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Abstract: We consider a continuous-time principal–agent model on a finite time horizon, where we look for the existence

of an optimal contract that both parties agreed on. Contrary to the mainstream, where the principal is modeled as risk-

neutral, we assume that both the principal and the agent have exponential utility and are risk-averse with same risk

awareness level. Moreover, the agent’s quality is unknown and is modeled as a filtering term in the problem, which is

revealed as time passes. The principal cannot observe the agent’s real action, but can only recommend action levels to

the agent. Hence, we have a moral hazard problem. In this setting, we give an explicit solution to the optimal contract

problem.
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1. Introduction

We consider optimal contracting between two parties, a principal (“she”) and an agent (“he”), in continuous

time, when the agent’s actual effort cannot be observed by the principal. In economics, this type of problem is

called a “hidden action” or “moral hazard” problem, where the agent’s control of the drift of the output process

cannot be contracted upon. To give an example of a moral hazard problem, we can consider a scenario in which

an investor (“principal) hires a portfolio manager (“agent”) to manage her savings. The investor cannot observe

the actual effort (or action) of the portfolio manager, only the current wealth of the portfolio. Hence, in the

case that the investor is not satisfied about the performance of the portfolio manager, the manager could blame

the market and argue that he gave the best performance for her savings, since the investor cannot observe the

actual efforts of her portfolio manager.

The seminal paper on the continuous-time principal–agent problem is [9], where both parties have

exponential utilities and agree on a linear optimal contract. Those results were generalized and extended

by several authors (see, e.g., [4, 6, 8, 11, 12, 15, 16], among others). A nice survey of the literature was provided

by Sung in [19]. Recently, [3] considered a general formulation of the principal–agent problem with a lump-sum

payment on a finite horizon, where the agent influences both the agent and the volatility of the output, where

the proofs use techniques based on a backward stochastic differential equations approach to non-Markovian

stochastic control.

Another seminal paper, [14], presented a continuous-time moral hazard model with infinite horizon where

the payments are paid continuously, rather than as a lump-sum payment at the terminal time. In [14], the
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principal is risk-neutral and the agent is risk-averse and the agent only controls the drift of the output. [13]

extended [14] to the case of unobserved drift and made use of the stochastic maximum principle. [20] solved a

principal–agent moral hazard problem, where both the principal and the agent are risk-averse, the payments are

continuous, and the agent controls the unobserved drift term of the output. The main difference in the contract

between a model with a risk-averse and a risk-neutral principal is whether there is ongoing consumption and

dividends, as would be the case with risk aversion, or only “lumpy” consumption and dividends, which would

be the case with risk neutrality. While most of the literature focuses on a risk-neutral principal, there are

exceptions like the seminal work [9] and the recent work [20]. The current manuscript is another work in this

direction with a risk-averse principal.

In this paper, we solve a moral hazard problem in a continuous-time Brownian model, where there is an

additional endogenous learning term representing the agent’s unknown quality added to the model. To represent

the unknown quality of the agent, we follow the framework introduced in [13]. However, we do not assume that

the principal is risk-neutral as in [13], but instead both the principal and the agent have exponential utility

with the same risk-awareness level as in [20]. Our model is both quantitatively and qualitatively different from

the one in [13] and from [20]. In the risk-neutral case, as in [13], contracting is profitable because the principal

can extract profits by providing insurance to the agent. In our case, combined with the unknown quality of the

agent, the interaction is more complicated. We cannot conclude directly that the economic benefits will decrease

as the difference in risk aversion between the principal and the agent shrinks, since we do not know the quality

of the agent a priori; rather, his quality is revealed with time. The same obstacle can be observed in [13], where

the results hold on the condition that enough time has passed to conclude qualitative results about the model.

In our model, we see that as the unknown quality of the agent is revealed with time such that it does not affect

the model significantly, our model converges to the analogous findings without the parameter uncertainty. On

the other hand, even though the risk awareness of the principal is taken into consideration in [20], there is no

endogenous learning term; hence, there are no aforementioned complications related to it. Furthermore, we also

show that both parties agree on a contract, where the agent gives full effort from the beginning of the contract

until the horizon T . Hence, neither the risk awareness of the principal nor the unknown quality of the agent

affect the agent’s actual effort level given throughout the model, even though the principal cannot observe it,

which was to be observed in [13], whereas [20] focused on interior optimal efforts.

The rest of the paper is as follows. In Section 2, we outline the general model of the problem. In Section

3, we describe the agent’s problem and find the dynamics of the continuation value function of the agent. In

Section 4, we solve the principal’s optimal control problem and describe the optimal contract, and in Section 5

we further discuss and elaborate our main results and conclude the paper.

2. The model

In this section, we give the framework and dynamics of the model. Let {Wt}t≥0 be a standard Brownian motion

on a probability space (Ω,F ,P), where Ft is generated by the Brownian motion Wt . As in [13], we assume

that the cumulative output yt up to time T satisfies the stochastic integral equation

yt =

∫ t

0

(
η + as

)
ds+

∫ t

0

σdWs, (1)

for 0 ≤ t ≤ T , where η stands for the quality of the agent and is denoted by η , and at ∈ [0,M ] for 0 ≤ t ≤ T

is the effort provided by the agent. η is unknown and we model it as in [13] with the common prior being
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normal with mean m0 and precision h0 . Posterior over η , denoted by η̂ , depends on yt and on cumulative

effort At ≜
∫ t

0
asds . Conditional on (yt, At, t), posterior belief about η is also normal with

η̂(yt −At, t) ≜ Et[η|yt, At] (2)

η̂(yt −At, t) ≜
h0m0 + σ−2(yt −At)

ht

ht ≜ h0 + σ−2t

η̂(0, 0) = m0.

The principal does not observe the agent’s effort; she can only recommend actions ˆ̄a . We denote the filtration

generated by output and recommended actions (ȳ, ˆ̄a) as

Fy
t ≜ σ(ys, ˆ̄as; 0 ≤ s ≤ t) (3)

and Fy ≜ {Fy
t }t≥0 , the P -augmentation of this filtration. As in [13], we take the utility function of the agent

with λ ∈ (0, 1), θ > 0 as

u(w, a) = −e−θw+θλa (4)

and actions of the agent are limited in a compact set at ∈ [0,M ] for 0 ≤ t ≤ T . On the other hand, the

agent knows the actual level of effort ā , which only he knows. Hence, the agent’s information is more than the

principal’s. We denote the filtration generated by output, recommended actions, and actual actions up to time

t as (ȳ, ā∗) as

Fa
t ≜ σ(ys, ās, ā

∗; 0 ≤ s ≤ t) (5)

and Fa ≜ {Fa
t }0≤t≤T , the P-augmentation of this filtration. The agent is restricted to the class of control

processes A ≜ {at : [0, T ] × Ω → [0,M ]} that are Fa -predictable. We work with the induced distributions on

the space of continuous functions. We take the sample space Ω to be the space of all continuous paths C[0, T ]

equipped with the supremum norm ∥·∥∞ . On C[0, T ] , we let W 0
t = ω(t) be the family of coordinate functions

and F0
t = σ{W 0

s , s ≤ t} the filtration generated by W 0
t . We denote by P 0 the corresponding Wiener measure

on (Ω,F0
t ) and let Ft be the completion with the null sets of F0

T . On this space, we define the corresponding

Brownian motion W 0
t as in Equation (1). The set of admissible contracts C is the set of FY ≜ {FY

t }0≤t≤T

predictable functions (at, wt) : [0, T ]×Y → A×W . Hence, the contract specifies a wage w̄t and a recommended

action āt at date t that depend on the whole past history of the output ȳt . Then, given a contract, the agent

makes his own choice of action at at each time t . Thus, the set of admissible actions A for the agent are those

Fa
t -predictable functions (ā, w̄) : [0, T ]× Y → A×W .

Definition 2.1 A contract is called implementable if the agent agrees to the contract at time zero and chooses

the recommended actions: (a∗, w∗) = (ā, w̄) .

The dependence on the whole past implies that we cannot use a direct approach to the agent’s problem, since

the entire past history ȳ would be a state variable. To overcome this difficulty, we make the problem tractable

as in [1, 2],[4], [20] by taking the key state variable to be the density of the output process rather than the
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output process itself. By considering different action choices corresponding to different output processes, we

take the relative density process Γt , as defined in Equation (10). For σ > 0, we define

dyt = σdW 0
t , (6)

where y0 is given. This is the evolution of output under an effort policy ā0 , which makes the drift of output

equal to zero at each time t ∈ [0, T ] . Hence, different effort choices alter the evolution of output by changing

the distribution over outcomes in y with their corresponding Γt .

3. The agent’s problem

We impose a terminal date T on the contracting horizon. Until time T , both the principal and the agent

are committed to the contract. To have an incentive-compatible contract, we need to specify what action the

agent would choose when facing a given contract. First, we assume the following assumption. The agent’s

continuation value is

v(a, t) ≜ E
[ ∫ T

t

e−ρ(s−t)u(ws, as)ds+ e−ρ(T−t)g(wT )|Fa
t

]
, (7)

where ȳt ≜ {ys; 0 ≤ s ≤ t} is the output history, ρ ∈ (0, 1) is the constant discount rate, and the functions u

and g are defined below. The history dependence on the past makes it necessary to change the relevant state

variable. We denote
f(t, ȳ, at) = η̂(yt −At, t) + at, (8)

where

At =

∫ t

0

asds, (9)

and here we recall that ȳt means y depends on the whole path. We denote the density depending on action ā

of Ft -predictable processes:

Γt(ā) = exp
( ∫ t

0

σ−1f(s, ȳ, as)dW
0
s − 1

2

∫ t

0

|σ−1f(s, ȳ, as)|2ds
)
, (10)

where W 0
t is as defined in Equation (6). Γt is an Ft -martingale (as the assumptions on f ensure that Novikov’s

condition is satisfied) with E[ΓT (ā)] = 1 for all ā ∈ A where A stands for the set of admissible actions. Thus,

by the Girsanov theorem, we define a new measure P ā via:

dP ā

dP 0
= ΓT (ā), (11)

and by the filtering theorem of Fujisaki [7], the process W ā
t is defined by

W ā
t = W 0

t −
∫ t

0

σ̄−1f(s, ȳ, as)ds, (12)

a Brownian motion under Pā . Thus, we have

dyt = σdW 0
t (13)

= σ[dW ā
t + σ−1f(t, ȳ, at)dt] (14)

= f(t, ȳ, at)dt+ σdW ā
t . (15)

980
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Hence, each effort choice ā results in a different Brownian motion W a
t . Γt defined above satisfies Γt = E[ΓT |F ā

t ] .

Moreover, via derivation as in [13] by the Ito lemma we have that η̂ is a P ā -martingale with decreasing variance

dη̂(yt −At, t) =
σ−1

ht
dW ā

t . (16)

Using the state variable as the density process Γt , we rewrite the optimization problem as

v(a, t) = E0
t

[ ∫ T

t

Γa
s,T e

−ρ(s−t)u(ws), as)ds+ e−ρ(T−t)g(wT )|F0
t

]
, (17)

where the terminal value function being g(wT ) = −e
1−ρ
r −λθrwT of the agent is to be derived below. This

approach makes our optimization problem tractable with optimal control techniques. The agent’s problem then

is to solve
v∗(t) = sup

ā∈A
v(ā, w̄). (18)

Theorem 3.1 For each fixed action process a(·) , there exists a unique decomposition for the agent’s continu-

ation value, Equation (7), that satisfies

dvt = [ρvt − u(wt, at)]dt+ σγa
t dW

ā
t , (19)

vT = g(wT ), (20)

for some square integrable process γa
t , namely Ea[

∫ T

0
(γa

t )
2dt] < ∞ . The process γa

t is denoted as the “incentive-

compatibility parameter” in the moral hazard literature (see, e.g., [5]).

Proof Recall that for each action a we have for that action a

v(a, t) =Ea
t

[∫ T

t

e−ρ(s−t)u(ws, as)ds+ e−ρ(T−t)g(wT )|Fa
t

]
(21)

=eρtEa
t

[∫ T

0

e−ρsu(ws, as)ds+ e−ρ(T−t)g(wT ))|Fa
t

]

− eρt
∫ t

0

e−ρsu(ws, as)ds

dv(a, t) =ρvtdt+ γa
t σdW

a
t − u(wt, at)dt,

where we appeal to the martingale representation theorem by Fujisaki [7] for square integrable martingales. We

note here that

Ea
t

[ ∫ T

0

e−ρ(s−t)u(ws, as)ds+ e−ρ(T−t)g(wT )|Fa
t

]
(22)

is a square integrable martingale since the functions g(·), u(·, ·) are bounded for a ∈ [0,M ] and t ∈ [0, T ] . 2

Next, we characterize the necessary and sufficient conditions to maximize the value function of the agent in

Equation (7). Our result is analogous to Proposition 4 in [13].
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Lemma 3.2 Maximizing the Hamiltonian defined as

H(t, y, a, A, γ) ≜ u(wt, at) + γ(η̂(At, y) + at) (23)

is sufficient for the agent to maximize his value function as in Equation (7). Furthermore, it is necessary for

the incentive compatibility parameter γa
t to satisfy

γa
t (a,w) = −ua(wt, a

∗
t ) +

σ−2

ht
pt, (24)

where the term pt is as defined in Equation (31).

Proof By integrating Equation (19) for the optimal action â and for any other action ā , we have

e−ρT v(T ) = e−ρT g(wT ) = e−ρtv(t, â)−
∫ T

t

e−ρsu(ws, âs)ds+

∫ T

t

ζ̂sσdW
â
s ,

e−ρT v(T ) = e−ρT g(wT ) = e−ρtv(t, ā)−
∫ T

t

e−ρsu(ws, ās)ds+

∫ T

t

ζ̄sσdW
ā
s , (25)

where ζt ≜ e−ρtγt . Moreover, we have

dyt = σdW 0
t ,

dW â
t = dW 0

t − 1

σ
(η̂(yt − Ât, t) + ât)dt,

dW ā
t = dW 0

t − 1

σ
(η̂(yt − Āt, t) + āt)dt,

dW â
t = dW ā

t +
1

σ
[η̃(yt − Ā, t) + āt − η̃(yt − Â, t)− ât]dt. (26)

Hence, the following holds:

v(t, ā)− v(t, â) =eρtEā

[ ∫ T

t

e−ρ(s−t)[u(wt, āt)− u(wt, ât)]dt+

+

∫ T

t

γ̂tσdW
ā
t

+

∫ T

t

γ̂(āt − ât + η̃(yt, Āt)− η̃t(yt, Ât))dt

]

= eρtEā

[ ∫ T

t

[H(ā, γ̂)−H(â, γ̂)]dt+

∫ T

t

γ̂tσdW
ā
t

≤ eρtEā

[ ∫ T

t

γ̂tσdW
ā
t

]
= 0. (27)

The last term is a martingale due to square integrability of γ̂t and a ∈ [0,M ] being bounded. Hence, we

have proved the sufficient condition for the agent. Next, we prove the necessary condition for the agent’s value
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function in Equation (7).

ãϵt ≜ at + ϵ∆at

∇vt(a) ≜ lim
ϵ→0

vt(ã)− vt(a)

ϵ

By small perturbation, we have

e−ρt∇vt(a) =e−ρt lim
ϵ→0

1

ϵ
Eã

[ ∫ T

t

e−ρs[u(w, ãϵ)− u(w, a)]ds

+

∫ T

t

ζ̂sdW
āϵ

s +

∫ T

t

ζ̂(ãϵ − a+ η̂(ys, A
ϵ
s)− η̂(ys, As))ds

]
, (28)

which gives the condition

Eã

[ ∫ T

t

e−ρsua∆as + ζs

(
∆as −

σ−2

hs

∫ s

t

∆ardr

)]
≤ 0. (29)

Integrating by parts, we get that

Eã

[ ∫ T

t

(
e−ρsua + ζs −

∫ T

s

ζr
σ−2

hr
dr

)
∆asds

]
≤ 0.

By noting that ∆as is arbitrary, we get(
Ea
t

[ ∫ T

t

−ζs
σ−2

hs
ds

]
+ ζt + e−ρsua(ws, as)

)
(at − a∗t ) ≤ 0. (30)

By focusing only at time t and using that ∆at is arbitrary, we conclude that for

at ∈ [0,M ] , we have

ζt + e−ρtua(wt, a
∗
t )−

σ−2

ht
pt ≥ 0, (31)

where

pt = htE
[
−
∫ T

t

ζs
1

hs
ds

∣∣∣∣Fa
t

]
. (32)

Since increasing γa
t causes the volatility of the output to increase in Equation (19), the principal wants to

minimize the incentive compatibility parameter γa
t . Hence, by multiplying the equation by eρt in Equation

(31), we assume that the principal confines with

γa
t (a,w) = −ua(wt, a

∗
t ) +

σ−2

ht
pt, (33)

and we conclude the result. 2

We rewrite the term pt in Equation (31) in a more tractable way as in [13] as follows. First, we denote

p̃t ≜
σ−2

ht
pt.
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Then we have

p̃t = E
[
−
∫ T

t

e−ρ(s−t)ζs
σ−2

hs
ds

]
.

By differentiating with respect to time t , we get

dp̃t
dt

= ρp̃t +
σ−2

ht
γt

= ρp̃t −
σ−2

ht
(ua(wt, at) + p̃t),

and integrating this expression, we obtain

p̃t =
σ−2

ht
Ea

[ ∫ T

t

e−ρ(s−t)ua(ws, as)ds

]
. (34)

Remark 3.3 By the above derivation we see that γt(w, a) is bounded by wage process wt being nonnegative

and a ∈ [0,M ] . Furthermore, we also note that when there is no term pt in Equation (33), we have γt = −ua ,

which corresponds to the first-order condition with respect to a of the term

H̃(t, y, a, γ) = u(w, a) + γtat, (35)

the Hamiltonian term without the filtering term in the model of Equation (1).

For the terminal date, we assume that from date T on the unknown filtering term η̂ is revealed, no more

production takes place, and both the principal and the agent live off their assets for the infinite future, earning

the same constant rate of return r . We assume that both the principal and the agent solve the problem of the

following form:

VT (a0) = max
bt

−
∫ ∞

0

exp(−ρt− λθbt)dt

= max
bt

−
∫ ∞

T

exp(−ρ(t− T )− λθbt)dt, (36)

with c0 given and dct = (rct − bt)dt . For the agent bt = wt and a0 = wT . The Hamilton–Jacobi–Bellman

(HJB) equation for (36) reads as

ρVT (a) = max
b

{− exp(−λθb) + V ′
T (c)[rc− b]}, (37)

whose solution is

VT (c) = − exp
(1− ρ

r
− λθrc

)
,

with optimal

b(c) =
ρ− 1

λθr
+ rc.
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Hence, we have for the terminal time T the agent’s and the principal’s terminal value function vT and V p
T as

g(wT ) = − exp
(1− ρ

r
− λθrwT

)
, (38)

vT = g(wT ), (39)

V p
T = g(yT − wT ). (40)

4. The principal’s problem

From the principal’s point of view, the dynamics of the output follow

dyt = (ryt + η̂ + at − dt)dt+ σdW a
t . (41)

We assume there is a common risk aversion λ between the principal and the agent. The principal discounts at

the same rate ρ with the agent and has a flow utility

U(dt) = − exp(−λθdt) (42)

over his consumption dt with the value function

J(t, y, v, η̂) = max
d,w,a

Ea
t

[ ∫ T

t

e−ρ(s−t)U(ds)ds+ e−ρ(T−t)V p
T (yT − wT )|Fa

t

]
, (43)

where V p
T (yT − wT ) is defined as follows:

V p
T (yT − wT ) = − exp

(1− ρ

r
− λθr(yT − wT )

)
= − exp

(1− ρ

r
− λθryT

)
exp(λθrwT ).

Using the terminal value of the agent at time T , the principal value function at time T reads as follows using

Equation (38):

vT = − exp
(1− ρ

r
− λθrwT

)
,

J(T, yT , vT ) = −
exp2( 1−ρ

r )

vT
exp(−λθryT ).

For convenience, we summarize the value function dynamics of the principal as follows:

dη̂ =
σ−1

ht
dW a

t (44)

η̂(yt −At, t) =
h0m0 + σ−2(yt −At)

ht
, (45)

η(0, 0) = m0, (46)

dvt = [ρvt − u(wt, at)]dt+ σγa
t (a,w)dW

a
t , (47)

vT = − exp
(1− ρ

r

)
exp(−λθrwT ), (48)

dyt =
(
ryt + η̂ + at − dt

)
dt+ σdW a

t , (49)

y0 = 0. (50)
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We define the controlled value function for fixed admissible action process at as

Ju(t, v, y, η̂) = Ea
t,T [

∫ T

t

e−ρ(s−t)e−λθdsds+ V p
T (yT − wT )|Fa

t ] (51)

and the value function of the control problem given (t, η̂, v, y) ∈ [0, T ]× R3 as

J(t, η̂, v, y) := sup
a(·)∈A

Ja(t, η̂, v, y). (52)

We next state our main theorem in this section and subsequently prove it in the subsection below.

Theorem 4.1 Suppose that the principal and the agent with an unknown quality term have the value functions

of Equation (44) and Equation (7), respectively; then a contract is implementable in the sense of Definition 2.1,

where both parties agree to recommend and give full effort for all times 0 ≤ t ≤ T .

4.1. Proof of Theorem 4.1

To prove Theorem 4.1, we guess an explicit solution for the value function in Equation (52) and verify our guess

subsequently. Next, we guess that for 0 ≤ t ≤ T the value function of the principal is a C1,2 function of the

form

J(t, y, v, η̂) =
eg(t,η̂)

v
exp(−λθry) (53)

and we verify its validity below. We further guess that, for the optimal action process a∗t ,

e−θw+θλa∗
t = k(t, η̂)v. (54)

Then, by Theorem 3.1, we have that

dpt = θλdvt, (55)

pt = θλEa

[ ∫ T

t

e−ρ(s−t)uds

]
, (56)

pt = θλ[1− e
∫ T
t

(ρ−k(s,η))ds]vt, (57)

φt(k) = 1− e
∫ T
t

(ρ−k(s,η))ds. (58)

Furthermore, using our guess for the value function, we obviously have

Jy = −λθrJ,

Jyy = λ2θ2r2J,

Jv = −1

v
J,

Jyv = λθr
1

v
J,

Jvv =
2

v2
J.
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Following our guess for the value function being in C1,2 , the HJB equation is of the form

ρJ − Jt =max
w,d,a

{
− exp(−λθd) + Jy[ry + η + a− w − d]

+ Jv[ρv + e−θw+λθa]

+
1

2
Jyyσ

2 +
1

2
Jvvσ

2γ2
t

+
1

2
Jηη

σ−2

ht
+ Jyη

1

ht

+ Jyvσ
2γt + Jvη

γt
ht

.

}
(59)

Next, we show that our guess of the value function necessitates that the principal advises full action, namely

a∗t ≡ M for 0 ≤ t ≤ T .

Lemma 4.2 The recommended action is a∗ = M , namely the right corner is optimal for the principal.

Proof By writing the first-order condition for wage w and action a from the HJB, we have the following pair

of equations:

−Jy + Jv[−θe−θw+λθa] +
1

2
Jvvσ

22γγw + Jyvσ
2γw + Jvη

γw
ht

= 0, (60)

Jy + Jv[λθe
−θw+λθa] +

1

2
Jaaσ

22γγa + Jyvσ
2γa + Jvη

γa
ht

= 0. (61)

Then, with our guess for the value function,

J = eg(t,η)
e−λθry

v
, (62)

Jy = −λθreg(t,η)
e−λθry

v
, (63)

we see that Jy is positive, since v is negative. By the relation above,

∂γ
∂w = −λ∂γ

∂a > −∂γ
∂a . Hence, by noting 0 < λ < 1 and by derivatives of the exponential function with respect

to a and w , the first-order condition for w binds, whereas the first-order condition for a does not bind. Thus,

we have either a = 0 or a = M as optimal actions, but for a = 0 to be optimal, the right derivative should be

less than or equal to 0 at a = 0, and this cannot be the case due to the first-order condition for a and w above.

Similarly, the right corner’s left derivative is positive whenever the first-order condition for w binds, and hence

optimal action a∗t = M for all t ∈ [0, T ] . 2

Using our guesses for the utility function and the value function and suppressing the arguments of the
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functions for simplicity below, we rewrite the HJB equation as follows:

ρJ − Jt =max
w,d

{
− e−λθd − λθrJ [ry + η +

log(kv)

λθ
+

log(λθreg(t,η))

λθ
− log(−v)

λθ
− ry]

− 1

v
J [ρv + kv] +

1

2
λ2θ2r2Jσ2 +

1

2

2

v2
σ2θ2λ2

(
k +

σ−2

ht
φ
)2
v2

1

2
Jηη

σ−2

ht
− λθrJη

1

ht

+ λθr
1

v
Jσ2λθ[k +

σ−2

ht
φ]v − 1

v
Jη

1

ht
λθv[k +

σ−2

ht
φ]

}
.

By canceling the terms and by the first-order condition on d , i.e. e−λθd = −rJ , we get

ρJ − Jt =

{
rJ − λθJ [η +

log(−k)

λθ
+

log(λθreg(t,η))

λθ
]

− J [ρ+ k] + σ2θ2λ2[k +
σ−2

ht
φ]2J

+
1

2
Jηη

σ−2

ht
− λθrJη

1

ht

+ λ2θ2σ2rJ [k +
σ−2

ht
φ]− λθ

1

ht
[k +

σ−2

ht
φ]Jη

}
. (64)

By our guess for the value function, we have

J =
eg(t,η)

v
e−λθry,

Jt = gtJ,

Jη = gηJ.

Hence, the HJB equation (64) reads as

ρ− gt =r − λθ

[
η +

log(−k)

λθ
+

log(λθr)

λθ
+

g(t, η)

λθ

]

− [ρ+ k] + σ2θ2λ2[k +
σ−2

ht
φ(k)]2

+
1

2
gηη

σ−2

ht
− λθrgη

1

ht

+ λ2θ2σ2r[k +
σ−2

ht
φ(k)]− λθ

1

ht
[k +

σ−2

ht
φ(k)]gη (65)

with the terminal condition g(T, η̂) = e2(
1−ρ
r ) for all η̂ ∈ R .
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For ease of notation, we introduce the following expressions.

K1(t, η̂) =− ρ+ r − λθη̂ − log(−k(t, η̂))− log(λθr)− ρ− k(t, η) (66)

+ σ2θ2λ2[k(t, η̂) +
σ−2

ht
φ(k(t, η̂))]2 + λ2θ2σ2r[k(t, η̂)] (67)

K2(t, η̂) =− λθr
1

ht
− λθ

1

ht
[k(t, η̂) +

σ−2

ht
φ(k(t, η̂))] (68)

K3(t) =
σ−1

ht
(69)

By the Feynman–Kac formula, the existence and uniqueness of the PDE above is guaranteed as

g(t, η̂) = Ea
t

[ ∫ T

t

e−(T−s)K1(s, η̂s)ds+ e−(T−t)e2
1−ρ
T |Fa

t

]
, (70)

under the action a such that η̂ is an Ito process driven by the equation

dη̂ = K2(t, η̂)dt+K3(t, η̂t)dW
a
t . (71)

Moreover, using our guesses for the value function and utility function, we rewrite the first order condition for
w as

λθrJ − 1

v
[−θkv]J +

1

2

2

v2
Jσ22θλv[k +

σ−2

ht
φ](−θ)2λ2kv (72)

+ λθr
1

v
Jσ2θλv[k +

σ−2

ht
φ] + gη

1

v
Jθ2λ2 kv

ht
= 0. (73)

Hence, by canceling v from the equation and dividing by J , Equation (72) reads as

λθr + θk − σ22θλ[k +
σ−2

ht
φ]θ2λ2k (74)

+ λθrσ2θλ[k +
σ−2

ht
φ] + gηθ

2λ2 k

ht
= 0. (75)

With Equation (65) and Equation (74), k(t, η̂) and g(t, η̂) are implicitly defined and can be found numerically.

4.2. Verification theorem

By the discussion above, we have the following converse relation. Our guess

J(t, y, v, η̂) =
eg(t,η̂)

v
exp(−λθry) (76)
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is a C1,2 function. It also satisfies the HJB equation (59)

ρJ − Jt =max
w,d,a

{
− exp(−λθd) + Jy[ry + η + a− w − d]

+ Jv[ρv + e−θw+λθa]

+
1

2
Jyyσ

2 +
1

2
Jvvσ

2γ2
t

+
1

2
Jηη

σ−2

ht
+ Jyη

1

ht

+ Jyvσ
2γt + Jvη

γt
ht

}
with boundary condition

J(T, yT , vT ) = −
exp2( 1−ρ

r )

vT
exp(−λθryT ). (77)

Using our guesses for the utility function, we also have by the discussion above for optimal action a∗ the

following:

e−θw+θλa∗
= k(t, η)v,

−λθw + λθa∗ = log(kv),

−λθw = log(kv)− λθa∗,

−w =
log kv

λθ
−M,

a∗ − w = M − w =
log(kv)

λθ
,

−e−λθd = λθrJ,

e−λθd = −r
eg(t,η̂)

v
e−λθry,

−λθd = log(rg(t, η̂))− log(−v)− λθry,

−d =
log(rj1)

λθ
− log(−v)

λθ
− ry.

Hence, for each fixed (t, y, v, η̂), the expression

max
w,d,a

{
− exp(−λθd) + Jy[ry + η + a− w − d]

+ Jv[ρv + e−θw+λθa]

+
1

2
Jyyσ

2 +
1

2
Jvvσ

2γ2
t

+
1

2
Jηη

σ−2

ht
+ Jyη

1

ht

+ Jyvσ
2γt + Jvη

γt
ht

}
(78)
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attains its maximum (a∗, w∗, d∗) at

a∗ = M, (79)

w∗ = M − log k(t, η̂a
∗
)v

λθ
, (80)

d∗ = yr − log(−v)

λθ
− log(r)

λθ
− g(t, η̂a

∗
)

λθ
, (81)

where the functions g(t, η̂) and k(t, η̂) are determined by Equation (74) and Equation (65). Hence, Equation

(76) is indeed the solution of the HJB equation (78) and we conclude the verification theorem.

5. Discussion and conclusion

In this paper, we have studied a principal–agent problem with moral hazard. Contrary to the mainstream,

where the principal is assumed to be risk-neutral, we have assumed that both the principal and the agent have

exponential utility as in Equation (4), and they are risk-averse with the same risk awareness level λ as in [20].

We also take an unknown endogenous learning term representing the unknown quality of the agent into account,

which is revealed as time passes. We see that both parties agree on a contract, where the agent gives full effort

from the beginning until the finite horizon T . Full effort of the agent in the optimal contract is also observed

in [13], where the authors assumed the principal to be risk-neutral. Hence, we see that the risk awareness

level of the principal does not play a role in the agent’s actual effort in the contract; only the agent’s utility is

determinant in that respect. The optimality of the right corner of the admissible action interval of the agent

as seen in Lemma 4.2 is due to the specific nature of the utility function chosen in Equation (4). Changing the

utility function of the agent would cause the arguments in Lemma 4.2 to not hold anymore. In that case, one

usually assumes that the optimal effort is in the interior of the effort interval. On the other hand, we see that

the payments to the agents in terms of wages and dividends are affected by posterior belief on the unknown

quality of the agent η̂ , as well as on the risk awareness λ of the principal, as seen in the Equations (79), (80),

and (81). However, we cannot conclude that there is a direct negative effect on the payment to the agent due to

the nonlinear nature of the parameters. We further note that since the uncertainty on the quality of the agent

decreases as seen in Equation (2), its effect on the dynamics of the problem decreases as time t passes.
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