[4]. This relation is used in (4.11) to obtain necessary and sufficient conditions for orthogonal involutions to be

conjugate to each other.

Finally, we study in Section 5 metabolic involutions on biquaternion algebras. Using some results of

previous sections, we obtain various criteria for an orthogonal involution on a biquaternion algebra to be

metabolic (see (5.2) and (5.4)). As a final application, we shall see in (5.5) how the Pfaffian can be used to

characterize the transpose involution on a split biquaternion algebra.

2. Preliminaries

Let V be a finite dimensional vector space over a field F . A quadratic form over F is a map q : V → F

such that (i) q(av) = a2q(v) for every a ∈ F and v ∈ V ; (ii) the map bq : V × V → F defined by

bq(u, v) = q(u + v) − q(u) − q(v) is a bilinear form. The map bq is called the polar form of q . Note

that for every v ∈ V we have bq(v, v) = 2q(v). In particular, if charF = 2, then bq(v, v) = 0 for all

v ∈ V , i.e. bq is an alternating form. The orthogonal complement of a subspace W ⊆ V is defined as

W⊥ = {x ∈ V | bq(x, y) = 0 for all y ∈ W} .

A quadratic form q (resp. a bilinear form b) on V is called isotropic if there exists a nonzero vector

v ∈ V such that q(v) = 0 (resp. b(v, v) = 0). For α ∈ F , we say that q (resp. b) represents α if there exists

a nonzero vector v ∈ V such that q(v) = α (resp. b(v, v) = α). The sets of all elements of F represented by q

and b are denoted by DF (q) and DF (b), respectively. For α ∈ F× , the scaled quadratic form α · q is defined

as α · q(v) = αq(v) for every v ∈ V .

For a1, · · · , an ∈ F , the isometry class of the quadratic form
∑n

i=1 aix
2
i is denoted by ⟨a1, · · · , an⟩q .

Also, the isometry class of the bilinear form
∑n

i=1 aixiyi is denoted by ⟨a1, · · · , an⟩ . Finally, the form

⟨⟨a1, · · · , an⟩⟩ := ⟨1, a1⟩ ⊗ · · · ⊗ ⟨1, an⟩ is called a bilinear n-fold Pfister form.

An involution on a central simple F -algebra A is an antiautomorphism σ of A of order 2. We say that σ

is of the first kind if σ|F = id. An involution σ of the first kind is said to be symplectic if over a splitting field of

A it becomes adjoint to an alternating bilinear form. Otherwise, σ is called orthogonal. The set of alternating

elements of A is defined as Alt(A, σ) = {a− σ(a) | a ∈ A} . If A is of even degree 2m , the discriminant of an

orthogonal involution σ on A is defined as discσ = (−1)m NrdA(x)F
×2 ∈ F×/F×2 , where x ∈ Alt(A, σ) is a

unit and NrdA(x) is the reduced norm of x in A . Note that by [8, (7.1)], the discriminant does not depend on

the choice of x ∈ Alt(A, σ).

A quaternion algebra over a field F is a central simple algebra Q of degree 2. The canonical involution

γ on Q is defined by γ(x) = TrdQ(x) − x for x ∈ Q , where TrdA(x) is the reduced trace of x in A . The

canonical involution on Q is the unique involution of symplectic type on Q and it satisfies γ(x)x ∈ F for

every x ∈ Q (see [8, Ch. 2]). The map NQ : Q → F defined by NQ(x) = γ(x)x is called the norm form of

Q . An element x ∈ Q is called a pure quaternion if TrdQ(x) = 0. The set of all pure quaternions of Q is a
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3-dimensional subspace of Q denoted by Q0 . Note that an element x ∈ Q lies in Q0 if and only if γ(x) = −x ,

or equivalently, NQ(x) = −x2 .

A central simple F -algebra with involution (A, σ) is called totally decomposable if it decomposes as a

tensor product of σ -invariant quaternion F -algebras. If A is a biquaternion algebra, we will use the term

decomposable instead of totally decomposable. Note that a biquaternion algebra with orthogonal involution

(A, σ) is decomposable if and only if discσ is trivial (see [9, (3.7)]).

3. The Pfaffian and the Pfaffian adjoint

We begin our discussion by looking at the special cases of [10, (2.1)] and [10, (3.1)].

Theorem 3.1 Let (A, σ) be a biquaternion algebra with orthogonal involution over a field F and let dσ ∈ F×

be a representative of the class discσ ∈ F×/F×2 . There exists a map pfσ : Alt(A, σ) → F such that

pfσ(x)
2 = dσNrdA(x) for every x ∈ Alt(A, σ) . The map pfσ is uniquely determined up to a sign. Moreover,

there exists an F -linear map πσ : Alt(A, σ) → Alt(A, σ) such that xπσ(x) = πσ(x)x = pfσ(x) and π2
σ(x) = dσx

for every x ∈ Alt(A, σ) .

Remark 3.2 The map πσ in (3.1) is uniquely determined by pfσ . Indeed, it is easily seen by scalar extension

to a splitting field that Alt(A, σ) has a basis B consisting of invertible elements. For every x ∈ B , we must

have πσ(x) = x−1pfσ(x) . As πσ is F -linear, it is uniquely defined on Alt(A, σ) .

Definition 3.3 A map pfσ as in (3.1) is called a Pfaffian of (A, σ) . We also call the map πσ , the Pfaffian

adjoint of pfσ .

Note that by [11, (3.3)], every Pfaffian of (A, σ) is an Albert form of A .

Notation 3.4 Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F .

Since discσ is trivial, by (3.1) there is a unique, up to a sign, Pfaffian pfσ satisfying pfσ(x)
2 = NrdA(x) for

x ∈ Alt(A, σ) . We denote this Pfaffian by qσ . We also denote by pσ the Pfaffian adjoint of qσ ; hence,

qσ(x)
2 = NrdA(x), xpσ(x) = pσ(x)x = qσ(x) and p2σ(x) = x,

for every x ∈ Alt(A, σ) . We also use the following notation:

Alt(A, σ)+ := {x+ pσ(x) | x ∈ Alt(A, σ)},

Alt(A, σ)− := {x− pσ(x) | x ∈ Alt(A, σ)}.

Note that if charF = 2, then Alt(A, σ)+ = Alt(A, σ)− . Also, as proved in [11, p. 597] and [9, (3.5)],

Alt(A, σ)+ and Alt(A, σ)− are 3-dimensional subspaces of Alt(A, σ). Since p2σ = id, we have pσ(x) = x for

every x ∈ Alt(A, σ)+ and pσ(x) = −x for every x ∈ Alt(A, σ)− . The converse is also true, i.e.

Alt(A, σ)+ = {x ∈ Alt(A, σ) | pσ(x) = x}, (1)

Alt(A, σ)− = {x ∈ Alt(A, σ) | pσ(x) = −x}. (2)
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Indeed, if charF ̸= 2, then for every x ∈ Alt(A, σ) with pσ(x) = x we have x = 1
2 (x + pσ(x)) ∈ Alt(A, σ)+ .

Similarly, if pσ(x) = −x , then x = 1
2 (x−pσ(x)) ∈ Alt(A, σ)− . If charF = 2, then the relation (1) follows from

the dimension formula for the image and the kernel of the linear map pσ + id.

The next result is implicitly contained in [8, pp. 249–250].

Lemma 3.5 Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F . Then

pσ is an isometry of (Alt(A, σ), qσ) . Furthermore, bqσ (x, y) = xpσ(y) + ypσ(x) , for x, y ∈ Alt(A, σ) .

Proof For every x ∈ Alt(A, σ) we have qσ(pσ(x)) = pσ(pσ(x))pσ(x) = xpσ(x) = qσ(x). Thus, pσ is

an isometry. The second assertion is easily obtained from the relations qσ(x) = xpσ(x) and bqσ (x, y) =

qσ(x+ y)− qσ(x)− qσ(y). 2

Lemma 3.6 Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F . Then

Alt(A, σ)+ = (Alt(A, σ)−)⊥ ⊆ CA(Alt(A, σ)
−) .

Proof Let b = bqσ and let x ∈ Alt(A, σ)+ . By (3.5), pσ is an isometry of (Alt(A, σ), qσ), and hence

b(x, y) = b(pσ(x), pσ(y)) = b(x, pσ(y)) for every y ∈ Alt(A, σ). Thus, b(x, y − pσ(y)) = 0, i.e. Alt(A, σ)+ ⊆
(Alt(A, σ)−)⊥ . By dimension count we obtain Alt(A, σ)+ = (Alt(A, σ)−)⊥ . Now let z ∈ Alt(A, σ)− . By (3.5)

we have 0 = b(x, z) = −xz + zx . Thus, xz = zx , which implies that Alt(A, σ)+ commutes with Alt(A, σ)− ,

i.e. Alt(A, σ)+ ⊆ CA(Alt(A, σ)−). 2

Lemma 3.7 Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F and

let x ∈ Alt(A, σ) . If x2 ∈ F , then pσ(x) = ±x .

Proof Set α = x2 ∈ F and β = qσ(x) ∈ F . Then β2 = qσ(x)
2 = NrdA(x) = ±α2 . Thus, β = λα for some

λ ∈ F with λ4 = 1, i.e. qσ(x) = λx2 . If α ̸= 0, then multiplying xpσ(x) = qσ(x) = λx2 on the left by x−1 we

obtain pσ(x) = λx . The relation p2σ = id then implies that λ = ±1 and we are done. Suppose that α = 0, i.e.

x2 = 0. By (3.5) we have bqσ (pσ(x), x) = pσ(x)
2 + x2 = pσ(x)

2 , and hence pσ(x)
2 ∈ F . On the other hand,

the relations xpσ(x) = qσ(x) = λx2 = 0 show that pσ(x) is not invertible. Thus,

pσ(x)
2 = 0. (3)

Suppose that pσ(x) ̸= x ; hence, x /∈ Alt(A, σ)+ . In view of (3.6) one can find w ∈ Alt(A, σ)− such that

bqσ (x,w) = 1. By (3.5) we have

−xw + wpσ(x) = 1. (4)

Multiplying (4) on the left by x we get xwpσ(x) = x . Using (4), it follows that (wpσ(x)− 1)pσ(x) = x , which

yields pσ(x) = −x by (3). This completes the proof (note that if charF = 2, this argument shows that the

assumption pσ(x) ̸= x leads to the contradiction pσ(x) = −x and hence pσ(x) = x). 2

The next result follows from (3.7) and the relations (1) and (2) below (3.4).

Proposition 3.8 Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F

and let Alt(A, σ)0 = Alt(A, σ)+ ∪ Alt(A, σ)− . Then Alt(A, σ)0 = {x ∈ Alt(A, σ) | pσ(x) = ±x} = {x ∈
Alt(A, σ) | x2 ∈ F} .
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Notation 3.9 For a decomposable biquaternion algebra with involution of orthogonal type (A, σ) over a field

F , we use the notation Q(A, σ)+ = F + Alt(A, σ)+ and Q(A, σ)− = F + Alt(A, σ)− . We will simply denote

Q(A, σ)+ by Q+ and Q(A, σ)− by Q− , if the pair (A, σ) is clear from the context.

Lemma 3.10 ([9]) Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field

F .

(1) If charF ̸= 2 , then Q+ and Q− are two σ -invariant quaternion subalgebras of A with Q+
0 = Alt(A, σ)+

and Q−
0 = Alt(A, σ)− . Furthermore, we have (A, σ) ≃ (Q+, σ|Q+)⊗ (Q−, σ|Q−) , where σ|Q+ and σ|Q−

are the canonical involutions of Q+ and Q− , respectively.

(2) If charF = 2 , then Q+ = Q− is a maximal commutative subalgebra of F satisfying x2 ∈ F for every

x ∈ Q+ .

Proof Assume first that charF ̸= 2. As observed in [9, (3.5)], Q+ is a σ -invariant quaternion subalgebra of A

and σ|Q+ is of symplectic type. By dimension count and (3.6) we obtain Q− = CA(Q
+); hence, A ≃ Q+⊗FQ− .

By [8, (2.23 (1))], σ|Q− is of symplectic type. Finally, since TrdQ+(x) = 0 for every x ∈ Alt(A, σ)+ , we have

Q+
0 = Alt(A, σ)+ . Similarly Q−

0 = Alt(A, σ)− . This proves the first part. The second part follows from [9,

(3.6)]. 2

Notation 3.11 Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F .

We denote by q+σ and q−σ the restrictions of qσ to Alt(A, σ)+ and Alt(A, σ)− , respectively.

Lemma 3.12 Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F .

(1) Every unit u ∈ Alt(A, σ)+ (resp. u ∈ Alt(A, σ)− ) can be extended to a basis (u, v, w) of Alt(A, σ)+

(resp. Alt(A, σ)− ) such that w = uv .

(2) Every basis (u, v, w) of Alt(A, σ)+ (resp. Alt(A, σ)− ) with w = uv is orthogonal with respect to the polar

form of q+σ (resp. q−σ ).

(3) If charF ̸= 2 , then NQ+ ≃ ⟨1⟩q ⊥ (−1) · q+σ and NQ− ≃ ⟨1⟩q ⊥ q−σ .

(4) If charF = 2 and (A, σ) ≃ (Q1, σ1) ⊗ (Q2, σ2) is a decomposition of (A, σ) , then q+σ ≃ ⟨α, β, αβ⟩q ,
where α ∈ F× and β ∈ F× are representatives of the classes discσ1 ∈ F×/F×2 and discσ2 ∈ F×/F×2 ,

respectively.

Proof We just prove the result for q+σ . The proof for q−σ is similar.

(1) Choose an element u′ ∈ Alt(A, σ)+\Fu and set α = u2 ∈ F× . By (3.10), uu′ ∈ Q+ = F+Alt(A, σ)+ .

Thus, there exist λ ∈ F and w ∈ Alt(A, σ)+ such that uu′ = λ+ w . Set v = u′ − λα−1u ∈ Alt(A, σ)+ . Then

uv = w ∈ Alt(A, σ)+ . Thus, (u, v, w) is the desired basis.

(2) Let B = (u, v, w) be a basis of Alt(A, σ)+ with w = uv . Then vu = σ(uv) = −uv . Using (3.5) we

obtain b(u, v) = uv + vu = 0, where b is the polar form of q+σ . Similarly, b(u,w) = b(v, w) = 0.
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(3) Let (u, v, w) be a basis of Alt(A, σ)+ with w = uv . By (2), q+σ ≃ ⟨α, β,−αβ⟩q , where α = u2 ∈ F

and β = v2 ∈ F . Since vu = −uv , (1, u, v, w) is a quaternion basis of Q+ . Thus, NQ+ ≃ ⟨1,−α,−β, αβ⟩q by

[5, (9.6)].

(4) Let u ∈ Alt(Q1, σ1) and v ∈ Alt(Q2, σ2) be two units and set α = u2 ∈ F× , β = v2 ∈ F× , and

w = uv . By (3.8) we have u, v ∈ Alt(A, σ)+ . Also, discσ1 = αF×2 ∈ F×/F×2 and discσ2 = βF×2 ∈ F×/F×2 .

Since w ∈ Alt(A, σ) and w2 ∈ F , by (3.8) we obtain w ∈ Alt(A, σ)+ , and so (u, v, w) is a basis of Alt(A, σ)+

and q+σ ≃ ⟨α, β, αβ⟩q . 2

Proposition 3.13 (Compare [11, (5.3)]) Let (A, σ) and (A′, σ′) be decomposable biquaternion algebras with

orthogonal involution over a field F . If (A, σ) ≃ (A′, σ′) , then either qσ ≃ qσ′ and q+σ ≃ q+σ′ or qσ ≃ (−1) · qσ′

and q+σ ≃ q−σ′ .

Proof Let φ : (A, σ) ∼−→ (A′, σ′) be an isomorphism of F -algebras with involution. Then φ(Alt(A, σ)) =

Alt(A′, σ′) and

qσ′(φ(x))2 = NrdA′(φ(x)) = NrdA(x) = qσ(x)
2, for x ∈ Alt(A, σ).

Thus, q′σ ◦ φ = ±qσ . Suppose first that q′σ ◦ φ = qσ . Then φ restricts to an isometry f : (Alt(A, σ), qσ) →
(Alt(A′, σ′), qσ′). Set h = f ◦ pσ ◦ f−1 . Then h is an endomorphism of Alt(A′, σ′). We claim that h = pσ′ .

For every x ∈ Alt(A′, σ′) we have h2(x) = f ◦ p2σ ◦ f−1(x) = f ◦ id ◦f−1(x) = x and

xh(x) = xf(pσ(f
−1(x))) = xφ(pσ(f

−1(x))) = φ(f−1(x))φ(pσ(f
−1(x)))

= φ(f−1(x)pσ(f
−1(x))) = φ(qσ(f

−1(x))) = φ(qσ′(x)) = qσ′(x).

Similarly, we have h(x)x = qσ′(x) for every x ∈ Alt(A′, σ′). Thus, h = pσ′ and the claim is proved. It follows

that pσ′ ◦ f = f ◦ pσ . Now, if x ∈ Alt(A, σ)+ , then pσ(x) = x , which yields pσ′(f(x)) = f(pσ(x)) = f(x). It

follows that f(x) ∈ Alt(A′, σ′)+ , i.e. f restricts to an isometry q+σ ≃ q+σ′ . A similar argument shows that if

q′σ ◦ φ = −qσ , then q+σ ≃ q−σ′ . 2

The next result complements [11, (5.3)] for biquaternion algebras.

Theorem 3.14 Let (A, σ) and (A′, σ′) be two decomposable biquaternion algebras with orthogonal involution

over a field F of characteristic different from 2 . Let Q+ = Q(A, σ)+ , Q− = Q(A, σ)− , Q′+ = Q(A′, σ′)+ ,

and Q′− = Q(A′, σ′)− . The following statements are equivalent.

(1) (A, σ) ≃ (A′, σ′) .

(2) Either qσ ≃ qσ′ and q+σ ≃ q+σ′ or qσ ≃ (−1) · qσ′ and q+σ ≃ q−σ′ .

(3) A ≃ A′ and either q+σ ≃ q+σ′ or q+σ ≃ q−σ′ .

(4) A ≃ A′ and either Q+ ≃ Q′+ or Q+ ≃ Q− .

Proof The implication (1) ⇒ (2) follows from (3.13). Since qσ and qσ′ are Albert forms of (A, σ) and

(A′, σ′), respectively, the condition qσ ≃ qσ′ (resp. qσ ≃ (−1) · qσ′ ) implies that A ≃ A′ , proving (2) ⇒ (3).
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The implication (3) ⇒ (4) follows from (3.12 (3)) and [12, Ch. III, (2.5)]. To prove (4) ⇒ (1) assume first

Q+ ≃ Q′+ . By (3.10 (1)) we have CA(Q
+) = Q− and CA′(Q′+) = Q′− . Thus, the isomorphisms Q+ ≃F Q′+

and A ≃F A′ imply that Q− ≃F Q′− . Since the restrictions of σ to Q+ and Q− and the restrictions of σ′ to

Q′+ and Q′− are all symplectic, we obtain

(A, σ) ≃F (Q+, σ|Q+)⊗F (Q−, σ|Q−)

≃F (Q′+, σ′|Q′+)⊗F (Q′−, σ′|Q′−) ≃F (A′, σ′).

A similar argument works if Q+ ≃ Q′− . 2

4. Relation with the Pfister invariant in characteristic two

Throughout this section, F is a field of characteristic 2.

Definition 4.1 Let A be a finite-dimensional associative F -algebra. The minimum number r such that A can

be generated as an F -algebra by r elements is called the minimum rank of A and is denoted by rF (A) .

Theorem 4.2 ([13]) Let (A, σ) be a totally decomposable algebra with involution of orthogonal type over F .

There exists a symmetric and self-centralizing subalgebra S ⊆ A such that x2 ∈ F for every x ∈ S and dimF S

= 2n , where n = rF (S) . Furthermore, for every subalgebra S with these properties, we have S = F + S0 ,

where S0 = S ∩Alt(A, σ) . In particular, S ⊆ F +Alt(A, σ) . Finally, the subalgebra S is uniquely determined

up to isomorphism.

Proof See [13, (4.6) and (5.10)]. 2

Notation 4.3 We denote the algebra S in (4.2) by Φ(A, σ) .

The next result shows that for biquaternion algebras with orthogonal involution, the subalgebra Φ(A, σ)

is unique as a set.

Corollary 4.4 Let (A, σ) be a decomposable biquaternion algebra with involution of orthogonal type over F .

Then Φ(A, σ) = Q+ .

Proof Write Φ(A, σ) = F + S0 , where S0 = Φ(A, σ) ∩ Alt(A, σ). Since every element of Φ(A, σ) is

square-central, using (3.8) we have S0 ⊆ Alt(A, σ)+ . Then S0 = Alt(A, σ)+ by dimension count, and hence

Φ(A, σ) = F +Alt(A, σ)+ = Q+ . 2

Lemma 4.5 Let (A, σ) be a totally decomposable algebra of degree 2n with orthogonal involution over F . If

there exists a set {u1, · · · , un} ⊆ Alt(A, σ) consisting of pairwise commutative square-central units such that

ui1 · · ·uil ∈ Alt(A, σ) for every 1 ≤ l ≤ n and 1 ≤ i1 < · · · < il ≤ n , then Φ(A, σ) ≃ F [u1, · · · , un] .

Proof By [7, (2.2.3)], S := F [u1, · · · , un] is self-centralizing. The other required properties of S , stated in

(4.2), are easily verified. 2
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Definition 4.6 A set {u1, · · · , un} ⊆ Alt(A, σ) as in (4.5) is called a set of alternating generators of Φ(A, σ) .

We recall the following definition from [4].

Definition 4.7 Let (A, σ) = (Q1, σ1) ⊗ · · · ⊗ (Qn, σn) be a totally decomposable algebra with orthogonal

involution over F . Let αi ∈ F× , i = 1, · · · , n , be a representative of the class discσi ∈ F×/F×2 . The

bilinear n-fold Pfister form ⟨⟨α1, · · · , αn⟩⟩ is called the Pfister invariant of (A, σ) and is denoted by Pf(A, σ) .

Note that by [4, (7.5)], Pf(A, σ) is independent of the decomposition of (A, σ). Also, as observed in [13, pp.

223–224], Pf(A, σ) ≃ ⟨⟨α1, · · · , αn⟩⟩ if and only if there exists a set of alternating generators {u1, · · · , un} of

Φ(A, σ) such that u2
i = αi ∈ F× , i = 1, · · · , n .

Lemma 4.8 Let ⟨⟨α, β⟩⟩ be an isotropic bilinear Pfister form over F . If αβ ̸= 0 , then ⟨⟨α, β⟩⟩ ≃ ⟨⟨α, β+α−1λ2⟩⟩
for every λ ∈ F .

Proof Since ⟨⟨α, β⟩⟩ is isotropic, by [5, (4.14)] either α ∈ F×2 or β ∈ DF ⟨1, α⟩ . If α ∈ F×2 , using [5, (4.15

(2))] and [5, (4.15 (1))] we obtain

⟨⟨α, β⟩⟩ ≃ ⟨⟨β + α−1λ2, αβ⟩⟩ ≃ ⟨⟨β + α−1λ2, αβ(α−1λ2 − (β + α−1λ2))⟩⟩

≃ ⟨⟨β + α−1λ2, αβ2⟩⟩ ≃ ⟨⟨α, β + α−1λ2⟩⟩.

If β ∈ DF ⟨1, α⟩ , then there exist b, c ∈ F such that β = b2 + c2α . Let s = α−1β−1λ ∈ F . Using [5, (4.15 (1))]

we obtain

⟨⟨α, β⟩⟩ ≃ ⟨⟨α, β((1 + csα)2 − (bs)2α)⟩⟩ ≃ ⟨⟨α, β(1 + c2s2α2 + b2s2α)⟩⟩

≃ ⟨⟨α, β + s2αβ(c2α+ b2)⟩⟩ ≃ ⟨⟨α, β + s2αβ2⟩⟩ ≃ ⟨⟨α, β + α−1λ2⟩⟩.

2

Lemma 4.9 Let (A, σ) be a decomposable biquaternion algebra with involution of orthogonal type over F and

let α, β ∈ F× . Then Pf(A, σ) ≃ ⟨⟨α, β⟩⟩ if and only if q+σ ≃ ⟨α, β, αβ⟩q .

Proof If Pf(A, σ) ≃ ⟨⟨α, β⟩⟩ , then there exists a set of alternating generators {u, v} of Φ(A, σ) such that

u2 = α and v2 = β . By (4.4) and (3.12 (2)), (u, v, uv) is an orthogonal basis of Alt(A, σ)+ and hence

q+σ ≃ ⟨α, β, αβ⟩q .

To prove the converse, choose a basis (x, y, z) of Alt(A, σ)+ with x2 = α , y2 = β , and z2 = αβ .

Consider the element xy ∈ Φ(A, σ). By (4.4), Φ(A, σ) = F + Alt(A, σ)+ . Thus, there exist a, b, c, d ∈ F such

that

xy = a+ bx+ cy + dz. (5)

If a = 0 then xy = bx + cy + dz ∈ Alt(A, σ)+ , which implies that {x, y} is a set of alternating generators of

Φ(A, σ). As x2 = α and y2 = β we obtain Pf(A, σ) ≃ ⟨⟨α, β⟩⟩ . Suppose that a ̸= 0. By squaring both sides of

(5), we obtain αβ = a2 + b2α+ c2β + d2αβ , which yields

1 + (ba−1)2α+ (ca−1)2β + ((d+ 1)a−1)2αβ = 0.
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Therefore, the form ⟨⟨α, β⟩⟩ is isotropic. Set y′ = y + α−1ax ∈ Alt(A, σ)+ . By (5) we have xy′ = xy + a =

bx + cy + dz ∈ Alt(A, σ)+ ; hence, {x, y′} is a set of alternating generators of Φ(A, σ). As x2 = α and

y′
2
= β + α−1a2 , we obtain Pf(A, σ) ≃ ⟨⟨α, β + α−1a2⟩⟩ . Thus, Pf(A, σ) ≃ ⟨⟨α, β⟩⟩ by (4.8). 2

Using (4.9) and (3.12 (4)), we obtain the following relation between the Pfister invariant and the quadratic

form q+σ .

Proposition 4.10 Let (A, σ) and (A′, σ′) be decomposable biquaternion algebras with orthogonal involution

over F . Then q+σ ≃ q+σ′ if and only if Pf(A, σ) ≃ Pf(A′, σ′) .

The following result is analogous to (3.14).

Theorem 4.11 Let (A, σ) and (A′, σ′) be decomposable biquaternion algebras with orthogonal involution over

F . Then the following statements are equivalent:

(1) (A, σ) ≃ (A′, σ′) .

(2) qσ ≃ qσ′ and q+σ ≃ q+σ′ .

(3) A ≃ A′ and q+σ ≃ q+σ′ .

(4) A ≃ A′ and Pf(A, σ) ≃ Pf(A′, σ′) .

Proof The implications (1) ⇒ (2) follow from (3.13).

(2) ⇒ (3): Since qσ and qσ′ are Albert forms of (A, σ) and (A′, σ′), respectively, qσ ≃ qσ′ implies that

A ≃ A′ by [8, (16.3)].

The implication (3) ⇒ (4) and (4) ⇒ (1) follows from (4.10) and [13, (6.5)], respectively. 2

Lemma 4.12 If ⟨⟨α, β⟩⟩ is an anisotropic bilinear Pfister form over F , then ⟨⟨α, β⟩⟩ ̸≃ ⟨⟨α+ 1, β⟩⟩ .

Proof As proved in [1, p. 16], two bilinear Pfister forms are isometric if and only if their pure subforms

are isometric. Thus, it is enough to show that the pure subform of ⟨⟨α, β⟩⟩ does not represent α + 1.

If α + 1 ∈ DF (⟨α, β, αβ⟩), then there exist a, b, c ∈ F such that a2α + b2β + c2αβ = α + 1. Thus,

1 + (a+ 1)2α+ b2β + c2αβ = 0, i.e. ⟨⟨α, β⟩⟩ is isotropic, which contradicts the assumption. 2

Definition 4.13 For α ∈ F× , define an involution Tα : M2(F ) → M2(F ) via

Tα

(
a b
c d

)
=

(
a cα−1

bα d

)
.

Note that Tα is of orthogonal type and discTα = αF×2 ∈ F×/F×2 .

The following example shows that if charF = 2, the conditions A ≃F A′ and Q+ ≃F Q′+ do not

necessarily imply that (A, σ) ≃ (A′, σ′) (compare (3.14)).
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Example 4.14 Let ⟨⟨α, β⟩⟩ be an anisotropic Pfister form over a field F of characteristic 2 and let A =

M4(F ) . Consider the involutions σ = Tα ⊗ Tβ and σ′ = Tα+1 ⊗ Tβ on A . Then Pf(A, σ) ≃ ⟨⟨α, β⟩⟩ and

Pf(A, σ′) ≃ ⟨⟨α+ 1, β⟩⟩ , and hence Pf(A, σ) ̸≃ Pf(A, σ′) by (4.12). Using (4.11), we obtain (A, σ) ̸≃ (A, σ′) .

On the other hand, there exists a set of alternating generators {u, v} (resp. {u′, v′}) of Φ(A, σ) (resp.

Φ(A, σ′)) such that u2 = α and v2 = β (resp. u′2 = α + 1 and v′
2

= β ). Then Φ(A, σ) ≃ F [u, v]

and Φ(A, σ′) ≃ F [u′, v′] . The linear map f : F [u, v] → F [u′, v′] induced by f(1) = 1 , f(u) = u′ + 1 ,

f(v) = v′ , and f(uv) = (u′ +1)v′ is an F -algebra isomorphism. Thus, Φ(A, σ) ≃ Φ(A, σ′) , which implies that

Q(A, σ)+ ≃ Q(A, σ′)+ by (4.4).

5. Metabolic involutions

Let (A, σ) be an algebra with involution over a field F of arbitrary characteristic. An idempotent e ∈ A is

called hyperbolic (resp. metabolic) with respect to σ if σ(e) = 1−e (resp. σ(e)e = 0 and (1−e)(1−σ(e)) = 0).

The pair (A, σ) is called hyperbolic (resp. metabolic) if A contains a hyperbolic (resp. metabolic) idempotent

with respect to σ . Every hyperbolic involution σ is metabolic but the converse is not always true. If σ is

symplectic or charF ̸= 2, the involution σ is metabolic if and only if it is hyperbolic (see [3, (4.10)] and [2,

(A.3)]).

Lemma 5.1 Let (A, σ) be a central simple algebra with orthogonal involution over a field F . If e ∈ A is a

metabolic idempotent, then (e− σ(e))2 = 1 .

Proof This follows from the relations (1− e)(1− σ(e)) = 0 and σ(e)e = 0. 2

Theorem 5.2 Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F .

The following statements are equivalent:

(1) (A, σ) is metabolic.

(2) Q+ or Q− splits.

(3) 1 ∈ DF (q
+
σ ) or −1 ∈ DF (q

−
σ ) .

(4) q+σ or q−σ is isotropic.

Proof If charF ̸= 2, by (3.10 (1)) we have (A, σ) ≃ (Q+, σ|Q+) ⊗ (Q−, σ|Q−), where σ|Q+ and σ|Q− are

the canonical involutions of Q+ and Q− , respectively. Thus, the equivalence (1) ⇔ (2) follows from [6, (3.1)].

The equivalences (2) ⇔ (3) and (2) ⇔ (4) both follow from (3.12 (3)) and [12, Ch. III, (2.7)].

Now, let charF = 2. Then the equivalence (1) ⇔ (2) follows from [13, (6.6)].

(1) ⇒ (3): Let e be a metabolic idempotent with respect to σ and let x = e− σ(e). By (5.1), we have

x2 = 1. Since x ∈ Alt(A, σ), (3.8) implies that x ∈ Alt(A, σ)+ and hence q+σ (x) = 1.

(3) ⇒ (4): Suppose that q+σ (u) = 1 for some u ∈ Alt(A, σ)+ . By (3.12 (1)) and (3.12 (2)), the

element u extends to an orthogonal basis (u, v, w) of Alt(A, σ)+ with w = uv . According to (3.10 (2)), Q+ is

commutative. Thus, q+σ (v + w) = (v + w)2 = v2 + (uv)2 = 0, i.e. q+σ is isotropic.
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(4) ⇒ (2): If q+σ is isotropic, then there exists a nonzero x ∈ Alt(A, σ)+ ⊆ Q+ such that x2 = 0 and

hence Q+ splits. 2

Corollary 5.3 Let (A, σ) be a central simple algebra with involution over a field F . If σ is metabolic, then

discσ is trivial.

Proof The result follows from (5.1) if charF = 2 and [2, (2.3)] if charF ̸= 2. 2

Proposition 5.4 Let (A, σ) be a biquaternion algebra with involution of orthogonal type over a field F . Then

σ is metabolic if and only if there exists u ∈ Alt(A, σ) such that u2 = 1 .

Proof If σ is metabolic, then by (5.3), discσ is trivial. Thus, σ is decomposable and the result follows

from (5.2). Conversely, suppose that there exists u ∈ Alt(A, σ) such that u2 = 1. Then discσ = NrdA(u)F
×2

is trivial, so (A, σ) is decomposable by [9, (3.7)]. Since u2 = 1 ∈ F and u ∈ Alt(A, σ), by (3.8) we have

u ∈ Alt(A, σ)+ ∪ Alt(A, σ)− . Therefore, either u ∈ Alt(A, σ)+ (i.e. q+σ (u) = 1) or u ∈ Alt(A, σ)− (i.e.

q−σ (u) = −1). By (5.2), σ is metabolic. 2

Proposition 5.5 Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F .

Then (A, σ) ≃ (M4(F ), t) if and only if q+σ ≃ ⟨−1,−1,−1⟩q and q−σ ≃ ⟨1, 1, 1⟩q .

Proof If charF = 2, the result follows from [13, (5.7)] and (4.9). Suppose that charF ̸= 2. As observed

in [7, p. 235], Q(M4(F ), t)+ has an F -basis (1, u, v, w) subject to the relations u2 = −1, v2 = −1 and

w = uv = −vu . By (3.12 (2)) we obtain q+t ≃ ⟨−1,−1,−1⟩q . A similar argument shows that q−t ≃ ⟨1, 1, 1⟩q .
Thus, the result follows from (3.14). 2
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