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Abstract: In this paper, we study the position vector of a spacelike rectifying slant helix with non-lightlike principal

normal vector field in E3
1 . First we find the general equations of the curvature and the torsion of spacelike rectifying slant

helices. After that, we construct second-order linear differential equations. By their solutions, we determine families of

spacelike rectifying slant helices that lie on cones.
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1. Introduction

In classical differential geometry, a general helix in the Euclidean 3-space is a curve that makes a constant angle

with a fixed direction [10].

The notion of rectifying curve was introduced by Chen [3, 4]. Chen showed under which conditions the

position vector of a unit speed curve lies in its rectifying plane. He also stated the importance of rectifying

curves in physics.

On the other hand, the notion of slant helix was introduced by Izuyama and Takeuchi [6, 7]. They showed

under which conditions a unit speed curve is a slant helix. In [8, 9], Kula et al. studied the spherical images

under both tangent and binormal indicatrices of slant helices and obtained that the spherical images of a slant

helix are spherical helices.

Later, Ali published two papers about characterizations of slant helices in Minkowski 3-space [1, 2].

The papers mentioned above led us to study the notion of spacelike rectifying slant helices. We begin

by finding the equations of curvature and torsion of spacelike rectifying slant helices. After that, we construct

second-order linear differential equations to determine position vectors of spacelike rectifying slant helices. By

solving these equations for some special cases, we obtain unit speed families of rectifying slant helices that lie
on cones.

2. Basic concepts

The Minkowski 3-space E3
1 is the real vector space R3 with the metric

g = dx2
1 + dx2

2 − dx2
3,
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where (x1, x2, x3) is a rectangular coordinate system of E3
1 . Since g is an indefinite metric, the pseudo-norm

of a vector v is given by ∥v∥ =
√
|g (v, v)| .

A vector v ∈ E3
1 is called spacelike if g (v, v) > 0 or v = 0, timelike if g (v, v) < 0, and lightlike (null) if

g (v, v) = 0 and v ̸= 0 [5].

Given a curve α : I ⊂ R → E1
3 , we say that the curve α is spacelike (resp. timelike, lightlike) if α′(s)

is spacelike (resp. timelike, lightlike) at any s ∈ I where α′ (s) = dα/ds [5].

A spacelike curve α : I ⊂ R −→ E1
3 is said to be parametrized by the pseudo arclength parameter s if

g(α
′
(s) , α

′
(s)) = 1. In this case, we say that α is a unit speed curve.

Let us take an arbitrary plane π in E3
1 . We call π a spacelike plane (resp. timelike plane, lightlike

plane) if g|π is positive definite (resp. nondegenerate of index 1, degenerate). Recall that when α is a unit

speed spacelike curve that has at least four continuous derivatives with spacelike or timelike rectifying plane,

the Frenet equations are as follows [5]:

t
′
= κn,

n
′
= −ε1κt+ τb,

b
′
= −ε1ε2τn,

(1)

where κ is the curvature, τ is the torsion, and {t, n, b} is the Frenet frame of the curve α with ε1 = g (n, n) =

±1, ε2 = g (b, b) = ±1, ε1ε2 = −1. We denote unit spacelike tangent vector field with t , unit non-lightlike

principal normal vector field with n , and the unit non-lightlike binormal vector field with b .

As we know, n can be considered as the normal indicatrix curve of the curve α . If n is a non-lightlike

curve, we know that ε3 = sgn[g(n
′
, n

′
)] = ±1. Note that when n is a timelike curve, ε3 = −1 in equation (1).

Definition 1 A curve is called a slant helix if its principal normal makes a constant angle with a fixed direction

in E3
1 [7].

Lemma 1 Let α be a unit speed spacelike curve with timelike principal normal vector field in E3
1 . Then α is

a slant helix if and only if the geodesic curvature of the spherical image of principal normal indicatrix (n) of α ,

σ =
κ2

(τ2 + κ2)
3/2

( τ
κ

)′

,

is constant everywhere τ2 + κ2 does not vanish [2].

Lemma 2 Let α be a unit speed spacelike curve with spacelike principal normal vector field in E3
1 . Then α is

a slant helix if and only if the geodesic curvature of the spherical image of principal normal indicatrix (n) of α ,

σ =
κ2

(−ε3τ2 + ε3κ2)
3/2

( τ
κ

)′

,

is constant everywhere τ2 − κ2 does not vanish [2].

Definition 2 The curve α is called a rectifying curve when the position vector of it always lies in its rectifying

plane [3, 4].
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Thus, for a rectifying curve, we can write

α (s) = λ (s) t (s) + µ (s) b (s) .

Lemma 3 Let α be a unit speed non-lightlike curve with spacelike or timelike principal normal vector field in

E3
1 ; then α is congruent to a rectifying curve if and only if

τ(s)

κ(s)
= c1s+ c2

for some constants c1 and c2 , with c1 ̸= 0 [5].

The angle between two vectors in E3
1 is defined in [1].

Definition 3 Let u and v be spacelike vectors in E3
1 that span a spacelike vector subspace. Then there is a

unique positive real number θ such that

|g(u, v)| = ∥u∥ ∥v∥ cos θ.

θ is called the Lorentzian spacelike angle between u and v .

Definition 4 Let u and v be spacelike vectors in E3
1 that span a timelike vector subspace. Then there is a

unique positive real number θ such that

|g(u, v)| = ∥u∥ ∥v∥ cosh θ.

θ is called the Lorentzian timelike angle between u and v .

Definition 5 Let u be a spacelike vector and v a positive timelike vector in E3
1 . Then there is a unique positive

real number θ such that
|g(u, v)| = ∥u∥ ∥v∥ sinh θ.

θ is called the Lorentzian timelike angle between u and v .

Definition 6 Let u and v be positive (negative) timelike vectors in E3
1 . Then there is a unique positive real

number θ such that
|g(u, v)| = ∥u∥ ∥v∥ cosh θ.

θ is called the Lorentzian timelike angle between u and v .

3. Spacelike rectifying slant helices in E3
1

In E3
1 , if the position vector of a unit speed spacelike slant helix always lies in its rectifying plane, we call it a

spacelike rectifying slant helix. For a spacelike rectifying slant helix, we have the following theorems.

Theorem 1 Let α be a unit speed spacelike curve that has timelike principal normal vector field in E3
1 ; then

α is a spacelike rectifying slant helix if and only if the curvature and torsion of the curve satisfy the equations

below:

κ(s) =
c3(

(c1s+ c2)
2
+ 1

)3/2
, τ(s) =

c3 (c1s+ c2)(
(c1s+ c2)

2
+ 1

)3/2
,

where c1 ̸= 0, c2 ∈ R , and c3 ∈ R+.
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Proof Let α be a unit speed spacelike rectifying slant helix in E3
1 ; then, by combining the equations in

Lemma 1 and Lemma 3, we have

σ =
c1

κ
(
(c1s+ c2)

2
+ 1

)3/2
,

where σ ̸= 0 is a constant. Thus, we can write κ as follows

κ(s) =
c3(

(c1s+ c2)
2
+ 1

)3/2
,

and then

τ(s) =
c3 (c1s+ c2)(

(c1s+ c2)
2
+ 1

)3/2
,

where c3 = |c1/σ| .
Conversely, it can be easily seen that the curvature functions mentioned above satisfy the equations in

Lemma 1 and Lemma 3. Thus, α is a unit speed spacelike rectifying slant helix that has timelike principal

normal in E3
1 . 2

Since the proofs of Theorem 2 and Theorem 3 are similar to the proof above, we omit them.

Theorem 2 Let α be a unit speed spacelike curve that has spacelike principal normal vector field and spacelike

principal normal indicatrix in E3
1 ; then α is a spacelike rectifying slant helix if and only if the curvature and

torsion of the curve satisfy the equations below:

κ(s) =
c3(

1− (c1s+ c2)
2
)3/2

, τ(s) =
c3 (c1s+ c2)(

1− (c1s+ c2)
2
)3/2

,

where c1 ̸= 0, c2 ∈ R , and c3 ∈ R+.

Theorem 3 Let α be a unit speed spacelike curve that has spacelike principal normal vector field and timelike

principal normal indicatrix in E3
1 ; then α is a spacelike rectifying slant helix if and only if the curvature and

torsion of the curve satisfy the equations below:

κ(s) =
c3(

(c1s+ c2)
2 − 1

)3/2
, τ(s) =

c3 (c1s+ c2)(
(c1s+ c2)

2 − 1
)3/2

,

where c1 ̸= 0, c2 ∈ R , and c3 ∈ R+.

Theorem 4 Let α be a unit speed spacelike rectifying slant helix that has timelike principal normal vector field

in E3
1 . Then the vector h = n′

κ satisfies the linear vector differential equation of second order as follows:

h′′(s)− c23(
(c1s+ c2)

2
+ 1

)2h(s) = 0. (2)
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Proof Let α be a unit speed spacelike rectifying slant helix and then we can write Frenet equations as follows:

t
′
= κn,

n
′
= κt+ fκb,

b
′
= fκn,

(3)

where f(s) = c1s+ c2 . If we divide the second equation by κ , we have

n′

κ
= t+ fb. (4)

By differentiating equation (4), we have

c1b =

(
n′

κ

)′

− κ(f2 + 1)n. (5)

By differentiating equation (5) and using equation (3), we have(
n′

κ

)′′

− κ(f2 + 1)n′ −
[(
κ(f2 + 1)

)′
+ c1fκ

]
n = 0, (6)

and we know

κ(s) =
c3(

(c1s+ c2)
2
+ 1

)3/2

and with the necessary calculations we easily see(
κ(f2 + 1)

)′
+ c1fκ = 0.

Thus, equation (6) becomes (
n′

κ

)′′

− κ(f2 + 1)n′ = 0. (7)

Let us denote n′

κ = h . Then equation (7) becomes

h′′(s)− c23(
(c1s+ c2)

2
+ 1

)2h(s) = 0.

This completes the proof. 2

Since the proofs of Theorem 5 and Theorem 6 are similar to the proof above, we again omit them.

Theorem 5 Let α be a unit speed spacelike curve that has spacelike principal normal vector field and spacelike

principal normal indicatrix in E3
1 . Then the vector h = n′

κ satisfies the linear vector differential equation of

second order as follows:

h′′(s) +
c23(

1− (c1s+ c2)
2
)2h(s) = 0. (8)
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Theorem 6 Let α be a unit speed spacelike curve that has spacelike principal normal vector field and timelike

principal normal indicatrix in E3
1 . Then the vector h = n′

κ satisfies the linear vector differential equation of

second order as follows:

h′′(s)− c23(
(c1s+ c2)

2 − 1
)2h(s) = 0. (9)

Now we give another theorem to determine c3 in Theorem 1. Some parts of this theorem will be useful

for us later on.

Theorem 7 Let α be a unit speed spacelike rectifying slant helix whose timelike principal normal vector field

makes a constant angle with a timelike vector v , and then the curvature and torsion of α satisfy the equations

below:

κ(s) =
|c1 tanh(θ)|(

(c1s+ c2)
2
+ 1

)3/2
, τ(s) =

|c1 tanh(θ)| (c1s+ c2)(
(c1s+ c2)

2
+ 1

)3/2
,

where c1 ̸= 0, c2 ∈ R.

Proof Let α be a unit speed spacelike rectifying slant helix whose timelike principal normal vector field makes

a constant angle with a timelike unit vector v . Then, from Definition 6,

g(n, v) = cosh(θ),

where θ ∈ R+ . If we differentiate this equation with respect to pseudo arclength parameter s , we have

g(κt+ τb, v) = 0.

If we divide both parts of the equation by κ , we get

g(t+ (c1s+ c2)b, v) = 0. (10)

Then,

g(t, v) = −(c1s+ c2)g(b, v).

While {t, n, b} is a orthonormal frame, we can write

v = λ1t+ λ2n+ λ3b

with λ2
1 − λ2

2 + λ2
3 = −1. If we make the neccessary calculations, we have

λ1 = ∓ (c1s+ c2) sinh(θ)√
(c1s+ c2)2 + 1

, λ2 = cosh(θ), λ3 = ± sinh(θ)√
(c1s+ c2)2 + 1

.

By differentiating equation (10), we have

± c1 sinh(θ)

κ
√
(c1s+ c2)2 + 1

− (1 + (c1s+ c2)
2) cosh(θ) = 0.
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Therefore,

κ(s) =
|c1 tanh(θ)|(

(c1s+ c2)
2
+ 1

)3/2

and

τ(s) =
|c1 tanh(θ)| (c1s+ c2)(
(c1s+ c2)

2
+ 1

)3/2
.

2

Remark 1 For a unit speed spacelike rectifying slant helix that has spacelike principal normal vector field that

makes a constant angle with a unit vector v in E3
1 , we easily see:

Case 1: If v is a spacelike unit vector and {n, v} spans a timelike subspace, then

c3 = |c1 tanh θ| .

Case 2: If v is a spacelike unit vector and {n, v} spans a spacelike subspace, then

c3 = |c1 tan θ| .

Case 3: If v is a positive timelike unit vector, then

c3 = |c1 coth θ| .

3.1. Position vector of spacelike rectifying slant helices

Now we will find the position vector of a spacelike rectifying slant helix by using the differential equation (2):

h1(s) = −
√(

(c1s+ c2)
2
+ 1

)
sin [sech(θ) arctan (c1s+ c2)] ,

h2(s) =

√(
(c1s+ c2)

2
+ 1

)
cos [sech(θ) arctan (c1s+ c2)] ,

h3(s) = 0,

(11)

is a solution for equation (2) where h = (h1, h2, h3).

If α is a unit speed spacelike rectifying slant helix that has a timelike principal normal vector field that

makes a constant angle θ with e3 , then from Definition 6 we can write

g(n, e3) = cosh(θ).

Therefore, from equation (11), we can write

n1(s) =
∫
κ(s)h1(s)ds = sinh(θ) cos [sech(θ) arctan (c1s+ c2)] ,

n2(s) =
∫
κ(s)h2(s)ds = sinh(θ) sin [sech(θ) arctan (c1s+ c2)] ,

n3(s) = − cosh(θ),

with

g(n′, n′) =
c21 tanh

2(θ)

((c1s+ c2)2 + 1)
2 > 0.
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If we use Frenet equations for spacelike unit speed curves, we have

α1(s) =
∫
(
∫
κ(s)n1(s)ds)ds,

α2(s) =
∫
(
∫
κ(s)n2(s)ds)ds,

α3(s) =
∫
(
∫
κ(s)n3(s)ds)ds,

and so,

α1(s) =
cosh (θ)

c1

√
(c1s+ c2)

2
+ 1 cos [sech(θ) arctan (c1s+ c2)] ,

α2(s) =
cosh (θ)

c1

√
(c1s+ c2)

2
+ 1 sin [sech(θ) arctan (c1s+ c2)] ,

α3(s) =− sinh (θ)

c1

√
(c1s+ c2)

2
+ 1,

(12)

where α = (α1, α2, α3).

With the help of the lemma below, we reach our goal.

Lemma 4 Let α be a curve with the equation (12) in E3
1 where θ ∈ R+ , c1 ̸= 0, and c2 ∈ R. Then α is a

unit speed spacelike rectifying slant helix that lies on the cone

z2 = tanh2(θ)
(
x2 + y2

)
.

Proof With direct calculations, we have g(α′, α′) = 1, g(n, n) = −1, g(n′, n′) > 0, and the curvature

functions of α as

κ(s) =
|c1 tanh(θ)|

((c1s+ c2)2 + 1)
3/2

, τ(s) =
|c1 tanh(θ)| (c1s+ c2)

((c1s+ c2)2 + 1)
3/2

,

with

κ2(s)

(κ2(s) + τ2(s))
3/2

(
τ(s)

κ(s)

)′

= coth(θ)

and

τ(s)

κ(s)
= c1s+ c2.

Thus, α is a unit speed spacelike rectifying slant helix. We also have

tanh2 (θ)
(
α1

2(s) + α2
2(s)

)
− α3

2(s) = 0,

and then α lies on the cone above. 2

By using equations (8) and (9), we have the following remark and lemmas. Since the proofs are similar

to the proof above, we omit them.

Remark 2 For a unit speed spacelike rectifying slant helix that has a spacelike principal normal vector field that

makes a constant angle with a unit vector v in E3
1 , we have:
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Case 1: If v = e2 and g(n′, n′) > 0 , then

β1(s) =− cosh (θ)

c1

√
1− (c1s+ c2)

2
sinh [sech(θ) arctanh (c1s+ c2)] ,

β2(s) =− sinh (θ)

c1

√
1− (c1s+ c2)

2
,

β3(s) =− cosh (θ)

c1

√
1− (c1s+ c2)

2
cosh [sech(θ) arctanh (c1s+ c2)] ,

(13)

where β = (β1, β2, β3) .

Case 2: If v = e1 and g(n′, n′) < 0 , then

γ1(s) =− 1

c1

√
(c1s+ c2)

2 − 1 sin (θ),

γ2(s) =− cos (θ)

c1

√
(c1s+ c2)

2 − 1 cosh [sec (θ) arccoth (c1s+ c2)],

γ3(s) =
cos (θ)

c1

√
(c1s+ c2)

2 − 1 sinh [sec (θ) arccoth (c1s+ c2)] ,

(14)

where γ = (γ1, γ2, γ3) .

Case 3: If v = e3 and g(n′, n′) > 0 , then

φ1(s) =− sinh (θ)

c1

√
1− (c1s+ c2)

2
cos [csch(θ) arctanh (c1s+ c2)] ,

φ2(s) =− sinh (θ)

c1

√
1− (c1s+ c2)

2
sin [csch(θ) arctanh (c1s+ c2)] ,

φ3(s) =
cosh (θ)

c1

√
1− (c1s+ c2)

2
,

(15)

where φ = (φ1, φ2, φ3) .

Lemma 5 Let β be a curve with the equation (13) in E3
1 where θ ∈ R+ , c1 ̸= 0, and c2 ∈ R. Then β is a

unit speed spacelike rectifying slant helix that lies on the cone

z2 = coth2(θ)y2 + x2.

Lemma 6 Let γ be a curve with the equation (14) in E3
1 where θ ∈ R+ , c1 ̸= 0, and c2 ∈ R. Then γ is a

unit speed spacelike rectifying slant helix that lies on cone

y2 = cot2(θ)x2 + z2.

Lemma 7 Let φ be a curve with the equation (15) in E3
1 where θ ∈ R+ , c1 ̸= 0, and c2 ∈ R. Then α is a

unit speed spacelike rectifying slant helix that lies on the cone

z2 = coth2(θ)
(
x2 + y2

)
.
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Example 1 If we take c1 = 1 , c2 = 0 , and θ = 1 in (12), then we have

α(s) =
√
s2 + 1

(
cosh(1) cos [sech(1) arctan (s)] ,

cosh(1) sin [sech(1) arctan (s)] ,

− sinh(1)
)
,

κ(s) =
tanh (1)

(s2 + 1)
3/2

, τ(s) =
s tanh (1)

(s2 + 1)
3/2

,

tanh2(1)
(
x2 + y2

)
= z2.

We can see the curve α in Figures 1a and 1b. The indicatrices of it are given in Figures 2a–2c.

(a) (b)

Figure 1. (a) Spacelike rectifying slant helix α . (b) Spacelike rectifying slant helix α lies on the cone,

tanh2(1)
(
x2 + y2

)
= z2.

(a) (b) (c)

Figure 2. Tangent indicatrix of the curve α . (b) Normal indicatrix of the curve α . (c) Binormal indicatrix of the curve

α .

Example 2 If we take c1 = 1 , c2 = 0 , and θ = 1/2 in (13), then we have

β(s) = −
√
1− s2

(
cosh (1/2) sinh [sech (1/2) arctanh (s)] ,

sinh (1/2) ,

cosh (1/2) cosh [sech (1/2) arctanh (s)]
)
,

κ(s) =
tanh (1/2)

(1− s2)
3/2

, τ(s) =
s tanh (1/2)

(1− s2)
3/2

,
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z2 = coth2 (1/2) y2 + x2.

We can see the curve β in Figures 3a and 3b. The indicatrices of it are given in Figures 4a–4c.

(a) (b)

Figure 3. Spacelike rectifying slant helix β . (b) Spacelike rectifying slant helix β lies on the cone, z2 = coth2 (1/2) y2+

x2.

(a) (b) (c)

Figure 4. (a) Tangent indicatrix of the curve β . (b) Normal indicatrix of the curve β . (c) Binormal indicatrix of the

curve β .

Example 3 If we take c1 = 1 , c2 = 0 , and θ = π/3 in (14), then we have

γ(s) =
√
s2 − 1

(
−
√
3

2
,−1

2
cosh [2 arccoth (s)] ,

1

2
sinh [2 arccoth (s)]

)
,

κ(s) =

√
3

(s2 − 1)
3/2

, τ(s) =

√
3s

(s2 − 1)
3/2

,

y2 =
1

3
x2 + z2.

We can see the curve γ in Figures 5a and 5b. The indicatrices of it are given in Figures 6a–6c.

Example 4 If we take c1 = 1, c2 = 0 , and θ = 1/2 in (15), then we have

φ(s) =
√
1− s2

(
− sinh (1/2) cos [csch (1/2) arctanh (s)] ,

− sinh (1/2) sin [csch (1/2) arctanh (s)] ,

cosh (1/2)
)
,
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(a) (b)

Figure 5. (a) Spacelike rectifying slant helix γ . (b) Spacelike rectifying slant helix γ lies on the cone, y2 = (1/3)x2+z2.

(a) (b) (c)

Figure 6. (a) Tangent indicatrix of the curve γ . (b) Normal indicatrix of the curve γ . (c) Binormal indicatrix of the

curve γ .

(a) (b)

Figure 7. (a) Spacelike rectifying slant helix φ . (b) Spacelike rectifying slant helix φ lies on the cone, z2 =

coth2 (1/2) (x2 + y2).

κ(s) =
coth (1/2)

(1− s2)
3/2

, τ(s) =
s coth (1/2)

(1− s2)
3/2

,

z2 = coth2 (1/2) (x2 + y2).

We can see the curve φ in Figures 7a and 7b. The indicatrices of it are given in Figures 8a–8c.

(a) (b) (c)

Figure 8. (a) Tangent indicatrix of the curve φ . (b) Normal indicatrix of the curve φ . (c) Binormal indicatrix of the

curve φ .
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