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Abstract: In this paper we develop the lower and upper solutions method for the fourth-order boundary value problem

of the form  y(4)(x) + (k1 + k2)y
′′(x) + k1k2y(x) = f(x, y(x)), x ∈ (0, 1),

y(0) = y′(1) = y′′(0) = y′′′(1) = 0,

which models a statically elastic beam with one of its ends simply supported and the other end clamped by sliding

clamps, where k1 < k2 < 0 are the real constants and f : [0, 1]×R → R is a continuous function. The proof of the main

result is based on the Schauder fixed point theorem.
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1. Introduction

The aim of this paper is to establish the existence of solutions for the fourth-order differential equation of the

form

y(4)(x) + (k1 + k2)y
′′(x) + k1k2y(x) = f(x, y(x)), x ∈ (0, 1) (1)

with the boundary conditions

y(0) = y′(1) = y′′(0) = y′′′(1) = 0, (2)

where k1 < k2 < 0 are the real constants and f : [0, 1] × R → R is a continuous function. Such a boundary

value problem describes the equilibrium state of the deformation of an elastic beam whose one end is simply

supported and the other end sliding clamped, where y′′ is the bending moment stiffness and y(4) is the load

density stiffness; see Agarwal [1], Gupta [12], and Lazer and McKenna [14] and the references therein.

The uniqueness, existence, and multiplicity of solutions for the nonlinear fourth-order ordinary differential

equation (and its special case) with one of the boundary conditions

y(0) = y(1) = y′′(0) = y′′(1) = 0, (3)

y(0) = y(1) = y′(0) = y′(1) = 0, (4)
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have been extensively studied by several authors, and many techniques for treating such problems have appeared,

such as the fixed point in cones [2,18], the bifurcation theory [13,17,22], and the lower and upper solutions method

[3–5,20,24].

It is well known that for a second-order differential equation, with Neumann or Dirichlet boundary

conditions, the existence of a lower solution α and an upper solution β with α(x) ≤ β(x) in [0, 1] can ensure

the existence of solutions in the order interval [α(x), β(x)] ; see Coster and Habets [8]. However, this result

is not true for fourth-order boundary value problems; see the counterexample of Cabada et al. [3, p. 1607].

The reason for this is that the use of lower and upper solutions in the fourth-order boundary value problems is

heavily dependent on the positiveness properties of the corresponding linear operators, but research in this area

faces many difficulties. For the results concerning the positiveness properties of fourth-order linear operators,

we refer the reader to Schröder [23], Cabada et al. [3], Drábek [9,10], and Ma et al. [19] and the references

therein.

To the best of our knowledge, there is no appropriate lower and upper solutions method for the problem

(1)–(2) and the research has proceeded relatively slowly; see Fialho et al. [11] and Minhós et al. [21] and the

references therein. The likely reasons for this are that the boundary conditions (2) are not symmetric and the

positiveness properties of the corresponding linear fourth-order operator are unknown.

In particular, in [21], by using the lower and upper solutions method and degree theory, Minhós et al.

considered the existence of solutions for a fully nonlinear beam equation

y(4) = g(x, y, y′, y′′, y′′′), x ∈ (0, 1)

with the boundary conditions (2), where g : [0, 1]×R4 → R is a continuous function satisfying a Nagumo-type

condition. However, the second derivatives of the lower and upper solutions must be ordered. Fialho et al. [11]

proved the existence and location result in the presence of not necessarily ordered lower and upper solutions for

the higher order functional boundary value problem (here we only state the special case with n = 4)
y(4)(x) = f(x, y, y′, y′′(x), y′′′(x)), for a.e. x ∈ (0, 1),

L0(y, y
′, y′′, y′′′, y(0)) = 0, L1(y, y

′, y′′, y′′′, y′(0)) = 0,

L2(y, y
′, y′′, y′′′, y′′(0)) = 0, L3(y, y

′, y′′, y′′′, y′′(1)) = 0,

(5)

where f : [0, 1] × (C([0, 1]))2 × R2 → R is a L1 -Carathéodory function satisfying a Nagumo-type growth

assumption, and Li : (C([0, 1]))
4 × R → R, i = 0, 1, 2, 3 are continuous functions. It is worth remarking that

in order to include a lower and upper solution ordered (well or in reverse order) or not ordered at all, and to

consider very general functional boundary conditions without monotone assumptions, the definitions for lower

and upper solutions are restrictive: the lower and upper solutions must be interdependent of each other and

the corresponding second derivatives must be ordered.

Motivated by the interesting results of [11,21] and some earlier works, in this paper, we develop a new

lower and upper solutions method for (1) and (2). Our lower and upper solutions are independent of each other

and can be constructed more easily.

More precisely, we develop the lower and upper solutions method for the problem (1)–(2) under the

assumption of k1 < k2 < 0, and f : [0, 1] × R → R is a continuous, monotone increasing function with

respect to the second variable. To do that, we first construct Green’s function by decomposing the fourth-order
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operator in equation (1) into two operators of the second order, and then we get the positiveness properties of

the fourth-order differential operator

L(y) := y(4) + (k1 + k2)y
′′ + k1k2y (6)

with the boundary conditions (2) in an easier way and finally we deduce the sign of the solutions of the

nonhomogeneous problems

L(y(x)) = 0, x ∈ (0, 1), y(0) = 1, y′(1) = y′′(0) = y′′′(1) = 0,

L(y(x)) = 0, x ∈ (0, 1), y′(1) = 1, y(0) = y′′(0) = y′′′(1) = 0,

L(y(x)) = 0, x ∈ (0, 1), y′′(0) = 1, y(0) = y′(1) = y′′′(1) = 0,

L(y(x)) = 0, x ∈ (0, 1), y′′′(1) = 1, y(0) = y′(1) = y′′(0) = 0.

Since the general solution of the above homogeneous equation is very complex, we have to face tedious

computation in the process of getting the sign of the solutions.

For other results concerning the existence and multiplicity of positive solutions or sign-changing solutions

of the fourth-order elastic beam problems, we refer the reader to [6,7,15,16] and the references therein.

The rest of the paper is organized as follows. In Section 2, we construct Green’s function for (1)–(2)

and prove it possesses the positiveness properties under the condition of k1 < k2 < 0. Section 3 is devoted to

developing the lower and upper solutions method for (1)–(2) via the Schauder fixed point theorem. Finally, in

Section 4, we give an example and some remarks to illustrate our main result.

2. Green’s function in the case of k1 < k2 < 0

Denote

k1 = −m2, k2 = −r2

with some m > 0 and r > 0. Define a linear operator L : D(L) → C([0, 1]) by

L(y) := y(4) − (m2 + r2)y′′ +m2r2y, y ∈ D(L), (7)

where

D(L) := {y ∈ C4([0, 1]) : y(0) = y′(1) = y′′(0) = y′′′(1) = 0}.

Lemma 2.1 The linear boundary value problemL(y) = y(4) − (m2 + r2)y′′ +m2r2y = 0, x ∈ (0, 1),

y(0) = y′(1) = y′′(0) = y′′′(1) = 0
(8)

with m > r > 0 has only trivial solution.

Proof The roots of the characteristic equation for (8) are the real numbers m , −m , r , −r . Now the claim

of the lemma follows from the fact that the determinant∣∣∣∣∣∣∣∣
0 1 0 1

m coshm m sinhm r cosh r r sinh r
0 m2 0 r2

m3 coshm m3 sinhm r3 cosh r r3 sinh r

∣∣∣∣∣∣∣∣ = mr(m2 − r2)2 coshm cosh r

is nonzero. 2
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Theorem 2.2 Let m > r > 0 . Then Green’s function for the linear problem (8) is

H(x, s) =


1

m2 − r2

[ sinh rx cosh r(1− s)

r cosh r
− sinhmx coshm(1− s)

m coshm

]
, 0 ≤ x < s ≤ 1,

1

m2 − r2

[ sinh rs cosh r(1− x)

r cosh r
− sinhms coshm(1− x)

m coshm

]
, 0 ≤ s < x ≤ 1.

Moreover,

H(x, s) ≥ 0 for 0 ≤ x, s ≤ 1.

Proof Let us define a linear operator L1 : C2([0, 1]) → C([0, 1]) by

L1(y) := y′′ −m2y, y ∈ D(L1) := {y ∈ C2([0, 1]) : y(0) = y′(1) = 0}.

Then Green’s function of L1(y) = 0 is

G1(t, s) =


coshm(1− t) sinhms

m coshm
, 0 ≤ s < t ≤ 1,

coshm(1− s) sinhmt

m coshm
, 0 ≤ t < s ≤ 1,

(9)

and G1(t, s) ≥ 0 for every (s, t) ∈ [0, 1]× [0, 1].

Define a linear operator L2 : C2([0, 1]) → C([0, 1]) by

L2(y) := y′′ − r2y, y ∈ D(L2) := {y ∈ C2([0, 1]) : y(0) = y′(1) = 0}.

Then Green’s function of L2(y) = 0 is

G2(t, s) =


cosh r(1− t) sinh rs

r cosh r
, 0 ≤ s < t ≤ 1,

cosh r(1− s) sinh rt

r cosh r
, 0 ≤ t < s ≤ 1,

(10)

and it is clear that G2(t, s) ≥ 0 for every (s, t) ∈ [0, 1]× [0, 1].

It follows from

L(y) = (L1 ◦ L2)(y)

that the Green’s function of L(y) = 0 is

H(x, s) :=

∫ 1

0

G2(x, t)G1(t, s)dt. (11)

For any 0 ≤ x < s ≤ 1, it follows from (9), (10), and (11) that we have
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H(x, s) =

∫ x

0

sinh rt cosh r(1− x)

r cosh r
· sinhmt coshm(1− s)

m coshm
dt+

∫ s

x

sinh rx cosh r(1− t)

r cosh r
· sinhmt coshm(1− s)

m coshm
dt

+

∫ 1

s

sinh rx cosh r(1− t)

r cosh r
· sinhms coshm(1− t)

m coshm
dt

=
coshm(1− s) cosh r(1− x)

mr coshm cosh r

∫ x

0

sinhmt sinh rtdt+
coshm(1− s) sinh rx

mr coshm cosh r

∫ s

x

sinhmt cosh r(1− t)dt

+
sinhms sinh rx

mr coshm cosh r

∫ 1

s

coshm(1− t) cosh r(1− t)dt

=
coshm(1− s) cosh r(1− x)

2mr coshm cosh r
[
sinh(m+ r)x

m+ r
− sinh(m− r)x

m− r
] +

coshm(1− s) sinh rx

2mr coshm cosh r
[
cosh((m− r)s+ r)

m− r

+
cosh((m+ r)s− r)

m+ r
− cosh((m− r)x+ r)

m− r
− cosh((m+ r)x− r)

m+ r
]

+
sinhms sinh rx

2mr coshm cosh r
[
sinh(m+ r − (m+ r)s)

m+ r
+

sinh(m− r − (m− r)s)

m− r
]

=
coshm(1− s)

2mr coshm cosh r
[
sinh(m+ r)x cosh r(1− x)

m+ r
− sinh(m− r)x cosh r(1− x)

m− r
− cosh((m− r)x+ r) sinh rx

m− r

− cosh((m+ r)x− r) sinh rx

m+ r
] +

sinh rx

2mr coshm cosh r
[
cosh((m− r)s+ r) coshm(1− s)

m− r

+
cosh((m+ r)s− r) coshm(1− s)

m+ r
+

sinh(m+ r − (m+ r)s) sinhms

m+ r
+

sinh(m− r − (m− r)s) sinhms

m− r
]

=
coshm(1− s)

2mr coshm cosh r
[
sinhmx cosh r

m+ r
− sinhmx cosh r

m− r
]

+
sinh rx

2mr coshm cosh r
[
coshm cosh r(1− s)

m+ r
+

coshm cosh r(1− s)

m− r
]

=
1

m2 − r2
[
sinh rx cosh r(1− s)

r cosh r
− sinhmx coshm(1− s)

m coshm
].

Similarly, it follows from (9), (10), and (11) that

H(x, s) = H(s, x).

Thus,

H(x, s) =
1

m2 − r2

[ sinh rs cosh r(1− x)

r cosh r
− sinhms coshm(1− x)

m coshm

]
for 0 ≤ s < x ≤ 1.

Combining (11) with the nonnegativity of G1(t, s) and G2(t, s) on [0, 1]× [0, 1], it is concluded that the

Green’s function H(x, s) for the linear problem (8) is nonnegative on [0, 1]× [0, 1]. 2

Remark 2.3 By a similar argument, we know that the Green’s function associated to the problem of an elastic

beam whose both ends are simply supported,{
L(y(x)) = 0, x ∈ (0, 1),

y(0) = y(1) = y′′(0) = y′′(1) = 0,
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is

G(x, s) =


1

m2 − r2

[ sinhm(s− 1) sinhmx

m sinhm
− sinh r(s− 1) sinh rx

r sinh r

]
, 0 ≤ x < s ≤ 1,

1

m2 − r2

[ sinhm(x− 1) sinhms

m sinhm
− sinh r(x− 1) sinh rs

r sinh r

]
, 0 ≤ s < x ≤ 1.

It is worth remarking that Vrabel got the nonnegativity of Green’s function G(x, s) via the monotone property

of function g(ξ, x, s) ; see [24, 2(a)] . However, in our argument, we use the nonnegativity of Green’s function

directly.

Remark 2.4 We may show the nonnegativity of Green’s function in the case of k1 < 0 < k2 and 0 < k1 <

k2 < π2 by a similar method.

Remark 2.5 (Maximum principle) Let

L(y(x)) ≥ 0

for

y ∈ Φ := {y ∈ C4([0, 1]) : y(0) = y′(1) = y′′(0) = y′′′(1) = 0}.

Then y(x) ≥ 0 on [0, 1] .

Proof Let y ∈ Φ satisfy L(y(x)) ≥ 0 on [0, 1]. Then y is a solution of boundary value problem L(y(x)) = g(x)

for an appropriate continuous function g(x) ≥ 0. Then the function y is a solution of an integral equation

y =

∫ 1

0

H(x, s)g(s)ds.

From Theorem 2.2, the function y is nonnegative on [0, 1]. 2

3. Lower and upper solutions method

In this section, we will develop the lower and upper solutions method for (1)–(2) under the condition of

k1 < k2 < 0. The following result can be deduced by a direct computation.

Lemma 3.1 (i) The function

p(γ, x) =
cosh γ(1− x)

γ2 cosh γ
, γ > 0 and x ∈ (0, 1]

is a monotone decreasing, positive function for the variable γ .

(ii) The function

q(γ, x) =
sinh γx

γ3 cosh γ
, γ > 0 and x ∈ (0, 1]

is a monotone decreasing, positive function for the variable γ .
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(iii) The function

ξ(γ, x) =
cosh γ(1− x)

cosh γ
, γ > 0 and x ∈ (0, 1]

is a monotone decreasing, positive function for the variable γ .

(iv) The function

η(γ, x) =
sinh γx

γ cosh γ
, γ > 0 and x ∈ (0, 1]

is a monotone decreasing, positive function for the variable γ .

Definition 3.2 A function α ∈ C4([0, 1]) is said to be a lower solution of the boundary value problem (1)–(2)

if

L(α(x)) ≤ f(x, α(x)) for x ∈ (0, 1) (12)

and

α(0) ≤ 0, α′(1) ≤ 0, α′′(0) ≥ 0, α′′′(1) ≥ 0. (13)

Similarly, an upper solution β ∈ C4([0, 1]) is defined by reversing the inequalities in (12) and (13).

Remark 3.3 We first define an operator T : C([0, 1]) → C4([0, 1]) by

T (y)(x) =

∫ 1

0

H(x, s)f(s, y(s))ds, x ∈ [0, 1], (14)

where H(x, s) is the Green’s function of the linear homogeneous problem (8).

If we let

hα(x) = L(α(x))− f(x, α(x)), hβ(x) = L(β(x))− f(x, β(x)), x ∈ [0, 1],

then from Definition 3.2, we have

hα(x) ≤ 0, hβ(x) ≥ 0 for x ∈ [0, 1]. (15)

Now let uα(x) be the solution of the nonhomogeneous problem

{
L(uα(x)) = 0, x ∈ (0, 1),

uα(0) = α(0), u′α(1) = α′(1), u′′α(0) = α′′(0), u′′′α (1) = α′′′(1).
(16)

Then, due to Lemma 2.1, uα(x) is uniquely determined as

uα(x) = α(0)φ(x) + α′(1)χ(x) + α′′(0)ψ(x) + α′′′(1)ω(x), (17)

where φ(x) , χ(x) , ψ(x) , and ω(x) are defined respectively as the unique solutions of the following nonhomo-

geneous problems

L(φ(x)) = 0, x ∈ (0, 1), φ(0) = 1, φ′(1) = φ′′(0) = φ′′′(1) = 0,
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L(χ(x)) = 0, x ∈ (0, 1), χ′(1) = 1, χ(0) = χ′′(0) = χ′′′(1) = 0,

L(ψ(x)) = 0, x ∈ (0, 1), ψ′′(0) = 1, ψ(0) = ψ′(1) = ψ′′′(1) = 0,

L(ω(x)) = 0, x ∈ (0, 1), ω′′′(1) = 1, ω(0) = ω′(1) = ω′′(0) = 0,

and they can be explicitly given by

φ(x) =
1

m2 − r2
[m2 coshm cosh r(1− x)− r2 cosh r coshm(1− x)

coshm cosh r

]
,

χ(x) =
1

m2 − r2
[m3 coshm sinh rx− r3 cosh r sinhmx

mr coshm cosh r

]
,

ψ(x) =
1

m2 − r2
[cosh r coshm(1− x)− coshm cosh r(1− x)

coshm cosh r

]
,

ω(x) =
1

m2 − r2
[r cosh r sinhmx−m coshm sinh rx

mr coshm cosh r

]
.

It follows from Lemma 3.1 that we have

φ(x) ≥ 0, χ(x) ≥ 0, ψ(x) ≤ 0, ω(x) ≤ 0, for x ∈ [0, 1]. (18)

Let uβ(x) be the solution of the problem

{
L(uβ(x)) = 0, x ∈ (0, 1),

uβ(0) = β(0), u′β(1) = β′(1), u′′β(0) = β′′(0), u′′′β (1) = β′′′(1).
(19)

Then uβ(x) is uniquely determined as

uβ(x) = β(0)φ(x) + β′(1)χ(x) + β′′(0)ψ(x) + β′′′(1)ω(x). (20)

By (18) and Definition 3.2, we have

uα(x) ≤ 0 and uβ(x) ≥ 0 for x ∈ [0, 1]. (21)

Hence, for a lower solution α of boundary value problem (1)–(2), it follows from Theorem 2.2, (14), (15), and

(21) that

L(α) = f(x, α) + hα(x) ⇒α(x) = uα(x) +

∫ 1

0

H(x, s)f(s, α(s))ds+

∫ 1

0

H(x, s)hα(s)ds

⇒ α(x) ≤ T (α)(x) on [0, 1],

and similarly β(x) ≥ T (β)(x) on [0, 1] .

The proof of our main result is based on the following important result; see [24].

Lemma 3.4 Let X be a Banach space, B ⊂ X be a closed and convex subset, T : B → B be a continuous

map, and T (B) = {Tx : x ∈ B} be precompact. Then T has at least one fixed point in B .
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Lemma 3.5 Let there exists a constant K such that

|f(x, y)| ≤ K

for (x, y) ∈ [0, 1]× R . Then the boundary value problem (1)–(2) has a solution.

Proof Denote X = C([0, 1]). Obviously it is a Banach space equipped with the maximum norm ∥y∥∞ =

max
x∈[0,1]

|y(x)| . We define an operator T : C([0, 1]) → C([0, 1]) by

T (φ)(x) =

∫ 1

0

H(x, s)f(s, φ(s))ds, x ∈ [0, 1], (22)

where H(x, s) is a Green’s function of problem (8).

If we denote

M1 = max
(x,s)∈[0,1]×[0,1]

H(x, s) and M2 = max
(x,s)∈[0,1]×[0,1]

∣∣∣∂H(x, s)

∂x

∣∣∣,
then it follows from (22) that ∥Tφ∥∞ ≤M1K . Denoting

B =: {φ ∈ C([0, 1]) : ∥φ∥∞ ≤M1K},

obviously B is a bounded, closed, and convex set in C([0, 1]). By Theorem 2.2, problem (1)–(2) has a solution

that is equivalent to T having a fixed point. Thus, now we will prove T indeed has a fixed point. First, T

maps B into B , and moreover T (B) is compact on the basis of the fact that |(Tφ)′| ≤ M2K for any φ ∈ B .

Therefore, by the Arzela–Ascoli theorem, T is a compact operator. It follows from the continuity of H and f

that the operator T is continuous. Hence, by the Schauder fixed point theorem, T has a fixed point in B . 2

Theorem 3.6 Let k1 < k2 < 0 . Suppose that for the problem (1)–(2) there exist a lower solution α and an

upper solution β such that α(x) ≤ β(x) for x ∈ [0, 1] . If f : [0, 1]× R → R is continuous and satisfies

f(x, y1) ≤ f(x, y2) for α(x) ≤ y1 ≤ y2 ≤ β(x) and x ∈ [0, 1], (23)

then there exists a solution y(x) for boundary value problem (1)–(2) and it satisfies

α(x) ≤ y(x) ≤ β(x) for 0 ≤ x ≤ 1. (24)

Proof Let us define a function F on [0, 1]× R by

F (x, y) =

 f(x, α(x)), for y < α(x),
f(x, y), for α(x) ≤ y ≤ β(x),
f(x, β(x)), for y > β(x).

Clearly, F is continuous and bounded on [0, 1]×R . By Lemma 3.5, there exists a solution y for the boundary

value problem {
L(y(x)) = F (x, y(x)), x ∈ (0, 1),

y(0) = y′(1) = y′′(0) = y′′′(1) = 0.
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The following will prove that the inequality (24) is true. It follows from Definition 3.2 and (23) that

L(y(x)− β(x)) = L(y(x))− L(β(x)) ≤ F (x, y(x))− f(x, β(x)) ≤ 0 (25)

and

L(y(x)− α(x)) = L(y(x))− L(α(x)) ≥ F (x, y(x))− f(x, α(x)) ≥ 0 (26)

for x ∈ [0, 1].

Let

L(y(x)− β(x)) := h1(x) ≤ 0, L(y(x)− α(x)) := h2(x) ≥ 0, for x ∈ [0, 1].

Then, from Theorem 2.2 and (21), we have that for x ∈ [0, 1],

y(x)− β(x) = −uβ(x) +
∫ 1

0

H(x, s)h1(s)ds ≤ 0.

This implies that y(x) ≤ β(x) on [0, 1].

Similarly, from Theorem 2.2 and (21), we have that for x ∈ [0, 1],

y(x)− α(x) = −uα(x) +
∫ 1

0

H(x, s)h2(s)ds ≥ 0.

Hence, the inequality (24) is true. 2

4. Further remarks

Remark 4.1 The problem (1)–(2) presents a particular form of the problem (5) for n = 4 and I = [0, 1] ;

however, the current result is different from that of [11]. In fact, for problem (5), if we let

f(x, y, y′, y′′(x), y′′′(x)) = f(x, y(x))− (k1 + k2)y
′′(x)− k1k2y(x), x ∈ (0, 1) (27)

and

L0(y, y
′, y′′, y′′′, y(0)) = y(0) = 0,

L1(y, y
′, y′′, y′′′, y′(0)) = y′(1) = 0,

L2(y, y
′, y′′, y′′′, y′′(0)) = −y′′(0) = 0,

L3(y, y
′, y′′, y′′′, y′′(1)) = −y′′′(1) = 0,

(28)

we can get that  y(4)(x) + (k1 + k2)y
′′(x) + k1k2y(x) = f(x, y(x)), x ∈ (0, 1),

y(0) = y′(1) = y′′(0) = y′′′(1) = 0.
(29)

However, in [11, Definition 3], we let

v0 = α(x), v1 = α′(x),

w1 = α′′(x), w2 = α′′′(x),
(30)
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and

v0 = β(x), v1 = β′(x),

w1 = β′′(x), w2 = β′′′(x),
(31)

respectively. It follows from the definition of αi, βi : [0, 1] → R, i = 0, 1 , that if we have

α′′(x) ≤ β′′(x), on [0, 1], (32)

then
α(x), β(x) ∈ [α0(x), β0(x)], x ∈ [0, 1] (33)

α′(x), β′(x) ∈ [α1(x), β1(x)], x ∈ [0, 1] (34)

and subsequently we have that (30) and (31) are well defined.

Therefore, for the functions α, β ∈ W 4,1(0, 1) satisfying (32), it follows from (30), (31), and [11,

Definition 3] that the following inequalities hold for a.e. x ∈ [0, 1] ,

L(α(x)) ≥ f(x, α(x)),

L(β(x)) ≤ f(x, β(x)),
(35)

and

α(0) ≥ 0, α′(1) ≥ 0, α′′(0) ≤ 0, α′′′(1) ≤ 0. (36)

β(0) ≤ 0, β′(1) ≤ 0, β′′(0) ≥ 0, β′′′(1) ≥ 0. (37)

Obviously, this is different from our Definition 3.2. In our Definition 3.2, α is a lower solution of (29) means

that
L(α(x)) ≤ f(x, α(x)) x ∈ (0, 1)

and β is an upper solution of (29) means that

L(β(x)) ≥ f(x, β(x)) x ∈ (0, 1).

Theorem 3.1 requires that lower solution α and upper solution β be well ordered, i.e.

α(x) ≤ β(x) x ∈ (0, 1),

while in [11], the lower solution γ of (29) is defined by

L(γ(x)) ≥ f(x, γ(x)) x ∈ (0, 1)

and the upper solution σ of (29) is defined by

L(σ(x)) ≤ f(x, σ(x)) x ∈ (0, 1).

[11, Theorem 5] requires that the second derivatives of lower solution γ and upper solution σ are well ordered,

i.e.

γ′′(x) ≤ σ′′(x) x ∈ (0, 1).

Since there are very large differences between the restrictions α(x) ≤ β(x) and γ′′(x) ≤ σ′′(x) , the same

is true for the definitions introduced in [11] and in Definition 3.2.
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Remark 4.2 The current result is not covered by [21].

Let us see the following example: y(4)(x) +
(
− π2 − π2

4

)
y′′(x) +

(
(−π2) · (−π

2

4
)
)
y(x) = y(x) + sin

πx

2
, x ∈ (0, 1),

y(0) = y′(1) = y′′(0) = y′′′(1) = 0.

(38)

Here we take k1 = −π2 , k2 = −π2

4 , and f(x, y) = y(x) + sin πx
2 .

It is easy to check that α = 0 , β = sin πx
2 are lower and upper solutions of (38), respectively, and f

satisfies all of the assumptions in Theorem 3.6. Therefore, Theorem 3.6 guarantees that (38) has at least one

solution y that satisfies

0 ≤ y ≤ sin
πx

2
for x ∈ [0, 1]. (39)

However, if we denote

g(x, y, p) = y(x) + sin
πx

2
+
(
π2 +

π2

4

)
p−

(
(−π2) · (−π

2

4
)
)
y(x) (40)

and rewrite (38) into the form

y(4) = g(x, y, y′′), y(0) = y′′(0) = y′(1) = y′′′(1) = 0, (41)

the obviously α = 0, β = sin πx
2 are lower and upper solutions of (41); see [21, Definition 4]. However, the

local monotony required by [21] does not hold, so we can not apply [21, Theorem 5] to deduce the existence of

solutions of (41).
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