

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2018) 42: 752 – 762 © TÜBİTAK doi:10.3906/mat-1702-89

Research Article

On biquaternion algebras with orthogonal involution

Amir Hossein NOKHODKAR*

Department of Pure Mathematics, Faculty of Science, University of Kashan, Kashan, Iran

Received: 20.02.2017	•	Accepted/Published Online: 03.07.2017	•	Final Version: 08.05.2018
-----------------------------	---	---------------------------------------	---	----------------------------------

Abstract: We investigate the Pfaffians of decomposable biquaternion algebras with involution of orthogonal type. In characteristic two, a classification of these algebras in terms of their Pfaffians and some other related invariants is studied. Also, in arbitrary characteristic, a criterion is obtained for an orthogonal involution on a biquaternion algebra to be metabolic.

Key words: Biquaternion algebra, Pfaffian, orthogonal involution

1. Introduction

A biquaternion algebra is a tensor product of two quaternion algebras. Every biquaternion algebra is a central simple algebra of degree 4 and exponent 2 or 1. A result proved by Albert shows that the converse is also true (see [8, (16.1)]). An *Albert form* of a biquaternion algebra A is a 6-dimensional quadratic form with trivial discriminant whose Clifford algebra is isomorphic to $M_2(A)$. According to [8, (16.3)], two biquaternion algebras over a field F are isomorphic if and only if their Albert forms are similar.

The Albert form of a biquaternion algebra with involution arises naturally as the quadratic form induced by a *Pfaffian* (see [11, (3.3)]). In [11], a Pfaffian of certain modules over Azumaya algebras was defined and used to find a decomposition criterion for involutions on a rank 16 Azumaya algebra, which contains 2 as a unit. A similar criterion for involutions on a biquaternion algebra in arbitrary characteristic was also obtained in [9].

It is known that symplectic involutions on a biquaternion algebra A can be classified, up to conjugation, by their *Pfaffian norms* (see [8, (16.19)]). For orthogonal involutions the situation is a little more complicated. In characteristic $\neq 2$, using [11, (5.3)], one can find a classification of decomposable orthogonal involutions on A in terms of the Pfaffian and the *Pfaffian adjoint* (introduced in [11]). This classification was originally stated in [11] for the more general case where A is an Azumaya algebra that contains 2 as a unit.

In this work we study decomposable biquaternion algebras with orthogonal involution. We start with some general observations on the Pfaffian and the Pfaffian adjoint. For a decomposable orthogonal involution σ we consider the Pfaffian q_{σ} and certain subsets $\operatorname{Alt}(A, \sigma)^+$ and $\operatorname{Alt}(A, \sigma)^-$ of $\operatorname{Alt}(A, \sigma)$, introduced in [9]. It is shown in (3.8) that the union of $\operatorname{Alt}(A, \sigma)^+$ and $\operatorname{Alt}(A, \sigma)^-$ coincides with the set of all square-central elements in $\operatorname{Alt}(A, \sigma)$. At the end of Section 3, we study in more detail the classification of orthogonal involutions on biquaternion algebras in characteristic $\neq 2$, obtained in [11]. Although this result was already presented in [11],

^{*}Correspondence: a.nokhodkar@kashanu.ac.ir

²⁰¹⁰ AMS Mathematics Subject Classification: 11E88, 15A63, 16W10

NOKHODKAR/Turk J Math

it is useful to rephrase it to enable comparison with the corresponding result in characteristic 2 (see (3.14) and (4.11)).

The classification problem in characteristic 2 is a little more complicated. Moreover, the results themselves have some substantial differences in this case. For example, the restriction q_{σ}^+ of q_{σ} to Alt $(A, \sigma)^+$ is totally singular in characteristic 2, rather than a regular subform of the Pfaffian q_{σ} . Considering these remarks, our approach is to study the relation between the form q_{σ}^+ and the *Pfister invariant* of (A, σ) , introduced in [4]. This relation is used in (4.11) to obtain necessary and sufficient conditions for orthogonal involutions to be conjugate to each other.

Finally, we study in Section 5 metabolic involutions on biquaternion algebras. Using some results of previous sections, we obtain various criteria for an orthogonal involution on a biquaternion algebra to be metabolic (see (5.2) and (5.4)). As a final application, we shall see in (5.5) how the Pfaffian can be used to characterize the transpose involution on a split biquaternion algebra.

2. Preliminaries

Let V be a finite dimensional vector space over a field F. A quadratic form over F is a map $q: V \to F$ such that (i) $q(av) = a^2q(v)$ for every $a \in F$ and $v \in V$; (ii) the map $\mathfrak{b}_q: V \times V \to F$ defined by $\mathfrak{b}_q(u,v) = q(u+v) - q(u) - q(v)$ is a bilinear form. The map \mathfrak{b}_q is called the *polar form* of q. Note that for every $v \in V$ we have $\mathfrak{b}_q(v,v) = 2q(v)$. In particular, if char F = 2, then $\mathfrak{b}_q(v,v) = 0$ for all $v \in V$, i.e. \mathfrak{b}_q is an *alternating* form. The *orthogonal complement* of a subspace $W \subseteq V$ is defined as $W^{\perp} = \{x \in V \mid b_q(x,y) = 0 \text{ for all } y \in W\}.$

A quadratic form q (resp. a bilinear form \mathfrak{b}) on V is called *isotropic* if there exists a nonzero vector $v \in V$ such that q(v) = 0 (resp. $\mathfrak{b}(v, v) = 0$). For $\alpha \in F$, we say that q (resp. \mathfrak{b}) represents α if there exists a nonzero vector $v \in V$ such that $q(v) = \alpha$ (resp. $\mathfrak{b}(v, v) = \alpha$). The sets of all elements of F represented by q and \mathfrak{b} are denoted by $D_F(q)$ and $D_F(\mathfrak{b})$, respectively. For $\alpha \in F^{\times}$, the *scaled* quadratic form $\alpha \cdot q$ is defined as $\alpha \cdot q(v) = \alpha q(v)$ for every $v \in V$.

For $a_1, \dots, a_n \in F$, the isometry class of the quadratic form $\sum_{i=1}^n a_i x_i^2$ is denoted by $\langle a_1, \dots, a_n \rangle_q$. Also, the isometry class of the bilinear form $\sum_{i=1}^n a_i x_i y_i$ is denoted by $\langle a_1, \dots, a_n \rangle$. Finally, the form $\langle \langle a_1, \dots, a_n \rangle \rangle := \langle 1, a_1 \rangle \otimes \dots \otimes \langle 1, a_n \rangle$ is called a *bilinear n-fold Pfister form*.

An involution on a central simple F-algebra A is an antiautomorphism σ of A of order 2. We say that σ is of the first kind if $\sigma|_F = \text{id}$. An involution σ of the first kind is said to be symplectic if over a splitting field of A it becomes adjoint to an alternating bilinear form. Otherwise, σ is called orthogonal. The set of alternating elements of A is defined as $\text{Alt}(A, \sigma) = \{a - \sigma(a) \mid a \in A\}$. If A is of even degree 2m, the discriminant of an orthogonal involution σ on A is defined as $\text{disc} \sigma = (-1)^m \operatorname{Nrd}_A(x) F^{\times 2} \in F^{\times}/F^{\times 2}$, where $x \in \operatorname{Alt}(A, \sigma)$ is a unit and $\operatorname{Nrd}_A(x)$ is the reduced norm of x in A. Note that by [8, (7.1)], the discriminant does not depend on the choice of $x \in \operatorname{Alt}(A, \sigma)$.

A quaternion algebra over a field F is a central simple algebra Q of degree 2. The canonical involution γ on Q is defined by $\gamma(x) = \operatorname{Trd}_Q(x) - x$ for $x \in Q$, where $\operatorname{Trd}_A(x)$ is the reduced trace of x in A. The canonical involution on Q is the unique involution of symplectic type on Q and it satisfies $\gamma(x)x \in F$ for every $x \in Q$ (see [8, Ch. 2]). The map $N_Q : Q \to F$ defined by $N_Q(x) = \gamma(x)x$ is called the norm form of Q. An element $x \in Q$ is called a pure quaternion if $\operatorname{Trd}_Q(x) = 0$. The set of all pure quaternions of Q is a

3-dimensional subspace of Q denoted by Q_0 . Note that an element $x \in Q$ lies in Q_0 if and only if $\gamma(x) = -x$, or equivalently, $N_Q(x) = -x^2$.

A central simple *F*-algebra with involution (A, σ) is called *totally decomposable* if it decomposes as a tensor product of σ -invariant quaternion *F*-algebras. If *A* is a biquaternion algebra, we will use the term *decomposable* instead of totally decomposable. Note that a biquaternion algebra with orthogonal involution (A, σ) is decomposable if and only if disc σ is trivial (see [9, (3.7)]).

3. The Pfaffian and the Pfaffian adjoint

We begin our discussion by looking at the special cases of [10, (2.1)] and [10, (3.1)].

Theorem 3.1 Let (A, σ) be a biquaternion algebra with orthogonal involution over a field F and let $d_{\sigma} \in F^{\times}$ be a representative of the class disc $\sigma \in F^{\times}/F^{\times 2}$. There exists a map pf_{σ} : Alt $(A, \sigma) \to F$ such that $pf_{\sigma}(x)^2 = d_{\sigma} \operatorname{Nrd}_A(x)$ for every $x \in \operatorname{Alt}(A, \sigma)$. The map pf_{σ} is uniquely determined up to a sign. Moreover, there exists an F-linear map π_{σ} : Alt $(A, \sigma) \to \operatorname{Alt}(A, \sigma)$ such that $x\pi_{\sigma}(x) = \pi_{\sigma}(x)x = pf_{\sigma}(x)$ and $\pi_{\sigma}^2(x) = d_{\sigma}x$ for every $x \in \operatorname{Alt}(A, \sigma)$.

Remark 3.2 The map π_{σ} in (3.1) is uniquely determined by pf_{σ} . Indeed, it is easily seen by scalar extension to a splitting field that $Alt(A, \sigma)$ has a basis \mathcal{B} consisting of invertible elements. For every $x \in \mathcal{B}$, we must have $\pi_{\sigma}(x) = x^{-1}pf_{\sigma}(x)$. As π_{σ} is F-linear, it is uniquely defined on $Alt(A, \sigma)$.

Definition 3.3 A map pf_{σ} as in (3.1) is called a Pfaffian of (A, σ) . We also call the map π_{σ} , the Pfaffian adjoint of pf_{σ} .

Note that by [11, (3.3)], every Pfaffian of (A, σ) is an Albert form of A.

Notation 3.4 Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F. Since disc σ is trivial, by (3.1) there is a unique, up to a sign, Pfaffian pf_{σ} satisfying $pf_{\sigma}(x)^2 = \operatorname{Nrd}_A(x)$ for $x \in \operatorname{Alt}(A, \sigma)$. We denote this Pfaffian by q_{σ} . We also denote by p_{σ} the Pfaffian adjoint of q_{σ} ; hence,

 $q_{\sigma}(x)^2 = \operatorname{Nrd}_A(x), \quad xp_{\sigma}(x) = p_{\sigma}(x)x = q_{\sigma}(x) \quad \text{and} \quad p_{\sigma}^2(x) = x,$

for every $x \in Alt(A, \sigma)$. We also use the following notation:

$$\operatorname{Alt}(A,\sigma)^{+} := \{ x + p_{\sigma}(x) \mid x \in \operatorname{Alt}(A,\sigma) \},$$
$$\operatorname{Alt}(A,\sigma)^{-} := \{ x - p_{\sigma}(x) \mid x \in \operatorname{Alt}(A,\sigma) \}.$$

Note that if char F = 2, then Alt $(A, \sigma)^+ = Alt(A, \sigma)^-$. Also, as proved in [11, p. 597] and [9, (3.5)], Alt $(A, \sigma)^+$ and Alt $(A, \sigma)^-$ are 3-dimensional subspaces of Alt (A, σ) . Since $p_{\sigma}^2 = id$, we have $p_{\sigma}(x) = x$ for every $x \in Alt(A, \sigma)^+$ and $p_{\sigma}(x) = -x$ for every $x \in Alt(A, \sigma)^-$. The converse is also true, i.e.

$$\operatorname{Alt}(A,\sigma)^{+} = \{ x \in \operatorname{Alt}(A,\sigma) \mid p_{\sigma}(x) = x \},$$
(1)

$$\operatorname{Alt}(A,\sigma)^{-} = \{ x \in \operatorname{Alt}(A,\sigma) \mid p_{\sigma}(x) = -x \}.$$

$$\tag{2}$$

Indeed, if char $F \neq 2$, then for every $x \in \operatorname{Alt}(A, \sigma)$ with $p_{\sigma}(x) = x$ we have $x = \frac{1}{2}(x + p_{\sigma}(x)) \in \operatorname{Alt}(A, \sigma)^+$. Similarly, if $p_{\sigma}(x) = -x$, then $x = \frac{1}{2}(x - p_{\sigma}(x)) \in \operatorname{Alt}(A, \sigma)^-$. If char F = 2, then the relation (1) follows from the dimension formula for the image and the kernel of the linear map $p_{\sigma} + \operatorname{id}$.

The next result is implicitly contained in [8, pp. 249–250].

Lemma 3.5 Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F. Then p_{σ} is an isometry of $(Alt(A, \sigma), q_{\sigma})$. Furthermore, $\mathfrak{b}_{q_{\sigma}}(x, y) = xp_{\sigma}(y) + yp_{\sigma}(x)$, for $x, y \in Alt(A, \sigma)$.

Proof For every $x \in Alt(A, \sigma)$ we have $q_{\sigma}(p_{\sigma}(x)) = p_{\sigma}(p_{\sigma}(x))p_{\sigma}(x) = xp_{\sigma}(x) = q_{\sigma}(x)$. Thus, p_{σ} is an isometry. The second assertion is easily obtained from the relations $q_{\sigma}(x) = xp_{\sigma}(x)$ and $\mathfrak{b}_{q_{\sigma}}(x,y) = q_{\sigma}(x+y) - q_{\sigma}(x) - q_{\sigma}(y)$.

Lemma 3.6 Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F. Then $\operatorname{Alt}(A, \sigma)^+ = (\operatorname{Alt}(A, \sigma)^-)^{\perp} \subseteq C_A(\operatorname{Alt}(A, \sigma)^-)$.

Proof Let $\mathfrak{b} = \mathfrak{b}_{q_{\sigma}}$ and let $x \in \operatorname{Alt}(A, \sigma)^{+}$. By (3.5), p_{σ} is an isometry of $(\operatorname{Alt}(A, \sigma), q_{\sigma})$, and hence $\mathfrak{b}(x, y) = \mathfrak{b}(p_{\sigma}(x), p_{\sigma}(y)) = \mathfrak{b}(x, p_{\sigma}(y))$ for every $y \in \operatorname{Alt}(A, \sigma)$. Thus, $\mathfrak{b}(x, y - p_{\sigma}(y)) = 0$, i.e. $\operatorname{Alt}(A, \sigma)^{+} \subseteq (\operatorname{Alt}(A, \sigma)^{-})^{\perp}$. By dimension count we obtain $\operatorname{Alt}(A, \sigma)^{+} = (\operatorname{Alt}(A, \sigma)^{-})^{\perp}$. Now let $z \in \operatorname{Alt}(A, \sigma)^{-}$. By (3.5) we have $0 = \mathfrak{b}(x, z) = -xz + zx$. Thus, xz = zx, which implies that $\operatorname{Alt}(A, \sigma)^{+}$ commutes with $\operatorname{Alt}(A, \sigma)^{-}$, i.e. $\operatorname{Alt}(A, \sigma)^{+} \subseteq C_A(\operatorname{Alt}(A, \sigma)^{-})$.

Lemma 3.7 Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F and let $x \in Alt(A, \sigma)$. If $x^2 \in F$, then $p_{\sigma}(x) = \pm x$.

Proof Set $\alpha = x^2 \in F$ and $\beta = q_{\sigma}(x) \in F$. Then $\beta^2 = q_{\sigma}(x)^2 = \operatorname{Nrd}_A(x) = \pm \alpha^2$. Thus, $\beta = \lambda \alpha$ for some $\lambda \in F$ with $\lambda^4 = 1$, i.e. $q_{\sigma}(x) = \lambda x^2$. If $\alpha \neq 0$, then multiplying $xp_{\sigma}(x) = q_{\sigma}(x) = \lambda x^2$ on the left by x^{-1} we obtain $p_{\sigma}(x) = \lambda x$. The relation $p_{\sigma}^2 = \operatorname{id}$ then implies that $\lambda = \pm 1$ and we are done. Suppose that $\alpha = 0$, i.e. $x^2 = 0$. By (3.5) we have $\mathfrak{b}_{q_{\sigma}}(p_{\sigma}(x), x) = p_{\sigma}(x)^2 + x^2 = p_{\sigma}(x)^2$, and hence $p_{\sigma}(x)^2 \in F$. On the other hand, the relations $xp_{\sigma}(x) = q_{\sigma}(x) = \lambda x^2 = 0$ show that $p_{\sigma}(x)$ is not invertible. Thus,

$$p_{\sigma}(x)^2 = 0. \tag{3}$$

Suppose that $p_{\sigma}(x) \neq x$; hence, $x \notin \text{Alt}(A, \sigma)^+$. In view of (3.6) one can find $w \in \text{Alt}(A, \sigma)^-$ such that $\mathfrak{b}_{q_{\sigma}}(x, w) = 1$. By (3.5) we have

$$-xw + wp_{\sigma}(x) = 1. \tag{4}$$

Multiplying (4) on the left by x we get $xwp_{\sigma}(x) = x$. Using (4), it follows that $(wp_{\sigma}(x) - 1)p_{\sigma}(x) = x$, which yields $p_{\sigma}(x) = -x$ by (3). This completes the proof (note that if char F = 2, this argument shows that the assumption $p_{\sigma}(x) \neq x$ leads to the contradiction $p_{\sigma}(x) = -x$ and hence $p_{\sigma}(x) = x$).

The next result follows from (3.7) and the relations (1) and (2) below (3.4).

Proposition 3.8 Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field Fand let $Alt(A, \sigma)^0 = Alt(A, \sigma)^+ \cup Alt(A, \sigma)^-$. Then $Alt(A, \sigma)^0 = \{x \in Alt(A, \sigma) \mid p_{\sigma}(x) = \pm x\} = \{x \in Alt(A, \sigma) \mid x^2 \in F\}$.

NOKHODKAR/Turk J Math

Notation 3.9 For a decomposable biquaternion algebra with involution of orthogonal type (A, σ) over a field F, we use the notation $Q(A, \sigma)^+ = F + \text{Alt}(A, \sigma)^+$ and $Q(A, \sigma)^- = F + \text{Alt}(A, \sigma)^-$. We will simply denote $Q(A, \sigma)^+$ by Q^+ and $Q(A, \sigma)^-$ by Q^- , if the pair (A, σ) is clear from the context.

Lemma 3.10 ([9]) Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F.

- (1) If char $F \neq 2$, then Q^+ and Q^- are two σ -invariant quaternion subalgebras of A with $Q_0^+ = \operatorname{Alt}(A, \sigma)^+$ and $Q_0^- = \operatorname{Alt}(A, \sigma)^-$. Furthermore, we have $(A, \sigma) \simeq (Q^+, \sigma|_{Q^+}) \otimes (Q^-, \sigma|_{Q^-})$, where $\sigma|_{Q^+}$ and $\sigma|_{Q^-}$ are the canonical involutions of Q^+ and Q^- , respectively.
- (2) If char F = 2, then $Q^+ = Q^-$ is a maximal commutative subalgebra of F satisfying $x^2 \in F$ for every $x \in Q^+$.

Proof Assume first that char $F \neq 2$. As observed in [9, (3.5)], Q^+ is a σ -invariant quaternion subalgebra of A and $\sigma|_{Q^+}$ is of symplectic type. By dimension count and (3.6) we obtain $Q^- = C_A(Q^+)$; hence, $A \simeq Q^+ \otimes_F Q^-$. By [8, (2.23 (1))], $\sigma|_{Q^-}$ is of symplectic type. Finally, since $\operatorname{Trd}_{Q^+}(x) = 0$ for every $x \in \operatorname{Alt}(A, \sigma)^+$, we have $Q_0^+ = \operatorname{Alt}(A, \sigma)^+$. Similarly $Q_0^- = \operatorname{Alt}(A, \sigma)^-$. This proves the first part. The second part follows from [9, (3.6)].

Notation 3.11 Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F. We denote by q_{σ}^+ and q_{σ}^- the restrictions of q_{σ} to $\operatorname{Alt}(A, \sigma)^+$ and $\operatorname{Alt}(A, \sigma)^-$, respectively.

Lemma 3.12 Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F.

- (1) Every unit $u \in Alt(A, \sigma)^+$ (resp. $u \in Alt(A, \sigma)^-$) can be extended to a basis (u, v, w) of $Alt(A, \sigma)^+$ (resp. $Alt(A, \sigma)^-$) such that w = uv.
- (2) Every basis (u, v, w) of $Alt(A, \sigma)^+$ (resp. $Alt(A, \sigma)^-$) with w = uv is orthogonal with respect to the polar form of q_{σ}^+ (resp. q_{σ}^-).
- (3) If char $F \neq 2$, then $N_{Q^+} \simeq \langle 1 \rangle_q \perp (-1) \cdot q_{\sigma}^+$ and $N_{Q^-} \simeq \langle 1 \rangle_q \perp q_{\sigma}^-$.
- (4) If char F = 2 and $(A, \sigma) \simeq (Q_1, \sigma_1) \otimes (Q_2, \sigma_2)$ is a decomposition of (A, σ) , then $q_{\sigma}^+ \simeq \langle \alpha, \beta, \alpha \beta \rangle_q$, where $\alpha \in F^{\times}$ and $\beta \in F^{\times}$ are representatives of the classes disc $\sigma_1 \in F^{\times}/F^{\times 2}$ and disc $\sigma_2 \in F^{\times}/F^{\times 2}$, respectively.

Proof We just prove the result for q_{σ}^+ . The proof for q_{σ}^- is similar.

(1) Choose an element $u' \in \operatorname{Alt}(A, \sigma)^+ \setminus Fu$ and set $\alpha = u^2 \in F^{\times}$. By (3.10), $uu' \in Q^+ = F + \operatorname{Alt}(A, \sigma)^+$. Thus, there exist $\lambda \in F$ and $w \in \operatorname{Alt}(A, \sigma)^+$ such that $uu' = \lambda + w$. Set $v = u' - \lambda \alpha^{-1}u \in \operatorname{Alt}(A, \sigma)^+$. Then $uv = w \in \operatorname{Alt}(A, \sigma)^+$. Thus, (u, v, w) is the desired basis.

(2) Let $\mathcal{B} = (u, v, w)$ be a basis of $\operatorname{Alt}(A, \sigma)^+$ with w = uv. Then $vu = \sigma(uv) = -uv$. Using (3.5) we obtain $\mathfrak{b}(u, v) = uv + vu = 0$, where \mathfrak{b} is the polar form of q_{σ}^+ . Similarly, $\mathfrak{b}(u, w) = \mathfrak{b}(v, w) = 0$.

(3) Let (u, v, w) be a basis of $Alt(A, \sigma)^+$ with w = uv. By (2), $q_{\sigma}^+ \simeq \langle \alpha, \beta, -\alpha\beta \rangle_q$, where $\alpha = u^2 \in F$ and $\beta = v^2 \in F$. Since vu = -uv, (1, u, v, w) is a quaternion basis of Q^+ . Thus, $N_{Q^+} \simeq \langle 1, -\alpha, -\beta, \alpha\beta \rangle_q$ by [5, (9.6)].

(4) Let $u \in \operatorname{Alt}(Q_1, \sigma_1)$ and $v \in \operatorname{Alt}(Q_2, \sigma_2)$ be two units and set $\alpha = u^2 \in F^{\times}$, $\beta = v^2 \in F^{\times}$, and w = uv. By (3.8) we have $u, v \in \operatorname{Alt}(A, \sigma)^+$. Also, disc $\sigma_1 = \alpha F^{\times 2} \in F^{\times}/F^{\times 2}$ and disc $\sigma_2 = \beta F^{\times 2} \in F^{\times}/F^{\times 2}$. Since $w \in \operatorname{Alt}(A, \sigma)$ and $w^2 \in F$, by (3.8) we obtain $w \in \operatorname{Alt}(A, \sigma)^+$, and so (u, v, w) is a basis of $\operatorname{Alt}(A, \sigma)^+$ and $q_{\sigma}^+ \simeq \langle \alpha, \beta, \alpha \beta \rangle_q$.

Proposition 3.13 (Compare [11, (5.3)]) Let (A, σ) and (A', σ') be decomposable biquaternion algebras with orthogonal involution over a field F. If $(A, \sigma) \simeq (A', \sigma')$, then either $q_{\sigma} \simeq q_{\sigma'}$ and $q_{\sigma}^+ \simeq q_{\sigma'}^+$ or $q_{\sigma} \simeq (-1) \cdot q_{\sigma'}$ and $q_{\sigma}^+ \simeq q_{\sigma'}^-$.

Proof Let $\varphi : (A, \sigma) \xrightarrow{\sim} (A', \sigma')$ be an isomorphism of *F*-algebras with involution. Then $\varphi(\operatorname{Alt}(A, \sigma)) = \operatorname{Alt}(A', \sigma')$ and

$$q_{\sigma'}(\varphi(x))^2 = \operatorname{Nrd}_{A'}(\varphi(x)) = \operatorname{Nrd}_A(x) = q_{\sigma}(x)^2, \quad \text{for } x \in \operatorname{Alt}(A, \sigma).$$

Thus, $q'_{\sigma} \circ \varphi = \pm q_{\sigma}$. Suppose first that $q'_{\sigma} \circ \varphi = q_{\sigma}$. Then φ restricts to an isometry $f : (\operatorname{Alt}(A, \sigma), q_{\sigma}) \to (\operatorname{Alt}(A', \sigma'), q_{\sigma'})$. Set $h = f \circ p_{\sigma} \circ f^{-1}$. Then h is an endomorphism of $\operatorname{Alt}(A', \sigma')$. We claim that $h = p_{\sigma'}$. For every $x \in \operatorname{Alt}(A', \sigma')$ we have $h^2(x) = f \circ p_{\sigma}^2 \circ f^{-1}(x) = f \circ \operatorname{id} \circ f^{-1}(x) = x$ and

$$\begin{aligned} xh(x) &= xf(p_{\sigma}(f^{-1}(x))) = x\varphi(p_{\sigma}(f^{-1}(x))) = \varphi(f^{-1}(x))\varphi(p_{\sigma}(f^{-1}(x))) \\ &= \varphi(f^{-1}(x)p_{\sigma}(f^{-1}(x))) = \varphi(q_{\sigma}(f^{-1}(x))) = \varphi(q_{\sigma'}(x)) = q_{\sigma'}(x). \end{aligned}$$

Similarly, we have $h(x)x = q_{\sigma'}(x)$ for every $x \in \operatorname{Alt}(A', \sigma')$. Thus, $h = p_{\sigma'}$ and the claim is proved. It follows that $p_{\sigma'} \circ f = f \circ p_{\sigma}$. Now, if $x \in \operatorname{Alt}(A, \sigma)^+$, then $p_{\sigma}(x) = x$, which yields $p_{\sigma'}(f(x)) = f(p_{\sigma}(x)) = f(x)$. It follows that $f(x) \in \operatorname{Alt}(A', \sigma')^+$, i.e. f restricts to an isometry $q_{\sigma}^+ \simeq q_{\sigma'}^+$. A similar argument shows that if $q'_{\sigma} \circ \varphi = -q_{\sigma}$, then $q_{\sigma}^+ \simeq q_{\sigma'}^-$.

The next result complements [11, (5.3)] for biquaternion algebras.

Theorem 3.14 Let (A, σ) and (A', σ') be two decomposable biquaternion algebras with orthogonal involution over a field F of characteristic different from 2. Let $Q^+ = Q(A, \sigma)^+$, $Q^- = Q(A, \sigma)^-$, $Q'^+ = Q(A', \sigma')^+$, and $Q'^- = Q(A', \sigma')^-$. The following statements are equivalent.

- (1) $(A, \sigma) \simeq (A', \sigma').$
- (2) Either $q_{\sigma} \simeq q_{\sigma'}$ and $q_{\sigma}^+ \simeq q_{\sigma'}^+$ or $q_{\sigma} \simeq (-1) \cdot q_{\sigma'}$ and $q_{\sigma}^+ \simeq q_{\sigma'}^-$.
- (3) $A \simeq A'$ and either $q_{\sigma}^+ \simeq q_{\sigma'}^+$ or $q_{\sigma}^+ \simeq q_{\sigma'}^-$.
- (4) $A \simeq A'$ and either $Q^+ \simeq {Q'}^+$ or $Q^+ \simeq Q^-$.

Proof The implication $(1) \Rightarrow (2)$ follows from (3.13). Since q_{σ} and $q_{\sigma'}$ are Albert forms of (A, σ) and (A', σ') , respectively, the condition $q_{\sigma} \simeq q_{\sigma'}$ (resp. $q_{\sigma} \simeq (-1) \cdot q_{\sigma'}$) implies that $A \simeq A'$, proving $(2) \Rightarrow (3)$.

The implication (3) \Rightarrow (4) follows from (3.12 (3)) and [12, Ch. III, (2.5)]. To prove (4) \Rightarrow (1) assume first $Q^+ \simeq Q'^+$. By (3.10 (1)) we have $C_A(Q^+) = Q^-$ and $C_{A'}(Q'^+) = Q'^-$. Thus, the isomorphisms $Q^+ \simeq_F Q'^+$ and $A \simeq_F A'$ imply that $Q^- \simeq_F Q'^-$. Since the restrictions of σ to Q^+ and Q^- and the restrictions of σ' to Q'^+ and Q'^- are all symplectic, we obtain

$$(A,\sigma) \simeq_F (Q^+,\sigma|_{Q^+}) \otimes_F (Q^-,\sigma|_{Q^-})$$
$$\simeq_F (Q'^+,\sigma'|_{Q'^+}) \otimes_F (Q'^-,\sigma'|_{Q'^-}) \simeq_F (A',\sigma').$$

A similar argument works if $Q^+ \simeq Q'^-$.

4. Relation with the Pfister invariant in characteristic two

Throughout this section, F is a field of characteristic 2.

Definition 4.1 Let A be a finite-dimensional associative F-algebra. The minimum number r such that A can be generated as an F-algebra by r elements is called the minimum rank of A and is denoted by $r_F(A)$.

Theorem 4.2 ([13]) Let (A, σ) be a totally decomposable algebra with involution of orthogonal type over F. There exists a symmetric and self-centralizing subalgebra $S \subseteq A$ such that $x^2 \in F$ for every $x \in S$ and $\dim_F S = 2^n$, where $n = r_F(S)$. Furthermore, for every subalgebra S with these properties, we have $S = F + S_0$, where $S_0 = S \cap \text{Alt}(A, \sigma)$. In particular, $S \subseteq F + \text{Alt}(A, \sigma)$. Finally, the subalgebra S is uniquely determined up to isomorphism.

Proof See [13, (4.6) and (5.10)].

Notation 4.3 We denote the algebra S in (4.2) by $\Phi(A, \sigma)$.

The next result shows that for biquaternion algebras with orthogonal involution, the subalgebra $\Phi(A, \sigma)$ is unique as a set.

Corollary 4.4 Let (A, σ) be a decomposable biquaternion algebra with involution of orthogonal type over F. Then $\Phi(A, \sigma) = Q^+$.

Proof Write $\Phi(A, \sigma) = F + S_0$, where $S_0 = \Phi(A, \sigma) \cap \operatorname{Alt}(A, \sigma)$. Since every element of $\Phi(A, \sigma)$ is square-central, using (3.8) we have $S_0 \subseteq \operatorname{Alt}(A, \sigma)^+$. Then $S_0 = \operatorname{Alt}(A, \sigma)^+$ by dimension count, and hence $\Phi(A, \sigma) = F + \operatorname{Alt}(A, \sigma)^+ = Q^+$.

Lemma 4.5 Let (A, σ) be a totally decomposable algebra of degree 2^n with orthogonal involution over F. If there exists a set $\{u_1, \dots, u_n\} \subseteq \operatorname{Alt}(A, \sigma)$ consisting of pairwise commutative square-central units such that $u_{i_1} \cdots u_{i_l} \in \operatorname{Alt}(A, \sigma)$ for every $1 \leq l \leq n$ and $1 \leq i_1 < \dots < i_l \leq n$, then $\Phi(A, \sigma) \simeq F[u_1, \dots, u_n]$.

Proof By [7, (2.2.3)], $S := F[u_1, \dots, u_n]$ is self-centralizing. The other required properties of S, stated in (4.2), are easily verified.

Definition 4.6 A set $\{u_1, \dots, u_n\} \subseteq Alt(A, \sigma)$ as in (4.5) is called a set of alternating generators of $\Phi(A, \sigma)$.

We recall the following definition from [4].

Definition 4.7 Let $(A, \sigma) = (Q_1, \sigma_1) \otimes \cdots \otimes (Q_n, \sigma_n)$ be a totally decomposable algebra with orthogonal involution over F. Let $\alpha_i \in F^{\times}$, $i = 1, \dots, n$, be a representative of the class disc $\sigma_i \in F^{\times}/F^{\times 2}$. The bilinear n-fold Pfister form $\langle\!\langle \alpha_1, \cdots, \alpha_n \rangle\!\rangle$ is called the Pfister invariant of (A, σ) and is denoted by $\mathfrak{Pf}(A, \sigma)$.

Note that by [4, (7.5)], $\mathfrak{Pf}(A, \sigma)$ is independent of the decomposition of (A, σ) . Also, as observed in [13, pp. 223–224], $\mathfrak{Pf}(A, \sigma) \simeq \langle\!\langle \alpha_1, \cdots, \alpha_n \rangle\!\rangle$ if and only if there exists a set of alternating generators $\{u_1, \cdots, u_n\}$ of $\Phi(A, \sigma)$ such that $u_i^2 = \alpha_i \in F^{\times}$, $i = 1, \cdots, n$.

Lemma 4.8 Let $\langle\!\langle \alpha, \beta \rangle\!\rangle$ be an isotropic bilinear Pfister form over F. If $\alpha\beta \neq 0$, then $\langle\!\langle \alpha, \beta \rangle\!\rangle \simeq \langle\!\langle \alpha, \beta + \alpha^{-1}\lambda^2 \rangle\!\rangle$ for every $\lambda \in F$.

Proof Since $\langle\!\langle \alpha, \beta \rangle\!\rangle$ is isotropic, by [5, (4.14)] either $\alpha \in F^{\times 2}$ or $\beta \in D_F \langle 1, \alpha \rangle$. If $\alpha \in F^{\times 2}$, using [5, (4.15 (2))] and [5, (4.15 (1))] we obtain

$$\begin{split} \langle\!\langle \alpha, \beta \rangle\!\rangle &\simeq \langle\!\langle \beta + \alpha^{-1} \lambda^2, \alpha \beta \rangle\!\rangle \simeq \langle\!\langle \beta + \alpha^{-1} \lambda^2, \alpha \beta (\alpha^{-1} \lambda^2 - (\beta + \alpha^{-1} \lambda^2)) \rangle\!\rangle \\ &\simeq \langle\!\langle \beta + \alpha^{-1} \lambda^2, \alpha \beta^2 \rangle\!\rangle \simeq \langle\!\langle \alpha, \beta + \alpha^{-1} \lambda^2 \rangle\!\rangle. \end{split}$$

If $\beta \in D_F(1, \alpha)$, then there exist $b, c \in F$ such that $\beta = b^2 + c^2 \alpha$. Let $s = \alpha^{-1} \beta^{-1} \lambda \in F$. Using [5, (4.15 (1))] we obtain

$$\begin{split} \langle\!\langle \alpha, \beta \rangle\!\rangle &\simeq \langle\!\langle \alpha, \beta((1+cs\alpha)^2 - (bs)^2 \alpha) \rangle\!\rangle \simeq \langle\!\langle \alpha, \beta(1+c^2s^2\alpha^2 + b^2s^2\alpha) \rangle\!\rangle \\ &\simeq \langle\!\langle \alpha, \beta + s^2\alpha\beta(c^2\alpha + b^2) \rangle\!\rangle \simeq \langle\!\langle \alpha, \beta + s^2\alpha\beta^2 \rangle\!\rangle \simeq \langle\!\langle \alpha, \beta + \alpha^{-1}\lambda^2 \rangle\!\rangle. \end{split}$$

Lemma 4.9 Let (A, σ) be a decomposable biquaternion algebra with involution of orthogonal type over F and let $\alpha, \beta \in F^{\times}$. Then $\mathfrak{Pf}(A, \sigma) \simeq \langle\!\langle \alpha, \beta \rangle\!\rangle$ if and only if $q_{\sigma}^+ \simeq \langle \alpha, \beta, \alpha \beta \rangle_q$.

Proof If $\mathfrak{Pf}(A, \sigma) \simeq \langle\!\langle \alpha, \beta \rangle\!\rangle$, then there exists a set of alternating generators $\{u, v\}$ of $\Phi(A, \sigma)$ such that $u^2 = \alpha$ and $v^2 = \beta$. By (4.4) and (3.12 (2)), (u, v, uv) is an orthogonal basis of $\mathrm{Alt}(A, \sigma)^+$ and hence $q_{\sigma}^+ \simeq \langle \alpha, \beta, \alpha \beta \rangle_q$.

To prove the converse, choose a basis (x, y, z) of $Alt(A, \sigma)^+$ with $x^2 = \alpha$, $y^2 = \beta$, and $z^2 = \alpha\beta$. Consider the element $xy \in \Phi(A, \sigma)$. By (4.4), $\Phi(A, \sigma) = F + Alt(A, \sigma)^+$. Thus, there exist $a, b, c, d \in F$ such that

$$xy = a + bx + cy + dz. \tag{5}$$

If a = 0 then $xy = bx + cy + dz \in Alt(A, \sigma)^+$, which implies that $\{x, y\}$ is a set of alternating generators of $\Phi(A, \sigma)$. As $x^2 = \alpha$ and $y^2 = \beta$ we obtain $\mathfrak{Pf}(A, \sigma) \simeq \langle\!\langle \alpha, \beta \rangle\!\rangle$. Suppose that $a \neq 0$. By squaring both sides of (5), we obtain $\alpha\beta = a^2 + b^2\alpha + c^2\beta + d^2\alpha\beta$, which yields

$$1 + (ba^{-1})^2 \alpha + (ca^{-1})^2 \beta + ((d+1)a^{-1})^2 \alpha \beta = 0.$$

Therefore, the form $\langle\!\langle \alpha, \beta \rangle\!\rangle$ is isotropic. Set $y' = y + \alpha^{-1}ax \in \operatorname{Alt}(A, \sigma)^+$. By (5) we have $xy' = xy + a = bx + cy + dz \in \operatorname{Alt}(A, \sigma)^+$; hence, $\{x, y'\}$ is a set of alternating generators of $\Phi(A, \sigma)$. As $x^2 = \alpha$ and $y'^2 = \beta + \alpha^{-1}a^2$, we obtain $\mathfrak{Pf}(A, \sigma) \simeq \langle\!\langle \alpha, \beta + \alpha^{-1}a^2 \rangle\!\rangle$. Thus, $\mathfrak{Pf}(A, \sigma) \simeq \langle\!\langle \alpha, \beta \rangle\!\rangle$ by (4.8).

Using (4.9) and (3.12 (4)), we obtain the following relation between the Pfister invariant and the quadratic form q_{σ}^+ .

Proposition 4.10 Let (A, σ) and (A', σ') be decomposable biquaternion algebras with orthogonal involution over F. Then $q_{\sigma}^+ \simeq q_{\sigma'}^+$ if and only if $\mathfrak{Pf}(A, \sigma) \simeq \mathfrak{Pf}(A', \sigma')$.

The following result is analogous to (3.14).

Theorem 4.11 Let (A, σ) and (A', σ') be decomposable biquaternion algebras with orthogonal involution over F. Then the following statements are equivalent:

- (1) $(A,\sigma) \simeq (A',\sigma')$.
- (2) $q_{\sigma} \simeq q_{\sigma'}$ and $q_{\sigma}^+ \simeq q_{\sigma'}^+$.
- (3) $A \simeq A'$ and $q_{\sigma}^+ \simeq q_{\sigma'}^+$.
- (4) $A \simeq A'$ and $\mathfrak{Pf}(A, \sigma) \simeq \mathfrak{Pf}(A', \sigma')$.

Proof The implications $(1) \Rightarrow (2)$ follow from (3.13).

(2) \Rightarrow (3): Since q_{σ} and $q_{\sigma'}$ are Albert forms of (A, σ) and (A', σ') , respectively, $q_{\sigma} \simeq q_{\sigma'}$ implies that $A \simeq A'$ by [8, (16.3)].

The implication $(3) \Rightarrow (4)$ and $(4) \Rightarrow (1)$ follows from (4.10) and [13, (6.5)], respectively.

Lemma 4.12 If $\langle\!\langle \alpha, \beta \rangle\!\rangle$ is an anisotropic bilinear Pfister form over F, then $\langle\!\langle \alpha, \beta \rangle\!\rangle \not\simeq \langle\!\langle \alpha + 1, \beta \rangle\!\rangle$.

Proof As proved in [1, p. 16], two bilinear Pfister forms are isometric if and only if their pure subforms are isometric. Thus, it is enough to show that the pure subform of $\langle\!\langle \alpha, \beta \rangle\!\rangle$ does not represent $\alpha + 1$. If $\alpha + 1 \in D_F(\langle \alpha, \beta, \alpha\beta \rangle)$, then there exist $a, b, c \in F$ such that $a^2\alpha + b^2\beta + c^2\alpha\beta = \alpha + 1$. Thus, $1 + (a+1)^2\alpha + b^2\beta + c^2\alpha\beta = 0$, i.e. $\langle\!\langle \alpha, \beta \rangle\!\rangle$ is isotropic, which contradicts the assumption.

Definition 4.13 For $\alpha \in F^{\times}$, define an involution $T_{\alpha}: M_2(F) \to M_2(F)$ via

$$T_{\alpha} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & c\alpha^{-1} \\ b\alpha & d \end{pmatrix}.$$

Note that T_{α} is of orthogonal type and disc $T_{\alpha} = \alpha F^{\times 2} \in F^{\times}/F^{\times 2}$.

The following example shows that if char F = 2, the conditions $A \simeq_F A'$ and $Q^+ \simeq_F Q'^+$ do not necessarily imply that $(A, \sigma) \simeq (A', \sigma')$ (compare (3.14)).

NOKHODKAR/Turk J Math

Example 4.14 Let $\langle\!\langle \alpha, \beta \rangle\!\rangle$ be an anisotropic Pfister form over a field F of characteristic 2 and let $A = M_4(F)$. Consider the involutions $\sigma = T_\alpha \otimes T_\beta$ and $\sigma' = T_{\alpha+1} \otimes T_\beta$ on A. Then $\mathfrak{Pf}(A, \sigma) \simeq \langle\!\langle \alpha, \beta \rangle\!\rangle$ and $\mathfrak{Pf}(A, \sigma') \simeq \langle\!\langle \alpha + 1, \beta \rangle\!\rangle$, and hence $\mathfrak{Pf}(A, \sigma) \simeq \mathfrak{Pf}(A, \sigma')$ by (4.12). Using (4.11), we obtain $(A, \sigma) \simeq (A, \sigma')$.

On the other hand, there exists a set of alternating generators $\{u, v\}$ (resp. $\{u', v'\}$) of $\Phi(A, \sigma)$ (resp. $\Phi(A, \sigma')$) such that $u^2 = \alpha$ and $v^2 = \beta$ (resp. $u'^2 = \alpha + 1$ and $v'^2 = \beta$). Then $\Phi(A, \sigma) \simeq F[u, v]$ and $\Phi(A, \sigma') \simeq F[u', v']$. The linear map $f : F[u, v] \to F[u', v']$ induced by f(1) = 1, f(u) = u' + 1, f(v) = v', and f(uv) = (u'+1)v' is an F-algebra isomorphism. Thus, $\Phi(A, \sigma) \simeq \Phi(A, \sigma')$, which implies that $Q(A, \sigma)^+ \simeq Q(A, \sigma')^+$ by (4.4).

5. Metabolic involutions

Let (A, σ) be an algebra with involution over a field F of arbitrary characteristic. An idempotent $e \in A$ is called *hyperbolic* (resp. *metabolic*) with respect to σ if $\sigma(e) = 1 - e$ (resp. $\sigma(e)e = 0$ and $(1-e)(1-\sigma(e)) = 0$). The pair (A, σ) is called *hyperbolic* (resp. *metabolic*) if A contains a hyperbolic (resp. metabolic) idempotent with respect to σ . Every hyperbolic involution σ is metabolic but the converse is not always true. If σ is symplectic or char $F \neq 2$, the involution σ is metabolic if and only if it is hyperbolic (see [3, (4.10)] and [2, (A.3)]).

Lemma 5.1 Let (A, σ) be a central simple algebra with orthogonal involution over a field F. If $e \in A$ is a metabolic idempotent, then $(e - \sigma(e))^2 = 1$.

Proof This follows from the relations $(1 - e)(1 - \sigma(e)) = 0$ and $\sigma(e)e = 0$.

Theorem 5.2 Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F. The following statements are equivalent:

- (1) (A, σ) is metabolic.
- (2) Q^+ or Q^- splits.
- (3) $1 \in D_F(q_{\sigma}^+)$ or $-1 \in D_F(q_{\sigma}^-)$.
- (4) q_{σ}^+ or q_{σ}^- is isotropic.

Proof If char $F \neq 2$, by (3.10 (1)) we have $(A, \sigma) \simeq (Q^+, \sigma|_{Q^+}) \otimes (Q^-, \sigma|_{Q^-})$, where $\sigma|_{Q^+}$ and $\sigma|_{Q^-}$ are the canonical involutions of Q^+ and Q^- , respectively. Thus, the equivalence (1) \Leftrightarrow (2) follows from [6, (3.1)]. The equivalences (2) \Leftrightarrow (3) and (2) \Leftrightarrow (4) both follow from (3.12 (3)) and [12, Ch. III, (2.7)].

Now, let char F = 2. Then the equivalence (1) \Leftrightarrow (2) follows from [13, (6.6)].

 $(1) \Rightarrow (3)$: Let *e* be a metabolic idempotent with respect to σ and let $x = e - \sigma(e)$. By (5.1), we have $x^2 = 1$. Since $x \in Alt(A, \sigma)$, (3.8) implies that $x \in Alt(A, \sigma)^+$ and hence $q_{\sigma}^+(x) = 1$.

(3) \Rightarrow (4): Suppose that $q_{\sigma}^+(u) = 1$ for some $u \in Alt(A, \sigma)^+$. By (3.12 (1)) and (3.12 (2)), the element u extends to an orthogonal basis (u, v, w) of $Alt(A, \sigma)^+$ with w = uv. According to (3.10 (2)), Q^+ is commutative. Thus, $q_{\sigma}^+(v+w) = (v+w)^2 = v^2 + (uv)^2 = 0$, i.e. q_{σ}^+ is isotropic.

(4) \Rightarrow (2): If q_{σ}^+ is isotropic, then there exists a nonzero $x \in Alt(A, \sigma)^+ \subseteq Q^+$ such that $x^2 = 0$ and hence Q^+ splits.

Corollary 5.3 Let (A, σ) be a central simple algebra with involution over a field F. If σ is metabolic, then disc σ is trivial.

Proof The result follows from (5.1) if char F = 2 and [2, (2.3)] if char $F \neq 2$.

Proposition 5.4 Let (A, σ) be a biquaternion algebra with involution of orthogonal type over a field F. Then σ is metabolic if and only if there exists $u \in Alt(A, \sigma)$ such that $u^2 = 1$.

Proof If σ is metabolic, then by (5.3), disc σ is trivial. Thus, σ is decomposable and the result follows from (5.2). Conversely, suppose that there exists $u \in \operatorname{Alt}(A, \sigma)$ such that $u^2 = 1$. Then disc $\sigma = \operatorname{Nrd}_A(u)F^{\times 2}$ is trivial, so (A, σ) is decomposable by [9, (3.7)]. Since $u^2 = 1 \in F$ and $u \in \operatorname{Alt}(A, \sigma)$, by (3.8) we have $u \in \operatorname{Alt}(A, \sigma)^+ \cup \operatorname{Alt}(A, \sigma)^-$. Therefore, either $u \in \operatorname{Alt}(A, \sigma)^+$ (i.e. $q_{\sigma}^+(u) = 1$) or $u \in \operatorname{Alt}(A, \sigma)^-$ (i.e. $q_{\sigma}^-(u) = -1$). By (5.2), σ is metabolic.

Proposition 5.5 Let (A, σ) be a decomposable biquaternion algebra with orthogonal involution over a field F. Then $(A, \sigma) \simeq (M_4(F), t)$ if and only if $q_{\sigma}^+ \simeq \langle -1, -1, -1 \rangle_q$ and $q_{\sigma}^- \simeq \langle 1, 1, 1 \rangle_q$.

Proof If char F = 2, the result follows from [13, (5.7)] and (4.9). Suppose that char $F \neq 2$. As observed in [7, p. 235], $Q(M_4(F), t)^+$ has an F-basis (1, u, v, w) subject to the relations $u^2 = -1$, $v^2 = -1$ and w = uv = -vu. By (3.12 (2)) we obtain $q_t^+ \simeq \langle -1, -1, -1 \rangle_q$. A similar argument shows that $q_t^- \simeq \langle 1, 1, 1 \rangle_q$. Thus, the result follows from (3.14).

References

- [1] Arason J, Baeza R. Relations in I^n and $I^n W_q$ in characteristic 2. J Algebra 2007; 314: 895-911.
- [2] Bayer-Fluckiger E, Shapiro DB, Tignol JP. Hyperbolic involutions. Math Z 1993; 214: 461-476.
- [3] Dolphin A. Metabolic involutions. J Algebra 2011; 336: 286-300.
- [4] Dolphin A. Orthogonal Pfister involutions in characteristic two. J Pure Appl Algebra 2014; 218: 1900-1915.
- [5] Elman R, Karpenko N, Merkurjev A. The Algebraic and Geometric Theory of Quadratic Forms. Providence, RI, USA: American Mathematical Society, 2008.
- [6] Haile DE, Morandi PJ. Hyperbolicity of algebras with involution and connections with Clifford algebras. Commun Algebra 2001; 29: 5733-5753.
- [7] Jacobson N. Finite-Dimensional Division Algebras over Fields. Berlin, Germany: Springer-Verlag, 1996.
- [8] Knus MA, Merkurjev AS, Rost M, Tignol JP. The Book of Involutions. Providence, RI, USA: American Mathematical Society, 1998.
- [9] Knus MA, Parimala R, Sridharan R. Involutions on rank 16 central simple algebras. J Indian Math Soc 1991; 57: 143-151.
- [10] Knus MA, Parimala R, Sridharan R. On the discriminant of an involution. Bull Soc Math Belg 1991; 43: 89-98.
- [11] Knus MA, Parimala R, Sridharan R. Pfaffians, central simple algebras and similitudes. Math Z 1991; 206: 589-604.
- [12] Lam TY. Introduction to Quadratic Forms over Fields. Providence, RI, USA: American Mathematical Society, 2005.
- [13] Mahmoudi MG, Nokhodkar AH. On totally decomposable algebras with involution in characteristic two. J Algebra 2016; 451: 208-231.