On the growth of meromorphic solutions of some higher order linear differential equations

Farid MESBOUT, Tahar ZERZAIHI*
Department of Mathematics,
Laboratory of Pure and Applied Mathematics (LMPA), University of Mohamed Seddik Ben Yahia, Jijel, Algeria

| Received: 24.01 .2017 | Accepted/Published Online: 28.09 .2017 | Final Version: 08.05 .2018 |
| :--- | :--- | :--- | :--- | :--- |

Abstract: Let k, m, n be integers such that $k \geq 1, n \geq 2$ and $1 \leq m \leq n$. In this article we study the order $\rho(f)$ and the hyperorder $\rho_{2}(f)$ of nonzero meromorphic solutions f of the differential equation

$$
\sum_{j=1, j \neq m}^{n} A_{j}(z) f^{(j)}(z)+A_{m}(z) e^{p_{m}(z)} f^{(m)}(z)+\left(A_{0}(z) e^{p(z)}+B_{0}(z) e^{q(z)}\right) f(z)=0
$$

where $B_{0}(z), A_{0}(z), \cdots, A_{n}(z)$ are meromorphic functions such that $A_{0} A_{m} A_{n} B_{0} \not \equiv 0, \max \left\{\rho\left(B_{0}\right), \rho\left(A_{0}\right), \cdots, \rho\left(A_{n}\right)\right\}<$ k, and $p(z), q(z), p_{m}(z)$ are polynomials of degree k. Under some conditions, we show that $\rho(f)=+\infty$ and $\rho_{2}(f)=k$. This is an extension of some recent results by Peng, Chen, Xu, and Zhang devoted to linear differential equations of the second order.

Key words: Meromorphic functions, Nevanlinna value distribution theory, linear differential equation, order of growth

1. Introduction and preliminary results

In this article, for a meromorphic function $f(z)$ in the whole complex plane \mathbb{C}, we use Nevanlinna value distribution theory notations such as $T(r, f), m(r, f)$, and $N(r, f)$ (see, e.g., $[5,6,9]$). We also use $\rho(f)$, $\rho_{2}(f), \lambda(f)$, and $\lambda\left(\frac{1}{f}\right)$ to denote the order of growth of $f(z)$, the hyperorder of growth of $f(z)$, the exponent of convergence of the zero sequence of $f(z)$, and the exponents of convergence of the pole sequence of $f(z)$, respectively defined by:

$$
\rho(f)=\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r}, \rho_{2}(f)=\limsup _{r \rightarrow \infty} \frac{\log \log T(r, f)}{\log r}, \text { and } \lambda(f)=\limsup _{r \rightarrow \infty} \frac{\log N\left(r, \frac{1}{f}\right)}{\log r}
$$

Recently Peng and Chen [7] considered some second-order differential equations with entire coefficients of order less than 1 and obtained the following theorem:

[^0]
MESBOUT and ZERZAIHI/Turk J Math

Theorem A Let $A_{1}(z), A_{2}(z)$ be nonzero entire functions such that $\max \left\{\rho\left(A_{1}\right), \rho\left(A_{2}\right)\right\}<1$. Let a_{1}, a_{2} be two distinct nonzero complex numbers $\left(\left|a_{1}\right| \leq\left|a_{2}\right|\right)$. We suppose that $\arg a_{1} \neq \pi$ or $a_{1}<-1$. Then, for every nonzero meromorphic solution $f(z)$ of the equation

$$
f^{\prime \prime}+e^{-z} f^{\prime}+\left(A_{1} e^{a_{1} z}+A_{2} e^{a_{2} z}\right) f=0
$$

we have $\rho(f)=+\infty$ and $\rho_{2}(f)=1$.
More recently, Xu and Zhang [8] extended this result to the case when the above equation has meromorphic coefficients:

Theorem B Let $A_{0}(z), A_{1}(z), A_{2}(z)$ be nonzero meromorphic functions such that max $\left\{\rho\left(A_{0}\right), \rho\left(A_{1}\right)\right.$, $\left.\rho\left(A_{2}\right)\right\}<1$. Let a_{1}, a_{2} be two distinct nonzero complex numbers $\left(\left|a_{1}\right| \leq\left|a_{2}\right|\right)$. Let $a_{0}<0$. If $\arg a_{1} \neq \pi$ or $a_{1}<a_{0}$, then every nonzero meromorphic solution $f(z)$ whose poles are of uniformly bounded multiplicities of the equation

$$
f^{\prime \prime}+A_{0} e^{a_{0} z} f^{\prime}+\left(A_{1} e^{a_{1} z}+A_{2} e^{a_{2} z}\right) f=0
$$

satisfies that we have $\rho(f)=+\infty$ and $\rho_{2}(f)=1$.
Here, we mean to extend the results above to more general higher order linear differential equations with meromorphic coefficients of finite order. More precisely, we prove the following theorem:

Theorem 1.1 Let k, m, n be integers such that $k \geq 1, n \geq 2$ and $1 \leq m \leq n$. Suppose that $B_{0}(z), A_{0}(z), \cdots$, $A_{n}(z)$ are meromorphic functions such that $A_{0} A_{m} A_{n} B_{0} \not \equiv 0$ and $\max \left\{\rho\left(B_{0}\right), \rho\left(A_{0}\right), \cdots, \rho\left(A_{n}\right)\right\}=\sigma<k$. Let $p(z)=\alpha z^{k}+\cdots, q(z)=\beta z^{k}+\cdots, p_{m}(z)=\alpha_{m} z^{k}+\cdots$ be polynomials of degree k. Suppose that $\alpha \neq \beta$ and that at least one of the two following conditions is satisfied:
i) at least two among the numbers $\alpha, \beta, \alpha_{m}$ are of distinct arguments,
ii) $\left|\alpha_{m}\right|<\max \{|\alpha|,|\beta|\}$, (if $\left.\arg \alpha=\arg \alpha_{m}=\arg \beta\right)$.

Then, for every nonzero meromorphic solution $f(z)$ of the equation

$$
\begin{equation*}
\sum_{\substack{j=1 \\ j \neq m}}^{n} A_{j}(z) f^{(j)}(z)+A_{m}(z) e^{p_{m}(z)} f^{(m)}(z)+\left(A_{0}(z) e^{p(z)}+B_{0}(z) e^{q(z)}\right) f(z)=0 \tag{1.1}
\end{equation*}
$$

we have $\rho(f)=+\infty$ and $\rho_{2}(f) \geq k$.
Remark 1.1 1) Our conditions on the numbers $\alpha, \beta, \alpha_{m}$ in Theorem 1.1 are weaker than those of Theorems A and B.
2) Theorem 1.1 provides sufficient (but not necessary) conditions to have the stated properties. Indeed, let us consider the equation $f^{\prime \prime \prime}(z)+f^{\prime \prime}(z)-e^{2 z} f^{\prime}(z)-\left(2 e^{z}+4 e^{2 z}\right) f(z)=0$. It is easily checked that the function $f(z)=e^{e^{z}}$ is a solution of this equation and $\rho(f)=+\infty$ and $\rho_{2}(f)=k=1$. However, conditions (i) and (ii) of the theorem are not fulfilled.

MESBOUT and ZERZAIHI/Turk J Math

Corollary 1.1 Under the assumptions of Theorem 1.1, we show that if $f(z)$ is a nonzero meromorphic solution of Equation (1.1), all of whose poles are of uniformly bounded multiplicity, then $\rho_{2}(f)=k$. This is, for instance, the case when f has only a finite number of poles and particularly when f is entire.

Theorem 1.2 Suppose that the conditions of Theorem 1.1 are satisfied. Then, for every nonzero meromorphic solution $f(z)$ of (1.1), we have

1) $\lambda(f+h)=\lambda\left(\frac{1}{f+h}\right)=\infty$, for every nonzero meromorphic function h of finite order.
2) $\lambda\left(f^{\prime}+h\right)=\lambda\left(\frac{1}{f^{\prime}+h}\right)=\infty$, for every nonzero meromorphic function h of order $<k$.
3) $\lambda\left(f^{\prime \prime}+h\right)=\lambda\left(\frac{1}{f^{\prime \prime}+h}\right)=\infty$, for every nonzero meromorphic function h of order $<k$.

2. The proofs

We need the following lemmas:
Lemma 2.1 [4] Let $f(z)$ be a meromorphic function of finite order $\rho, H=\left\{\left(k_{1}, j_{1}\right),\left(k_{2}, j_{2}\right), \ldots,\left(k_{q}, j_{q}\right)\right\}$ be a finite set of distinct pairs of integers satisfying $k_{i}>j_{i} \geq 0(i=1, \ldots, q)$, and ϵ be a positive constant. Then there exists a subset $\left.E_{1} \subset\right] 1, \infty[$, of finite logarithmic measure such that, for every $z \in \mathbb{C}$ such that $|z| \notin[0,1] \cup E_{1}$ and every $\left(k_{i}, j_{i}\right) \in H$, we have:

$$
\left|\frac{f^{\left(k_{i}\right)}(z)}{f^{\left(j_{i}\right)}(z)}\right| \leq|z|^{\left(k_{i}-j_{i}\right)(\rho-1+\epsilon)}
$$

Lemma 2.2 [3] Let $f(z)$ be a meromorphic function of finite order ρ; then, for any given $\epsilon>0$, there exists a set $\left.E_{2} \subset\right] 1, \infty\left[\right.$, of finite logarithmic measure such that, for every $z \in \mathbb{C}$ such that $|z| \notin[0,1] \cup E_{2}$, we have: $|f(z)| \leq \exp \left\{|z|^{\rho+\epsilon}\right\}$.

Lemma 2.3 [4] Let f be a transcendental meromorphic function. Let $\lambda>1$ be a constant, and let k and j be integers satisfying $k>j \geq 0$. Then there exist a subset $\left.E_{3} \subset\right] 1, \infty[$ of finite logarithmic measure and a constant $C>0$ such that for every $z \in \mathbb{C}$ such that $|z|=r \notin[0,1] \cup E_{3}$, we have $\left|\frac{f^{(k)}(z)}{f^{(j)}(z)}\right| \leq$ $C\left[\frac{T(\lambda r, f)}{r}(\log r)^{\lambda} \log T(\lambda r, f)\right]^{(k-j)}$.

Lemma 2.4 Let $\varphi, \psi \in\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\left[\right.\right.$ and let k be an integer ≥ 1. Let $E \subset\left[-\frac{\pi}{2 k}, \frac{3 \pi}{2 k}[\right.$ be a set of linear measure zero. If $\varphi \neq \psi$, then there exist infinitely many $\theta \in\left[-\frac{\pi}{2 k}, \frac{3 \pi}{2 k}[\backslash E\right.$, such that $\cos (\varphi+k \theta) \cos (\psi+k \theta)<0$.

Proof Without loss of generality, we may assume that $-\frac{\pi}{2} \leq \varphi<\psi<\frac{3 \pi}{2}$ and we distinguish the following cases:

Case 1. Suppose that $-\frac{\pi}{2} \leq \varphi<\psi \leq \frac{\pi}{2}$. Then we have

$$
\begin{equation*}
0 \leq \frac{\pi}{2}-\psi<\frac{\pi}{2}-\varphi \leq \pi \leq \frac{3 \pi}{2}-\psi \tag{2.1}
\end{equation*}
$$

As E is a set of linear measure zero, we see that $] \frac{1}{k}\left(\frac{\pi}{2}-\psi\right), \frac{1}{k}\left(\frac{\pi}{2}-\varphi\right)[\backslash E$ is an infinite subset of $]-\frac{\pi}{2 k}, \frac{3 \pi}{2 k}[\backslash E . \quad$ Then, using Inequalities (2.1), we see that for every $\theta \in] \frac{1}{k}\left(\frac{\pi}{2}-\psi\right), \frac{1}{k}\left(\frac{\pi}{2}-\varphi\right)[\backslash E$, we have:

$$
0 \leq \frac{\pi}{2}-\psi<k \theta<\frac{\pi}{2}-\varphi \text { and } \frac{\pi}{2}-\psi<k \theta<\frac{\pi}{2}-\varphi \leq \frac{3 \pi}{2}-\psi
$$

Hence, we have $-\frac{\pi}{2} \leq \varphi<\varphi+k \theta<\frac{\pi}{2}$ and $\frac{\pi}{2}<\psi+k \theta<\frac{3 \pi}{2}$.
Therefore, in this case, we have $\cos (\varphi+k \theta)>0$ and $\cos (\psi+k \theta)<0$.
Case 2. Suppose that $\frac{\pi}{2} \leq \varphi<\psi<\frac{3 \pi}{2}$, and let $\varphi^{\prime}=\varphi-\pi$ and $\psi^{\prime}=\psi-\pi$. Thus, we have $-\frac{\pi}{2} \leq \varphi^{\prime}<$ $\psi^{\prime}<\frac{\pi}{2}$. From the previous case it is seen that, for every $\left.\theta \in\right] \frac{1}{k}\left(\frac{\pi}{2}-\psi^{\prime}\right), \frac{1}{k}\left(\frac{\pi}{2}-\varphi^{\prime}\right)[\backslash E \subset]-\frac{\pi}{2 k}, \frac{3 \pi}{2 k}[\backslash E$, we have $\cos \left(\varphi^{\prime}+k \theta\right) \cos \left(\psi^{\prime}+k \theta\right)<0$. Since $\cos \left(\varphi^{\prime}+k \theta\right)=-\cos (\varphi+k \theta)$ and $\cos \left(\psi^{\prime}+k \theta\right)=-\cos (\psi+k \theta)$, it follows that $\cos (\varphi+k \theta) \cos (\psi+k \theta)<0$.

Case 3. Suppose that $-\frac{\pi}{2} \leq \varphi<\frac{\pi}{2}<\psi<\frac{3 \pi}{2}$. Thus, we have $0<\frac{\pi}{2}-\varphi \leq \pi$ and $0<\frac{3 \pi}{2}-\psi<\pi$. Let $\alpha=\min \left\{\frac{\pi}{2}-\varphi, \frac{3 \pi}{2}-\psi\right\}$. Then $] 0, \frac{\alpha}{k}[\backslash E$ is an infinite subset of $]-\frac{\pi}{2 k}, \frac{3 \pi}{2 k}[\backslash E$. Moreover, for every $\theta \in] 0, \frac{\alpha}{k}\left[\backslash E\right.$, we have $-\frac{\pi}{2} \leq \varphi<\varphi+k \theta<\frac{\pi}{2}$ and $\frac{\pi}{2}<\psi<\psi+k \theta<\frac{3 \pi}{2}$. It follows that, in this case, $\cos (\varphi+k \theta)>0$ and $\cos (\psi+k \theta)<0$.

Lemma 2.5 [1] Let $k \geq 2$ and $A_{0}, A_{1}, \ldots, A_{k-1}$ be meromorphic functions.
Let $\rho=\max \left\{\rho\left(A_{j}\right), j=0,1, \ldots, k-1\right\}$. Let $f(z)$ be a meromorphic solution of the differential equation

$$
f^{(k)}+A_{(k-1)} f^{(k-1)}+\cdots+A_{0} f=0
$$

If all poles of $f(z)$ are of uniformly bounded multiplicity, then we have $\rho_{2}(f) \leq \rho$.
Lemma 2.6 [2] Let k be an integer ≥ 1 and let $A_{0}, A_{1}, \ldots, A_{k-1}, F \not \equiv 0$ be finite order meromorphic functions. If $g(z)$ is an infinite order meromorphic solution of the equation

$$
g^{(k)}+A_{(k-1)} g^{(k-1)}+\cdots+A_{0} g=F
$$

then $g(z)$ satisfies $\lambda(g)=\lambda\left(\frac{1}{g}\right)=\infty$.

Lemma 2.7 [9] Suppose that $f_{1}(z), f_{2}(z), \ldots, f_{n+1}(z)(n \geq 1)$ are meromorphic functions and $g_{1}(z), g_{2}(z), \ldots, g_{n}(z)$ are entire functions satisfying the following conditions:
(1) $\sum_{j=1}^{n} f_{j}(z) e^{g_{j}(z)} \equiv f_{n+1}(z)$.
(2) For $1 \leq j \leq n+1,1 \leq k \leq n$, the order of f_{j} is less than the order of $e^{g_{k}(z)}$, and furthermore the order of $f_{j}(z)$ is less than the order of $e^{g_{h}-g_{k}}$ for $n \geq 2$ and $1 \leq j \leq n+1,1 \leq h<k \leq n$

$$
\text { Then } f_{j}(z) \equiv 0 \quad(j=1,2, \ldots, n+1)
$$

Lemma $2.8[6]$ Let $F(r)$ and $G(r)$ be nondecreasing real-valued functions on $[0, \infty[$ such that $F(r) \leq G(r)$ for all r outside of a set $E \subset] 1, \infty[$ of finite linear measure or outside of a set $H \cup[0,1]$, where $H \subset] 1, \infty[$ is of finite logarithmic measure. Then, for every constant $\alpha>1$, there exists an $r_{0}>0$ such that $F(r) \leq G(\alpha r)$ for all $r>r_{0}$.

2.1. Proof of Theorem 1.1

We shall see that this theorem is an immediate consequence of the following proposition in which we are reduced to the case where the polynomials $p(z), q(z)$ and $p_{m}(z)$ are just monomials.:

Proposition 2.1 Let k, m, n be integers such that $k \geq 1, n \geq 2$ and $1 \leq m \leq n$. Suppose that $B_{0}(z), A_{0}(z), \cdots, A_{n}(z)$ are meromorphic functions such that $A_{0} A_{m} A_{n} B_{0} \not \equiv 0$ and $\max \left\{\rho\left(B_{0}\right), \rho\left(A_{0}\right), \cdots, \rho\left(A_{n}\right)\right\}=\sigma<k$. Let $\alpha, \beta, \alpha_{m}$ be complex numbers such that $\alpha \beta \neq 0$ and $\alpha \neq \beta$. Suppose that at least one of the two following conditions is satisfied:
i) at least two of the numbers $\alpha, \beta, \alpha_{m}$ have distinct arguments,
ii) $\left|\alpha_{m}\right|<\max \{|\alpha|,|\beta|\}$, (if $\left.\arg \alpha=\arg \alpha_{m}=\arg \beta\right)$.

Then, for every nonzero meromorphic solution $f(z)$ of the following equation:

$$
\begin{equation*}
\sum_{\substack{j=1 \\ j \neq m}}^{n} A_{j}(z) f^{(j)}(z)+A_{m}(z) e^{\alpha_{m} z^{k}} f^{(m)}(z)+\left(A_{0}(z) e^{\alpha z^{k}}+B_{0}(z) e^{\beta z^{k}}\right) f(z)=0 \tag{2.2}
\end{equation*}
$$

we have $\rho(f)=+\infty$ and $\rho_{2}(f) \geq k$.
Proof Let us first show that every nonzero meromorphic solution of Equation (2.2), is of infinite order. Indeed, suppose that (2.2) admits a nonzero meromorphic solution $f(z)$ of finite order. Let us set $z=r e^{i \theta}$, $\alpha=|\alpha| e^{i \varphi}, \alpha_{m}=\left|\alpha_{m}\right| e^{i \theta_{m}}$, and $\beta=|\beta| e^{i \psi}$ and let $0<\epsilon<k-\sigma$. From the hypothesis, we easily check that:

$$
\max \left\{\rho\left(\frac{A_{j}}{A_{0}}\right), \rho\left(\frac{A_{j}}{B_{0}}\right), 0 \leq j \leq n\right\} \leq \sigma
$$

Thus, by Lemma 2.2 there exists a set $E \subset] 1, \infty[$ of finite logarithmic measure such that, for every z such that $|z|=r \notin[0,1] \cup E$, we have:

$$
\begin{equation*}
\max \left\{\left|\frac{A_{j}(z)}{A_{0}(z)}\right|,\left|\frac{A_{j}(z)}{B_{0}(z)}\right|, 0 \leq j \leq n\right\} \leq \exp \left\{r^{\sigma+\epsilon}\right\} \tag{2.3}
\end{equation*}
$$

and we distinguish the following cases:

1) $\varphi \neq \psi$. By Lemma 2.4, there exists $\theta \in\left[-\frac{\pi}{2 k}, \frac{\pi}{2 k}[\right.$ such that, $\cos (\varphi+k \theta) \cos (\psi+k \theta)<0$. Without loss of generality, we may suppose that $\cos (\varphi+k \theta)>0$ and $\cos (\psi+k \theta)<0$. Then, from Equation (2.2), we have

$$
\begin{align*}
&-e^{\alpha z^{k}}=\sum_{\substack{j=1 \\
j \neq m}}^{n} \frac{A_{j}(z) f^{(j)}(z)}{A_{0}(z) f(z)}+e^{\alpha_{m} z^{k}} \frac{A_{m}(z) f^{(m)}(z)}{A_{0}(z) f(z)}+e^{\beta z^{k}} \frac{B_{0}(z)}{A_{0}(z)} \tag{2.4}\\
&-e^{\beta z^{k}}=\sum_{\substack{j=1 \\
j \neq m}}^{n} \frac{A_{j}(z) f^{(j)}(z)}{B_{0}(z) f(z)}+e^{\alpha_{m} z^{k}} \frac{A_{m}(z) f^{(m)}(z)}{B_{0}(z) f(z)}+e^{\alpha z^{k}} \frac{A_{0}(z)}{B_{0}(z)} \tag{2.5}
\end{align*}
$$

1.1) Suppose that $\cos \left(\theta_{m}+k \theta\right) \leq 0$. Then by Equations (2.3), (2.4) and Lemma 2.1 we have

$$
\exp \left\{|\alpha| \cos (\varphi+k \theta) r^{k}\right\} \leq(n+1) \exp \left\{r^{\sigma+\epsilon}\right\} r^{n(\rho(f)-1+\epsilon)}
$$

which is a contradiction with $\sigma+\epsilon<k$.
1.2) Suppose that $\cos \left(\theta_{m}+k \theta\right)>0$. Letting $\theta^{\prime}=\theta+\frac{\pi}{k}$, then we have $\cos \left(\theta_{m}+k \theta^{\prime}\right)<0$ and $\cos \left(\psi+k \theta^{\prime}\right)>0$.

By Equations (2.3) and (2.5) and Lemma 2.1, we have

$$
\exp \left\{|\beta| \cos \left(\psi+k \theta^{\prime}\right) r^{k}\right\} \leq(n+1) \exp \left\{r^{\sigma+\epsilon}\right\} r^{n(\rho(f)-1+\epsilon)}
$$

which is a contradiction with $\sigma+\epsilon<k$.
2) $\varphi=\psi$. Since $\alpha \neq \beta$, then $|\alpha| \neq|\beta|$. Without loss of generality, we may suppose that $|\alpha|<|\beta|$. Then we have the following subcases:
2.1) $\theta_{m} \neq \varphi=\psi$. Then, by Lemma 2.4, there exists $\theta \in\left[-\frac{\pi}{2 k}, \frac{\pi}{2 k}\left[\right.\right.$ such that $\cos (\varphi+k \theta) \cos \left(\theta_{m}+k \theta\right)<0$, and we may suppose that $\cos (\varphi+k \theta)>0$. Then, by Equations (2.3) and (2.5) and Lemma 2.1, we have

$$
\exp \left\{|\beta| \cos (\varphi+k \theta) r^{k}\right\} \leq(n+1) \exp \left\{r^{\sigma+\epsilon}\right\} r^{n(\rho(f)-1+\epsilon)} \exp \left\{|\alpha| \cos (\varphi+k \theta) r^{k}\right\}
$$

and therefore, we have

$$
\exp \left\{(|\beta|-|\alpha|) \cos (\varphi+k \theta) r^{k}\right\} \leq(n+1) \exp \left\{r^{\sigma+\epsilon}\right\} r^{n(\rho(f)-1+\epsilon)}
$$

This is a contradiction with $\sigma+\epsilon<k$.
2.2) $\theta_{m}=\varphi=\psi$. We choose $\theta \in\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\left[\right.\right.$ such that $\cos (\varphi+k \theta)>0$. If $\left|\alpha_{m}\right| \leq|\alpha|$, then by Equations (2.3) and (2.5) and Lemma 2.1, we have

$$
\exp \left\{(|\beta|-|\alpha|) \cos (\varphi+k \theta) r^{k}\right\} \leq(n+1) \exp \left\{r^{\sigma+\epsilon}\right\} r^{n(\rho(f)-1+\epsilon)}
$$

a contradiction.

If $|\alpha|<\left|\alpha_{m}\right|<|\beta|$, by Equations (2.3) and (2.5) and Lemma 2.1, we have

$$
\exp \left\{\left(|\beta|-\left|\alpha_{m}\right|\right) \cos (\varphi+k \theta) r^{k}\right\} \leq(n+1) \exp \left\{r^{\sigma+\epsilon}\right\} r^{n(\rho(f)-1+\epsilon)}
$$

and this is a contradiction.
Let us now show that every nonzero meromorphic solution $f(z)$ of Equation (2.2) satisfies $\rho_{2}(f) \geq k$.
By Lemma 2.3, we know that there exists a set $\left.E_{3} \subset\right] 1$, $\infty[$, with finite logarithmic measure and a constant $C>0$ such that, for all $|z|=r \notin[0,1] \cup E_{3}$, we get

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f(z)}\right| \leq C\left[\frac{T(2 r, f)}{r}(\log r)^{2} \log T(2 r, f)\right]^{j} \leq C[T(2 r, f)]^{j+1}, \quad j=1, \ldots, n \tag{2.6}
\end{equation*}
$$

Using (2.6) and for the proof of the first step, we have

$$
\begin{equation*}
\exp \left\{h_{1} r^{k}\right\} \leq C(n+1) \exp \left\{r^{\sigma+\epsilon}\right\}[T(2 r, f)]^{n+1} \tag{2.7}
\end{equation*}
$$

where $h_{1}>0$ is a constant. By $h_{1}>0, \sigma+\epsilon<k,(2.7)$, and Lemma 2.8, we know that there exists $r_{0}>0$ such that when $r>r_{0}$, we have $\rho_{2}(f) \geq k$.

We are now able to explain how to deduce Theorem 1.1 from the proposition above.
Let us set $\mathcal{A}_{0}(z)=A_{0}(z) e^{p(z)-\alpha z^{k}}, \quad \mathcal{B}_{0}(z)=B_{0}(z) e^{q(z)-\beta z^{k}}$,

$$
\mathcal{A}_{m}(z)=A_{m}(z) e^{p_{m}(z)-\alpha_{m} z^{k}}, \text { and } \mathcal{A}_{j}(z)=A_{j}(z) \text { for } j=1, \ldots, n ; j \neq m
$$

With these notations, Equation (1.1) becomes

$$
\begin{equation*}
\sum_{\substack{j=1 \\ j \neq m}}^{n} \mathcal{A}_{j}(z) f^{(j)}(z)+\mathcal{A}_{m}(z) e^{\alpha_{m} z^{k}} f^{(m)}(z)+\left(\mathcal{A}_{0}(z) e^{\alpha z^{k}}+\mathcal{B}_{0}(z) e^{\beta z^{k}}\right) f(z)=0 \tag{2.8}
\end{equation*}
$$

which is of the same form as Equation (2.2). Moreover, it is easy to check that the functions $\mathcal{B}_{0}, \mathcal{A}_{0}, \ldots, \mathcal{A}_{n}$ have the same proprieties as those of the functions $B_{0}, A_{0}, \ldots, A_{n}$ in Proposition (2.1). We just apply this proposition to conclude.

2.2. Proof of Corollary 1.1

Let f be a nonzero meromorphic solution of Equation (1.1) satisfying the conditions in the corollary. Then we have:

$$
f^{(n)}(z)+\sum_{j=0}^{n-1} C_{j}(z) f^{(j)}(z)=0
$$

where $C_{j}(z)=\frac{A_{j}(z)}{A_{n}(z)}$ for all $j \in\{1, \ldots, n\} \backslash\{0, m\}, C_{0}(z)=\frac{A_{0}(z) e^{p(z)}+B_{0}(z) e^{q(z)}}{A_{n}(z)}$, and $C_{m}(z)=\frac{A_{m}(z) e^{p_{m}(z)}}{A_{n}(z)}$.
It is clear that $\max \left\{\rho\left(C_{j}\right), 0 \leq j \leq n\right\} \leq k$. Hence, by Lemma 2.5, we have $\rho_{2}(f) \leq k$. On the other hand, applying Theorem 1.1, we obtain $\rho_{2}(f) \geq k$. Then $\rho_{2}(f)=k$.

2.3. Proof of Theorem 1.2

1) According to Theorem 1.1, we have $\rho(f)=\infty$. Putting $g_{0}=f+h$, we see that $\rho\left(g_{0}\right)=\rho(f)=\infty$ and we deduce from Equation (1.1) that:

$$
\begin{equation*}
g_{0}^{(n)}+C_{n-1} g_{0}^{(n-1)}+\cdots+C_{0} g_{0}=H_{0} \tag{2.9}
\end{equation*}
$$

where $C_{0}(z)=\frac{A_{0}(z) e^{p(z)}+B_{0}(z) e^{q(z)}}{A_{n}(z)}, \quad C_{m}(z)=\frac{A_{m}(z) e^{p_{m}(z)}}{A_{n}(z)}, C_{j}(z)=\frac{A_{j}(z)}{A_{n}(z)}$, for $j \in\{1, \ldots, n\} \backslash\{m\}$ and $H_{0}(z)=\sum_{j=1}^{n} C_{j} h^{j}$.

Now it is clear that $H_{0} \not \equiv 0$, because if $H_{0} \equiv 0$, we deduce by Theorem 1.1 that $\rho(h)=\infty$, which is a contradiction.

We also easily see that the functions $C_{0}(z), \ldots, C_{n-1}(z)$ and $H_{0}(z)$ are of finite order. Thus, applying Lemma 2.6 to Equation (2.9), we have $\lambda(f+h)=\lambda\left(\frac{1}{f+h}\right)=\infty$.
2) Suppose now that $\rho(h)<k$ and let us show that $\lambda\left(f^{\prime}+h\right)=\lambda\left(\frac{1}{f^{\prime}+h}\right)=\infty$.

Letting $g_{1}=f^{\prime}+h$, by derivation of both sides of (1.1), we obtain

$$
\begin{equation*}
\mathcal{A}_{0}^{\prime} f+\sum_{j=1}^{n}\left(\mathcal{A}_{j-1}+\mathcal{A}_{j}^{\prime}\right) f^{(j)}+\mathcal{A}_{n} f^{(n+1)}=0 \tag{2.10}
\end{equation*}
$$

where $\mathcal{A}_{0}=A_{0} e^{p(z)}+B_{0} e^{q(z)}, \mathcal{A}_{m}=A_{m} e^{p_{m}(z)}$, and $\mathcal{A}_{j}=A_{j}$, for $j \in\{1, \ldots, n\} \backslash\{m\}$.
Multiplying (2.10) by \mathcal{A}_{0} and (1.1) by \mathcal{A}_{0}^{\prime} and making the difference, we obtain

$$
\begin{gather*}
\sum_{j=0}^{n-1}\left(\mathcal{A}_{0}\left(\mathcal{A}_{j}+\mathcal{A}_{j+1}^{\prime}\right)-\mathcal{A}_{0}^{\prime} \mathcal{A}_{j+1}\right)\left(f^{\prime}\right)^{(j)}+\mathcal{A}_{0} \mathcal{A}_{n}\left(f^{\prime}\right)^{(n)}=0, \text { i.e. } \\
\Delta\left(f^{\prime}\right)=0 \tag{2.11}
\end{gather*}
$$

where $\Delta(y)=\sum_{j=0}^{n-1}\left(\mathcal{A}_{0}\left(\mathcal{A}_{j}+\mathcal{A}_{j+1}^{\prime}\right)-\mathcal{A}_{0}^{\prime} \mathcal{A}_{j+1}\right) y^{(j)}+\mathcal{A}_{0} \mathcal{A}_{n} y^{(n)}$.
Since $f^{\prime}=g_{1}-h$, we obtain from (2.11):

$$
\begin{equation*}
\Delta\left(g_{1}\right)=\Delta(h) \tag{2.12}
\end{equation*}
$$

We have $\Delta(h) \not \equiv 0$. Indeed, if $\Delta(h) \equiv 0$, using the fact $\mathcal{A}_{0}=A_{0} e^{p(z)}+B_{0} e^{q(z)}$ and $\mathcal{A}_{m}=A_{m} e^{p_{m}(z)}$, we get

$$
\begin{array}{r}
G_{\alpha} e^{\alpha z^{k}}+G_{\beta} e^{\beta z^{k}}+G_{\alpha+\alpha_{m}} e^{\left(\alpha+\alpha_{m}\right) z^{k}}+G_{\alpha_{m}+\beta} e^{\left(\alpha_{m}+\beta\right) z^{k}}+G_{\alpha+\beta} e^{(\alpha+\beta) z^{k}} \\
+G_{2 \alpha} e^{2 \alpha z^{k}}+G_{2 \beta} e^{2 \beta z^{k}}=0, \tag{2.13}
\end{array}
$$

where the coefficients of Equation (2.13) are meromorphic functions of order $<k$, with $G_{2 \alpha}=\left(A_{0} e^{p(z)-\alpha z^{k}}\right)^{2}$ and $G_{2 \beta}=\left(B_{0} e^{q(z)-\alpha z^{k}}\right)^{2}$.

MESBOUT and ZERZAIHI/Turk J Math

Using the conditions of the theorem we easily show that $2 \alpha \notin\left\{\alpha, \beta, \alpha+\alpha_{m}, \alpha_{m}+\beta, \alpha+\beta, 2 \beta\right\}$ or $2 \beta \notin\left\{\alpha, \beta, \alpha+\alpha_{m}, \alpha_{m}+\beta, \alpha+\beta, 2 \alpha\right\}$. Indeed:

If $2 \alpha \in\left\{\alpha, \beta, \alpha+\alpha_{m}, \alpha_{m}+\beta, \alpha+\beta, 2 \beta\right\}$, we will show that $2 \beta \notin\left\{\alpha, \beta, \alpha+\alpha_{m}, \alpha_{m}+\beta, \alpha+\beta, 2 \alpha\right\}$. Since $\alpha \beta(\alpha-\beta) \neq 0$, we have $2 \alpha \neq \alpha, \alpha+\beta, 2 \beta$ and $2 \beta \neq \beta, \alpha+\beta, 2 \alpha$, so we have $2 \alpha \in\left\{\beta, \alpha+\alpha_{m}, \alpha_{m}+\beta\right\}$ and it is sufficient to show that $2 \beta \notin\left\{\alpha, \alpha+\alpha_{m}, \alpha_{m}+\beta\right\}$.

By Lemma 2.7, we get $A_{0}^{2} \equiv 0$ or $B_{0}^{2} \equiv 0$, a contradiction because $A_{0} B_{0} \not \equiv 0$. Therefore, $\Delta(h) \not \equiv 0$. Now applying Lemma (2.6) to Equation (2.12), we obtain

$$
\lambda\left(f^{\prime}+h\right)=\lambda\left(\frac{1}{f^{\prime}+h}\right)=\infty
$$

3) Let us now prove that $\lambda\left(f^{\prime \prime}+h\right)=\infty$. We pose $g_{2}=f^{\prime \prime}+h$, and then $\rho\left(g_{2}\right)=\rho\left(f^{\prime \prime}\right)=\infty$.

By derivation of (2.10), we have

$$
\begin{align*}
\mathcal{A}_{n} f^{(n+2)}+\left(2 \mathcal{A}_{n}^{\prime}+\mathcal{A}_{n-1}\right) f^{(n+1)}+ & \sum_{j=2}^{n}\left(\mathcal{A}_{j-2}+2 \mathcal{A}_{j-1}^{\prime}+\mathcal{A}_{j}^{\prime \prime}\right) f^{(j)} \\
& +\left(2 \mathcal{A}_{0}^{\prime}+\mathcal{A}_{1}^{\prime \prime}\right) f^{\prime}+\mathcal{A}_{0}^{\prime \prime} f=0 \tag{2.14}
\end{align*}
$$

Equation (1.1) enables us to express f as function of $f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}$. Then a substitution of this in Equation (2.14) gives

$$
\begin{array}{r}
\mathcal{A}_{0} \mathcal{A}_{n} f^{(n+2)}+\mathcal{A}_{0}\left(2 \mathcal{A}_{n}^{\prime}+\mathcal{A}_{n-1}\right) f^{(n+1)}+\sum_{j=2}^{n}\left(\mathcal{A}_{0}\left(\mathcal{A}_{j-2}+2 \mathcal{A}_{j-1}^{\prime}+\mathcal{A}_{j}^{\prime \prime}\right)-\mathcal{A}_{0}^{\prime \prime} \mathcal{A}_{j}\right) f^{(j)} \\
+\left(\mathcal{A}_{0}\left(2 \mathcal{A}_{0}^{\prime}+\mathcal{A}_{1}^{\prime \prime}\right)-\mathcal{A}_{0}^{\prime \prime} \mathcal{A}_{1}\right) f^{\prime}=0 \tag{2.15}
\end{array}
$$

We put $D_{0}=\mathcal{A}_{0}\left(\mathcal{A}_{0}+\mathcal{A}_{1}^{\prime}\right)-\mathcal{A}_{0}^{\prime} \mathcal{A}_{1}$ and $D_{1}=\mathcal{A}_{0}\left(2 \mathcal{A}_{0}^{\prime}+\mathcal{A}_{1}^{\prime \prime}\right)-\mathcal{A}_{0}^{\prime \prime} \mathcal{A}_{1}$.
Multiplying (2.15) by D_{0} and (2.11) by D_{1} and making the difference, we have

$$
\begin{equation*}
\Gamma\left(f^{\prime \prime}\right)=0 \tag{2.16}
\end{equation*}
$$

where $\Gamma(y)=\mathcal{A}_{0} D_{0} \mathcal{A}_{n} y^{(n)}+\left(\mathcal{A}_{0} D_{0}\left(2 \mathcal{A}_{n}^{\prime}+\mathcal{A}_{n-1}\right)-\mathcal{A}_{0} D_{1} \mathcal{A}_{n}\right) y^{(n-1)}$
$+\sum_{j=0}^{n-2}\left(D_{0}\left(\mathcal{A}_{0}\left(\mathcal{A}_{j}+2 \mathcal{A}_{j+1}^{\prime}+\mathcal{A}_{j+2}^{\prime \prime}\right)-\mathcal{A}_{0}^{\prime \prime} \mathcal{A}_{j+2}\right)-\left(\mathcal{A}_{0}\left(\mathcal{A}_{j+1}+\mathcal{A}_{j+2}^{\prime}\right)-\mathcal{A}_{0}^{\prime} \mathcal{A}_{j+2}\right) D_{1}\right) y^{(j)}$. since $f^{\prime \prime}=g_{2}-h$, we obtain from (2.16):

$$
\begin{equation*}
\Gamma\left(g_{1}\right)=\Gamma(h) \tag{2.17}
\end{equation*}
$$

We have $\Gamma(h) \not \equiv 0$. Indeed, if $\Gamma(h) \equiv 0$, then

$$
\begin{equation*}
\frac{\Gamma(h)}{A_{0}} \equiv 0 \tag{2.18}
\end{equation*}
$$

Let us distinguish two cases:

MESBOUT and ZERZAIHI/Turk J Math

Case 1 If $m=1$, replacing \mathcal{A}_{0} and \mathcal{A}_{1} by $A_{0} e^{p(z)}+B_{0} e^{q(z)}$ and $A_{1} e^{p_{1}(z)}$ in Equation (2.18), we obtain

$$
\begin{aligned}
& f_{1}(z) e^{\left(\alpha+\alpha_{1}\right) z^{k}}+f_{2}(z) e^{\left(\alpha_{1}+\beta\right)}+f_{3}(z) e^{2 \alpha z^{k}}+f_{4}(z) e^{2 \beta z^{k}}+f_{5}(z) e^{(\alpha+\beta) z^{k}} \\
& +f_{6}(z) e^{(2 \alpha+\beta) z^{k}}+f_{7}(z) e^{(\alpha+2 \beta) z^{k}}+f_{8}(z) e^{\left(2 \alpha_{1}+\alpha\right) z^{k}}+f_{9}(z) e^{\left(2 \alpha_{1}+\beta\right) z^{k}} \\
& +f_{10}(z) e^{\left(2 \alpha+\alpha_{1}\right) z^{k}}+f_{11}(z) e^{\left(\alpha_{1}+2 \beta\right) z^{k}}+f_{12}(z) e^{\left(\alpha+\alpha_{1}+\beta\right) z^{k}}+f_{13}(z) e^{3 \alpha z^{k}}+f_{14}(z) e^{3 \beta z^{k}}=0
\end{aligned}
$$

where the functions f_{1}, \ldots, f_{14} are all of order $<k$ and particularly $f_{13}(z)=\left(A_{0} e^{p(z)-\alpha z^{k}}\right)^{3}$ and $f_{14}(z)=$ $\left(B_{0} e^{q(z)-\beta z^{k}}\right)^{3}$.

Let $\Omega=\left\{3 \alpha, \alpha+\alpha_{1}+\beta, \alpha_{1}+2 \beta, 2 \alpha+\alpha_{1}, 2 \alpha_{1}+\beta, 2 \alpha_{1}+\alpha, \alpha+2 \beta, 2 \alpha+\beta, \alpha+\beta, 2 \beta, 2 \alpha, \alpha_{1}+\beta, \alpha+\alpha_{1}\right\}$. Since $\alpha \neq \beta$, we have $3 \alpha \neq 3 \beta, \alpha+2 \beta, 2 \alpha+\beta, 2 \alpha$ and $3 \beta \neq 3 \alpha, \alpha+2 \beta, 2 \alpha+\beta, 2 \beta$.

Setting $\Omega_{1}=\left\{\alpha+\alpha_{1}+\beta, \alpha_{1}+2 \beta, 2 \alpha+\alpha_{1}, 2 \alpha_{1}+\beta, 2 \alpha_{1}+\alpha, \alpha+\beta, 2 \beta, \alpha_{1}+\beta, \alpha+\alpha_{1}\right\}$, then we have:
If $3 \alpha \notin \Omega_{1}$, we deduce by Lemma 2.7 that $f_{13} \equiv 0$, i.e. $A_{0} \equiv 0$, which is a contradiction.
If $3 \alpha \in \Omega_{1}$, we have $3 \beta \notin \Omega$. Then by Lemma $2.7, f_{14} \equiv 0$, i.e. $B_{0} \equiv 0$, which is a contradiction also.
Therefore, $\Gamma(h) \not \equiv 0$. By Equation (2.18), since $\Gamma(h) \not \equiv 0$ and $\rho\left(g_{2}\right)=\infty$, according to Lemma (2.6) we have $\lambda\left(g_{2}\right)=\lambda\left(f^{\prime \prime}+h\right)=\lambda\left(\frac{1}{f^{\prime \prime}+h}\right)=\infty$.

Case $2 m>1$.
Using the fact $\mathcal{A}_{0}=A_{0} e^{p(z)}+B_{0} e^{q(z)}$ and $\mathcal{A}_{m}=A_{m} e^{p_{m}(z)}$, we obtain from Equation (2.18):

$$
\begin{aligned}
& f_{1}(z) e^{\left(\alpha+\alpha_{m}\right) z^{k}}+f_{2}(z) e^{\left(\alpha_{m}+\beta\right)}+f_{3}(z) e^{2 \alpha z^{k}}+f_{4}(z) e^{2 \beta z^{k}}+f_{5}(z) e^{(\alpha+\beta) z^{k}} \\
& +f_{6}(z) e^{(2 \alpha+\beta) z^{k}}+f_{7}(z) e^{(\alpha+2 \beta) z^{k}}+f_{8}(z) e^{\alpha z^{k}}+f_{9}(z) e^{\beta z^{k}} \\
& +f_{10}(z) e^{\left(2 \alpha+\alpha_{m}\right) z^{k}}+f_{11}(z) e^{\left(\alpha_{m}+2 \beta\right) z^{k}}+f_{12}(z) e^{\left(\alpha+\alpha_{m}+\beta\right) z^{k}}+f_{13}(z) e^{3 \alpha z^{k}}+f_{14}(z) e^{3 \beta z^{k}}=0
\end{aligned}
$$

where $f_{13}(z)=\left(A_{0} e^{p(z)-\alpha z^{k}}\right)^{3}, f_{14}(z)=\left(B_{0} e^{q(z)-\beta z^{k}}\right)^{3}$, and $\rho\left(f_{j}\right)<k \quad(j=1, \ldots, 14)$. Then we conclude in the same way as in Case 1.

Acknowledgments

The authors would like to show their gratitude to the anonymous referees and Professor A Boutabaa from Blaise Pascal University (France) for their careful reading, helpful comments, and constructive suggestions.

References

[1] Chen WJ, Xu JF. Growth of meromorphic solutions of higher-order linear differential equations. Electron J Qual Theory Differ Equ 2009; 1: 1-13.
[2] Chen ZX. Zeros of meromorphic solutions of higher order linear differential equations. Analysis 1994; 14: 425-438.
[3] Chen ZX, Yang CC. Some oscillation theorems for linear differential equations with meromorphic coefficients. Southeast Asian Bulletin of Mathematics 1999; 23: 409-417.
[4] Gundersen GG. Estimates for the logarithmic derivative of meromorphic functions, plus similar estimates. J London Math Soc 1988; 37: 88-104.
[5] Hayman WK. Meromorphic Functions. Oxford, UK: Clarendon, 1964.

MESBOUT and ZERZAIHI/Turk J Math

[6] Laine L. Nevanlinna Theory and Complex Differential Equations. Berlin, Germany: de Gruyter, 1993.
[7] Peng F, Chen ZX. On the growth of solutions of some second-order linear differential equations. J Inequal Appl 2011; 2011: 635604.
[8] Xu J, Zhang X. Some results of meromorphic solutions of second-order linear differential equations. J Inequal Appl 2013; 304.
[9] Yang CC, Yi HX. Uniqueness Theory of Meromorphic Functions. Beijing, China: Science Press, 2003.

[^0]: *Correspondence: zerzaihi@yahoo.com
 2010 AMS Mathematics Subject Classification: 34M10, 30D35

