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Abstract: In this work, we establish a Parseval equality and an expansion formula in eigenfunctions for a singular
q— Sturm-Liouville operator on the whole line.
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1. Introduction

Nowadays, g-calculus is quite a popular subject in mathematics because the subjects of g-calculus include num-
ber theory, quantum theory, statistical mechanics, combinatorics, quantum groups, quantum exactly solvable
systems, etc. The first results in this calculus belong to Euler (1707-1783)m who introduced g-calculus in the
tracks of Newton’s infinite series (see [4]). Since then, it has been widely studied by many authors. Some new
results in g-calculus can be found in [1,3] and the references cited therein.

On the other hand, for solving various problems in mathematics, eigenfunction expansion theorems are
important because we encounter the problem of expanding an arbitrary function as a series of eigenfunctions
whenever we seek a solution of a partial differential equation by the Fourier method. The eigenfunction expansion
is obtained by several methods, such as the method of contour integration, the method of integral equations,
and the finite difference method (see [5,6,11,13]).

In [2], Annaby et al. investigated the eigenfunction expansions for singular g-Sturm-Liouville problems
on [0,00) by using Titchmarsh’s method. In the present article, we exploit the results of [2] to obtain a Parseval

equality and an expansion theorem for a singular g-Sturm—Liouville operator on the whole line.

2. Preliminaries

In this section, we recall some necessary fundamental concepts of g-calculus. Following the standard notations
in [1] and [9], let ¢ be a positive number with 0 < ¢ <1, A C R = (—00,0) and a € A. A q-difference equation
is an equation that contains g-derivatives of a function defined on A. Let y be a complex-valued function on
A. The q-difference operator Dy, the Jackson q-derivative, is defined by

y(qz) —y (z)

( 0 for all z € A.
q—1)=x

Dgy (z) =
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We know that there is a connection between the g¢-deformed Heisenberg uncertainty relation and the Jackson
derivative on ¢-basic numbers (see [12]). In the g-derivative, as ¢ — 1, the g-derivative is reduced to the

classical derivative. The q-derivative at zero is defined by

D,y (0) = lim y(g"2) —y(0) (x € A),

n—00 q"x

if the limit exists and does not depend on z. A right-inverse to D, the Jackson g-integration [8], is given by

/Oxf(t)dqt=w(1—q)Zq"f(q”x) (x € A),
n=0

provided that the series converges, and
b b a
[ twde= [ rwde- [ rwip @pea
a 0 0

The ¢-integration for a function is defined in [7] by the formulas

/ooof(t)dqt - (-9 Y @ra),

0 [e%s}

[ foar = a-9 X e,

[ rwdt = a-0 Y @i+ ),

A function f that is defined on A, 0 € A, is said to be g-regular at zero if
lim f(2q") = £(0)

for every z € A. Through the remainder of the paper, we deal only with functions that are g-regular at zero.

If f and g are g-regular at zero, then we have
| o@D ®di [ fla) D@ dst = @9 (@ - £ 0)50).
0 0
Let L2(R) be the space of all real-valued functions defined on R such that

= rw dqx)m o

The space Lg(R) is a separable Hilbert space with the inner product
(o) = [ F@g@da, fgeLi®)
— 00
(see [2]).
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The ¢-Wronskian of y () and z (x) is defined to be

W (y,2) (x) := y (2) Dgz (x) = 2 (2) Dgy (z), = € R. (1)

3. Main results
Let us consider the g-Sturm-Liouville problem

~ 2Dy Dy () + ua)y (2) = Ay (@), )

where \ is a complex eigenvalue parameter, u is a real-valued function defined on R and continuous at zero,

and u € L} 1, (R).

We will denote by ¢1 (2, ) and ¢2 (z, A) the solutions of the equation (2) that satisfy the initial conditions
$1(0,A) =1, Dy-1¢1 (0,X) =0, ¢2(0,A) =0, Dy-1¢2(0,\) = 1. (3)

Let [—¢~™,¢~™] be an arbitrary finite interval where m € N.

Now we will consider the boundary value problem (2) with the boundary conditions

D,y (fq*m) cosa + i1 (qum) sinaa = 0, (4)
Dy-1y2 (™) cos B4y (¢7")sinf = 0, a,f€R, meN.
Let Ao ,A+1,A+2,... be the eigenvalues and yg ,y+1 ,y+2 ,... the corresponding eigenfunctions of the

problem (2)—(4). Since the solutions of this problem are linearly independent, we get

Yn (x) =1 (1‘7 /\n) + dn2 (xa )\n) .

There is no loss of generality in assuming that |c,| <1 and |d,| < 1. Set

[ rwde= Yy ;{/qmﬂx)yn(x)dqx}Z

—q—m
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00 e d 2
2>, 1l

m=—0oo

—m

e 2 q 2
+ Z i;{/ f($)¢2(i€,)\n)dq:v} )

-m
m=—oco " q

Now we will define the step function p;; = (4,5 =1,2) on (—¢~™,¢~™) by

AN

S for A<0

-
pi1,q-m (A) = /\</\n<0c

EOSATL<>\?2L for A\ >0

)

~EISENS

Cndn for A <0

g ) ={ "o 2

C. )
EOSATL<>\ fagn for A >0

H12,q—m ()\) = H21,4—m™ ()‘)7

3
_Z)\</\n<0 =, for A <0
2

—m A -
Hazgm () for A > 0.

dTL
Zogxnd 22

From (5), we obtain

where

Now we will prove a lemma.

Lemma 1 There exists a positive constant A = A (§), £ > 0 such that

£
\/ {tig-m (N} <A (1,5 =1,2),
—£

where A does not depend on ¢~ ™.
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Proof From (3), we have

DYV, (0,0) = b,

where d;; is the Kronecker delta. Thus, there exists a £ > 0 such that

DY V655 (0,0) — b

<eg >0, |A <& z€0,K]. (8)

Let fx () be a nonnegative function such that fy (x) vanishes outside the interval [0, k] with

k
/0 fr (x) dgz = 1. 9)

Now, if we apply the Parseval equality (6) to D (h— 1)fk (z) (h=1,2), then we get

[ |pese dx—/ S F ) B g (),

where

£44=1

/D” D fe () 6 (0, A) dy = + /f DV, (2, 3) dy.

Using (8) and (9), we obtain

|Ein, (N) — din| <&, i,h =1,2, |\ <&. (10)

Now, if we apply the Parseval equality (6) to fx (z) (h=1,2), then we get

r

‘Dg’:”fk dm>/ Z i — &) |duijg-m (V)] - (11)

If we take h =1 in (11), we have

>

Since

3
\/ {#12,q7
—£
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| @ e
0
13 13

1—e)” [ |dpiyg—m (A 1 dpirgg-m (A

=0 [ g O] +2040) [ Jdiiagn O]
13 3

1 d 21,q—™ A 82 d 22,q—™ A

#259) [ i ()] +62 [ oo V)

(1- 5)2 (Nu,q*m (&) — a1, (*5))
13

+2e(1+¢) \/ {112,-m W)} + € (n22,g-m (§) — praz,g—m (=) -
—£

m (A} < % [11,q-m (€) = pan,g-m (=€) + paz g-m (&) = pon,g-m (—€)], (12)
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we get

k
/0 f @) dgr > (262 —3e 1) {ingm (6) — pargom ()}
e (2 — 1) {pinng-m (€) — piapg-m (—€)} (13)

Putting h =2 in (11), we get

k
/0 |Dq*1 fr (33)|2 dex = (252 —3e+ 1) {#22,(1*7” (€) — pazg—m (—5)}
te (28 - 1) {:ull,q*m (5) — Hi1,q—m (_€>} . (14)

If we add the inequalities (13) and (14), then we get

k k )
/ 7 (m)dqx+/ |Dy1 fio (2)|” dya
0 0
> (25—1)2{ fi1,g=m (§) = pa1,g-m (=€) }

+a22,g-m (&) — tag,qg-—m (=€)

Hence, we obtain the assertion of the lemma for the functions g7 4-m (=§) and pigg g-m (=€) relying on their

monotonicity. From (12), we get the assertion of the lemma for the function s 4-m (=£). O

Now we recall the following theorems of Helly.

Theorem 2 ([10]) Let (wy) be a uniformly bounded sequence of real nondecreasing functions on a finite

neN
interval a < X\ < b. Then there exists a subsequence (wnk)keN and a nondecreasing function w such that

lim w,, (A) =w(A), a <A <b.

k—oco

Theorem 3 ([10]) Assume that (wy), oy s a real, uniformly bounded sequence of nondecreasing functions on

a finite interval a < A < b, and suppose

lim w, (A)=w\), a<A<b.

n—oo

If f is any continuous function on a < A < b, then

b

b
lim [ f(\)dw, (\) = / FO)dw ().

n—0o0

Let o be any nondecreasing function on —oo < A < oo. Denote by Lg (R) the Hilbert space of all

functions f : R — R that are measurable with respect to the Lebesgue—Stieltjes measure defined by ¢ and such
that

/_°° 2 () do(N) < oo,
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with the inner product
(F9)y= [ TN de(N).
The main results of this paper are the following three theorems.

Theorem 4 Let f(.) € L2(R). Then there exist monotonic functions py (X) and pgy (X), which are bounded

over every finite interval, and a function pi2 (\), which is of bounded variation over every finite interval with

the property

o) 00 2
/_ 12 (1) dyr = / S E ) E () sy (V) (15)

—0 4 5=1
where
q77l
F;(A\) = lim f(x) @i (z,X) dgex.
n—=00 J_,-n
We note that the function p = (Mij)%j:l (112 = po21) is called a spectral function for the equation (2).

Proof Assume that the function f, (z) satisfies the following conditions:
1) fn (x) vanishes outside the interval [—¢~",¢7 "], ¢7™ < ¢~ ™.
2) The functions f, (z) and Dyf, (x) are g-regular at zero.
3) fn (x) satisfies the boundary conditions (4).

If we apply the Parseval equality to f, (x), we get

—m

o o . 2
JERACIEEDS 1{ [ h@n <x>dqx} - (16)

Then, by integrating by parts, we obtain

— [ 8@ DD @)+ w0 )| dye

= )\i q |:_1Dq1qun (-ﬁ) +U(Z‘) fn (m)] Yk (x) dql‘-
kJ—g—m L 4

Thus, we have

m

S 2 {/ fo (@) <x>dqx}

z _g—m
Ael>s 7k a
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—m

IN

Y le { /_ qqm [—;Dqlqun (@) +u(2) f (x)] " (x)dqa:}g

Ak|>s

<L _oo lk{ [ o @+ u £ ) yk<x>dqaz}2

Using (16), we obtain

Furthermore, we have

—k<AR<K "
- 2
- > {/  Ju (@) {erdn (2, Ak) + did2 (2, Ak)} dql’}
— k<A <K q
w2
= Z Fin (A) Fjn (A) dpijg-m (A)
—h =1

where

Consequently, we get

Jo e 2 @) dgm = 7500 Fin (V) Fi (V) dptig g (V)

<& [0 [FAD D () + @) fu ()] dy

(17)

By Lemma 1 and Theorems 2 and 3, we can find sequences {—¢~"*} and {¢~™*} such that the function

Mij.g-m (A) converges to a monotone function p;; (A). Passing to the limit with respect to {—¢~™*} and
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{¢=™} in (17), we have

1,7=1

|/ e dx—/ S For () Fy () ity ()

< H{/q {;qu%ﬁ4m+u@gh@ﬂ2%x

—q—n

As kK — o0, we get

—n

/qq Blada= [~ S Fu O3 By () i ().

i,j=1

Let f(.) € LZ(R). Choose functions {f, (x)} satisfying conditions 1-3 and such that

im [ (f(2) - f, @)° da = 0.

n—oo J_

Let
”:[ fy (@) i (2. N) dy (i = 1,2).

Then we have

/f2 dm—/ S Fay () Fy (3 diy ().

3,j=1
Since

/ T (s () = fon (2))dgr — 0 25 71,72 — o0,

— 00

we have

| o () By () = Finy () Fy )iy )

oo
2
= / (for (@) = fo (2))" dgz — 0
as n1,1n2 — 0o. Therefore, there is a limit function F' that satisfies
/ e dx—/ SO F ) dis ).
1,j=1

by the completeness of the space Li (R).
Now we will show that the sequence (K,) defined by

K0 = [ LA @6 @A)+ f @) 6 (2, N) dya

—q—"

1068



PASAOGLU ALLAHVERDIEV and TUNA /Turk J Math

converges as 1 — oo to F in the metric of space L? (R). Let g be another function in L2(R). By a similar
argument, G (A) be defined by g¢.

It is obvious that

: L Z {(F () = Gi () (B3 (A) = G (W) dais (V) -
Let
R A

Then we have

o 2
3 ) = B O0) B (3) = Ky () i )
:/_q fQ(x)dq:c—F/oo f2(x)dyz — 0 (n— o0),

—c0 q—"

which proves that (K,) converges to F in L? (R) as n — oo. O

Theorem 5 Suppose that the functions f(.) and g(.) are in LZ(R), and F (X) and G ()\) are their Fourier

transforms. Then we have
o) o) 2
| r@a@de= [ S RNG M ).
—00 —00 ;i i—1
which is called the generalized Parseval equality.

Proof It is clear that F F G are transforms of f F g. Therefore, we have

/ T (F @)+ 9 (@) dga

— 00

o 2
- / S (E () + G () (B (V) + G5 (\) dpiy (V)

4,5=1

| u@-g@raa

—00

-/ TS E ) - G (B () — Gy () dasg () -

—%0 4 j=1

Subtracting one of these equalities from the other one, we get the desired result. O
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Theorem 6 Let f(.) € LZ(R). Then the integrals

/ TR 65 (@ N ) dag (V) (2] = 1,2)

— 00
converge in L2(R). Consequently, we have

= [ YR8 ) diy )

04 j=1
which is called the expansion theorem.
Proof Take any function f, € Lg (R) and any positive number s, and set

fo@ = | ST Ry (A dasy (M)

T ig=1

Let g (.) € L2(R) be a vector function that equals zero outside the finite interval [—¢~7,¢ 7] where ¢=7 < ¢~ ™.
Thus, we obtain
"
[ h@o@ide =
—q~7
a7 s 2
[ X nmeendnm )o@ de
—a77 —Si5=1
s 2 q 7
_ / SR {/ 9 (2) b; (x,)) dqa:} dpi; (M)
-5 J=1 —q=7
- / S E )Gy (V) dui; (V). (18)
—S4,5=1
From Theorem 5, we get
e’} jo%s) 2
| r@a@de= [ 3 RNG M ). (19)

ij=1
By (18) and (19), we have
2

[ U@ f@ewde= [ 3 ROG 0 ().

e 4,j=1
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Using the Cauchy—Schwarz inequality, we obtain

/ T @) - @) g (@) dge

o0

\/ / A) dpij (A \/ / A) dpij (A).
i,j=1 IAI>s [A]>s

If we apply this inequality to the function

[ F@-f@). rel-ga]
s ={ 17 .

, otherwise,

then we get

e} 2
2
[ U@ s < [ ROE b 0.
—00 ij=1 Al>s
Letting s — oo yields the expansion result. O
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