Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2018) 42: 1005 - 1017
(c) TÜBİTAK
doi:10.3906/mat-1706-41

On the monodromy of Milnor open books

Selma ALTINOK ${ }^{1}$, Mohan BHUPAL ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Hacettepe University, Ankara, Turkey
${ }^{1}$ Department of Mathematics, Faculty of Arts and Sciences, Middle East Technical University, Ankara, Turkey

| Received: 13.06.2017 \quad Accepted/Published Online: 21.09.2017 | - | Final Version: 08.05.2018 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

We present some techniques that can be used to factorize the monodromy of certain Milnor open books. We also describe a class of Milnor open books for which we can explicitly express the monodromy as a product of Dehn twists.

Key words: Canonical contact structures, surface singularities, Milnor open books, monodromy

1. Introduction

Let (X, x) be the germ of a normal complex analytic surface having a singularity at x. Assuming that the link M_{X} of (X, x) is a rational homology sphere, we can apply, without change, the construction in [1] to explicitly construct Milnor open books on M_{X}, which support the canonical contact structure. Although the action of the monodromy of the open book on a certain decomposition of the page was described in [1], a general method for explicitly presenting the monodromy as a product of Dehn twists was not given. Nevertheless, using the description therein, such a presentation for the monodromy of an open book decomposition supporting the canonical contact structure on the link of each type of simple singularity was given. In [10], by using a theorem of Bonatti and Paris [2], Yılmaz was able find a similar presentation of the monodromy of an open book decomposition supporting the canonical contact structure on the link of each type of quotient singularity. In that work, it should be noted that all the Milnor open books had pages of genus 1. In the present work, we present some techniques that, used in conjunction with the aforementioned result of Bonatti and Paris, allow one to explicitly present the monodromy of Milnor open books as products of Dehn twists for a wider class of examples. In particular, the pages are allowed to have genus greater than 1. These techniques are illustrated on certain Milnor open books on links of minimally elliptic singularities [5].

2. Milnor open book decompositions

In this section, for the purpose of fixing notation and giving conventions, we collect some background results on Milnor open book decompositions. For further background results and an extensive survey of the literature, the reader may refer to the notes of Popescu-Pampu [9].

Given an embedding of the normal complex analytic surface singularity germ (X, x) in $\left(\mathbb{C}^{N}, 0\right)$, the link of (X, x) is defined to be the 3 -manifold $M_{X}=X \cap S_{\epsilon}^{2 N-1}$ obtained by intersecting a sufficiently small Euclidean

[^0]sphere centered at the origin in \mathbb{C}^{N} with X. The complex hyperplane distribution $\xi_{X}=T M_{X} \cap J T M_{X}$, where J denotes the complex structure on \mathbb{C}^{N}, is called the canonical contact structure on the link M_{X}. It is known that ξ_{X} is independent of the embedding and ϵ for ϵ sufficiently small.

Suppose that $f:(X, x) \rightarrow(\mathbb{C}, 0)$ is a germ of a holomorphic function that defines an isolated singularity at x. Then the pair $N(f)=f^{-1}(0) \cap M_{X}, \theta(f)=\arg f: M_{X} \backslash N(f) \rightarrow S^{1}$ defines an open book decomposition $\mathcal{O B}(f)$ of M_{X}. Such open book decompositions of M_{X} are called Milnor open book decompositions. According to a theorem of Caubel et al. [3], each Milnor open book decomposition of M_{X} supports the canonical contact structure ξ_{X}.

Let $\pi: \tilde{X} \rightarrow X$ be a good resolution of X. This means that \tilde{X} is smooth, π is biholomorphic away from the exceptional divisor $E=\pi^{-1}(x)$, and E is a normal crossing divisor. The dual resolution graph $\Gamma=\Gamma(\pi)=(\mathcal{V}, \mathcal{E})$ of π is given as follows: the vertices $\mathcal{V}=\left\{A_{1}, \ldots, A_{r}\right\}$ of Γ are in one-to-one correspondence with the irreducible components $E_{1} \ldots, E_{r}$ of E; there is an edge $\left(A_{i}, A_{j}\right)\left(=\left(A_{j}, A_{i}\right)\right) \in \mathcal{E}$ for each transverse intersection between E_{i} and E_{j}; and each vertex A_{i} is decorated by a pair $\left(g_{i}, e_{i}\right)$, where g_{i} is the genus of E_{i} and $e_{i}=E_{i}^{2}$. The link M_{X} of $(X, 0)$ is diffeomorphic to the 3 -manifold $M(\Gamma)$ obtained by the plumbing construction. That is, associating to each vertex A_{i} the circle bundle $\pi_{i}: M_{i} \rightarrow S_{i}$ of Euler number e_{i} over a surface of genus g_{i}, the 3 -manifold $M(\Gamma)$ is obtained by plumbing the circle bundles π_{i} according to the edges of the graph Γ.

Note that the condition that M_{X} is a rational homology sphere implies that Γ is a tree and $g_{i}=0$ for all i. In this case, open book decompositions of $M_{X} \cong M(\Gamma)$ are determined up to isotopy by the topological type of the binding; see [4].

Let $f:(X, x) \rightarrow(\mathbb{C}, 0)$ be a germ of a holomorphic function that defines an isolated singularity at x and consider the decomposition of the divisor $(f \circ \pi)=(f \circ \pi)_{e}+(f \circ \pi)_{s} \in \operatorname{Div} \tilde{X}$ into its exceptional and strict parts. Here $(f \circ \pi)_{e}$ is supported on E and $\operatorname{dim}\left|(f \circ \pi)_{s}\right| \cap E<1$. Since, for each $i,(f \circ \pi) \cdot E_{i}=0$ and $(f \circ \pi)_{s} \cdot E_{i} \geq 0$, which is implied by positivity of intersections, it follows that $(f \circ \pi)_{e} \cdot E_{i} \leq 0$. Following Lipman [6], let \mathcal{E}^{+}denote the set of nonzero effective divisors $Y=\sum m_{i} E_{i}$ supported on E such that $Y \cdot E_{i} \leq 0$ for all i. Then $(f \circ \pi)_{e} \in \mathcal{E}^{+}$. On the other hand, even though each divisor $Y \in \mathcal{E}^{+}$may not arise in this way, any such divisor Y can be realized in this way by choosing a suitable analytic structure on the cone over M_{X}; see $[7,8]$.

Let $I(\Gamma)$ denote the intersection matrix of the dual resolution graph of π. Given $Y=\sum m_{i} E_{i} \in \mathcal{E}^{+}$, let $\underline{n}=\left(n_{1}, \ldots, n_{r}\right)$ be the r-tuple of nonnegative integers satisfying

$$
\begin{equation*}
I(\Gamma) \underline{m}^{t}=-\underline{n}^{t}, \tag{2.1}
\end{equation*}
$$

where $\underline{m}=\left(m_{1}, \ldots, m_{r}\right)$. Then any Milnor open book corresponding to the divisor $Y=\sum m_{i} E_{i}$ will have binding consisting of n_{i} fibers of the circle bundle $\pi_{i}: M_{i} \rightarrow S_{i}$ for each i. For rational homology sphere links, by uniqueness, it follows that there is precisely one such Milnor open book, up to isotopy, which we will denote by $\mathcal{O B}(\underline{m})$. A description of $\mathcal{O B}(\underline{m})$ in the setting we are considering is provided in [1]. To fix the notation, we provide some details of the construction below.

For each vertex A_{i} of Γ take a copy of S^{2} with $v_{i}+n_{i}$ small disks removed, where v_{i} is the valency of A_{i}. Call this surface \bar{S}_{i} and label the boundary components of $\bar{S}_{i}, \gamma_{1}^{i}, \ldots \gamma_{v_{i}+n_{i}}^{i}$. Pick a base point $q_{i} \in \bar{S}_{i}$ and, for $k=1, \ldots, v_{i}+n_{i}$, choose a loop α_{k}^{i}, based at q_{i}, having winding number $\delta_{k l}$ around the boundary

Figure 1. The surface \bar{S}_{i}.
component γ_{l}^{i}; see Figure 1. Here $\delta_{k l}$ denotes the Kronecker delta function. Now let $p_{i}: F_{i} \rightarrow \bar{S}_{i}$ denote the degree m_{i} regular covering associated to the monodromy representation $\rho_{i}: \pi_{1}\left(\bar{S}_{i}, q_{i}\right) \rightarrow \mathbb{Z} / m_{i} \mathbb{Z}$ given by $\rho_{i}\left(\left[\alpha_{k}^{i}\right]\right)=-\mu_{k}+m_{i} \mathbb{Z}$, where

$$
\mu_{k}= \begin{cases}m_{i_{k}} & \text { if } 1 \leq k \leq v_{i} \tag{2.2}\\ 1 & \text { if } k>v_{i}\end{cases}
$$

Here $i_{1}, \ldots, i_{v_{i}}$ denote the indices of the vertices that are connected to A_{i} by an edge.
As explained in [1], a page Σ of $\mathcal{O B}(\underline{m})$ is given by gluing together the possibly disconnected surfaces F_{i}, for $i=1, \ldots, r$; an annulus U_{t}^{i}, for $i=1, \ldots, r$ and $t=1, \ldots, n_{i}$, for each binding component of $\mathcal{O B}(\underline{m})$; and a collection of annuli $U_{l}^{i, j}, l=1, \ldots,\left(m_{i}, m_{j}\right)$ for each pair (i, j) with $1 \leq i<j \leq r \operatorname{such}$ that $\left(A_{i}, A_{j}\right) \in \mathcal{E}$. We recall here the action of the monodromy ϕ of $\mathcal{O B}(\underline{m})$ restricted to the surfaces F_{i}. Note that there is a canonical $\mathbb{Z} / m_{i} \mathbb{Z}$-action on each fiber of $p_{i}: F_{i} \rightarrow \bar{S}_{i}$. For $x \in F_{i}, \phi(x)$ is defined to be the image of x under the action of $1+m_{i} \mathbb{Z}$.

We close this section by quoting the following theorem of Bonatti and Paris [2], which will play an important role in the computation of the monodromy of Milnor open books.

Theorem 1 Let Σ be a surface of genus 1 with nonempty boundary. If f and g are elements of the mapping class group $\operatorname{Mod}(\Sigma)$ of Σ such that $f^{m}=g^{m}$ for some $m \geq 1$, then f is conjugate to g.

3. Mondromy of Milnor open books

In this section, we present some techniques that can be used to factorize the monodromy of certain Milnor open books. In particular, in Theorem 3, we give a class of dual resolution graphs Γ and divisors $Y=\sum m_{i} E_{i}$ in \mathcal{E}^{+}for which we can explicitly write the monodromy of $\mathcal{O B}(\underline{m})$ as a product of Dehn twists.

We begin with a definition.

Definition 2 Let $\Gamma=(\mathcal{V}, \mathcal{E})$ be a dual resolution graph and \underline{m} be an r-tuple of positive integers corresponding to a divisor $Y=\sum m_{i} E_{i} \in \mathcal{E}^{+}$. Let \underline{n} be given by (2.1). A vertex A_{i} of Γ is called a rupture vertex of the pair (Γ, \underline{m}) if $n_{i}+v_{i} \geq 3$. A rupture vertex A_{i} is called simple if $n_{i}>0$ or $\operatorname{gcd}\left(\left\{m_{i}\right\} \cup\left\{m_{j} \mid\left(A_{i}, A_{j}\right) \in \mathcal{E}\right\}\right)=1$,
and is called good if, in addition, $m_{i}=2$ or $m_{i}>2$ and the following conditions are satisfied: $m_{i} \nmid m_{j}$ for all j such that $\left(A_{i}, A_{j}\right) \in \mathcal{E} ; v_{i}+n_{i}=g_{i}+2$, where

$$
g_{i}=1+\frac{\left(v_{i}+n_{i}-2\right) m_{i}-\sum_{\left(A_{i}, A_{j}\right) \in \mathcal{E}}\left(m_{i}, m_{j}\right)-n_{i}}{2}
$$

is the genus of F_{i}; and there is a filtration $I_{1} \subset I_{2} \subset \cdots \subset I_{v_{i}+n_{i}-3}$ of the set $\left\{1,2, \ldots, v_{i}+n_{i}\right\}$ such that $\left|I_{j}\right|=j+1$ and $\left(m_{i}, \sum_{k \in I_{j}} \mu_{k}\right)=1$ for every j, where μ_{k} is given by (2.2).

Our main result is the following theorem.

Theorem 3 Let Γ be a dual resolution graph corresponding a normal surface singularity with rational homology sphere link and $Y=\sum m_{i} E_{i}$ be an element of \mathcal{E}^{+}. Suppose that each rupture vertex of (Γ, \underline{m}) is good. Suppose further that each path Γ_{t} in Γ that connects a pair of rupture vertices and does not contain any rupture vertex in its interior satifies either
(i) $\left(m_{i}, m_{j}\right)=1$ for some pair A_{i}, A_{j} of adjacent vertices of Γ_{t};
(ii) $\left(m_{i}, m_{j}\right)=2$ for some pair A_{i}, A_{j} of adjacent vertices of Γ_{t}, and Γ_{t} connects rupture vertices A_{k} and A_{l} with $m_{k}=m_{l}=2$.

Then there is an algorithm to present the monondromy of $\mathcal{O B}(\underline{m})$ explicitly in terms of Dehn twists.

Our proof of Theorem 3 rests on two observations. The first observation is that the monodromy ϕ of $\mathcal{O B}(\underline{m})$ can be decomposed along the collection of annuli in a page Σ of the open book $\mathcal{O B}(\underline{m})$ that correspond to the paths Γ_{t} in Γ, between rupture vertices, that satisfy condition (i) of the theorem. Presently, we explain this.

To begin with, note that if $\left(A_{i}, A_{j}\right)$ is an edge of Γ with $\left(m_{i}, m_{j}\right)=1$, then the edge $\left(A_{i}, A_{j}\right)$ corresponds to a single boundary component, which we shall denote by $c_{i, j}$, of F_{i}. Observe, however, that the monodromy ϕ of $\mathcal{O B}(\underline{m})$ does not fix the boundary component $c_{i, j}$ pointwise; rather, it rotates $c_{i, j}$ by $a_{i, j} / m_{i}$ of a full turn, where $0 \leq a_{i, j}<m_{i}$ satisfies $a_{i, j} m_{j} \equiv-1\left(\bmod m_{i}\right)$. (Note that by a "rotation of a boundary component by a / b of a full turn" we simply mean that, for some identification of an invariant neighborhood of the boundary component with $[0,1) \times \mathbb{R} / 2 \pi \mathbb{Z}$, the map in question corresponds to the diffeomorphism $(t, \theta) \mapsto(t, \theta+2 a \pi / b)$.) To see this, observe from the definition of the covering $p_{i}: F_{i} \rightarrow \bar{S}_{i}$ that a rotation of $c_{i, j}$ by $1 / m_{i}$ of a full turn (which is obtained by a lifting of the circle α_{k}^{i} in the base to the covering, where $i_{k}=j$) corresponds to moving in the negative direction of the fibers m_{j} sheets (from the definition of the monodromy representation). (Note that we orient $c_{i, j}$ by the orientation coming from α_{k}^{i}, where $i_{k}=j$; this is the negative of the usual boundary orientation.) Since the restriction of the modromy $\left.\phi\right|_{F_{i}}$ is given by mapping the point $x \in F_{i}$ to the image of x under the action of $1+m_{i} \mathbb{Z}$, which corresponds to moving in the positive direction of the fibers 1 sheet, it follows that ϕ corresponds to an a / m_{i}-turn about $c_{i, j}$, where $a\left(m_{j} / m_{i}\right)=\left[\left(m_{i}-1\right) / m_{i}\right]+n$ for some $n \in \mathbb{Z}$ and $0 \leq a<m_{i}$. The assertion follows.

We now give a convenient formula for the twist induced by the monodromy in an annulus in the page Σ if it corresponds to a sequence of edges.

Lemma 4 Let A and A^{\prime} be two vertices of Γ. Suppose that, after relabeling the vertices, if necessary, there is a path $A=A_{1}, A_{2}, \ldots, A_{l}=A^{\prime}$ such that $v_{i}+n_{i} \leq 2$ for $i=2, \ldots, l-1$ and $\left(m_{1}, m_{2}\right)=1$. Then the monodromy ϕ of $\mathcal{O B}(\underline{m})$ twists the annulus $U^{1, l}$ connecting F_{1} to F_{l} by

$$
\begin{equation*}
1-\frac{a_{1,2}}{m_{1}}-\frac{a_{l, l-1}}{m_{l}}+\#\left\{m_{i} \mid 1<i<l, m_{i}=1\right\} \tag{3.1}
\end{equation*}
$$

full twists relative to the ends, where $0 \leq a_{i, j}<m_{i}$ satisfies $a_{i, j} m_{j} \equiv-1\left(\bmod m_{i}\right)$.
Proof Note that $v_{i}+n_{i} \leq 2$ for $2 \leq i \leq l-1$ implies that for each i in this range $v_{i}=2$ and $n_{i}=0$. We thus have $e_{i} m_{i}=m_{i-1}+m_{i+1}$ for $2 \leq i \leq l-1$. Since $\left(m_{1}, m_{2}\right)=1$, it follows that $\left(m_{i}, m_{i+1}\right)=1$ for all $1 \leq i \leq l-1$. Hence, there is precisely one annulus connecting F_{1} to F_{l}. By the discussion in [1], the monodromy twists this annulus by $\sum_{i=1}^{l-1} 1 / m_{i} m_{i+1}$ full twists relative to the ends. It suffices thus to show that the value of (3.1) is equal to $\sum_{i=1}^{l-1} 1 / m_{i} m_{i+1}$. We will show this by induction on the number of vertices $l \geq 2$ in the path joining A and A^{\prime}.

First suppose that $l=2$. Since, by definition, $a_{2,1} m_{1} \equiv-1\left(\bmod m_{2}\right)$ with $0 \leq a_{2,1}<m_{2}$, there exists an integer $k \geq 1$ such that

$$
a_{2,1} m_{1}=k m_{2}-1
$$

Similarly, there exists an integer $t \geq 1$ such that

$$
a_{1,2} m_{2}=t m_{1}-1
$$

Multiplying these two expressions together and rearranging gives

$$
a_{2,1} m_{1}+a_{1,2} m_{2}=h m_{1} m_{2}-1
$$

where $h=k t-a_{2,1} a_{1,2}$. The result will follow once we show that $h=1$.
Clearly $h \geq 1$. To see that we also have $h \leq 1$, note that, since $a_{2,1}<m_{2}, a_{2,1} m_{1} \leq m_{1} m_{2}-1$. Similarly, $a_{1,2} m_{2} \leq m_{1} m_{2}-1$. It thus follows that

$$
h m_{1} m_{2}-1=a_{2,1} m_{1}+a_{1,2} m_{2} \leq 2 m_{1} m_{2}-2
$$

and hence $h \leq 1$.
We now check the induction step. Let $k \geq 2$ and suppose that the result is true for all $l \leq k$. Consider the case $l=k+1$. We note that

$$
\begin{aligned}
1-\frac{a_{1,2}}{m_{1}}-\frac{a_{k+1, k}}{m_{k+1}}+\#\left\{m_{i} \mid 1<i<k+1, m_{i}=1\right\}= & 1-\frac{a_{1,2}}{m_{1}}-\frac{a_{k, k-1}}{m_{k}}+\#\left\{m_{i} \mid 1<i<k, m_{i}=1\right\} \\
& +\left(\frac{a_{k, k-1}}{m_{k}}+\frac{a_{k, k+1}}{m_{k}}-1+\delta_{k}\right)+\left(1-\frac{a_{k, k+1}}{m_{k}}-\frac{a_{k+1, k}}{m_{k+1}}\right)
\end{aligned}
$$

where

$$
\delta_{k}= \begin{cases}1 & \text { if } m_{k}=1 \\ 0 & \text { if } m_{k} \neq 1\end{cases}
$$

By the induction hypothesis

$$
1-\frac{a_{1,2}}{m_{1}}-\frac{a_{k, k-1}}{m_{k}}+\#\left\{m_{i} \mid 1<i<k, m_{i}=1\right\}=\sum_{i=1}^{k-1} \frac{1}{m_{i} m_{i+1}}
$$

and

$$
1-\frac{a_{k, k+1}}{m_{k}}-\frac{a_{k+1, k}}{m_{k+1}}=\frac{1}{m_{k} m_{k+1}}
$$

Hence, it suffices to show that

$$
\begin{equation*}
\frac{a_{k, k-1}}{m_{k}}+\frac{a_{k, k+1}}{m_{k}}-1+\delta_{k}=0 \tag{3.2}
\end{equation*}
$$

Note that (3.2) is clear if $m_{k}=1$ and hence assume that $m_{k} \neq 1$. Now

$$
\begin{aligned}
& a_{k, k-1} m_{k-1}=x m_{k}-1 \\
& a_{k, k+1} m_{k+1}=y m_{k}-1
\end{aligned}
$$

for some integers $x, y \geq 1$. Also,

$$
e_{k} m_{k}=m_{k-1}+m_{k+1}
$$

Hence,

$$
\left(a_{k, k+1}+a_{k, k-1}\right) m_{k+1}=\left(y-x+a_{k, k-1} e_{k}\right) m_{k}
$$

Since $\left(m_{k}, m_{k+1}\right)=1$,

$$
a_{k, k+1}+a_{k, k-1}=t m_{k}
$$

for some $t \geq 0$, and thus it suffices to check that $t=1$. The latter follows immediately from the fact that $0 \leq a_{k, j}<m_{k}$ for $j=k-1, k+1$.

Now note that, under the hypotheses of Lemma 4 , if $m_{i} \neq 1$ for $i=1$ and l, the monodromy ϕ twists the annulus connecting F_{1} and F_{l} by

$$
1-\frac{a_{1,2}}{m_{1}}-\frac{a_{l, l-1}}{m_{l}}+N=\left(1-\frac{a_{1,2}}{m_{1}}\right)+(N-1)+\left(1-\frac{a_{l, l-1}}{m_{l}}\right)
$$

full twists relative to the ends, where $N=\#\left\{m_{i} \mid 1<i<l, m_{i}=1\right\}$. Also notice that the monodromy restricted to F_{1} followed by a twist of $1-\frac{a_{1,2}}{m_{1}}$ along the boundary component of F_{1} connected to $U^{1, l}$ fixes that boundary component of F_{1}. Similarly, the monodromy restricted to F_{l} followed by a twist of $1-\frac{a_{l, l-1}}{m_{l}}$ along the boundary component of F_{l} connected to $U^{1, l}$ fixes the corresponding boundary component of F_{l}. This allows one to cut along the cylinder $U^{1, l}$, putting the $N-1$ twists to one side of the cut; see Figure 2.

If $m_{1}=1$ and $m_{l} \neq 1$, then $a_{1,2}=0$ and ϕ twists the annulus connecting F_{1} and F_{l} by

$$
\left(1-\frac{a_{l, l-1}}{m_{l}}\right)+N
$$

full twists relative to the ends. Again this allows one to cut along the cylinder $U^{1, l}$. The situation is illustrated in Figure 3. The situation is similar if $m_{l}=1$.

Figure 2. The action of the monodromy on the cylinder connecting F_{1} to F_{l} if $m_{i} \neq 1$ for $i=1$ and l.

Figure 3. The action of the monodromy on the cylinder connecting F_{1} to F_{l} if $m_{1}=1$ and $m_{l} \neq 1$.

The second observation concerns the possibility of decomposing the monodromy ϕ along some closed curve in a piece F_{i} of the page Σ corresponding to a simple rupture vertex A_{i}. For this, suppose that $v_{i}+n_{i} \geq 4$ and let I be any subset of $\left\{1,2, \ldots, v_{i}+n_{i}\right\}$ of size $2 \leq|I| \leq v_{i}+n_{i}-2$. Let α_{I} be a loop in S_{i} based at q_{i} that has winding number -1 around γ_{j}^{i} if $j \in I$ and winding number 0 around γ_{j}^{i} otherwise (see Figure 4). Then, since α_{I} is homotopic to the product of, possibly, conjugates of the loops $\overline{\gamma_{k}^{i}}, k \in I$, in some order,

$$
\rho\left(\left[\alpha_{I}\right]\right)=\sum_{k \in I} \mu_{k}+m_{i} \mathbb{Z}
$$

where μ_{k} is given by (2.2). Here $\overline{\gamma_{k}^{i}}$ denotes the curve γ_{k}^{i} with the orientation reversed. Thus, in F_{i}, the preimage $p_{i}^{-1}\left(\alpha_{I}\right)$ will consist of $\left(m_{i}, \sum_{k \in I} \mu_{k}\right)$ components, which are cyclically permuted by the restriction of the monodromy $\left.\phi\right|_{F_{i}}$. In particular, if $\left(m_{i}, \sum_{k \in I} \mu_{k}\right)=1$, then F_{i} will necessarily be connected and $p_{i}^{-1}\left(\alpha_{I}\right)$ will consist of 1 component.

Figure 4. The surface \bar{S}_{i} and a curve α_{I}. In the drawing, $I=\{1,3,4\}$.

Figure 5. The action of the monodromy on the cylinder U_{I}.
Assume now that ($m_{i}, \sum_{k \in I} \mu_{k}$) and let U_{I} denote a closed regular neighborhood of $p_{i}^{-1}\left(\alpha_{I}\right)$. Then the closure $\overline{F_{i} \backslash U_{I}}$ will consist of two connected components $F_{i}^{\prime}, F_{i}^{\prime \prime}$ whose genera may be computed using the Riemann-Hurwitz formula. For definiteness, let F_{i}^{\prime} denote the component of $\overline{F_{i} \backslash U_{I}}$ that contains the preimages of the boundary curves $\alpha_{k}^{i}, k \in I$. Let c_{I}^{\prime} (resp. $c_{I}^{\prime \prime}$) denote $\partial F_{i}^{\prime} \cap U_{I}$ (resp. $\partial F_{i}^{\prime \prime} \cap U_{I}$). Note that, as we observed before, the restriction of the monodromy ϕ to F_{i}^{\prime} rotates c_{I}^{\prime} by a_{I} / m_{i} of a full turn, where $0 \leq a_{I}<m_{i}$ satisfies $a_{I} \sum_{k \in I} \mu_{k} \equiv 1\left(\bmod m_{i}\right)$. Thus, the restriction of the monodromy ϕ to the cylinder U_{I} can be decomposed as indicated in Figure 5. Note, in particular, that the monodromy restricted to F_{i}^{\prime} followed by a $\left(-a_{I} / m_{i}\right)$-twist along c_{I}^{\prime} fixes the boundary component c_{I}^{\prime} of F_{i}^{\prime}. Similarly, the monodromy restricted to $F_{i}^{\prime \prime}$ followed by an a_{I} / m_{i}-twist along $c_{I}^{\prime \prime}$ fixes the boundary component $c_{I}^{\prime \prime}$ of $F_{i}^{\prime \prime}$.

With these observations in hand, we now prove Theorem 3.
Proof [Proof of Theorem 3] First decompose the monodromy ϕ along meridian circles in the annuli in Σ corresponding to the paths Γ_{t} in Γ, between rupture vertices, that satisfy (i) of the theorem, as in the first observation above.

Next consider one factor ϕ_{ν} of the decomposition of the monodromy considered above and suppose that the part F_{i} of the page Σ corresponding to the rupture vertex A_{i} is in the domain of ϕ_{ν}. We now decompose ϕ_{ν} along certain curves in F_{i}. For this there are two cases to consider. Suppose first that $m_{i}=2$. Letting $\mu_{k}, 1 \leq k \leq v_{i}+n_{i}$ be defined by (2.2), note that $\left|\left\{k \mid \mu_{k} \equiv 1(\bmod 2)\right\}\right|$ is nonzero and even since A_{i} is simple. Assume, after relabeling the μ_{k}, if necessary, that $\mu_{1} \equiv \mu_{2} \equiv \cdots \equiv \mu_{2 l} \equiv 1(\bmod 2)$ and $\mu_{2 l+1} \equiv \mu_{2 l+2} \equiv \cdots \equiv \mu_{v_{i}+n_{i}} \equiv 0(\bmod 2)$. Consider the filtration of the set $\left\{1,2, \ldots, v_{i}+n_{i}\right\}$ given by $I_{k}=\{2,3, \ldots, k+2\}$ for $1 \leq k \leq v_{i}+n_{i}-3$ if $l=1$, and

$$
I_{k}= \begin{cases}\{2,3, \ldots, 2 k+2\} & \text { if } 1 \leq k \leq l-2 \\ \{2,3, \ldots, l+k+1\} & \text { if } l-1 \leq k \leq v_{i}+n_{i}-l-2\end{cases}
$$

if $l>1$. Note that $\left(m_{i}, \sum_{s \in I_{k}} \mu_{s}\right)=1$ for each k. Thus, $p_{i}^{-1}\left(\alpha_{I_{k}}\right)$ has a single component for each k. The second observation above shows how to decompose the monodromy along the curves $p_{i}^{-1}\left(\alpha_{I_{k}}\right)$. Note that, after cutting along the curves $p_{i}^{-1}\left(\alpha_{I_{k}}\right)$, each piece of F_{i} has genus at most 1 and the pieces corresponding to edges $\left(A_{i}, A_{i_{k}}\right)$ with $\left(m_{i}, m_{i_{k}}\right)=2$ have genus 0.

Now suppose that $m_{i}>2$. Then, by assumption, there is a filtration $I_{1} \subset I_{2} \subset \cdots \subset I_{v_{i}+n_{i}-3}$ of the set $\left\{1,2, \ldots, v_{i}+n_{i}\right\}$ such that $\left|I_{k}\right|=k+1$ and $\left(m_{i}, \sum_{s \in I_{k}} \mu_{s}\right)=1$ for all k.
Claim. Each piece of F_{i} cut out by the curves $p_{i}^{-1}\left(\alpha_{I_{k}}\right)$ has genus 1 .
Proof of Claim. After capping off the boundary components, the restriction of p_{i} to each piece of F_{i} corresponds
to an m_{i}-sheeted branched covering of a sphere branched over three values given by a group action $G_{\tau}: S_{\tau} \rightarrow S_{\tau}$. Fix one such covering $p_{\tau}: S_{\tau} \rightarrow S_{\tau} / G_{\tau}$ and let x_{1}, x_{2}, x_{3} denote three fixed points of G_{τ} that are inequivalent under the group action. Let s_{i} denote the order of the stabilizer of x_{i} in G_{τ} for $1 \leq i \leq 3$. Then the Riemann-Hurwitz formula can be written as

$$
\begin{equation*}
\frac{2 \sigma_{\tau}-2}{\left|G_{\tau}\right|}=-2+\sum_{j=1}^{3}\left(1-\frac{1}{s_{j}}\right), \tag{3.3}
\end{equation*}
$$

where σ_{τ} denotes the genus of S_{τ}. We will show that $\sigma_{\tau}=1$.
We first check that $\sigma_{\tau} \geq 1$. Suppose for a contradiction that $\sigma_{\tau}<1$. It follows that (s_{1}, s_{2}, s_{3}) is either equal to $(2,2, s)$ for $s \geq 2$ or $(2,3, s)$ for $s=3,4$ or 5 . Since $p_{i}^{-1}\left(\alpha_{I_{k}}\right)$ is connected for each k, it follows that $s_{j}=\left|G_{\tau}\right|$ for at least one j. Since s_{1}, s_{2}, and s_{3} must divide $\left|G_{\tau}\right|$, this immediately rules out the case $\left(s_{1}, s_{2}, s_{3}\right)=(2,3, s)$ for $s=3,4$, or 5 . In case $\left(s_{1}, s_{2}, s_{3}\right)=(2,2, s)$ for $s \geq 2$, from (3.3) we have

$$
\left|G_{\nu}\right|=\frac{-2}{1-\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{s}\right)}=2 s .
$$

Hence s_{1}, s_{2}, s_{3} are all different from $\left|G_{\tau}\right|$, a contradiction. Thus, $\sigma_{\tau} \geq 1$.
Since, by assumption, the genus of F_{i} is equal to $v_{i}+n_{i}-2$ and the filtration $\left\{I_{k}\right\}$ cuts F_{i} into exactly $v_{i}+n_{i}-2$ pieces, the genus of each piece must be 1 .

Proceeding in this way for each factor ϕ_{ν} of the decomposition of the monodromy, we see that the page Σ will break up into a finite number of pieces, each with genus at most 1, and the monodromy will restrict to a periodic mapping class for each piece. These can be described explicitly in terms of Dehn twists with the help of Bonati and Paris' theorem and the results can be pieced together giving the conclusion.

4. Examples

We illustrate the use of Theorem 3 to compute the monodromy of Milnor open books with three examples from the list of weighted dual graphs for minimally elliptic singularities in [5]. For simplicity, if c is a simple closed curve in a surface, we denote a right-handed (resp. left-handed) Dehn twist about c by the c (resp. c^{-1}).

Example 5 Consider the entry $A_{n, * *, o}+E_{7, o}$ in Table 2 in [5] with $n=1$ and weights $A_{*} \cdot A_{*}$ given by $-2,-2$. This corresponds to the weighted dual graph

The weights are the numbers without parentheses and the numbers in parentheses are the coefficients of the fundamental cycle. Note that a page Σ of the corresponding Milnor open book is built up as shown in Figure 6a.

Consider the action of the monodromy on the cylinder U. By Lemma 4, the monodromy twists U by $1-1 / 2-1 / 6=(1-1 / 2)+(-1)+(1-1 / 6)$ of a full twist relative to the ends. Cut Σ along a meridian c
(a)

(b)

Figure 6. (a) A page Σ of the open book corresponding to the fundamental cycle of a singularity with weighted dual graph $A_{n, * *, o}+E_{7, o}, n=1, A_{*} \cdot A_{*}=-2,-2$. (b) A decomposition of the page Σ.
of U to obtain two subsurface Σ_{1} and Σ_{2}; see Figure bb. By the discussion following Lemma 4, if the total twist along U is divided into a $1 / 2$-twist and $a(-1 / 6)$-twist, then monodromy may be written as a product $\phi=\phi_{1} \phi_{2}$, where ϕ_{i} is in the image of the homomorphism $\eta_{i}: \operatorname{Mod}\left(\Sigma_{i}\right) \rightarrow \operatorname{Mod}(\Sigma)$ induced by the inclusion map $\iota_{i}: \Sigma_{i} \rightarrow \Sigma$. Let $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, \delta$ be the curves indicated in Figure Gb. Arguing as in [1], we can now check that $\phi_{1}^{2}=\delta c a_{1}^{2}$ and $\phi_{2}^{6}=c^{-1}$. Using Theorem 1, we may check that, up to conjugacy, $\phi_{1}=a_{1}^{2} a_{2} b_{1} a_{1}^{2} b_{1}$ and $\phi_{2}=c^{-1}\left(a_{3} b_{2}\right)^{5}$. Thus, we find that the monodromy is given by

$$
\phi=a_{1}^{2} a_{2} b_{1} a_{1}^{2} b_{1} c^{-1}\left(a_{3} b_{2}\right)^{5} .
$$

Example 6 Consider the entry $A_{*, o}+A_{n, * *, o}+A_{m, * *, o}$ in Table 2 in [5] with $n=m=2$ and weights $A_{*} \cdot A_{*}$ given by $-2,-2,-2,-2,-2$. This corresponds to the weighted dual graph

where the weights of all vertices except A_{4} are -2 and the weight of A_{4} is -3 . The fundamental cycle corresponds to the 10 -tuple of positive integers $\underline{m}=(1,2,2,2,2,2,1,1,1,1)$. A page Σ of the corresponding Minor open book is built up as shown in Figure Fa.

Consider the rupture vertex A_{4} of the weighted dual graph and let I be a subset of $\{1,2,3,4\}$ such that the preimage of α_{I} is the curve c indicated in Figure Ya. Explicitly, if we order the vertices adjacent to A_{4} by increasing index, then we can assume that $I=\{2,3\}$. As discussed above, introducing $a+(1 / 2)$ and $a-(1 / 2)-$ twist on the two sides of c, we may assume that the monodromy fixes the curve c pointwise. Now cut the page Σ along c to obtain two subsurface Σ_{1} and Σ_{2} as indicated in Figure rb. It follows that the monodromy may
(a)

(b)

Figure 7. (a) A page Σ of the open book $\mathcal{O B}(1,2,2,2,2,2,1,1,1,1)$ for a singularity with weighted dual graph $A_{*, o}+A_{n, * *, o}+A_{m, * *, o}, n=m=2, A_{*} \cdot A_{*}=-2,-2,-2,-2,-2$. (b) A decomposition of the page Σ.
be written as a product $\phi=\phi_{1} \phi_{2}$, where ϕ_{i} is in the image of the homomorphism $\eta_{i}: \operatorname{Mod}\left(\Sigma_{i}\right) \rightarrow \operatorname{Mod}(\Sigma)$ induced by the inclusion map $\iota_{i}: \Sigma_{i} \rightarrow \Sigma$. Let $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, \delta$ be the curves indicated in Figure " $/ b$. Arguing as in [1], we can check that $\phi_{1}^{2}=a_{1}^{4} c \delta$ and $\phi_{2}^{2}=c^{-1} a_{3}^{4}$. Now using Theorem 1, we find that, up to conjugation, $\phi_{1}=a_{1}^{3} a_{2} b_{1} a_{1}^{2} b_{1}$ and $\phi_{2}=c^{-1}\left(a_{3} b_{2}\right)^{3} a_{3}^{2}$. Hence,

$$
\phi=a_{1}^{3} a_{2} b_{1} a_{1}^{2} b_{1} c^{-1}\left(a_{3} b_{2}\right)^{3} a_{3}^{2} .
$$

Example 7 Consider the entry $A_{1, *, o}+A_{1, *, o}+A_{1, *, o}+A_{1, *, o}$ in Table 3 in [5] with weights $A_{*} \cdot A_{*}$ given by $-2,-2,-2,-2$. This corresponds to the weighted dual graph

where the weights of all vertices except A_{3} are -2 and the weight of A_{3} is -3 . The fundamental cycle corresponds to the 9 -tuple of positive integers $\underline{m}=(1,2,3,2,1,1,2,2,1)$. A page Σ of the corresponding Milnor open book is built up as shown in Figure 8 a.

Consider the rupture vertex A_{3} of the dual graph and order the vertices adjacent to A_{3} arbitrarily. Let I_{1} and I_{2} be the subsets $\{1,2\}$ and $\{1,2,5\}$, respectively, of $\{1,2, \ldots, 5\}$. Then the preimages of the $\alpha_{I_{1}}$ and $\alpha_{I_{2}}$ can be assumed to be the curves c_{1} and c_{2}, respectively, indicated in Figure 8 . Now the curves
(a)

(b)

Figure 8. (a) A page Σ of the open book $\mathcal{O B}(1,2,3,2,1,1,2,2,1)$ for a singularity with weighted dual graph $A_{1, *, o}+A_{1, *, o}+A_{1, *, o}+A_{1, *, o}, A_{*} \cdot A_{*}=-2,-2,-2,-2$. (b) A decomposition of the page Σ.
c_{1} and c_{2} separate the page Σ into the three subsurfaces Σ_{1}, Σ_{2}, and Σ_{3} as indicated in Figure 8b. Let $a_{1}, \ldots, a_{5}, b_{1}, b_{2}, b_{3}, \delta$ be the curves indicated in Figure 8b. Arguing as before, we can write the monodromy ϕ as a product $\phi_{1} \phi_{2} \phi_{3}$, where ϕ_{i} is in the image of the homomorphism $\eta_{i}: \operatorname{Mod}\left(\Sigma_{i}\right) \rightarrow \operatorname{Mod}(\Sigma)$ induced by the inclusion map $\iota_{i}: \Sigma_{i} \rightarrow \Sigma$. It is now easy to check using Theorem 1 that

$$
\phi=\left(a_{1} b_{1}\right)^{4} c_{2}^{-1} a_{2} a_{3} a_{4} b_{2} c_{1}^{-1}\left(a_{5} b_{3}\right)^{4} .
$$

5. Final remark

According to a theorem of Giroux, a contact structure on a 3 -manifold (Y, ξ) is Stein fillable if and only if it admits a compatible open book decomposition with monodromy a product of right-handed Dehn twists. As the canonical contact structures on links of normal surface singularity are Stein fillable, and the monodromy factorizations we give above of a supporting Milnor open book decompositions often involve left-handed Dehn twists, it would be interesting to know if the monodromy of Milnor open book decompositions can always be expressed as products of right-handed Dehn twists.

References

[1] Bhupal M. Open book decompositions of links of simple surface singularities. Int J Math 2009; 20: 1527-1545.
[2] Bonatti C, Paris L. Roots in the mapping class groups. P Lond Math Soc 2009; 98: 471-503.
[3] Caubel C, Némethi A, Popescu-Pampu P. Milnor open books and Milnor fillable contact 3-manifolds. Topology 2006; 45: 673-689.
[4] Caubel C, Popescu-Pampu P. On the contact boundaries of normal surface singularities. CR Acad Sci Paris Ser I 2004; 339: 43-48.
[5] Laufer HB. On minimally elliptic singularities. Am J Math 1977; 99: 1257-1295.
[6] Lipman J. Rational singularities with applications to algebraic surfaces and unique factorization. Publ Math-Paris 1969; 36: 195-279.
[7] Neumann WD, Pichon A. Complex analytic realization of links. In: Scott Carter J, Kamada S, Kauffman LH, Kawauchi A, Kohno T, editors. Intelligence of Low Dimensional Topology; 22-26 July 2006; Hiroshima, Japan. Singapore: World Scientific Publishing Co., 2006, pp. 231-238.
[8] Pichon A. Fibrations sur le cercle et surfaces complexes. Ann Inst Fourier 2001; 51: 337374 (in French).
[9] Popescu-Pampu P. Complex Singularities and Contact Topology. Winter Braids Lecture Notes, 3. Lille, France: Winter Braids, 2016.
[10] Yılmaz E. Open book decompositions of links of quotient surface singularities. PhD, Middle East Technical University, Ankara, Turkey, 2009.

[^0]: *Correspondence: bhupal@metu.edu.tr
 2000 AMS Mathematics Subject Classification: 57R17, 53D10, 32S25, 32S55

