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Abstract: We investigate the Pfaffians of decomposable biquaternion algebras with involution of orthogonal type. In
characteristic two, a classification of these algebras in terms of their Pfaffians and some other related invariants is
studied. Also, in arbitrary characteristic, a criterion is obtained for an orthogonal involution on a biquaternion algebra

to be metabolic.
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1. Introduction

A biquaternion algebra is a tensor product of two quaternion algebras. Every biquaternion algebra is a central
simple algebra of degree 4 and exponent 2 or 1. A result proved by Albert shows that the converse is also true
(see [8, (16.1)]). An Albert form of a biquaternion algebra A is a 6-dimensional quadratic form with trivial
discriminant whose Clifford algebra is isomorphic to M>(A). According to [8, (16.3)], two biquaternion algebras
over a field F' are isomorphic if and only if their Albert forms are similar.

The Albert form of a biquaternion algebra with involution arises naturally as the quadratic form induced
by a Pfaffian (see [11, (3.3)]). In [11], a Pfaffian of certain modules over Azumaya algebras was defined and
used to find a decomposition criterion for involutions on a rank 16 Azumaya algebra, which contains 2 as a
unit. A similar criterion for involutions on a biquaternion algebra in arbitrary characteristic was also obtained
in [9].

It is known that symplectic involutions on a biquaternion algebra A can be classified, up to conjugation,
by their Pfaffian norms (see [8, (16.19)]). For orthogonal involutions the situation is a little more complicated.
In characteristic # 2, using [11, (5.3)], one can find a classification of decomposable orthogonal involutions on
A in terms of the Pfaffian and the Pfaffian adjoint (introduced in [11]). This classification was originally stated
in [11] for the more general case where A is an Azumaya algebra that contains 2 as a unit.

In this work we study decomposable biquaternion algebras with orthogonal involution. We start with
some general observations on the Pfaffian and the Pfaffian adjoint. For a decomposable orthogonal involution o
we consider the Pfaffian ¢, and certain subsets Alt(A, )" and Alt(A,0)~ of Alt(A,0), introduced in [9]. Tt is
shown in (3.8) that the union of Alt(A4,0)" and Alt(A, o)~ coincides with the set of all square-central elements
in Alt(A,o). At the end of Section 3, we study in more detail the classification of orthogonal involutions on

biquaternion algebras in characteristic # 2, obtained in [11]. Although this result was already presented in [11],
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it is useful to rephrase it to enable comparison with the corresponding result in characteristic 2 (see (3.14) and
(4.11)).

The classification problem in characteristic 2 is a little more complicated. Moreover, the results them-
selves have some substantial differences in this case. For example, the restriction ¢& of g, to Alt(A,o)7 is
totally singular in characteristic 2, rather than a regular subform of the Pfaffian g, . Considering these remarks,
our approach is to study the relation between the form ¢ and the Pfister invariant of (A, o), introduced in
[4]. This relation is used in (4.11) to obtain necessary and sufficient conditions for orthogonal involutions to be
conjugate to each other.

Finally, we study in Section 5 metabolic involutions on biquaternion algebras. Using some results of
previous sections, we obtain various criteria for an orthogonal involution on a biquaternion algebra to be
metabolic (see (5.2) and (5.4)). As a final application, we shall see in (5.5) how the Pfaffian can be used to

characterize the transpose involution on a split biquaternion algebra.

2. Preliminaries

Let V be a finite dimensional vector space over a field F'. A quadratic form over F is a map ¢ : V — F
such that (i) g(av) = a?*q(v) for every a € F and v € V; (ii) the map b, : V x V — F defined by
by(u,v) = q(u+ v) — g(u) — ¢q(v) is a bilinear form. The map b, is called the polar form of q. Note
that for every v € V we have bg(v,v) = 2¢(v). In particular, if char FF = 2, then by(v,v) = 0 for all
v € V, ie. by is an alternating form. The orthogonal complement of a subspace W C V is defined as
Wt ={x eV |by(z,y)=0forally € W}.

A quadratic form ¢ (resp. a bilinear form b) on V is called isotropic if there exists a nonzero vector
v € V such that ¢g(v) =0 (resp. b(v,v) =0). For o € F', we say that ¢ (resp. b) represents « if there exists
a nonzero vector v € V' such that ¢(v) = « (resp. b(v,v) = «). The sets of all elements of F' represented by ¢
and b are denoted by Dp(q) and Dp(b), respectively. For a € F* | the scaled quadratic form « - ¢ is defined
as a-q(v) = ag(v) for every v € V.

For ay,---,a, € F, the isometry class of the quadratic form .., a;z? is denoted by (ar,--- ,an)q-
Also, the isometry class of the bilinear form >, a;x;y; is denoted by (ai,---,ay). Finally, the form
{at, - an) = {l,a1) ® --- ®@ (1, ay,) is called a bilinear n-fold Pfister form.

An involution on a central simple F'-algebra A is an antiautomorphism o of A of order 2. We say that o
is of the first kind if o|F = id. An involution o of the first kind is said to be symplectic if over a splitting field of
A it becomes adjoint to an alternating bilinear form. Otherwise, o is called orthogonal. The set of alternating
elements of A is defined as Alt(A,0) = {a—o(a) |a € A}. If A is of even degree 2m, the discriminant of an
orthogonal involution o on A is defined as disco = (—1)" Nrda(z)F*% € F*/F*? where x € Alt(A4,0) is a
unit and Nrd4(z) is the reduced norm of z in A. Note that by [8, (7.1)], the discriminant does not depend on
the choice of x € Alt(A,0).

A quaternion algebra over a field F' is a central simple algebra @ of degree 2. The canonical involution
v on @ is defined by v(z) = Trdg(z) — = for x € @, where Trd4(x) is the reduced trace of  in A. The
canonical involution on @ is the unique involution of symplectic type on @ and it satisfies y(z)xz € F for
every € @ (see [8, Ch. 2]). The map Ng : Q@ — F defined by Ng(z) = v(z)z is called the norm form of

Q. An element z € @ is called a pure quaternion if Trdg(z) = 0. The set of all pure quaternions of @ is a
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3-dimensional subspace of ) denoted by Q. Note that an element z € @ lies in Qg if and only if v(z) = —=x,
or equivalently, Ng(z) = —z?.

A central simple F-algebra with involution (A, o) is called totally decomposable if it decomposes as a
tensor product of o-invariant quaternion F'-algebras. If A is a biquaternion algebra, we will use the term
decomposable instead of totally decomposable. Note that a biquaternion algebra with orthogonal involution

(A, o) is decomposable if and only if disco is trivial (see [9, (3.7)]).

3. The Pfaffian and the Pfaffian adjoint
We begin our discussion by looking at the special cases of [10, (2.1)] and [10, (3.1)].

Theorem 3.1 Let (A,0) be a biquaternion algebra with orthogonal involution over a field F and let d, € F*
be a representative of the class disco € F*/F*2. There exists a map pfy, : Alt(A,0) — F such that
pfo(7)? = dyNrda(z) for every x € Alt(A,o). The map pf, is uniquely determined up to a sign. Moreover,
there exists an F -linear map 7, : Alt(A, o) — Alt(A, o) such that xm,(x) = 7, (2)x = pfs(z) and 72(x) = dyx
for every x € Alt(A, o).

Remark 3.2 The map 7, in (3.1) is uniquely determined by pfy,. Indeed, it is easily seen by scalar extension
to a splitting field that Alt(A, o) has a basis B consisting of invertible elements. For every x € B, we must
have 7o (x) = a7 'pf,(x). As 7, is F -linear, it is uniquely defined on Alt(A, o).

Definition 3.3 A map pf, as in (3.1) is called a Pfaffian of (A,0). We also call the map w,, the Pfaffian
adjoint of pfs .

Note that by [11, (3.3)], every Pfaffian of (4,0) is an Albert form of A.

Notation 3.4 Let (A,o0) be a decomposable biquaternion algebra with orthogonal involution over a field F .
Since disco is trivial, by (5.1) there is a unique, up to a sign, Pfaffian pf, satisfying pfy,(z)? = Nrda(x) for
x € Alt(A,0). We denote this Pfaffian by q,. We also denote by p, the Pfaffian adjoint of q,; hence,
4o (2)? = Nrda(z), p,(z) =ps(z)z = ¢s(x) and p2(z) ==z,
for every x € Alt(A,0). We also use the following notation:
Alt(A,0)T == {z + p,(x) | z € Alt(A,0)},
Alt(A,0)” :=={x —p,(z) | x € Alt(A,0)}.

Note that if char F = 2, then Alt(4,0)" = Alt(A,0)". Also, as proved in [11, p. 597] and [9, (3.5)],
Alt(A,0)" and Alt(A4,0)” are 3-dimensional subspaces of Alt(A, o). Since p2 = id, we have p,(z) = z for

every x € Alt(A,0)" and p,(z) = —x for every z € Alt(A, o)~ . The converse is also true, i.e.
Alt(A,0)" = {z € Alt(A, 0) | po (z) = z}, (1)
Alt(A,0)” ={z € Alt(4,0) | po(x) = —x}. (2)
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Indeed, if char F' # 2, then for every z € Alt(A, o) with p,(z) = z we have z = (z + po(z)) € Alt(A,0)T.
Similarly, if p,(z) = —z, then z = §(z — p,(x)) € Alt(A, o). If char F = 2, then the relation (1) follows from
the dimension formula for the image and the kernel of the linear map p, + id.

The next result is implicitly contained in [8, pp. 249-250].

Lemma 3.5 Let (A,0) be a decomposable biquaternion algebra with orthogonal involution over a field F'. Then

po s an isometry of (Alt(A,0),qs). Furthermore, b, (x,y) = xps(y) + yps(z), for z,y € Alt(4,0).

—-

Proof For every x € Alt(A,0) we have ¢,(ps(z)) = po(0o(x))ps(z) = zps(x) = go(x). Thus, p, is
an isometry. The second assertion is easily obtained from the relations ¢,(z) = zp,(z) and by (z,y) =

QU(m+y) _QU(x) _QU(y)' =

Lemma 3.6 Let (A,0) be a decomposable biquaternion algebra with orthogonal involution over a field F'. Then
Alt(A, o)t = (Alt(A,0)7)t C Ca(Alt(A4,0)7).

Proof Let b = b, and let # € Alt(A,0)". By (3.5), p, is an isometry of (Alt(A,0),q,), and hence
b(z,y) = b(ps(2),ps(y)) = b(z,p,(y)) for every y € Alt(A,0). Thus, b(z,y — po(y)) = 0, i.e. Alt(A, o) C
(Alt(A,o)7)*t. By dimension count we obtain Alt(A4,0)T = (Alt(A4,0)7)+. Now let z € Alt(A4,0)~. By (3.5)
we have 0 = b(z,2) = —xz + zz. Thus, zz = zz, which implies that Alt(A, o)™ commutes with Alt(A4,0)",
ie. Alt(A,0)t C Ca(Alt(A4,0)7). O

Lemma 3.7 Let (A,0) be a decomposable biquaternion algebra with orthogonal involution over a field F' and
let x € Alt(A,0). If 2% € F, then p,(z) = £x.

Proof Set a =22 € F and 8 = ¢,(x) € F. Then 3? = q,(2)? = Nrda(z) = £a?. Thus, 8 = \a for some
A€ F with M =1,1ie. ¢,(r) = Ax?. If a # 0, then multiplying zp,(z) = ¢,(x) = Ax? on the left by =1 we
obtain p,(z) = Az. The relation p2 = id then implies that A = £1 and we are done. Suppose that a = 0, i.e.
z? = 0. By (3.5) we have b, (p,(z),z) = py(2)? + 2° = p,(x)?, and hence p,(z)? € F. On the other hand,
the relations zp,(z) = ¢, (z) = Az? = 0 show that p,(z) is not invertible. Thus,

po () = 0. (3)

Suppose that py(z) # x; hence, x ¢ Alt(A,0)". In view of (3.6) one can find w € Alt(A, o)~ such that
by, (z,w) =1. By (3.5) we have

—zw + wp,(z) = 1. (4)

Multiplying (4) on the left by x we get zwp,(x) = . Using (4), it follows that (wp,(z) — 1)p,(x) = x, which

yields p,(x) = —z by (3). This completes the proof (note that if char F' = 2, this argument shows that the

assumption p,(z) # = leads to the contradiction p,(z) = —z and hence p,(z) = x). O

The next result follows from (3.7) and the relations (1) and (2) below (3.4).

Proposition 3.8 Let (A,0) be a decomposable biquaternion algebra with orthogonal involution over a field F
and let Alt(A,0)° = Alt(A,0)T U AIt(A,0)~. Then Alt(A4,0)° = {z € Alt(4,0) | po(z) = +2} = {x €
Alt(A,o0) |22 € F}.
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Notation 3.9 For a decomposable biquaternion algebra with involution of orthogonal type (A,o) over a field
F, we use the notation Q(A,0)t = F + Alt(4,0)T and Q(A,0)” = F + Alt(A4,0)~. We will simply denote
Q(A,0)" by QT and Q(A,0)~ by Q, if the pair (A, o) is clear from the context.

Lemma 3.10 ([9]) Let (A,o0) be a decomposable biquaternion algebra with orthogonal involution over a field
F.

(1) If char F # 2, then Q% and Q~ are two o -invariant quaternion subalgebras of A with QF = Alt(A,0)*
and Qg = Alt(A,0)~ . Furthermore, we have (A,0) ~ (QT,0|g+) ® (Q~,0|g-), where olg+ and o|g-

are the canonical involutions of QT and Q~, respectively.

(2) If char F = 2, then QT = Q= is a maximal commutative subalgebra of F satisfying x*> € F for every
z€eQT.

Proof Assume first that char F' # 2. As observed in [9, (3.5)], Q% is a o-invariant quaternion subalgebra of A
and o|g+ is of symplectic type. By dimension count and (3.6) we obtain @~ = C4(Q"); hence, A ~ QT®@rQ~.
By [8, (2.23 (1))], o|g- is of symplectic type. Finally, since Trdg+(z) = 0 for every x € Alt(A, o)™, we have
Qd = Alt(A,0)T. Similarly Q, = Alt(A4,0)~. This proves the first part. The second part follows from [9,
(3.6)]. O

Notation 3.11 Let (A,o0) be a decomposable biquaternion algebra with orthogonal involution over a field F .

We denote by qt and q, the restrictions of ¢, to Alt(A,0)" and Alt(A, o)™, respectively.

Lemma 3.12 Let (A,o) be a decomposable biquaternion algebra with orthogonal involution over a field F .

(1) Every unit u € Alt(A,0)" (resp. u € Alt(A,0)”) can be extended to a basis (u,v,w) of Alt(A,o)*"
(resp. Alt(A,0)7) such that w = uv.

(2) Ewery basis (u,v,w) of Alt(A, o) (resp. Alt(A, o)™ ) with w = uv is orthogonal with respect to the polar
form of qF (resp. q7 ).

(3) If char F # 2, then Ng+ ~ (1) L (1) ¢} and No- ~ (1), L q; .

(4) If char F = 2 and (A,0) ~ (Q1,01) ® (Q2,02) is a decomposition of (A,o0), then qf ~ (o, B,af),,
where o € F* and 3 € F* are representatives of the classes discoy € F*/F*? and discoy € F*/F*?,

respectively.

Proof We just prove the result for ¢} . The proof for ¢, is similar.

(1) Choose an element u’ € Alt(A4,0)"\Fu and set o = u? € F*. By (3.10), uv’ € QT = F+Alt(4,0)*.
Thus, there exist A € F' and w € Alt(A, o)t such that uu’ = A+ w. Set v =u' — Aa"'u € Alt(A,0)T. Then
uwv = w € Alt(A, o)™ . Thus, (u,v,w) is the desired basis.

(2) Let B = (u,v,w) be a basis of Alt(4,0)" with w = uv. Then vu = o(uv) = —uv. Using (3.5) we

obtain b(u,v) = uv + vu = 0, where b is the polar form of ¢} . Similarly, b(u,w) = b(v,w) = 0.
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(3) Let (u,v,w) be a basis of Alt(A,o)" with w=wv. By (2), ¢f ~ (o, 8,—af),, where a =u? € F
and 8 =v? € F. Since vu = —wv, (1,u,v,w) is a quaternion basis of @*. Thus, Ng+ ~ (1, —a, —f,af), by
[5, (9.6)].

(4) Let u € Alt(Q1,01) and v € Alt(Q2,02) be two units and set a = u? € F*, 8 = v? € F*, and
w = uv. By (3.8) we have u,v € Alt(A4,0)". Also, disco; = aF*? € F*/F*? and discog = BF*? € F*/F*2.
Since w € Alt(4,0) and w? € F, by (3.8) we obtain w € Alt(A,0)", and so (u,v,w) is a basis of Alt(4,0)"
and qf ~ (o, B,a8),. O

Proposition 3.13 (Compare [11, (5.3)]) Let (A,0) and (A’,0’) be decomposable biquaternion algebras with
orthogonal involution over a field F. If (A,0) ~ (A’,d"), then either ¢y ~ q,» and ¢} ~ g}, or ¢y ~ (=1)- g
and qF ~q_, .
Proof Let ¢ : (A,0) = (A’,0’) be an isomorphism of F-algebras with involution. Then ¢(Alt(A,0)) =
Alt(A',0’) and

4o ((x))? = Nrda (¢(x)) = Nrda(z) = ¢o ()2, for z € Alt(A4,0).
Thus, ¢/, o ¢ = +q,. Suppose first that ¢ o ¢ = q,. Then ¢ restricts to an isometry f : (Alt(4,0),¢,) —
(Alt(A’',0"),q5r). Set h = fop, o f~L. Then h is an endomorphism of Alt(A4’,0’). We claim that h = p,.
For every z € Alt(A’,0’) we have h?(x) = fopZo f~l(x) = foidof~!(z) =2 and

ah(z) = 2 f(po(f ' (2))) = 2p(po (f T (2))) = o(f (@) (pa (f (2)))
= o(fTH(@)po(F 1 (2))) = ¢(40 (F 71 (@) = (a0 (2)) = ¢or ().

Similarly, we have h(z)x = g, (z) for every x € Alt(A’,0’). Thus, h = p,» and the claim is proved. It follows
that pyr o f = fop,. Now, if x € Alt(A, o)™, then p,(x) = 2z, which yields py/ (f(2)) = f(po(x)) = f(z). It
follows that f(z) € Alt(A’,0’)T, i.e. f restricts to an isometry ¢} ~ ¢f,. A similar argument shows that if
¢y o9 = —qo, then ¢f ~q_,. O

The next result complements [11, (5.3)] for biquaternion algebras.

Theorem 3.14 Let (A,0) and (A’,0") be two decomposable biquaternion algebras with orthogonal involution
over a field F of characteristic different from 2. Let QY = Q(A,0)T, Q= = Q(A,0)~, Q"7 = Q(4A',0")",
and Q'~ = Q(A’,0')~ . The following statements are equivalent.

(1) (A0)~ (A, 0).

(2) Either q, ~ g, and g} ~qf, or ¢, ~ (=1) gy and qf ~q,.

(3) A~ A" and either ¢} ~ gt or q¢f ~q,.

(4) A~ A and either Q* ~Q'" or QT ~ Q.
Proof The implication (1) = (2) follows from (3.13). Since ¢, and ¢, are Albert forms of (A,0) and
(A’,0"), respectively, the condition ¢, ~ g, (resp. q, ~ (—1) - q,» ) implies that A ~ A’  proving (2) = (3).
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The implication (3) = (4) follows from (3.12 (3)) and [12, Ch. III, (2.5)]. To prove (4) = (1) assume first
Qt ~Q'". By (3.10 (1)) we have C4(Q1) = Q~ and Ca(Q'") = Q'~. Thus, the isomorphisms Q1 ~p Q'
and A ~p A’ imply that Q~ ~r Q'™ . Since the restrictions of o to @* and @~ and the restrictions of ¢’ to

Q" and Q' are all symplectic, we obtain
(A,0) ~F (Q,0lg+) @F (Q7,0lg-)

~p (Q'+,UI|QI+) RF (Q/_,O'/|Q/—) ~p (A, d").

A similar argument works if QT ~ Q'™ . O

4. Relation with the Pfister invariant in characteristic two

Throughout this section, F is a field of characteristic 2.

Definition 4.1 Let A be a finite-dimensional associative F -algebra. The minimum number v such that A can

be generated as an F -algebra by r elements is called the minimum rank of A and is denoted by rp(A).

Theorem 4.2 ([13]) Let (A,o0) be a totally decomposable algebra with involution of orthogonal type over F'.
There exists a symmetric and self-centralizing subalgebra S C A such that > € F for every x € S and dimp S
= 2" where n = rp(S). Furthermore, for every subalgebra S with these properties, we have S = F + Sy,
where So = SN AW(A, o). In particular, S C F + Alt(A, o). Finally, the subalgebra S is uniquely determined

up to isomorphism.

Proof See [13, (4.6) and (5.10)]. O

Notation 4.3 We denote the algebra S in (4.2) by ®(A,0).

The next result shows that for biquaternion algebras with orthogonal involution, the subalgebra ®(A, o)

is unique as a set.

Corollary 4.4 Let (A,o) be a decomposable biquaternion algebra with involution of orthogonal type over F.
Then ®(A,0) =Q™T.

Proof Write ®(A,0) = F + Sy, where Sy = ®(A,0) N Alt(A,0). Since every element of ®(A, o) is
square-central, using (3.8) we have Sy C Alt(A,o)". Then Sy = Alt(A4,0)" by dimension count, and hence
P(A,0)=F + Alt(A, o)t = Q7. o

Lemma 4.5 Let (A,0) be a totally decomposable algebra of degree 2™ with orthogonal involution over F. If
there exists a set {uy,--- ,u,} C Alt(A4,0) consisting of pairwise commutative square-central units such that
Uiy - uyy, € Alt(A,0) for every 1 <1<mn and 1 <iy <---<iy<n, then ®(A,0) ~ Flug, -+, uy].

Proof By [7, (2.2.3)], S := Fluy, - ,u,] is self-centralizing. The other required properties of S, stated in
(4.2), are easily verified. O
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Definition 4.6 A set {uy, -+ ,u,} C Alt(A,0) asin (4.5) is called a set of alternating generators of ®(A,0).

We recall the following definition from [4].

Definition 4.7 Let (A,0) = (Q1,01) ® -+ ® (Qn,0n) be a totally decomposable algebra with orthogonal

involution over F. Let oy € FX, i = 1,--- ,n, be a representative of the class disco; € F*/F*2. The
bilinear n-fold Pfister form {(aq, -+, ) is called the Pfister invariant of (A,o) and is denoted by Pf(A, o).

Note that by [4, (7.5)], Bf(A,0) is independent of the decomposition of (A, o). Also, as observed in [13, pp.
223-224], PBf(A,0) ~ (a1, -+ ,an) if and only if there exists a set of alternating generators {uy,--- ,u,} of
®(A,0) such that v? =a; € FX,i=1,--- ,n.

Lemma 4.8 Let (o, B)) be an isotropic bilinear Pfister form over F. If aB # 0, then (o, B) ~ (o, B+a~tA?)
for every A € F.

Proof Since (o, 3)) is isotropic, by [5, (4.14)] either a € F*2 or 8 € Dp(l,a). If a € F*2, using [5, (4.15
(2))] and [5, (4.15 (1))] we obtain

(e, B))

1

(B+a "N aB) = (B+a~ "N aB(a™' N - (B +a '\%)
~ (B+a A% a8%) ~ (@, B+ a~1A2).

If B € Dr(l,a), then there exist b,c € F such that 3 = b2+ c?a. Let s =~ !87I\ € F. Using [5, (4.15 (1))]

we obtain
(@, B) =~ (@, B(1 + csa)® = (bs)*)) = (o, B(1 + Ps°a® + b s°a)))

(o, B+ s2aB(Pa+ b)) ~ (o, B+ s2af?) ~ (a, B +a 1A%).

1

O

Lemma 4.9 Let (A,0) be a decomposable biquaternion algebra with involution of orthogonal type over F and
let o, f € F*. Then Pf(A,0) ~ (o, B)) if and only if ¢ ~ (a, B,af),.

Proof If PBf(A,0) ~ {«,5)), then there exists a set of alternating generators {u,v} of ®(A, o) such that
u? = o and v? = B. By (4.4) and (3.12 (2)), (u,v,uv) is an orthogonal basis of Alt(A4,0)" and hence
af ~{a,B,a8).

To prove the converse, choose a basis (z,y,z) of Alt(A,0)* with 22 = «a, y?> = 8, and 22 = af.
Consider the element zy € ®(A,0). By (4.4), ®(A,0) = F + Alt(A,0)*. Thus, there exist a,b,c,d € F such
that

Ty = a+ bxr + cy + dz. (5)

If @ =0 then zy = bx + cy + dz € Alt(A, )T, which implies that {z,y} is a set of alternating generators of
®(A,0). As 22 = o and y? = 8 we obtain Bf(A4, o) ~ (o, 8)). Suppose that a # 0. By squaring both sides of
(5), we obtain a8 = a® + b%a + 2 + d?a3, which yields

L+ (ba )2+ (ca™')?B+ ((d+ 1)a ') ?aB =0.

759



NOKHODKAR/Turk J Math

Therefore, the form («, 3)) is isotropic. Set y' = y + a~tax € Alt(A,0)". By (5) we have zy’ = 2y +a =
br + cy + dz € Alt(A,0)T; hence, {z,y'} is a set of alternating generators of ®(A,0). As 22 = «a and
y'? = B+ a1a?, we obtain Pf(A, o) ~ (o, B+ o 'a2). Thus, PBf(A4,0) ~ (o, B) by (4.8). g

Using (4.9) and (3.12 (4)), we obtain the following relation between the Pfister invariant and the quadratic

form ¢ .

Proposition 4.10 Let (A,0) and (A’,0’) be decomposable biquaternion algebras with orthogonal involution
over F. Then g} ~ ¢, if and only if Pf(A, o) ~ Pf(A’,o').

The following result is analogous to (3.14).

Theorem 4.11 Let (A,0) and (A',0’) be decomposable biquaternion algebras with orthogonal involution over

F'. Then the following statements are equivalent:
(1) (A,0)~(4",0").
(2) ¢o ~ gy and qf ~ q;r,,
(3) A~A" and gf ~q,.
(4) A~ A" and Pf(A,0) =~ Bf(A',0').

Proof The implications (1) = (2) follow from (3.13).

(2) = (3): Since ¢, and ¢,+ are Albert forms of (A,c) and (A4’,0’), respectively, ¢, ~ g, implies that
A~ A" by [8, (16.3)].

The implication (3) = (4) and (4) = (1) follows from (4.10) and [13, (6.5)], respectively. O

Lemma 4.12 If {«, 8)) is an anisotropic bilinear Pfister form over F, then (o, ) # {(a+1,5)).

Proof As proved in [1, p. 16], two bilinear Pfister forms are isometric if and only if their pure subforms
are isometric. Thus, it is enough to show that the pure subform of ((a,()) does not represent a + 1.
If a+1 € Dr({a,B,af8)), then there exist a,b,c € F such that a?a + b?8 + c?a = a + 1. Thus,
1+ (a+1)2a+ b8+ caB =0, ie. {(a,B) is isotropic, which contradicts the assumption. O

Definition 4.13 For a € F*, define an involution T, : M2(F) — My (F) via

ab a ca~?
Ta(cd)_<ba d )
Note that T,, is of orthogonal type and discT, = aF*? € F*/F*2.

The following example shows that if char F = 2, the conditions A ~p A’ and Q* ~p Q' do not
necessarily imply that (A, o) ~ (A’,0’) (compare (3.14)).
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Example 4.14 Let {(«,3)) be an anisotropic Pfister form over a field F of characteristic 2 and let A =
My(F). Consider the involutions 0 = T, @ Tg and ¢’ = Toy1 @ Tz on A. Then PBf(A4,0) ~ (o, 5) and
Pf(A,0") ~ {(a+1,8)), and hence Pf(A, o) 2 PBf(A,0’) by (4.12). Using (4.11), we obtain (A,0) 2% (4,07).

On the other hand, there exists a set of alternating generators {u,v} (resp. {u',v'}) of ®(A, o) (resp.
®(A,0')) such that u2 = o« and v = B (resp. v'> = a+1 and v> = B). Then ®(A,0) ~ Flu,v]
and ®(A,0’') ~ Fu',v']. The linear map f : Flu,v] = F[u',v'] induced by f(1) =1, f(u) = v + 1,
fw) =", and f(uv) = (' +1)v" is an F -algebra isomorphism. Thus, ®(A,0) ~ ®(A,0’), which implies that
QUA, )" = Q(A,0)* by (1.4).

5. Metabolic involutions

Let (A,0) be an algebra with involution over a field F of arbitrary characteristic. An idempotent e € A is
called hyperbolic (resp. metabolic) with respect to o if o(e) = 1—e (resp. o(e)e =0 and (1—e)(1—0o(e)) =0).
The pair (A,o) is called hyperbolic (resp. metabolic) if A contains a hyperbolic (resp. metabolic) idempotent
with respect to o. Every hyperbolic involution ¢ is metabolic but the converse is not always true. If o is

symplectic or char F' # 2, the involution o is metabolic if and only if it is hyperbolic (see [3, (4.10)] and [2,

(A-3)])-

Lemma 5.1 Let (A,0) be a central simple algebra with orthogonal involution over a field F'. If e € A is a

metabolic idempotent, then (e — o(e))? = 1.

Proof This follows from the relations (1 —e)(1 —o(e)) =0 and o(e)e = 0. O

Theorem 5.2 Let (A,0) be a decomposable biquaternion algebra with orthogonal involution over a field F .

The following statements are equivalent:
(1) (A,o) is metabolic.

(2) QF or Q= splits.

(3) 1€ Dp(q}) or —1 € Dr(q;).

(4) qF or q; is isotropic.

Proof If char F' # 2, by (3.10 (1)) we have (A,0) ~ (Q*,0|g+) ® (@7, 0|g-), where o|g+ and o|g- are
the canonical involutions of Q1 and Q~, respectively. Thus, the equivalence (1) < (2) follows from [6, (3.1)].
The equivalences (2) < (3) and (2) < (4) both follow from (3.12 (3)) and [12, Ch. IIL, (2.7)].

Now, let char F' = 2. Then the equivalence (1) < (2) follows from [13, (6.6)].

(1) = (3): Let e be a metabolic idempotent with respect to ¢ and let z =e — o(e). By (5.1), we have
2?2 =1. Since = € Alt(4,0), (3.8) implies that = € Alt(A4, o) and hence ¢t (z) = 1.

(3) = (4): Suppose that ¢f(u) = 1 for some u € Alt(A,0)". By (3.12 (1)) and (3.12 (2)), the
element u extends to an orthogonal basis (u,v,w) of Alt(A4,0)" with w = uv. According to (3.10 (2)), Q% is

commutative. Thus, ¢} (v+w) = (v +w)? = v? + (wv)? =0, i.e. ¢f is isotropic.
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(4) = (2): If ¢ is isotropic, then there exists a nonzero x € Alt(4,0)* C Q* such that 22 = 0 and
hence Q% splits. O

Corollary 5.3 Let (A,o0) be a central simple algebra with involution over a field F. If o is metabolic, then

disco is trivial.
Proof The result follows from (5.1) if char ' = 2 and [2, (2.3)] if char F’ # 2. O

Proposition 5.4 Let (A,0) be a biquaternion algebra with involution of orthogonal type over a field F. Then
o is metabolic if and only if there exists u € Alt(A, o) such that u? = 1.

Proof If o is metabolic, then by (5.3), disco is trivial. Thus, ¢ is decomposable and the result follows
from (5.2). Conversely, suppose that there exists u € Alt(A, o) such that u? = 1. Then disco = Nrd 4 (u)F*?
is trivial, so (4,0) is decomposable by [9, (3.7)]. Since u> = 1 € F and u € Alt(A4,0), by (3.8) we have
u € Alt(A,0)" U Alt(A,0)~. Therefore, either u € Alt(A4,0)" (i.e. ¢f(u) = 1) or u € Alt(A,0)" (ie.
q, (u) = —1). By (5.2), o is metabolic. O

Proposition 5.5 Let (A,0) be a decomposable biquaternion algebra with orthogonal involution over a field F .
Then (A, o) ~ (My(F),t) if and only if ¢f ~ (—1,—1,—-1), and q; ~(1,1,1),.

Proof If char FF = 2, the result follows from [13, (5.7)] and (4.9). Suppose that char FF # 2. As observed

in [7, p. 235], Q(My(F),t)* has an F-basis (1,u,v,w) subject to the relations u? = —1, v? = —1 and
w = uv = —vu. By (3.12 (2)) we obtain ¢;” ~ (—1,—1,—1),. A similar argument shows that q; ~ (1,1,1),.
Thus, the result follows from (3.14). O
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