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Abstract: Let k,m, n be integers such that k ≥ 1, n ≥ 2 and 1 ≤ m ≤ n . In this article we study the order ρ(f) and

the hyperorder ρ2(f) of nonzero meromorphic solutions f of the differential equation

n∑
j=1,j ̸=m

Aj(z)f
(j)(z) +Am(z)epm(z)f (m)(z) +

(
A0(z)e

p(z) +B0(z)e
q(z)

)
f(z) = 0,

where B0(z) , A0(z), · · · , An(z) are meromorphic functions such that A0AmAnB0 ̸≡ 0, max{ρ(B0), ρ(A0), · · · , ρ(An)} <

k , and p(z), q(z), pm(z) are polynomials of degree k . Under some conditions, we show that ρ(f) = +∞ and ρ2(f) = k .

This is an extension of some recent results by Peng, Chen, Xu, and Zhang devoted to linear differential equations of the

second order.
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1. Introduction and preliminary results

In this article, for a meromorphic function f(z) in the whole complex plane C , we use Nevanlinna value

distribution theory notations such as T (r, f), m(r, f), and N(r, f) (see, e.g., [5, 6, 9]). We also use ρ(f),

ρ2(f), λ(f), and λ(
1

f
) to denote the order of growth of f(z), the hyperorder of growth of f(z), the exponent

of convergence of the zero sequence of f(z), and the exponents of convergence of the pole sequence of f(z),

respectively defined by:

ρ(f) = lim sup
r→∞

log T (r, f)

log r
, ρ2(f) = lim sup

r→∞

log log T (r, f)

log r
, and λ(f) = lim sup

r→∞

logN(r, 1f )

log r
.

Recently Peng and Chen [7] considered some second-order differential equations with entire coefficients

of order less than 1 and obtained the following theorem:
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Theorem A Let A1(z), A2(z) be nonzero entire functions such that max{ρ(A1), ρ(A2)} < 1 . Let a1 , a2 be

two distinct nonzero complex numbers ( |a1| ≤ |a2|). We suppose that arg a1 ̸= π or a1 < −1 . Then, for every

nonzero meromorphic solution f(z) of the equation

f ′′ + e−zf ′ + (A1e
a1z +A2e

a2z)f = 0,

we have ρ(f) = +∞ and ρ2(f) = 1 .

More recently, Xu and Zhang [8] extended this result to the case when the above equation has meromor-

phic coefficients:

Theorem B Let A0(z), A1(z), A2(z) be nonzero meromorphic functions such that max{ρ(A0), ρ(A1),

ρ(A2)} < 1 . Let a1 , a2 be two distinct nonzero complex numbers ( |a1| ≤ |a2|). Let a0 < 0 . If arg a1 ̸= π or

a1 < a0 , then every nonzero meromorphic solution f(z) whose poles are of uniformly bounded multiplicities of

the equation

f ′′ +A0e
a0zf ′ + (A1e

a1z +A2e
a2z)f = 0

satisfies that we have ρ(f) = +∞ and ρ2(f) = 1 .

Here, we mean to extend the results above to more general higher order linear differential equations with

meromorphic coefficients of finite order. More precisely, we prove the following theorem:

Theorem 1.1 Let k,m, n be integers such that k ≥ 1 , n ≥ 2 and 1 ≤ m ≤ n . Suppose that B0(z), A0(z), · · · ,
An(z) are meromorphic functions such that A0AmAnB0 ̸≡ 0 and max{ρ(B0), ρ(A0), · · · , ρ(An)} = σ < k . Let

p(z) = αzk + · · · , q(z) = βzk + · · · , pm(z) = αmz
k + · · · be polynomials of degree k . Suppose that α ̸= β and

that at least one of the two following conditions is satisfied:

i) at least two among the numbers α, β, αm are of distinct arguments,

ii) |αm| < max{|α|, |β|} , (if argα = argαm = arg β ).

Then, for every nonzero meromorphic solution f(z) of the equation

n∑
j=1
j ̸=m

Aj(z)f
(j)(z) +Am(z)epm(z)f (m)(z) +

(
A0(z)e

p(z) +B0(z)e
q(z)

)
f(z) = 0, (1.1)

we have ρ(f) = +∞ and ρ2(f) ≥ k .

Remark 1.1 1) Our conditions on the numbers α, β, αm in Theorem 1.1 are weaker than those of Theorems

A and B.

2) Theorem 1.1 provides sufficient (but not necessary) conditions to have the stated properties. Indeed, let us

consider the equation f ′′′(z)+ f ′′(z)− e2zf ′(z)− (2ez+4e2z)f(z) = 0 . It is easily checked that the function

f(z) = ee
z

is a solution of this equation and ρ(f) = +∞ and ρ2(f) = k = 1 . However, conditions (i) and

(ii) of the theorem are not fulfilled.
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Corollary 1.1 Under the assumptions of Theorem 1.1 , we show that if f(z) is a nonzero meromorphic solution

of Equation (1.1) , all of whose poles are of uniformly bounded multiplicity, then ρ2(f) = k . This is, for instance,

the case when f has only a finite number of poles and particularly when f is entire.

Theorem 1.2 Suppose that the conditions of Theorem 1.1 are satisfied. Then, for every nonzero meromorphic

solution f(z) of (1.1) , we have

1) λ(f + h) = λ(
1

f + h
) = ∞ , for every nonzero meromorphic function h of finite order.

2) λ(f ′ + h) = λ(
1

f ′ + h
) = ∞ , for every nonzero meromorphic function h of order < k .

3) λ(f ′′ + h) = λ(
1

f ′′ + h
) = ∞ , for every nonzero meromorphic function h of order < k .

2. The proofs

We need the following lemmas:

Lemma 2.1 [4] Let f(z) be a meromorphic function of finite order ρ , H = {(k1, j1), (k2, j2), ..., (kq, jq)} be

a finite set of distinct pairs of integers satisfying ki > ji ≥ 0 (i = 1, ..., q) , and ϵ be a positive constant.

Then there exists a subset E1 ⊂]1,∞[ , of finite logarithmic measure such that, for every z ∈ C such that

|z| ̸∈ [0, 1] ∪ E1 and every (ki, ji) ∈ H , we have:∣∣∣∣f (ki)(z)f (ji)(z)

∣∣∣∣ ≤ |z|(ki−ji)(ρ−1+ϵ).

Lemma 2.2 [3] Let f(z) be a meromorphic function of finite order ρ ; then, for any given ϵ > 0 , there exists

a set E2 ⊂]1,∞[ , of finite logarithmic measure such that, for every z ∈ C such that |z| ̸∈ [0, 1] ∪ E2 , we have:

|f(z)| ≤ exp{|z|ρ+ϵ}.

Lemma 2.3 [4] Let f be a transcendental meromorphic function. Let λ > 1 be a constant, and let k and

j be integers satisfying k > j ≥ 0 . Then there exist a subset E3 ⊂]1,∞[ of finite logarithmic measure

and a constant C > 0 such that for every z ∈ C such that |z| = r ̸∈ [0, 1] ∪ E3 , we have

∣∣∣∣f (k)(z)f (j)(z)

∣∣∣∣ ≤

C

[
T (λr, f)

r (log r)λ log T (λr, f)

](k−j)
.

Lemma 2.4 Let φ,ψ ∈
[
−π
2
,
3π

2

[
and let k be an integer ≥ 1 . Let E ⊂

[
− π

2k
,
3π

2k

[
be a set of linear measure

zero. If φ ̸= ψ , then there exist infinitely many θ ∈
[
− π

2k
,
3π

2k

[
\E , such that cos(φ+ kθ) cos(ψ + kθ) < 0 .

Proof Without loss of generality, we may assume that −π
2

≤ φ < ψ <
3π

2
and we distinguish the following

cases:
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Case 1. Suppose that −π
2
≤ φ < ψ ≤ π

2
. Then we have

0 ≤ π

2
− ψ <

π

2
− φ ≤ π ≤ 3π

2
− ψ. (2.1)

As E is a set of linear measure zero, we see that

]
1

k

(π
2
− ψ

)
,
1

k

(π
2
− φ

)[
\E is an infinite subset of]

− π

2k
,
3π

2k

[
\E . Then, using Inequalities (2.1), we see that for every θ ∈

]
1

k

(π
2
− ψ

)
,
1

k

(π
2
− φ

)[
\E ,

we have:

0 ≤ π

2
− ψ < kθ <

π

2
− φ and

π

2
− ψ < kθ <

π

2
− φ ≤ 3π

2
− ψ,

Hence, we have −π
2
≤ φ < φ+ kθ <

π

2
and

π

2
< ψ + kθ <

3π

2
.

Therefore, in this case, we have cos (φ+ kθ) > 0 and cos (ψ + kθ) < 0.

Case 2. Suppose that
π

2
≤ φ < ψ <

3π

2
, and let φ′ = φ − π and ψ′ = ψ − π . Thus, we have −π

2
≤ φ′ <

ψ′ <
π

2
. From the previous case it is seen that, for every θ ∈

]
1

k

(π
2
− ψ′

)
,
1

k

(π
2
− φ′

)[
\E ⊂

]
− π

2k
,
3π

2k

[
\E ,

we have cos(φ′ + kθ) cos(ψ′ + kθ) < 0. Since cos(φ′ + kθ) = − cos(φ+ kθ) and cos(ψ′ + kθ) = − cos(ψ + kθ),

it follows that cos(φ+ kθ) cos(ψ + kθ) < 0.

Case 3. Suppose that −π
2

≤ φ <
π

2
< ψ <

3π

2
. Thus, we have 0 <

π

2
− φ ≤ π and 0 <

3π

2
− ψ < π .

Let α = min{π
2
− φ,

3π

2
− ψ} . Then

]
0,
α

k

[
\E is an infinite subset of

]
− π

2k
,
3π

2k

[
\E . Moreover, for every

θ ∈
]
0,
α

k

[
\E , we have −π

2
≤ φ < φ + kθ <

π

2
and

π

2
< ψ < ψ + kθ <

3π

2
. It follows that, in this case,

cos (φ+ kθ) > 0 and

cos (ψ + kθ) < 0. 2

Lemma 2.5 [1] Let k ≥ 2 and A0, A1, ..., Ak−1 be meromorphic functions.

Let ρ = max{ρ(Aj), j = 0, 1, ..., k − 1} . Let f(z) be a meromorphic solution of the differential equation

f (k) +A(k−1)f
(k−1) + · · ·+A0f = 0.

If all poles of f(z) are of uniformly bounded multiplicity, then we have ρ2(f) ≤ ρ .

Lemma 2.6 [2] Let k be an integer ≥ 1 and let A0, A1, ..., Ak−1 , F ̸≡ 0 be finite order meromorphic functions.

If g(z) is an infinite order meromorphic solution of the equation

g(k) +A(k−1)g
(k−1) + · · ·+A0g = F,

then g(z) satisfies λ(g) = λ( 1g ) = ∞.
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Lemma 2.7 [9] Suppose that f1(z), f2(z), ..., fn+1(z) (n ≥ 1) are meromorphic functions and g1(z), g2(z), ..., gn(z)

are entire functions satisfying the following conditions:

(1)
n∑
j=1

fj(z)e
gj(z) ≡ fn+1(z) .

(2) For 1 ≤ j ≤ n+ 1 , 1 ≤ k ≤ n , the order of fj is less than the order of egk(z) , and furthermore the order

of fj(z) is less than the order of egh−gk for n ≥ 2 and 1 ≤ j ≤ n+ 1 , 1 ≤ h < k ≤ n

Then fj(z) ≡ 0 (j = 1, 2, ..., n+ 1) .

Lemma 2.8 [6] Let F (r) and G(r) be nondecreasing real-valued functions on [0,∞[ such that F (r) ≤ G(r)

for all r outside of a set E ⊂]1,∞[ of finite linear measure or outside of a set H ∪ [0, 1] , where H ⊂]1,∞[ is

of finite logarithmic measure. Then, for every constant α > 1 , there exists an r0 > 0 such that F (r) ≤ G(αr)

for all r > r0 .

2.1. Proof of Theorem 1.1

We shall see that this theorem is an immediate consequence of the following proposition in which we are reduced

to the case where the polynomials p(z), q(z) and pm(z) are just monomials.:

Proposition 2.1 Let k,m, n be integers such that k ≥ 1 , n ≥ 2 and 1 ≤ m ≤ n . Suppose that B0(z), A0(z), · · · , An(z)
are meromorphic functions such that A0AmAnB0 ̸≡ 0 and max{ρ(B0), ρ(A0), · · · , ρ(An)} = σ < k . Let

α, β, αm be complex numbers such that αβ ̸= 0 and α ̸= β . Suppose that at least one of the two following

conditions is satisfied:

i) at least two of the numbers α, β, αm have distinct arguments,

ii) |αm| < max{|α|, |β|} , (if argα = argαm = arg β ).

Then, for every nonzero meromorphic solution f(z) of the following equation:

n∑
j=1
j ̸=m

Aj(z)f
(j)(z) +Am(z)eαmz

k

f (m)(z) +
(
A0(z)e

αzk +B0(z)e
βzk

)
f(z) = 0, (2.2)

we have ρ(f) = +∞ and ρ2(f) ≥ k .

Proof Let us first show that every nonzero meromorphic solution of Equation (2.2), is of infinite order.

Indeed, suppose that (2.2) admits a nonzero meromorphic solution f(z) of finite order. Let us set z = reiθ ,

α = |α|eiφ, αm = |αm|eiθm , and β = |β|eiψ and let 0 < ϵ < k − σ . From the hypothesis, we easily check that:

max

{
ρ

(
Aj
A0

)
, ρ

(
Aj
B0

)
, 0 ≤ j ≤ n

}
≤ σ.
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Thus, by Lemma 2.2 there exists a set E ⊂]1,∞[ of finite logarithmic measure such that, for every z such that

|z| = r ̸∈ [0, 1] ∪ E , we have:

max

{∣∣∣∣Aj(z)A0(z)

∣∣∣∣ , ∣∣∣∣Aj(z)B0(z)

∣∣∣∣ , 0 ≤ j ≤ n

}
≤ exp{rσ+ϵ}, (2.3)

and we distinguish the following cases:

1) φ ̸= ψ . By Lemma 2.4, there exists θ ∈ [− π
2k ,

π
2k [ such that, cos(φ+ kθ) cos(ψ + kθ) < 0. Without loss of

generality, we may suppose that cos(φ+ kθ) > 0 and cos(ψ + kθ) < 0. Then, from Equation (2.2), we have

−eαz
k

=
n∑
j=1
j ̸=m

Aj(z)f
(j)(z)

A0(z)f(z)
+ eαmz

k Am(z)f (m)(z)

A0(z)f(z)
+ eβz

k B0(z)

A0(z)
, (2.4)

−eβz
k

=

n∑
j=1
j ̸=m

Aj(z)f
(j)(z)

B0(z)f(z)
+ eαmz

k Am(z)f (m)(z)

B0(z)f(z)
+ eαz

k A0(z)

B0(z)
. (2.5)

1.1) Suppose that cos(θm + kθ) ≤ 0. Then by Equations (2.3), (2.4) and Lemma 2.1 we have

exp{|α| cos(φ+ kθ)rk} ≤ (n+ 1) exp
{
rσ+ϵ

}
rn(ρ(f)−1+ϵ),

which is a contradiction with σ + ϵ < k .

1.2) Suppose that cos(θm+kθ) > 0. Letting θ′ = θ+
π

k
, then we have cos(θm+kθ′) < 0 and cos(ψ+kθ′) > 0.

By Equations (2.3) and (2.5) and Lemma 2.1, we have

exp{|β| cos(ψ + kθ′)rk} ≤ (n+ 1) exp
{
rσ+ϵ

}
rn(ρ(f)−1+ϵ),

which is a contradiction with σ + ϵ < k .

2) φ = ψ . Since α ̸= β , then |α| ̸= |β| . Without loss of generality, we may suppose that |α| < |β| . Then we

have the following subcases:

2.1) θm ̸= φ = ψ . Then, by Lemma 2.4, there exists θ ∈ [− π
2k ,

π
2k [ such that cos(φ + kθ) cos(θm + kθ) < 0,

and we may suppose that cos(φ+ kθ) > 0. Then, by Equations (2.3) and (2.5) and Lemma 2.1, we have

exp{|β| cos(φ+ kθ)rk} ≤ (n+ 1) exp
{
rσ+ϵ

}
rn(ρ(f)−1+ϵ) exp{|α| cos(φ+ kθ)rk},

and therefore, we have

exp{(|β| − |α|) cos(φ+ kθ)rk} ≤ (n+ 1) exp
{
rσ+ϵ

}
rn(ρ(f)−1+ϵ).

This is a contradiction with σ + ϵ < k .

2.2) θm = φ = ψ . We choose θ ∈ [−π
2 ,

3π
2 [ such that cos(φ+ kθ) > 0. If |αm| ≤ |α| , then by Equations (2.3)

and (2.5) and Lemma 2.1, we have

exp{(|β| − |α|) cos(φ+ kθ)rk} ≤ (n+ 1) exp
{
rσ+ϵ

}
rn(ρ(f)−1+ϵ),

a contradiction.
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If |α| < |αm| < |β| , by Equations (2.3) and (2.5) and Lemma 2.1, we have

exp{(|β| − |αm|) cos(φ+ kθ)rk} ≤ (n+ 1) exp
{
rσ+ϵ

}
rn(ρ(f)−1+ϵ),

and this is a contradiction.

Let us now show that every nonzero meromorphic solution f(z) of Equation (2.2) satisfies ρ2(f) ≥ k .

By Lemma 2.3, we know that there exists a set E3 ⊂]1,∞[ , with finite logarithmic measure and a constant

C > 0 such that, for all |z| = r /∈ [0, 1] ∪ E3 , we get

∣∣∣∣f (j)(z)f(z)

∣∣∣∣ ≤ C

[
T (2r, f)

r
(log r)2 log T (2r, f)

]j
≤ C [T (2r, f)]

j+1
, j = 1, ..., n. (2.6)

Using (2.6) and for the proof of the first step, we have

exp{h1rk} ≤ C(n+ 1) exp{rσ+ϵ} [T (2r, f)]n+1
, (2.7)

where h1 > 0 is a constant. By h1 > 0, σ + ϵ < k , (2.7), and Lemma 2.8, we know that there exists r0 > 0

such that when r > r0 , we have ρ2(f) ≥ k . 2

We are now able to explain how to deduce Theorem 1.1 from the proposition above.

Let us set A0(z) = A0(z)e
p(z)−αzk , B0(z) = B0(z)e

q(z)−βzk ,

Am(z) = Am(z)epm(z)−αmz
k

, and Aj(z) = Aj(z) for j = 1, ..., n; j ̸= m .

With these notations, Equation (1.1) becomes

n∑
j=1
j ̸=m

Aj(z)f
(j)(z) +Am(z)eαmz

k

f (m)(z) +
(
A0(z)e

αzk + B0(z)e
βzk

)
f(z) = 0, (2.8)

which is of the same form as Equation (2.2). Moreover, it is easy to check that the functions B0,A0, ...,An

have the same proprieties as those of the functions B0, A0, ..., An in Proposition (2.1). We just apply this

proposition to conclude.

2.2. Proof of Corollary 1.1

Let f be a nonzero meromorphic solution of Equation (1.1) satisfying the conditions in the corollary. Then we

have:

f (n)(z) +

n−1∑
j=0

Cj(z)f
(j)(z) = 0,

where Cj(z) =
Aj(z)

An(z)
for all j ∈ {1, ..., n}\{0,m} , C0(z) =

A0(z)e
p(z) +B0(z)e

q(z)

An(z)
, and Cm(z) =

Am(z)epm(z)

An(z)
.

It is clear that max{ρ(Cj), 0 ≤ j ≤ n} ≤ k . Hence, by Lemma 2.5, we have ρ2(f) ≤ k . On the other hand,

applying Theorem 1.1, we obtain ρ2(f) ≥ k . Then ρ2(f) = k .
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2.3. Proof of Theorem 1.2

1) According to Theorem 1.1, we have ρ(f) = ∞ . Putting g0 = f + h , we see that ρ(g0) = ρ(f) = ∞ and

we deduce from Equation (1.1) that:

g
(n)
0 + Cn−1g

(n−1)
0 + · · ·+ C0g0 = H0, (2.9)

where C0(z) =
A0(z)e

p(z) +B0(z)e
q(z)

An(z)
, Cm(z) =

Am(z)epm(z)

An(z)
, Cj(z) =

Aj(z)

An(z)
, for j ∈ {1, ..., n}\{m} and

H0(z) =
∑n
j=1 Cjh

j .

Now it is clear that H0 ̸≡ 0, because if H0 ≡ 0, we deduce by Theorem 1.1 that ρ(h) = ∞ , which is a

contradiction.

We also easily see that the functions C0(z), ..., Cn−1(z) and H0(z) are of finite order. Thus, applying

Lemma 2.6 to Equation (2.9), we have λ(f + h) = λ(
1

f + h
) = ∞ .

2) Suppose now that ρ(h) < k and let us show that λ(f ′ + h) = λ(
1

f ′ + h
) = ∞ .

Letting g1 = f ′ + h , by derivation of both sides of (1.1), we obtain

A′
0f +

n∑
j=1

(
Aj−1 +A′

j

)
f (j) +Anf

(n+1) = 0, (2.10)

where A0 = A0e
p(z) +B0e

q(z) , Am = Ame
pm(z) , and Aj = Aj , for j ∈ {1, ..., n}\{m}.

Multiplying (2.10) by A0 and (1.1) by A′
0 and making the difference, we obtain

n−1∑
j=0

(
A0(Aj +A′

j+1)−A′
0Aj+1

)
(f ′)(j) +A0An(f

′)(n) = 0, i.e.

∆(f ′) = 0, (2.11)

where ∆(y) =
∑n−1
j=0

(
A0(Aj +A′

j+1)−A′
0Aj+1

)
y(j) +A0Any

(n).

Since f ′ = g1 − h , we obtain from (2.11):

∆(g1) = ∆(h). (2.12)

We have ∆(h) ̸≡ 0. Indeed, if ∆(h) ≡ 0, using the fact A0 = A0e
p(z) +B0e

q(z) and Am = Ame
pm(z) , we get

Gαe
αzk +Gβe

βzk +Gα+αme
(α+αm)zk +Gαm+βe

(αm+β)zk +Gα+βe
(α+β)zk

+G2αe
2αzk +G2βe

2βzk = 0, (2.13)

where the coefficients of Equation (2.13) are meromorphic functions of order < k , with G2α = (A0e
p(z)−αzk)2

and G2β = (B0e
q(z)−αzk)2 .
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Using the conditions of the theorem we easily show that 2α ̸∈ {α, β, α + αm, αm + β, α + β, 2β} or

2β ̸∈ {α, β, α+ αm, αm + β, α+ β, 2α} . Indeed:
If 2α ∈ {α, β, α + αm, αm + β, α + β, 2β} , we will show that 2β ̸∈ {α, β, α + αm, αm + β, α + β, 2α} .

Since αβ(α− β) ̸= 0, we have 2α ̸= α, α+ β, 2β and 2β ̸= β, α+ β, 2α , so we have 2α ∈ {β, α+ αm, αm + β}
and it is sufficient to show that 2β ̸∈ {α, α+ αm, αm + β} .

By Lemma 2.7, we get A2
0 ≡ 0 or B2

0 ≡ 0, a contradiction because A0B0 ̸≡ 0. Therefore, ∆(h) ̸≡ 0.

Now applying Lemma (2.6) to Equation (2.12), we obtain

λ(f ′ + h) = λ(
1

f ′ + h
) = ∞.

3) Let us now prove that λ(f ′′ + h) = ∞ . We pose g2 = f ′′ + h , and then ρ(g2) = ρ(f ′′) = ∞ .

By derivation of (2.10), we have

Anf
(n+2) + (2A′

n +An−1)f
(n+1) +

n∑
j=2

(Aj−2 + 2A′
j−1 +A′′

j )f
(j)

+(2A′
0 +A′′

1)f
′ +A′′

0f = 0. (2.14)

Equation (1.1) enables us to express f as function of f ′, f ′′, ..., f (n) . Then a substitution of this in Equation

(2.14) gives

A0Anf
(n+2) +A0(2A′

n +An−1)f
(n+1) +

n∑
j=2

(
A0(Aj−2 + 2A′

j−1 +A′′
j )−A′′

0Aj

)
f (j)

+
(
A0(2A′

0 +A′′
1)−A′′

0A1

)
f ′ = 0. (2.15)

We put D0 = A0(A0 +A′
1)−A′

0A1 and D1 = A0(2A′
0 +A′′

1)−A′′
0A1 .

Multiplying (2.15) by D0 and (2.11) by D1 and making the difference, we have

Γ(f ′′) = 0, (2.16)

where Γ(y) = A0D0Any
(n) +

(
A0D0(2A′

n +An−1)−A0D1An

)
y(n−1)

+
∑n−2
j=0

(
D0

(
A0(Aj + 2A′

j+1 +A′′
j+2)−A′′

0Aj+2

)
−
(
A0(Aj+1 +A′

j+2)−A′
0Aj+2

)
D1

)
y(j). Since f ′′ = g2−h ,

we obtain from (2.16):

Γ(g1) = Γ(h). (2.17)

We have Γ(h) ̸≡ 0. Indeed, if Γ(h) ≡ 0, then

Γ(h)

A0
≡ 0. (2.18)

Let us distinguish two cases:
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Case 1 If m = 1, replacing A0 and A1 by A0e
p(z) +B0e

q(z) and A1e
p1(z) in Equation (2.18), we obtain

f1(z)e
(α+α1)z

k

+ f2(z)e
(α1+β) + f3(z)e

2αzk + f4(z)e
2βzk + f5(z)e

(α+β)zk

+ f6(z)e
(2α+β)zk + f7(z)e

(α+2β)zk + f8(z)e
(2α1+α)z

k

+ f9(z)e
(2α1+β)z

k

+ f10(z)e
(2α+α1)z

k

+ f11(z)e
(α1+2β)zk + f12(z)e

(α+α1+β)z
k

+ f13(z)e
3αzk + f14(z)e

3βzk = 0,

where the functions f1, ..., f14 are all of order < k and particularly f13(z) = (A0e
p(z)−αzk)3 and f14(z) =

(B0e
q(z)−βzk)3 .

Let Ω = {3α, α+α1 +β, α1 +2β, 2α+α1, 2α1 +β, 2α1 +α, α+2β, 2α+β, α+β, 2β, 2α, α1 +β, α+α1}.
Since α ̸= β , we have 3α ̸= 3β, α+ 2β, 2α+ β, 2α and 3β ̸= 3α, α+ 2β, 2α+ β, 2β .

Setting Ω1 = {α+ α1 + β, α1 + 2β, 2α+ α1, 2α1 + β, 2α1 + α, α+ β, 2β, α1 + β, α+ α1} , then we have:

If 3α ̸∈ Ω1 , we deduce by Lemma 2.7 that f13 ≡ 0, i.e. A0 ≡ 0, which is a contradiction.

If 3α ∈ Ω1 , we have 3β ̸∈ Ω. Then by Lemma 2.7, f14 ≡ 0, i.e. B0 ≡ 0, which is a contradiction also.

Therefore, Γ(h) ̸≡ 0. By Equation (2.18), since Γ(h) ̸≡ 0 and ρ(g2) = ∞ , according to Lemma (2.6)

we have λ(g2) = λ(f ′′ + h) = λ( 1
f ′′+h ) = ∞ .

Case 2 m > 1.

Using the fact A0 = A0e
p(z) +B0e

q(z) and Am = Ame
pm(z) , we obtain from Equation (2.18):

f1(z)e
(α+αm)zk + f2(z)e

(αm+β) + f3(z)e
2αzk + f4(z)e

2βzk + f5(z)e
(α+β)zk

+ f6(z)e
(2α+β)zk + f7(z)e

(α+2β)zk + f8(z)e
αzk + f9(z)e

βzk

+ f10(z)e
(2α+αm)zk + f11(z)e

(αm+2β)zk + f12(z)e
(α+αm+β)zk + f13(z)e

3αzk + f14(z)e
3βzk = 0,

where f13(z) = (A0e
p(z)−αzk)3 , f14(z) = (B0e

q(z)−βzk)3 , and ρ(fj) < k (j = 1, ..., 14). Then we conclude in

the same way as in Case 1.
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