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Abstract: In this paper, we develop a new formula for hyper-Fibonacci numbers F
[k]
n , wherein the coefficients (related

to Stirling numbers of the first kind) of the polynomial ingredient pk(n) are determined. As an application we investigate

the number of occurrences of positive integers among F
[k]
n and determine all the solutions in nonnegative integers x and

y to the Diophantine equation F
[k]
x = F

[ℓ]
y , where 0 ≤ k < ℓ ≤ 70. Moreover, we prove that if ℓ is fixed, then F

[k]
x = F

[ℓ]
y

has finitely many effectively computable solutions in the nonnegative integers x , y , and k ≤ ℓ .
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1. Introduction and results

1.1. Hyper-Fibonacci numbers

Let {Fn} denote the sequence of Fibonacci numbers defined, as usual, by F0 = 0, F1 = 1, and Fn = Fn−1+Fn−2

for n ≥ 2. The hyper-Fibonacci numbers F
[k]
n were introduced by Dil and Mező [8] as follows. For k ≥ 0 and

n ≥ 0 the values F
[k]
n are arranged in an infinite matrix such that F

[k]
n is the entry of the k th row and nth

column, F
[0]
n = Fn , F

[k]
0 = 0, and further

F [k]
n = F

[k]
n−1 + F [k−1]

n , kn > 0.

Clearly, F
[k]
n gives the sum of the first n + 1 elements (from the 0th to the nth) of row k − 1, i.e. F

[k]
n =∑n

i=0 F
[k−1]
i (n ≥ 0, k ≥ 1). We note that [7] derived certain summatory identities valid for hyper-Fibonacci

array. A consequence of Proposition 2 of [8] is

F [k]
n =

n∑
j=1

(
k + n− j − 1

k − 1

)
Fj . (1)

Formula (1) motivated us to find a more informative and applicable expression for F
[k]
n . Particularly, we

were and we are still interested in the set S of all solutions to the equation F
[k]
x = F

[ℓ]
y in non-negative integers
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x, y, k , and ℓ . In this paper, we could determine a subset of S ; we have a conjecture on S , but we have been

unable to proof the conjecture. Our method is based on giving another explicit formula for hyper-Fibonacci

numbers (see Theorem 1), which eliminates the exponential ingredient Fn+2k and the polynomial part pk(n)

with coefficients determined explicitly. Hence, this is one of the main results of this work.

Theorem 1 For nonnegative integers n and k ,

F [k]
n = Fn+2k − pk(n) (2)

holds, where pk(x) is a rational polynomial given by

pk(x) =
k−1∑
t=1

 t∑
j=1

(−1)t−j

(k − j)!

[
k − j

k − t

](j−1∑
i=0

(
k

i

)
Fj−i

)xk−t + F2k. (3)

In the theorem above
[
k−j
k−t

]
is a Stirling number of the first kind. The first few polynomials are

p0(x) = 0,

p1(x) = 1,

p2(x) = x+ 3,

p3(x) =
x2 + 7x+ 16

2
,

p4(x) =
x3 + 12x2 + 59x+ 126

6
,

p5(x) =
x4 + 18x3 + 143x2 + 630x+ 1320

24
,

p6(x) =
x5 + 25x4 + 285x3 + 1955x2 + 8294x+ 17280

120
.

Theorem 1 specifies

F [1]
n = Fn+2 − 1, F [2]

n = Fn+4 − (n+ 3), F [3]
n = Fn+6 −

n2 + 7n+ 16

2
,

and so on.

The properties of the polynomials pk(x) are challenging themselves and furthermore they have importance

in the investigation of the problem of the number of occurrences.

First consider the sum of the coefficients. Replace n by 1 in (2), which together with F
[k]
1 = 1 admits

the following:

Corollary 2 Let k be a nonnegative integer. Then pk(1) = F2k+1 − 1.

From Corollary 2 we can simply conclude

pk(1)− F2k = F2k−1 − 1 < F2k. (4)

The sign of the coefficients of pk(x) is described by:
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Theorem 3 For k ≥ 1 the coefficients of pk(x) are positive.

Combining Theorem 3 and the fact that the sum of all but the constant term F2k of the coefficients of

pk(x) is smaller then the constant term itself (see (4)), it implies the following:

Corollary 4 Letting k be a nonnegative integer, the height of the polynomial pk(x) is F2k .

We have not been able to prove it and therefore we state the following property as:

Conjecture 1 Let k ≥ 2 . The coefficients of pk(x) are strictly decreasing starting from the constant term.

For nonnegative k and n , Belbachir and Belkhir [4] proved the formula

F [k]
n = Fn+2k −

k−1∑
t=0

(
n− 1 + 2k − t

t

)
, (5)

similar to (2) (see Theorem 10 in [4]), but in (2) the coefficients of the polynomial pk(x) are explicit, which offers

a chance for further examinations, for instance in case of the Diophantine equation F
[k]
x = F

[ℓ]
y (see Subsection

1.3). We think that our approach will be useful in studying analogous questions related to hyper-Lucas, hyper-

Horadam, etc. sequences as well.

Let k be fixed. Then combining the generating function

∞∑
n=0

F [k]
n tn =

t

(1− t− t2)(1− t)k

of the k th row of the hyper-Fibonacci array (given in Proposition 14, [8]) and (2), we find the explicit formula

F [k]
n = ckγ

n − dkγ̄
n − pk(n) · 1n, (6)

where γ = (1 +
√
5)/2, γ̄ = (1 −

√
5)/2, and further ck = γ2k/

√
5, dk = γ̄2k/

√
5. Indeed, the zeros of the

characteristic polynomial (x2 − x− 1)(x− 1)k of F
[k]
n are γ , γ̄ , and 1 (with multiplicity k ≥ 0 for the zero 1),

and further ckγ
n − dkγ̄

n = Fn+2k . The significance of Theorem 1 is in the explicit quantification of coefficients

of pk(n) by (3).

1.2. Generalized arithmetical arrays and triangles

In the literature there exist several constructions varying or extending the idea of hyper-Fibonacci numbers or

their rectangular shape arrangement (for instance, hyper-Lucas [3], hyper-Pell [1], hyper-Horadam numbers [2];

Fibonacci and Lucas Pascal triangles ([6]). Many properties can be examined by having common generalizations

of them. Therefore, we describe and compare two of them. It may facilitate the corresponding investigations

in the future.

A natural generalization of the hyper-Fibonacci numbers (to create a generalized arithmetical array) was

described by [8], where the leftmost column sequence {F [k]
0 } = {0} and the topmost row sequence {F [0]

n } = {Fn}
were replaced by two arbitrary sequences, {an} and {bn} , respectively. The output generated by the two

sequences is an infinite matrix

M = (Mk,n)k≥0,n≥0 (7)

with the property Mk,0 = ak , M0,n = bn , and Mk,n = Mk−1,n +Mk,n−1 if kn > 0.
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A similar approach in constructing a sort of generalized arithmetical triangle (in short GAT) was used

in [5] with {an} and {bn} , and additionally with A, B ∈ R . This GAT is structurally identical to Pascal’s

original triangle (he called his object an arithmetical triangle), and it also contains rows labeled by 0, 1, 2, . . .

such that the nth row possesses the elements
⟨
n
k

⟩
in the positions (say columns) k = 0, 1, . . . , n as follows.

Let
⟨
0
0

⟩
be arbitrary, denoted by Ω (since generally a0 ̸= b0 , and it has no influence on the triangle at

all), and for any positive integer n put⟨
n

0

⟩
= Anan and

⟨
n

n

⟩
= Bnbn, (8)

and further for n ≥ 2 and 1 ≤ k ≤ n− 1 let⟨
n

k

⟩
= B

⟨
n− 1

k − 1

⟩
+A

⟨
n− 1

k

⟩
.

Illustrating the GAT, for the first few rows we have

Ω
Aa1 Bb1

A2a2 AB(a1 + b1) B2b2
A3a3 A2B(a1 + a2 + b1) AB2(a1 + b1 + b2) B3b3

...
...

...
...

... ,

(9)

using our notation
⟨
2
1

⟩
= AB(a1 + b1),

⟨
3
1

⟩
= A2B(a1 + a2 + b1),

⟨
3
2

⟩
= AB2(a1 + b1 + b2), etc. Theorem 1 of

[5] admits a direct formula,⟨
n

k

⟩
= An−kBk

n−k∑
i=1

(
n− 1− i

k − 1

)
ai +

k∑
j=1

(
n− 1− j

n− k − 1

)
bj

 , (10)

if 1 ≤ k ≤ n− 1. (For k = 0 and k = n we have (8).) This GAT extends Ensley’s GAT [9], since here we allow

a0 ̸= b0 in the generator sequences; furthermore, we also vary the rule of addition by the parameters A and B .

Approaching the rectangular structure of Dil and Mező [8], observe that the infinite matrix

M(A,B) = (M
(A,B)
k,n )k≥0,n≥0 =



Ω Bb1 B2b2 B3b3 · · ·

Aa1 AB(a1 + b1) AB2(a1 + b1 + b2)
. . .

A2a2 A2B(a1 + a2 + b1)
. . .

A3a3
. . .

...


with M

(A,B)
k,0 = Akak , M

(A,B)
0,n = Bnbn , and M

(A,B)
k,n = AM

(A,B)
k−1,n + BM

(A,B)
k,n−1 , if kn > 0, and the triangular

shape GAT (9) with entries
⟨
n
k

⟩
differ only in their appearance. Indeed, apart from the geometrical display, the

identity

M
(A,B)
k,n =

⟨
k + n

n

⟩
(11)

transmits them to each other for k + n ≥ 1.

Assume now that A = B = 1. Then M(A,B) returns with (7), and apparently formulae (10) and (1) are

equivalent via (11).
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1.3. The number of occurrences and the equation F
[k]
x = F

[ℓ]
y

Obviously, to investigate the number of occurrences is equivalent to considering the Diophantine equation

F [k]
x = F [ℓ]

y (12)

in the nonnegative integers x , y , k , and ℓ . The explicit formula in Theorem 1 makes it possible to provide

an algorithm for the resolution of (12) if 0 ≤ k ≤ ℓ are given (see the last section). Note that apart from the

equality F
[0]
1 = 1 = F

[0]
2 the row sequences of the hyper-Fibonacci array are strictly monotone increasing, so

we may assume k < ℓ . Clearly, F
[k]
0 = 0 = F

[ℓ]
0 and F

[k]
1 = 1 = F

[ℓ]
1 are trivial solutions, but we even have

F
[0]
2 = 1 = F

[ℓ]
1 , and moreover by F

[k]
2 = k + 1

F [k]
x = F

[F [k]
x −1]

2 (13)

also holds. Varying k and ℓ , we conjecture that there exist only 12 nontrivial solutions to (12) given by the

following list.

Conjecture 2 Besides the trivial solutions given above, the equation

F [k]
x = F [ℓ]

y (14)

possesses only the solutions

(k, ℓ, x, y) = (0, 11, 14, 4), (0, 16, 16, 4), (0, 17, 55, 3), (1, 2, 4, 3), (1, 7, 12, 5), (1, 20, 11, 3),

(2, 8, 6, 3), (2, 11, 7, 3), (2, 33, 11, 3), (4, 6, 5, 4), (4, 12, 5, 3), (6, 12, 4, 3). (15)

Using the approach described in the last section we proved only:

Theorem 5 List (15) contains all nontrivial solution to (14) if 0 ≤ k < ℓ ≤ 70 .

We also proved:

Theorem 6 Given the positive integer ℓ , the equation F
[k]
x = F

[ℓ]
y has finitely many solutions in the nonnegative

integers x , y , and k ≤ ℓ , which are effectively computable.

For fixed k and ℓ there is a short but ineffective way, by the result of Schmidt and Schlickewei [11]

(Proposition 1), to show that the number of solutions of F
[k]
x = F

[ℓ]
y is finite. If k = 0 < ℓ , then the number of

zeros of the characteristic polynomials differ (see the explanation after (6)) and consequently the two sequences

are not related. Thus, the finiteness is obvious. If 0 < k < ℓ , then we are in a doubly related situation since

γ̄ = γ−1 , but neither system (1.11) of [11] nor system (1.12a) together with (1.12b) of [11] is solvable. It

provides again only finitely many solutions for our equation.

If β(t) denotes the number of occurrences of the nonnegative integer t in the set {F [k]
n } , we see that

β(0) = β(1) = ∞ , and furthermore Conjecture 2 together with (13) is equivalent to the conjecture

1 ≤ β(t) ≤ 4 for t ≥ 2.

Now we will prepare the proofs of the theorems.
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2. Auxiliary results

One way to introduce the unsigned Stirling numbers of the first kind is the polynomial

(
x

k

)
=

1

k!

k∑
ℓ=0

(−1)k−ℓ

[
k

ℓ

]
xℓ. (16)

Recall that
[
k
0

]
is 1 if k = 0, and 0 if k ≥ 1. An immediate consequence of (16) is:

Lemma 1
n∑

ℓ=1

(−1)n−ℓ

[
n

ℓ

]
=

{
0, if n ≥ 2;
1, if n = 1.

It is known that [
n

k

]
= (n− 1)

[
n− 1

k

]
+

[
n− 1

k − 1

]
holds for 1 ≤ k ≤ n− 1, and its successive application leads to:

Lemma 2 [
n

k

]
=

n−k∑
ℓ=0

(
n− 1

ℓ

)
ℓ!

[
n− 1− ℓ

k − 1

]
.

The next result can be found in [12].

Lemma 3 If 0 ≤ k ≤ n , then

n∑
ℓ=0

[
n

ℓ

](
ℓ

k

)
=

[
n+ 1

k + 1

]
, especially (with k = 0)

n∑
ℓ=0

[
n

ℓ

]
=

[
n+ 1

1

]
= n!.

Since the binomial coefficients also play an important role in this paper (see, for example, (3)), we need

the following lemmas. All of them are known, or easy to prove.

Lemma 4
k∑

ℓ=0

(−1)ℓ
(
n

ℓ

)
= (−1)k

(
n− 1

k

)
, (1 ≤ n, 0 ≤ k ≤ n).

Lemma 5
n∑

ℓ=0

(
n

ℓ

)
Fk−ℓ = Fn+k, (0 ≤ k, n).

Lemma 6 Let f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 . If 0 ≤ α ≤ n is an integer, then the coefficient of

xα in f(x− 1) is

n−α∑
ℓ=0

(−1)ℓ
(
α+ ℓ

α

)
aα+ℓ.
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The last auxiliary result is Lemma 5 in [10]:

Lemma 7 Let u0 be a positive integer and further recall that γ = (1 +
√
5)/2 and γ̄ = (1−

√
5)/2 . Put

δi = logγ

(
1 + (−1)i (|γ̄|/γ)u0

√
5

)
for i = 1, 2 , respectively, where logγ is the logarithm in base γ . Then for all integers u ≥ u0 the inequality

γu+δ1 ≤ Fu ≤ γu+δ2

holds.

In order to make the application of Lemma 7 more convenient, we shall suppose that u0 ≥ 6. Thus, we

have −1.68 < δ1 < δ2 < −1.66.

3. Proof of Theorems 1–3

3.1. Proof of Theorem 1

First we verify the statement for column 0 and row 0. Obviously, we obtain

F
[k]
0 = F2k − pk(0) = F2k − F2k = 0,

F [0]
n = Fn − p0(n) = Fn − 0 = Fn.

For k ≥ 1 and n ≥ 1 we check that F
[k]
n = Fn+2k − pk(n), F

[k]
n−1 = Fn−1+2k − pk(n − 1), and F

[k−1]
n =

Fn+2k−2 − pk−1(n) satisfy the defining rule F
[k]
n = F

[k]
n−1 + F

[k−1]
n of hyper-Fibonacci numbers. This is a

rather long computation; therefore, after the preparatory part, the verification is split into two parts (namely

Subsections 3.1.1 and 3.1.2).

Clearly,

Fn+2k − pk(n)︸ ︷︷ ︸
F

[k]
n

= Fn−1+2k − pk(n− 1)︸ ︷︷ ︸
F

[k]
n−1

+Fn+2k−2 − pk−1(n)︸ ︷︷ ︸
F

[k−1]
n

is equivalent to

pk(n− 1) = pk(n)− pk−1(n), (17)

and hence it is sufficient to prove (17). Note that for general n the values of the polynomials at n appearing

in (17) can be considered as polynomials of n . In the next step we check (17) for the constant terms.

3.1.1. The constant terms

Applying Lemma 6 with α = 0, the constant term of pk(n− 1), denoted by c0 , is

c0 = F2k +
k−1∑
t=1

 t∑
j=1

(−1)t−j

(k − j)!

[
k − j

k − t

](j−1∑
i=0

(
k

i

)
Fj−i

) (−1)k−t

= F2k +

k−1∑
j=1

(−1)k−j

(k − j)!

(
j−1∑
i=0

(
k

i

)
Fj−i

)(
k−j−1∑
t=0

[
k − j

k − j − t

])
.
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The equality above is based on a suitable rearrangement. By virtue of Lemma 3, the sum in the last brackets

is (k − j)! . Thus,

c0 = F2k +

k−1∑
j=1

(−1)k−j

(
j−1∑
i=0

(
k

i

)
Fj−i

)

= F2k +
k−1∑
j=1

Fj

(
k−1−j∑
i=0

(−1)k−j−i

(
k

i

))

= F2k −
k−1∑
j=1

Fj

(
k − 1

k − 1− j

)
= F2k − F2k−2

follows. At the beginning simply the coefficients of distinct Fibonacci numbers are collected. In the next two

steps we apply Lemma 4 and Lemma 5 consecutively. Since the constant term in pk(n) and pk−1(n) is F2k

and F2k−2 , respectively, the proof for the constant terms is ready.

3.1.2. The coefficients of nα

First suppose that α = k − 1. Obviously, the leading coefficients of pk(n) and pk(n − 1) coincide. One can

easily compute exactly this value by inserting t = 1 into (3), which provides the reciprocal of (k − 1)! .

In the sequel, assume that α is a positive integer at most k − 2. By Lemma 6, the coefficient of nα in

pk(n− 1), denoted by cα , is

cα =
k−α∑
t=1

(−1)k−α−t

(
k − t

α

) t∑
j=1

(−1)t−j

(k − j)!

[
k − j

k − t

](j−1∑
i=0

(
k

i

)
Fj−i

) .

Now we claim to eliminate the coefficient of Fs (1 ≤ s ≤ k − α) in cα . If we denote it by cα,s , we have

cα,s =
k−α−s∑
i=0

(−1)k−α−s−i

(
k − s− i

α

) i∑
j=0

(−1)i−j

(k − s− j)!

[
k − s− j

k − s− i

](
k

j

)
=

k−α−s∑
j=0

(−1)k−α−s−j

(k − s− j)!

(
k

j

)(k−s−j∑
i=α

[
k − s− j

i

](
i

α

))
.

Observe that Lemma 3 implies

k−s−j∑
i=α

[
k − s− j

i

](
i

α

)
=

[
k − s− j + 1

α+ 1

]
, (18)
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and the application of Lemma 2 for (18) and suitable rearrangements admit

cα,s =
k−α−s∑
j=0

(−1)k−α−s−j

(k − s− j)!

(
k

j

)(k−α−s−j∑
i=0

(
k − s− j

i

)
i!

[
k − s− j − i

α

])

=
k−α−s∑
i=0

k−α−s−i∑
j=0

(−1)k−α−s−j

(k − s− i− j)!

(
k

j

)[
k − s− i− j

α

]

=
k−α−s∑
i=0

1

(α+ i)!

[
α+ i

α

] k−α−s−i∑
j=0

(−1)k−α−s−j

(
k

j

)

=

k−α−s∑
i=0

(−1)i

(α+ i)!

[
α+ i

α

](
k − 1

k − α− s− i

)
.

Note that the last equality is implied by Lemma 4.

Now we show that the same amount linked to Fs in the coefficient ĉα of nα in pk(n)−pk−1(n) appears.

Clearly, this coefficient is

ĉα =

k−α∑
j=1

(−1)k−α−j

(k − j)!

[
k − j

α

](j−1∑
i=0

(
k

i

)
Fj−i

)

−
k−α−1∑
j=1

(−1)k−α−j−1

(k − j − 1)!

[
k − j − 1

α

](j−1∑
i=0

(
k − 1

i

)
Fj−i

)

=
k−α∑
j=1

(−1)k−α−j

(k − j)!

[
k − j

α

](j−1∑
i=0

(
k − 1

i

)
Fj−i

)
.

Rearranging the last sum by the Fibonacci numbers, a short calculation shows exactly cα,s belonging to Fs .

Hence, the proof of Theorem 1 is complete.

3.2. Proof of Theorem 3

It comes immediately from (5) and the fact that the coefficient of any possible monomial xτ in(
x− 1 + 2k − t

t

)
is positive for arbitrary 0 ≤ t ≤ k − 1.

4. The equation F
[k]
x = F

[ℓ]
y and proof of Theorems 5 and 6

4.1. Proof of Theorem 5

Apparently, with fixed 0 ≤ k < ℓ , we need to solve

F2k+x − pk(x) = F2ℓ+y − pℓ(y) (19)

in the nonnegative integers x ≥ 3 and y ≥ 3. Let us distinguish three cases, which are the basement of the

resolution of the equation. Recall that γ = (1 +
√
5)/2.
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Case 1. 2k + x = 2ℓ+ y .

This condition implies y = 2k − 2ℓ+ x . Thus, (19) leads to

pk(x) = pℓ(2k − 2ℓ+ x),

which is an equation only in the variable x .

Case 2. 2k + x < 2ℓ+ y .

First note that

0 < F2ℓ+y−2 ≤ F2ℓ+y − F2k+x = pℓ(y)− pk(x) ≤ pℓ(y) < cℓy
ℓ−1,

where cℓ is a suitable positive constant depending on the polynomial pℓ(y). Thus, Lemma 7 implies

γ2ℓ+y−2−1.68−logγ cℓ <
F2ℓ+y−2

cℓ
< yℓ−1, (20)

which leads to an upper bound y ≤ y0,ℓ .

Case 3. 2k + x > 2ℓ+ y .

Similarly to the previous case, we have

0 < F2k+x−2 ≤ F2k+x − F2ℓ+y = pk(x)− pℓ(y) ≤ pk(x) < cky
k−1,

with a suitable positive constant ck (depending on the polynomial pk(x)). Subsequently,

γ2k+x−2−1.68−logγ ck <
F2k+x−2

ck
< xk−1 (21)

implies x ≤ x0,k .

Case 1 may provide solutions in a direct manner. For Cases 2 and 3, if k and ℓ are both given, then the

determination of ck and cℓ works. Instead, we will use Corollary 4, since a general bound facilitates the work

in the range 0 ≤ k ≤ 70.

Assume x ≥ 3. Then

pk(x) < F2k(x
k−1 + · · ·+ x+ 1) = F2k

xk − 1

x− 1
< F2kx

k

holds. Hence, according to Lemma 7, we can slightly specify the estimations (20) and (21). Indeed,

γx−2.02 <
F2k+x−2

F2k
< xk,

and then
log γ

k
<

log x

x− 2.02
. (22)

Hence, x is bounded, and one has to verify only the x values in question. The worst case occurs for

k = 70, when x < 1008.1.
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4.2. Example: F
[4]
x = F

[6]
y

To illustrate the details of the procedure, we work them out for (k, ℓ) = (4, 6). Observe that the equation

F
[4]
x = F

[6]
y has no solution when x + 8 = y + 12. Indeed, looking at the list of the polynomials pk(x) after

Theorem 1, with x = y + 4 (y ≥ 0) we must verify

(y + 4)3 + 12(y + 4)2 + 59(y + 4) + 126

6
=

y5 + 25y4 + 285y3 + 1955y2 + 8294y + 17280

120
.

It simplifies the equation

0 =
(y2 + 10y + 41)(y + 6)(y + 5)(y + 4)

120
,

which has no nonnegative integer solution y .

Assume now, that x+ 8 < y + 12. Then, by (22), we need to check (19) for y < 51.1 and x < 55.1. It

provides only the nontrivial solution (x, y) = (5, 4).

The last case, when x + 8 > y + 12, is similar. Now x < 30.5 and consequently y < 26.5. This branch

has no contribution to the set of nontrivial solutions.

4.3. Proof of Theorem 6

A fixed ℓ entails finitely many k . Hence, we may assume that k < ℓ is also fixed. With a pair (k, ℓ), only

finitely many solutions is possible. The right-hand side of (22) is strictly decreasing; therefore,

log γ

ℓ
≤ log γ

k
<

log x

x− 2.02

provides an effective bound on x depending only on ℓ . Consequently, y is also bounded effectively. Clearly,

the proof is complete.
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