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Abstract: We develop an algorithm to solve a multiple objective linear programming problem with bounded variables.

It is based on the scalarization theorem of optimal solutions of multiobjective linear programs and the single objective

adaptive method. We suggest a process for the search for the first efficient solution without having to calculate a feasible

solution, and we elaborate a method to generate efficient solutions, weakly efficient solutions, and ϵ -efficient solutions.

Supporting theoretical results are established and the method is demonstrated on a numerical example.
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1. Introduction

Multiobjective programming has applications in many academic areas such as in the fields of engineering,

economics, mining, life sciences, and finance. It has been a topic of research since the 1960s. However, while

this type of optimization has great interest, the simplex algorithm has long been the most exact method used

to solve multiobjective linear programming problems [7]. More recently, algorithms to solve these types of

programs in objective space have been developed [2]. Since the discovery of interior point algorithms to solve

linear programs in polynomial time, efforts to apply such methods to deal with multiobjective programming

are evident. Another focus of interest is based on scalarization. Duality theory for multiobjective linear

programming has been also studied.

On the other hand, single linear programming with bounded variables models many problems in real

situations and major effort has been made in solving such problems. It is also clear that the multiple objective

paradigm appears naturally in this context. The study of the combination of these two areas of optimization is

therefore relevant; it is the main objective of this paper.

In parallel, in the 1980s, Loridan [12] introduced the notion of ϵ-efficient solutions for multiobjective

programs. White [16] then proposed several concepts of approximate solutions for these programs and drafted

methods for their generation. In the last decades, ϵ-efficient solutions have been examined in the literature by
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many authors. This paper deals with the generation of ϵ-efficient solutions in the case of multiobjective linear

programming with bounded variables.

Following the preceding work in [15], a new method is proposed. The authors develop a method to solve a

multiple objective linear programming problem with upper and lower bounded decision variables. The method

is an extension of the direct support method [14, 15], known in single objective linear programming. This

method is considered as an intermediate method between the interior methods and the simplex one. Indeed,

using the direct support method, the initial feasible solution can be an extreme point, an interior point, or any

point on the edge. This method [11] is usually used to solve linear programs with bounded variables.

In [15], the authors suggested an efficiency test of a nonbasic variable and a new process to search the

initial efficient extreme point. Using the direct support method principle, they prescribed an algorithm to

generate all the efficient extreme points, the ϵ-efficient extreme points, and the ϵ-weakly efficient extreme

points of the problem.

The authors, in [15], used the simplex metric when solving mono-objective programs.

In this work, we use the principle of the adaptive method [10], which is considered more general than the

direct support method in single objective linear programming. Indeed, we suggest to use another metric called

the adapted metric, where we consider all suboptimal indexes by which we build improvement of the objective

function and the maximum step along this direction. This method avoids the preliminary transformation of the

constraints and it enables us to treat the problem as it stands without making any changes. It manipulates the

bounds as they are initially expressed. It is easy to use and it generates a large benefit in time and memory

space. Comparisons with algorithms well known in the field of single objective programming [10, 11] have shown

that this method is more efficient than the other approaches in this context.

We also exploit the suboptimality criterion of this adaptive method to find ϵ-efficient solutions of our

multiple objective problem.

Another contribution of our work is that we propose a new process to search for the first efficient solution

without calculating a feasible solution.

The article is structured as follows. First, we state our purpose and some definitions. The basic concepts

of efficiency, of ϵ-efficiency, and their proprieties are established in Section 3 and Section 4. In Section 5 we

give a process to find a first efficient solution. Section 6 deals with the development of a method to generate

the efficient solutions. The detailed algorithm is given in Section 7 and a numerical example to demonstrate

the applicability of the suggested method is given in Section 8. Finally, we give a conclusion in Section 9.

2. Basic terminology and problem formulation

We consider the following multiobjective linear programming problem with bounded variables:{
maxZ(x) = Cx,
x ∈ S.

(2.1)

The feasible set is defined as follows:

S = {x ∈ Rn : Ax = b, d1 ≤ x ≤ d2} . (2.2)

The indices of constraints and decision variables are respectively denoted by:

I = {1, 2, · · · ,m} , J = {1, 2, · · · , n} , such that:

J = JB ∪ JN with JB ∩ JN = ϕ, |JB | = m .
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Thus, x = x(J) = (xj , j ∈ J), d1 = d1(J) = (d1j , j ∈ J), and d2 = d2(J) = (d2j , j ∈ J) are n -vectors;

b = (bi, i ∈ I) is an m-vector; and A = A(I, J) is an m× n-matrix, such that rangA = m < n .

We define the criterion function as follows:

Z(x) =



z1(x)

z2(x)

...

zp(x)

 =



cT1 x

cT2 x

...

cTp x

 = Cx, (2.3)

where C = C(K,J) with K = {1, 2, · · · , p} is a p× n -matrix, whose rows are the n-vectors cTk , k ∈ K.

Then we can split the vectors and matrices as follows:

x =

(
xB

xN

)
, xB = x(JB) = (xj , j ∈ JB), xN = x(JN ) = (xj , j ∈ JN ),

C =

 CB

−
CN

 , CB = C(K,JB), CN = C(K,JN ),

A = A(I, J) = (aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n), A = (AB |AN ), AB = A(I, JB), AN = A(I, JN ).

We give the following definitions:

• The set JB ⊂ J, |JB | = m , is said to be support if detAB = detA(I, JB) ̸= 0.

• The couple {x, JB} formed by the feasible solution x and the support JB is called the support feasible

solution. It is said to be nondegenerate if

d1j < xj < d2j , ∀j ∈ JB .

• The p× n-matrix ET = CBA
−1
B A−C is called the reduced cost matrix, where E = (ET

B , E
T
N ), such that

EB = E(K,JB), EN = E(K,JN ).

• The potential matrix is defined by: U = CBA
−1
B .

Remark 2.1 In this work, we suppose that S is a bounded set and the problem is nondegenerate; therefore, all

the feasible solutions have at least m noncritical components, with m = rang(A) .

Remark 2.2 The support feasible solution is a more general concept than one of the basic feasible solutions.

A support feasible solution can be an interior point, a boundary point, or an extreme point of S , while a basic

feasible solution is always an extreme point.
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3. Efficient solutions and their properties

Definition 3.1 A feasible decision x0 ∈ Rn is said to be an efficient solution (or Pareto optimal solution) for

the problem (2.1) if there is no other feasible solution x ∈ S such that Cx ≥ Cx0 and Cx ̸= Cx0 .

Let SE be the efficient solutions set of the problem (2.1).

Definition 3.2 A feasible decision x0 ∈ Rn is said to be a weakly efficient solution (or Slater optimal solution)

for the problem (2.1) if there is no other feasible solution x ∈ S such that Cx > Cx0.

Then we recall the following classical theorems:

Theorem 3.3 A feasible decision x0 is efficient if and only if:

∃λ ∈ Rp, λ > 0 : λTCx0 = max
x∈S

λTCx.

Theorem 3.4 A feasible decision x0 is weakly efficient if and only if:

∃λ ∈ Rp, λ ≥ 0 : λTCx0 = max
x∈S

λTCx.

Theorem 3.5 (Efficiency criterion) Let {x, JB} be a support feasible solution for the problem (2.1) and k ∈ K .

If 
Ekj ≥ 0, if xj = d−j , j ∈ JN ,

Ekj ≤ 0, if xj = d+j , j ∈ JN ,

Ekj = 0, if d−j < xj < d+j , j ∈ JN ,

(3.1)

then x is a weakly efficient solution for the problem (2.1).

If the support feasible solution is nondegenerate, then those relations are also necessary to have x weakly

efficient.

For a discussion of some basic theoretical properties and other approaches to the problem see, for example, the

references [1, 5, 8, 9, 15].

Multiple objective linear programming with bounded variables involves determining the whole set of the

efficient and all weakly efficient solutions of the problem (2.1) for given C,A, b, d1 and d2 .

Our method also determines ϵ-efficient solutions.

4. ϵ-Efficient solutions and their properties

Definition 4.1 Let ϵ ∈ Rp, ϵ ≥ 0. A feasible decision xϵ ∈ S is said to be ϵ-efficient for the problem (2.1) if

there exists an efficient feasible solution x ∈ S such that cTk x− cTk x
ϵ ≤ ϵk,∀k ∈ K .

Let SE
ϵ be the ϵ-efficient solutions set of the problem (2.1).

The following proprieties are the direct results of the definition of ϵ -efficient solutions:

Proposition 4.2 1. SE ⊂ SE
ϵ , ∀ϵ > 0 and SE = SE

ϵ , for ϵ = 0 .
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2. If ϵ1 > ϵ2 > 0 , then SE
ϵ2 ⊂ SE

ϵ1 .

Lemma 4.3 [3] A feasible solution xϵ ∈ S is said to be ϵ-efficient for the problem (2.1) if and only if there

exists an efficient solution x0 ∈ S such that for all vectors λ ∈ Rp
+,

∑p
k=1 λk = 1 , satisfying the condition

λTCx0 = maxx∈S λTCx , the following inequality holds:

λT (Cx0 − Cxϵ) ≤ ϵ.

Definition 4.4 The value

βk(x, JB) =
∑

j∈JN ,Ekj>0

Ekj(xj − d−j ) +
∑

j∈JN ,Ekj<0

Ekj(xj − d+j )

is called the ϵ-efficiency formula of the objective k , k ∈ K .

Theorem 4.5 (Characterization of an ϵ-efficient solution)

Let {x, JB} be a support feasible solution of the problem (2.1) and ϵ an arbitrary vector of Rp
+ .

If there exists k ∈ {1, . . . , p} such as βk(x, JB) ≤ ϵk , then x is ϵk -weakly efficient for the problem

(2.1).

If β(x, JB) = (βk(x, JB), k ∈ {1, . . . , p}) ≤ ϵ , then x is ϵ-efficient.

5. Finding an initial efficient point

5.1. Finding an initial efficient point using Isermann’s procedure

Inspired by the Isermann’s procedure to find an initial efficient solution, we give a procedure by taking into

account the specificity of the constraints of the problem (2.1). The single linear programs introduced in the

procedure will be resolved using the adaptive method [10, 13].

The procedure is given in the following steps:

Step (1): Get the optimal solution (u0, v0, γ0, α0, β0) for the following linear program:
min(b−Ad1)

Tu+ (d2 − d1)
T γ,

uTA− vTC + γT − αT = 0,

v − β = e,

α, γ, β ≥ 0,

(5.1)

where e ∈ Rp is a vector whose entries are each unity. Then go to step (2).

Otherwise, stop the process.

Step (2): Get an efficient solution for the problem (2.1) by finding the optimal solution for the following
program: 

max(v0)TCx,

Ax = b,

d1 ≤ x ≤ d2,

(5.2)

using the adaptive method [10].
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To establish the validity of this procedure, we prove the following results.

Theorem 5.1 If the program (5.1) admits an optimal solution (u0, v0, γ0, α0, β0) , then the program (5.2)

admits an optimal solution. Besides, this solution is efficient for the program (2.1).

Proof Let λ ∈ Rp, λ > 0, and consider the following linear program:


maxλTCx,

Ax = b,

d1 ≤ x ≤ d2.

(5.3)

We put y = x− d1 in the linear program (5.3). We have:


maxλTCy + λTCd1,

Ay = b−Ad1,

y ≤ d2 − d1,

y ≥ 0.

(5.4)

Let (u0, v0, γ0, α0, β0) be the optimal solution of (5.1). The dual of the program (5.2) is given by


minuT (b−Ad1) + γT (d2 − d1),

uTA+ γT ≥ (v0)TC,

γ ≥ 0.

(5.5)

As (u0, v0, γ0, α0, β0) is an optimal solution of the program (5.1), then (u0, γ0) is a feasible solution for the

program (5.5). Since the set S is not empty, the program (5.2) is feasible. From the duality theory, the program

(5.4), with λ = v0 , admits an optimal solution. 2

The following theorem allows us to find an efficient solution for the multiple objective program (2.1) by solving

one linear program with bounded variables.

Theorem 5.2 [4, 6] The following linear program:

{
max eTCx,

x ∈ S,
(5.6)

has an optimal solution if and only if the multiple objective program (2.1) admits an efficient solution.

Theorem 5.3 The program (5.1) has an optimal solution if and only if the multiple objective program (2.1)

admits an efficient solution.
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Proof We give the dual program of (5.1) by

max eT z,

Ay = b−Ad1,

−Cy + z = 0,

y ≤ d2 − d1,

y ≥ 0,

z ≥ 0.

(5.7)

If we put y + d1 = x , then we get the following program:

max eT z,

Ax = b,

z = Cx− Cd1,

d1 ≤ x ≤ d2,

z ≥ 0.

(5.8)

We have z = Cx− Cd1 ≥ 0, and the program (5.8) is equivalent to the following one:
max eTCx− eTCd1,

Ax = b,

d1 ≤ x ≤ d2.

(5.9)

However, as eTCd1 is a constant value, then the program (5.9) is equivalent to the program (5.6).

By applying Theorem 5.2 and according to the duality theory, the theorem is established. 2

The following theorem describes a class of multiobjective linear problems for which Isermann’s procedure

is valid.

Theorem 5.4 Isermann’s method is valid if T = {x ∈ S,Cx ≥ 0} is nonempty.

We propose to use the new method for generating an initial efficient point presented in the next section.

5.2. Finding an initial efficient point using the Benson–Radjef–Bibi procedure

The authors in [15] developed a procedure to find an initial efficient solution. However, in their method, they

used the direct support method to solve the single linear programs introduced in the procedure. Here, we use

the same procedure but we solve the single linear programs using the adaptive method [10, 13].

The procedure is given by the following steps:

Step (1): Find a feasible solution x0 ∈ S.

Step (2): If S ̸= ∅ , find the optimal solution (u0, w0, γ0, α0) of the following linear program:
minuT (−Cx0 + Cd1) + wT (b−Ad1) + γT (d2 − d1),

uTC − wTA− γT + αT = −eTC,

u, α, γ ≥ 0,

(5.10)
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and go to step (3).

Otherwise, stop the process, as the problem (2.1) is unfeasible.

Step (3): Get an efficient solution for the problem (2.1) by finding the optimal solution of the following

program using the adaptive method [10]: 
max(u0 + e)TCx,

Ax = b,

d1 ≤ x ≤ d2.

(5.11)

6. Generating efficient points

In this phase, we use the adaptive method principle. Starting from the first efficient solution, we calculate a

neighbor solution, and we test whether it is efficient. If it is not, we return to another efficient solution and we

reiterate the process. Then a test of efficiency of a nonbasic variable is necessary.

6.1. Efficiency test of a nonbasic variable

To test the efficiency of a solution x∗ in the multiple objective linear program (2.1), we use the test developed

by Radjef and Bibi [13, 15]. Here, the solution of the single objective programs is done using the adaptive

method. We introduce the vector v of dimension p and we define the following linear program:

max g = eT v,

Ax = b,

Cx− v = Cx∗,

d1 ≤ x ≤ d2,

v ≥ 0.

(6.1)

Theorem 6.1 If max g = 0 , then x∗ is efficient. Otherwise, x∗ is not efficient.

6.2. Construction of the new efficient solution

To find the efficient solution, we introduce into the basis, one by one, the nonbasic variables of the initial efficient

solution found in the first phase.

To calculate the new efficient solution x = x+ θ0l , we choose a direction of improvement l ∈ Rn and a

maximum step θ0 along this direction such as zk0(x) ≥ zk0(x).

Let k0 be the criterion satisfying the following relation:

∑
j∈JN

|Ek0j | = max
k=1,p

 ∑
j∈JN

|Ekj |

 .

In JN , we set θ = 1, and we put

lj =


d1j − xj , if Ek0j > 0,

d2j − xj , if Ek0j < 0,

0 if Ek0j = 0, j ∈ JN .

(6.2)
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In JB , we put l(JB) = −A−1
B AN l(JN ) to get Ax = b , so that x satisfies d1 ≤ x ≤ d2 . On the other hand, the

maximum step θ0 along the direction l must verify

d1j − xj ≤ θ0lj ≤ d2j − xj , j ∈ JB .

Therefore, we have

θj =


d2j

−xj

lj
, if lj > 0,

d1j
−xj

lj
, if lj < 0,

∞, if lj = 0, j ∈ JB ,

with

θj0 = min
j∈JB

θj ,

where j0 is the candidate index to come out of the basis.

The maximal step is

θ0 = min(1, θj0).

The new feasible solution is x̄ = x+ θ0l .

6.2.1. Calculation of β(x̄, JB)

For k ∈ {1, · · · , p} , we have:

βk(x̄, JB) =
∑

Ekj>0,j∈JN

Ekj(x̄j − d1j ) +
∑

Ekj<0,j∈JN

Ekj(x̄j − d2j )

= βk(x, JB) + θ0

 ∑
Ekj>0,j∈JN

Ekj lj +
∑

Ekj<0,j∈JN

Ekj lj

 .

Then

βk0(x̄, JB) = βk0(x, JB) + θ0

 ∑
Ek0j>0,j∈JN

Ek0j lj +
∑

Ek0j<0,j∈JN

Ek0j lj

 .

We replace lj given by the relations (6.2). Thus, we have

βk0(x̄, JB) = (1− θ0)βk0(x, JB).

From this expression, we deduce that:

• If θ0 = 1 then x is optimal for the objective k0 ; we also say that x̄ is Slater efficient. We consider all the

nonbasic variables.

• If βk0(x̄, J̄B) < ϵk0 , we have x̄ an ϵ-optimal for the objective k0 ; we also say that x̄ is ϵ-weakly efficient.

• If βk0(x̄, J̄B) > ϵk0 , we start a new iteration with the new support solution {x̄, J̄B} , and we change JB

as follows:
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6.2.2. Change of support

Changing support consists of the change of E to E , and U to U , so that:

βk0(x̄, JB) ≤ βk0(x̄, J̄B).

To this end, we put:

Ēk0j = Ek0j + σ0tj ,

Ūk0j = Uk0j + σ0tj ,

where t is the reduction direction of the dual function and σ0 is the maximal step along this direction.

Calculation of t and σ0 :

The step θ0 is given by:

θ0 = min(1, θj0) = θj0 , j0 ∈ JB .

We seek an index j1 ∈ JN , which will enter into the basis instead of j0 .

To this end, we put:

tj =

{
−sign(lj0), if j = j0,

0, if j ∈ JB\j0,

t(JN ) = t(JB)A
−1
B AN ,

and we calculate
σ0 = σj1 = min

j∈JN

(σj),

with

σj =



−Ek0j

tj
, if Ek0jtj < 0,

0, if (Ek0j = 0 and xj ̸= d1j for tj > 0) or

(Ek0j = 0 and xj ̸= d2j for tj < 0), j ∈ JN ,

∞, else .

We have Ek0j1 = 0.

The new support is JB = (JB \ j0) ∪ j1 .

We can notice that:

βk0(x̄, J̄B) =
∑

Ēk0j>0,j∈JN

Ēk0j(x̄j − d1j ) +
∑

Ēk0j<0,j∈JN

Ēk0j(x̄j − d2j )

= (1− θ0)βk0(x, JB) + σ0

 ∑
Ek0j>0,j∈JN

tj(x̄j − d1j ) +
∑

Ek0j<0,j∈JN

tj(x̄j − d2j )

 .

From this expression, we deduce that:

• If βk0(x̄, J̄B) > ϵk0 , we call the test program to verify the efficiency of this solution; if it is efficient, we

will begin a new iteration with the new support feasible solution {x̄, J̄B} .
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• If βk0(x̄, J̄B) < ϵk0 , we have x̄ an ϵ-optimal solution for the objective k0 ; we also say that x̄ is ϵ-weakly

efficient.

• If βk0(x̄, J̄B) = 0, then we find the Slater efficient solution. Then we consider another nonbasic variable

to start a new iteration.

7. Algorithm of the method

The steps of the method to search for the efficient solutions are given in the following algorithm:

I. Find the first efficient solution by using the following procedure:

• Find an optimal solution (u0, w0, γ0, α0) of the program (5.10).

• Obtain an optimal solution solution of the program (5.11).

Let x1 be the obtained solution, go to II.

II. Set s = 1:

(1) Let {xs, JB} a support feasible solution and ϵ ≥ 0.

• Calculate U = CBA
−1
B .

• Calculate E = (EB , EN ) = UA− C .

(2) Choose the criterion k0 .

• Calculate βk0(x
s, JB):

– If βk0(x
s, JB) > ϵk0 , go to (3).

– If βk0(x
s, JB) < ϵk0 , then xs is ϵk0 -weakly efficient, go to (6).

– If βk0
(xs, JB) = 0, then xs is weakly efficient, go to (5).

(3) Calculate the new feasible solution by using the following procedure:

• Calculate the vector l .

• Determine the index j0 and the maximal step θ0 .

• Set s = s+ 1.

• Calculate xs = xs−1 + θ0l , sth feasible solution.

• Calculate βk0(x
s, JB) = (1− θ0)βk0(x

s−1, JB):

– If βk0(x
s, JB) > ϵk0 , go to (4).

– If βk0(x
s, JB) < ϵk0 , then xs is ϵk0 -weakly efficient, go to (6).

– If θ0 = 1, then xs is weakly efficient solution, go to (5).

(4) Change the support:

• Calculate the vector t .

• Calculate σ0 , and determine index j1 .

• Determine the new support JB = (JB \ j0) ∪ j1 .

• Calculate β(xs, J̄B).

– If βk0(x
s, JB) > ϵk0 , go to (7).
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– If βk0(x
s, JB) < ϵk0 , then xs is ϵk0 -weakly efficient, go to (6).

– If βk0(x
s, JB) = 0, then xs is weakly efficient solution, go to (5).

(5) Introduction of the j th corresponding column leads to an unprocessed basis?

• If so, go to (6).

• Else, stop, all the solutions are found.

(6) Can we improve another objective?

• If so, go to (1).

• Else, stop, all the solutions are found.

(7) Consider the program (6.1) with x∗ = xs :

• If max g = 0, the solution xs is efficient.

• Else, go to (6).

8. Numerical example

Consider the following linear programming problem with bounded variables:



max z1(x) = x1 + 2x2,

max z2(x) = x1 − 2x3,

max z2(x) = −x1 + x3,

x1 + x2 + x4 = 1,

x2 + x5 = 2,

x1 − x2 + x3 + x6 = 4,

−1 ≤ x1 ≤ 1,

−2 ≤ x2 ≤ 2,

−3 ≤ x3 ≤ 3,

−4 ≤ x4 ≤ 4,

−5 ≤ x5 ≤ 5,

−6 ≤ x6 ≤ 6.

(8.1)

We have x0 = ( 0 0 0 1 2 4 ) as a feasible solution.

I. Calculation of the first Pareto efficient solution:
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First, we solve the program (5.10); by identification we have:



min(−u1 + 5u2 − 2u3 + 8w1 + 9w2 + 12w3 + 2γ1 + 4γ2 + 6γ3 + 8γ4 + 10γ5 + 12γ6),

u1 + u2 − u3 − w1 − w3 − γ1 + α1 = −1,

2u1 − w1 − w2 + w3 − γ2 + α2 = −2,

−2u2 + u3 − w3 − γ3 + α3 = 1,

−w1 − γ4 + α4 = 0,

−w2 − γ5 + α5 = 0,

−w3 − γ6 + α6 = 0,

u ≥ 0, α ≥ 0, γ ≥ 0.

To solve this program, we put:

w = w+ − w− with w+ = max(0, w) and w− = max(0,−w),

and so we get the following program:



min(−u1 + 5u2 − 2u3 + 8w+
1 + 9w+

2 + 12w+
3 − 8w−

1 − 9w−
2 − 12w−

3 + 2γ1 + 4γ2 + 6γ3 + 8γ4 + 10γ5 + 12γ6),

u1 + u2 − u3 − w+
1 − w+

3 + w−
1 + w−

3 − γ1 + α1 = −1,

2u1 − w+
1 − w+

2 + w+
3 + w−

1 + w−
2 − w−

3 − γ2 + α2 = −2,

−2u2 + u3 − w+
3 + w−

3 − γ3 + α3 = 1,

−w+
1 + w−

1 − γ4 + α4 = 0,

−w+
2 + w−

2 − γ5 + α5 = 0,

−w+
3 + w−

3 − γ6 + α6 = 0,

u ≥ 0, w+ ≥ 0, w− ≥ 0, α ≥ 0, γ ≥ 0.

The optimal solution to this program is:

( 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 ).

To obtain the first Pareto efficient solution, we solve the following program:


max(u0 + e)TCx,

Ax = b,

d1 ≤ x ≤ d2.
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Identification yields: 

max(2x2),

x1 + x2 + x4 = 1,

x2 + x5 = 2,

x1 − x2 + x3 + x6 = 4,

−1 ≤ x1 ≤ 1,

−2 ≤ x2 ≤ 2,

−3 ≤ x3 ≤ 3,

−4 ≤ x4 ≤ 4,

−5 ≤ x5 ≤ 5,

−6 ≤ x6 ≤ 6.

The optimal solution to this program by the adaptive method is: ( 1 2 −1 −2 0 6 ). Then our first

Pareto efficient solution is: ( 1 2 −1 −2 0 6 ).

We set JB = {3, 4, 5} and JN = {1, 2, 6} , and go to II.

II. Search all Pareto efficient solutions associated to our first Pareto efficient solution:

First iteration: Let {x1, JB} be a support feasible solution and ϵ =

 0.01

0.01

0.01

 .

• Calculate the reduced cost matrix E :

E = CBA
−1
B A− C.

We have:

EN =

 −1 −2 0

−3 2 −2

2 −1 1

 and EB =

 0 0 0

0 0 0

0 0 0

 .

Thus,

E =

 −1 −2 0 0 0 0

−3 2 0 0 0 −2

2 −1 0 0 0 1

 .

• Determine the criterion k0 such as:

∑
j∈JN

|Ek0j | = max(
∑
j∈JN

|E1j |,
∑
j∈JN

|E2j |,
∑
j∈JN

|E3j |) =
∑
j∈JN

|E2j | = 7,

so k0 = 2.

• We have β2(x
1, JB) = 8 > ϵ2 , and then x1 is not optimal for the objective k0 = 2.
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• Calculate the direction of improvement l :{
lN =

(
l1 l2 l6

)
=

(
0 −4 0

)
,

lB =
(
l3 l4 l5

)
=

(
−4 −4 4

)
.

• Calculate the maximum step:

θj0 = min
j∈JB

θj = min(θ3, θ4, θ5) = θ3 = 0.5,

so j0 = 3 and θ0 = min(1, θj0) = 0.5.

• Calculate x2 :

x2 = x1 + θ0l =
(
1 0 −3 0 2 6

)
• Calculate β2(x

2, JB) = 4 > ϵ2 , so {x2, JB} is not optimal for the objective k0 = 2.

Changing the support:

• t =
(
1 −1 1 0 0 1

)
,

• σ =
(
3 2 0 0 0 2

)
,

• σ0 = σj1 = σ2 = 2, so j1 = 2.

Our new support is: JB = (JB \ j0) ∪ j1 = {2, 4, 5} .

β2(x
2, JB) = 0, and then {x2, JB} is optimal for the objective k0 = 2, so x2 is a Slater efficient solution

for the problem (8.1).

• Consider the program (6.1). By identification, we have the following program:

max g = v1 + v2 + v3,

x1 + 2x2 − v1 = 1,

x1 − 2x3 − v2 = 7,

−x1 + x3 − v3 = −4,

x1 + x2 + x4 = 1,

x2 + x5 = 2,

x1 − x2 + x3 + x6 = 4,

−1 ≤ x1 ≤ 1,

−2 ≤ x2 ≤ 2,

−3 ≤ x3 ≤ 3,

−4 ≤ x4 ≤ 4,

−5 ≤ x5 ≤ 5,

−6 ≤ x6 ≤ 6,

v ≥ 0.
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We found max g = 0. Hence, the solution x2 is Pareto efficient for our program (8.1).

Second iteration: Let {x2, JB} be a support feasible solution. We have:

EN =

 −3 −2 −2

−1 2 0

1 −1 0

 and EB =

 0 0 0

0 0 0

0 0 0

 .

Thus,

E =

 −3 0 −2 0 0 −2

−1 0 2 0 0 0

1 0 −1 0 0 0

 .

• Determine the criterion k0 such as:∑
j∈JN

|Ek0j | = max(
∑
j∈JN

|E1j |,
∑
j∈JN

|E2j |,
∑
j∈JN

|E3j |) =
∑
j∈JN

|E1j | = 7,

so k0 = 1.

• We have β1(x
2, JB) = 12 > ϵ1 , and then x2 is not optimal for the objective k0 = 1.

• Calculate the direction of improvement l :{
lN =

(
l1 l3 l6

)
=

(
0 6 0

)
,

lB =
(
l2 l4 l5

)
=

(
6 −6 −6

)
.

• Calculate the maximum step:

θj0 = min
j∈JB

θj = min(θ2, θ4, θ5) = θ2 =
1

3
,

so j0 = 2 and θ0 = min(1, θj0) =
1
3 .

• Calculate x3 :

x3 = x2 + θ0l =
(
1 2 −1 −2 0 6

)
.

We can notice that x3 = x1 , so we can deduce that x1 is optimal for the objective k0 = 1. Moreover, x3

is Pareto efficient for our program (8.1).

Let JB = {1, 2, 3} be an unprocessed basis.

Third iteration: Let {x1, JB} be a support feasible solution.

Calculate the reduced cost matrix E :

EN =

 1 1 0

3 −5 −2

−2 3 1

 and EB =

 0 0 0

0 0 0

0 0 0

 .
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Thus,

E =

 0 0 0 1 1 0

0 0 0 3 −5 −2

0 0 0 −2 3 1

 .

• Determine the criterion k0 such as:∑
j∈JN

|Ek0j | = max(
∑
j∈JN

|E1j |,
∑
j∈JN

|E2j |,
∑
j∈JN

|E3j |) =
∑
j∈JN

|E2j | = 10,

so k0 = 2. Thus, we cannot improve another objective and so we stop the algorithm.

• The Pareto efficient solutions found are:

x1 =
(
1 0 −3 0 2 6

)
and x2 =

(
1 2 −1 −2 0 6

)
.

9. Conclusion

This paper was devoted to developing a new method to solve a multiobjective linear program with bounded

variables using the adaptive method, based on the use of an adapted metric. The constructed method generates

a large benefit in time and memory space. This is supported by the fact that we use the adaptive method to

solve our single linear programs, and it was showed that this method is very efficient, especially in the case of

degenerate problems. It is worth noticing that the use of the simplex method is inappropriate for this kind of

problem.

We first introduced a new procedure to find a first efficient solution. Subsequently, we developed a detailed

procedure to calculate the efficient solutions and the weakly efficient solutions. We have also characterized the

ϵ-efficient solutions for a multicriteria linear programming problem with bounded variables. We exploited the

suboptimal criterion of the adaptive method in single objective programming to get the ϵ-efficient solutions and

the ϵ-weakly efficient solutions to the problem. Moreover, we provided a global algorithm to describe major

steps in implementing the method. Finally, we presented a numerical example showing the applicability of the

method.
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