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Abstract: Somos discovered about 6277 theta-function identities of different levels using a computer and offered no

proof for them, and these identities closely resemble Ramanujan’s recordings. The purpose of this paper is to prove some

of his theta-function identities of level 10 and to establish certain partition identities for them.
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1. Introduction

Throughout the paper, we use the standard q -series notation and fk is defined as

fk := (qk; qk)∞ =

∞∏
m=1

(1− qmk), |q| < 1.

and often we write
(a1, a2, ..., an; q)∞ := (a1; q)∞(a2; q)∞...(an; q)∞.

Recall that the Ramanujan’s theta-function f(a, b) is defined by

f(a, b) =

∞∑
n=−∞

an(n+1)/2bn(n−1)/2, |ab| < 1.

Jacobi’s triple product identity [1, p. 35] can be restated in Ramanujan’s notation as follows:

f(a, b) = (−a,−b, ab; ab)∞.

The most important special cases of f(a, b) are

φ(q) := f(q, q) =
∞∑

n=−∞
qn

2

= (−q; q2)2∞(q2; q2)∞ =
f5
2

f2
1 f

2
4

(1.1)

and

f(−q) := f(−q,−q2) =
∞∑

n=−∞
(−1)nqn(3n−1)/2 = (q; q)∞ = f1. (1.2)
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Also, after Ramanujan, we define

χ(q) := (−q; q2)∞ =
f2
2

f1f4
and χ(−q) := (q; q2)∞ =

f1
f2

. (1.3)

Note that if q = e2πiτ then f(−q) = e−πiτ/12η(τ), where η(τ) denotes the classical Dedekind η -function for

Im(τ) > 0. The theta-function identity that relates f(−q) to f(−qn) is called the theta-function identity of

level n . Ramanujan recorded several identities that involve f(−q), f(−q2), f(−qn), and f(−q2n) in his second

notebook [3] and ‘lost’ notebook [4]. For example [2, p. 206, Entry 53],

f4
1 f

4
2 f

2
5 f

2
10 + 5f2

1 f
2
2 f

4
5 f

4
10 = f6

2 f
6
5 + f6

1 f
6
10.

Michael Somos recently used a computer to discover several new elegant modular equations in the spirit of

Ramanujan and offered no proof for them. Somos’s identities closely resemble Ramanujan’s recordings of the

above type. He has a large list of η -product identities and he runs PARI/GP scripts to look at each identity

in P − Q forms. Recently Yuttanan [6] proved certain Somos theta-function identities of different levels by

employing Ramanujan’s modular equations and deduced certain partition identities for them, and Vasuki and

Veeresha [5] proved η -function identities of level 14 discovered by Somos. Somos discovered sixty new elegant

η -function identities of level 10. The purpose of this paper is to prove some of these identities conjectured

by Somos and to establish certain partition identities for them. Before proceeding to state and prove Somos’s

identities, we first recall certain modular equations and theta-function identities that we will need in the sequel.

The Gauss ordinary hypergeometric series is defined by

2F1(a, b; c;x) :=
∞∑
k=0

(a)k(b)k
(c)kk!

xk |x| < 1,

where (a)n := a(a + 1)(a + 2)...(a + n − 1) for any positive integer n . Letting F (x) := 2F1(
1
2 ,

1
2 ; 1;x), then

the relation between α and β induced by the following equation is called a modular equation of degree n :

n
F (1− α)

F (α)
=

F (1− β)

F (β)
.

Supposing that y = π F (1−x)
F (x) and z = F (x), then we have from [1, pp. 122–124, Entry 10(i) and Entry 12(v)],

φ(e−y) =
√
z (1.4)

and

χ(e−y) = 21/6
(
x(1− x)e−y

)−1/24
. (1.5)

Also, we define the multiplier m by

m :=
F (α)

F (β)
.

On page 236 of his second notebook [3] and [1, pp. 280–288, Entry 13(ix) and (xiv)], Ramanujan recorded the

following modular equations of degree 5. If β has degree 5 over α and m is the multiplier for degree 5, then

1 + 41/3
(
β5(1− β)5

α(1− α)

)1/12

=
m

2

(
1 + (αβ)1/2 + {(1− α)(1− β)}1/2

)
, (1.6)

764



SRIVATSA KUMAR and ANU RADHA/Turk J Math

1 + 41/3
(
α5(1− α)5

β(1− β)

)1/12

=
5

2m

(
1 + (αβ)1/2 + {(1− α)(1− β)}1/2

)
(1.7)

and if P = {16αβ(1− α)(1− β)}1/12 and Q =
{

β(1−β)
α(1−α)

}1/8

, then

Q+
1

Q
+ 2

(
P − 1

P

)
= 0. (1.8)

From (1.6) and (1.7), we deduce

m2

5
=

1 + 41/3
(

β5(1−β)5

α(1−α)

)1/12

1 + 41/3
(

α5(1−α)5

β(1−β)

)1/12
. (1.9)

Transcribing (1.8) and (1.9) into a theta-function by employing (1.4) and (1.5), we obtain

qχ3(q)

χ3(q5)
+

χ3(q5)

χ3(q)
+

4q

χ2(q)χ2(q5)
− χ2(q)χ2(q5) = 0 (1.10)

and

φ4(q)

5φ4(q5)
=

1 + 4 q2χ2(q)
χ10(q5)

1 + 4χ2(q5)
χ10(q)

, (1.11)

respectively. Also from (1.1)–(1.3) we observe that

φ(q)

φ(q5)
=

χ2(q)

χ2(q5)

f2
f10

. (1.12)

Before concluding this section, for convenience we set

a := a(q) = q−1/24χ(q) and b := b(q) = q−5/24χ(q5).

2. Somos’s identities

Theorem 2.1 We have

f8
1 f

4
10 + 20qf1f

3
2 f

3
5 f

5
10 + 4f3

1 f
5
2 f5f

3
10 − 5f4

2 f
8
5 = 0.

Proof On multiplying (1.10) throughout by 4a−5b−3(a6 − b6), we obtain

4a7

b3
+ 4b8 +

16a2

b2
− 4b2a6 − 16b4

a4
− 4b9

a5
= 0,

which is equivalent to

b8
(
a5

b
+ 4

)(
1 +

4a2

b10

)
− a8

(
4b2

a2
+

b7

a3

)(
1 +

4b2

a10

)
= 0.
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Employing (1.11) in the above, we deduce

a5

b
+ 4− 5a8

b8

(
4b2

a2
+

b7

a3

)
φ4(q5)

φ4(q)
= 0.

Using (1.12) in the above, we see that

a5

b
+ 4− 5q4/3

(
4b2

a2
+

b7

a3

)(
f10
f2

)4

= 0.

Replacing q by −q in the above, expressing a(−q) and b(−q) in terms of fn by employing (1.3), and then

multiplying throughout by f3
1 f

5
2 f5f

3
10 , we obtain the required result. 2

Theorem 2.2 We have

f6
2 f

6
5 + qf6

1 f
6
10 − f4

1 f
4
2 f

2
5 f

2
10 − 5qf2

1 f
2
2 f

4
5 f

4
10 = 0.

Proof Multiplying (1.10) throughout by 4a−10b−22(a6 − 4ab+ a5b5 + b6)(a12 − 2a6b6 + b12), we obtain

4a14

b22
− 72a2

b10
+

4b2

a10
− 64

a8b8
+

8a6

b6
− 4 +

32a8

b16
+

32

a4b4
+

128

a2b14
− 4a12

b12
− 64a4

b20
= 0,

which is equivalent to

(
1− a6

b6

)2 (
1 +

4b2

a10

)(
1 +

4a2

b10

)
= 5

[(
1 +

4a2

b10

)
− a6

b6

(
1 +

4b2

a10

)]2
.

Using (1.11) in the above, we see that

(
1− a6

b6

)
φ2(q5)

φ2(q)
− 1 + 5

a6

b6
φ4(q5)

φ4(q)
= 0.

Employing (1.12) in the above, we obtain

q2/3
(
b4

a4
− a2

b2

)(
f10
f2

)2

− 1 + q4/3
5b2

a2

(
f10
f2

)4

= 0.

Replacing q by −q in the above, expressing a(−q) and b(−q) in terms of fn by employing (1.3), and then

multiplying throughout by f4
1 f

4
2 f

2
5 f

2
10 , we obtain the required result. 2

Theorem 2.3 We have

f10
1 f2

5 f
2
10 + 10qf3

1 f
3
2 f

5
5 f

3
10 − f10

2 f4
5 − 15q2f4

1 f
2
2 f

8
10 = 0.

Proof On multiplying (1.10) throughout by b−4(a6 − 4ab− a5b5 − b6), we obtain

a10b6 +
a12

b4
− b8 − 16a2

b2
− 2a11b− 8ab3 = 0, (2.1)
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which is equivalent to

b8
(
a10

b2
− 1

)(
1 +

4a2

b10

)
− a8

(
2a3b+

3a4

b4

)(
1 +

4b2

a10

)
= 0.

Employing (1.11) in the above, we see that

b8
(
a10

b2
− 1

)
a8 −

(
10a3b+

15a4

b4

)
φ4(q5)

φ4(q)
= 0.

Using (1.12) in the above, we obtain

(
a10

b2
− 1

)
− q4/3

(
10a3b+

15a4

b4

)(
f10
f2

)4

= 0.

Replacing q by −q in the above, expressing a(−q) and b(−q) in terms of fn by employing (1.3), and then

multiplying throughout by f10
2 f4

5 , we obtain the required result. 2

Theorem 2.4 We have

f9
1 f

2
5 f

3
10 + 9qf2

1 f
3
2 f

5
5 f

4
10 − f7

2 f
7
5 − 16q2f3

1 f
2
2 f

9
10 = 0.

Proof Multiplying (2.1) throughout by a−2b−16(16a12 − 40a11b5 + 25a10b10 − 256a2b2 − 160ab7 + 20b12), we

obtain

25a18 +
121a20

b10
− 90a19

b5
− 360a9

b3
− 12a10

b8
+

16a22

b20
− 72a21

b15
+

864a11

b13

−512a12

b18
+

4608a

b11
+

4096a2

b16
− 5a8b2 − 20b4

a2
+

1216

b6
= 0,

which is equivalent to

[
5a9

(
1 +

4a2

b10

)
− a10

b5

(
9 +

16a

b5

)(
1 +

4b2

a10

)]2
− 5a8b2

(
1 +

4b2

a10

)(
1 +

4a2

b10

)
= 0.

Employing (1.11) in the above, we see that

a9

b5
− a10

b10

(
9 +

16a

b5

)
φ4(q5)

φ4(q)
− a4

b4
φ2(q5)

φ2(q)
= 0.

Using (1.12) in the above, we obtain

a9

b5
− q4/3

(
9a2

b2
+

16a3

b7

)(
f10
f2

)4

− q2/3
(
f10
f2

)2

= 0.

Replacing q by −q in the above, expressing a(−q) and b(−q) in terms of fn by employing (1.3), and then

multiplying throughout by f7
2 f

7
5 , we obtain the required result. 2

Theorem 2.5 We have

f9
1 f

2
5 f

3
10 + 9qf1f

6
2 f

2
5 f

5
10 − f7

2 f
7
5 − 25q2f3

1 f
2
2 f

9
10 = 0.
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Proof Multiplying (2.1) throughout by a−6b−16(5a12 +10a11b5 +5a10b10 − 44a2b2 +40ab7 +4b12), we obtain

5a18 − 10a20

b10
− 285a10

b8
+

5a22

b20
− 124a12

b18
+

704a2

b16
− a8b2 − 4b4

a2
− 18a9

b3
− 72

ab

−72a11

b13
− 288a

b11
− 340

b6
= 0,

which is equivalent to

5

[
a7

(
1 +

4a2

b10

)
− 5a9

b10

(
1 +

4b2

a10

)]2
= a4b2

(
1 +

9a

b5

)2 (
1 +

4b2

a10

)(
1 +

4a2

b10

)
.

Using (1.11) in the above, we see that

a9

b5
− 25a11

b15
φ4(q5)

φ4(q)
=

a4

b4

(
1 +

9a

b5

)
φ2(q5)

φ2(q)
.

Employing (1.12) in the above, we obtain

a9

b5
− 25q4/3

a3

b7

(
f10
f2

)4

= q2/3
(
1 +

9a

b5

)(
f10
f2

)2

.

Replacing q by −q in the above, expressing a(−q) and b(−q) in terms of fn by employing (1.3), and then

multiplying throughout by f7
2 f

7
5 , we obtain the required result. 2

Theorem 2.6 We have

f8
1 f

4
10 + 24qf1f

3
2 f

3
5 f

5
10 − f4

2 f
8
5 − 16qf6

2 f
6
10 = 0.

Proof On multiplying (2.1) throughout by 16a−12b−8(25a12 − 10a11b5 + a10b10 + 80a2b2 − 40ab7 − b12), we

obtain

16a8b8 +
736a10

b2
− 192a9b3 − 32b10

a2
+ 3168 +

16b12

b12
+

768b7

a11
+

4096b2

a10
− 576b5

a

+
400a12

b12
− 960a11

b7
− 3840a

b5
− 5120a2

b10
− 20480

a8b8
= 0,

which is equivalent to

a8b8
[
5

(
1 +

4a2

b10

)
−
(
1 +

24a

b5

)(
1 +

4b2

a10

)]2
= 1280

(
1 +

4a2

b10

)(
1 +

4b2

a10

)
.

Using (1.11) in the above, we see that

φ4(q)

φ4(q5)
− 24a

b5
− 1− 16

a4b4
φ2(q)

φ2(q5)
= 0.

Employing (1.12) in the above, we obtain

q−4/3 a
8

b8

(
f2
f10

)4

− 24a

b5
− 1− 16q−2/3

b8

(
f2
f10

)2

= 0.
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Replacing q by −q in the above, expressing a(−q) and b(−q) in terms of fn by employing (1.3), and then

multiplying throughout by f4
2 f

8
5 , we obtain the required result. 2

Theorem 2.7 We have

f9
1 f

3
10 + 25qf2

1 f
3
2 f

3
5 f

4
10 − f7

2 f
5
5 − 16qf1f

6
2 f

5
10 = 0.

Proof On multiplying (2.1) throughout by a−2b−20(80a12 +256a2b2 − 40a11b5 − 160ab7 +5a10b10 +4b12), we

obtain

5a18 +
165a20

b10
− 50

a19

b5
− 168a9

b3
+

80a22

b20
− 200a21

b15
− 672a11

b13
+

740a10

b8

+
960

b6
− a8b2 − 4b4

a2
+

128

ab
+

512a

b11
− 1024a12

b18
− 4096a2

b16
= 0,

which is equivalent to

5

[
a9

(
1 +

4a2

b10

)
− 5a10

b5

(
1 +

4b2

a10

)]2
= a8b2

(
1− 16a

b5

)2 (
1 +

4a2

b10

)(
1 +

4b2

a10

)
.

Employing (1.11) in the above, we see that

a9

b5
− 25a10

b10
φ4(q5)

φ4(q)
=

a4

b4

(
1− 16a

b5

)
φ2(q5)

φ2(q)
.

Using (1.12) in the above, we deduce

a9

b5
− 25q4/3

a2

b2

(
f10
f2

)4

= q2/3
(
1− 16a

b5

)(
f10
f2

)2

.

Replacing q by −q in the above, expressing a(−q) and b(−q) in terms of fn by employing (1.3), and then

multiplying throughout by f7
2 f

5
5 , we obtain the required result. 2

Theorem 2.8 We have

f6
1 f2f

6
5 + 25q2f4

1 f2f
8
10 + 6qf7

1 f5f
5
10 − f9

2 f
4
5 = 0.

Proof Multiplying (2.1) throughout by (19a12−10a11b5+a10b10+80a2b2−40ab7+5b12), after simplification

we obtain

a20b16
(
b2 − 6a

b3

)2 (
1 +

4b2

a10

)(
1 +

4a2

b10

)
= 5

[
b12

(
1 +

4a2

b10

)
− 5a12

(
1 +

4b2

a10

)]2
.

Employing (1.11) in the above, we see that

a4

b4

(
a6b2 − 6a7

b3

)
φ2(q5)

φ2(q)
= 1− 25a12

b12
φ4(q5)

φ4(q)
.

Using (1.12) in the above, we obtain

q2/3
(
a6b2 − 6a7

b3

)(
f10
f2

)2

= 1− 25q4/3a4

b4

(
f10
f2

)4

.
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Replacing q by −q in the above, expressing a(−q) and b(−q) in terms of fn by employing (1.3), and then

multiplying throughout by f9
2 f

4
5 , we obtain the required result. 2

Theorem 2.9 We have

f10
1 f3

10 + 15f1f
7
2 f

5
5 + 25qf3

1 f
3
2 f

3
5 f

4
10 − 16f10

2 f2
5 f10 = 0.

Proof Multiplying (2.1) throughout by b−24(16a12 − 8a11b5 + a10b10 − 256a2b2 − 32ab7 − 76b12), after

simplification we obtain[(
a10

b2
− 16

)(
1 +

4a2

b10

)
− 5a11

b7

(
1 +

4b2

a10

)]2
=

45a10

b2

(
1 +

4b2

a10

)(
1 +

4a2

b10

)
.

Employing (1.11) in the above, we see that

a10

b2
− 16 +

15a5

b

φ2(q5)

φ2(q)
− 25a11

b7
φ4(q5)

φ4(q)
= 0.

Using (1.12) in the above, we obtain

a10

b2
− 16 + 15q2/3ab3

(
f10
f2

)2

− 25q4/3a3b

(
f10
f2

)4

= 0.

Replacing q by −q above, expressing a(−q) and b(−q) in terms of fn by employing (1.3), and then multiplying

throughout by f10
2 f2

5 f10 , we obtain the required result. 2

Theorem 2.10 We have

f10
1 f2

10 + 25qf3
1 f

3
2 f

3
5 f

3
10 − f10

2 f2
5 + 15qf2

1 f
6
2 f

4
10 = 0.

Proof Multiplying (2.1) throughout by b−6(16a12 − 8a11b5 + a10b10 + 44a2b2 − 32ab7 − b12), we obtain

32a22 +
16a24

b10
− 212a14

b8
− 40a23

b5
− 120a13

b3
− 704a4

b6
+

160a3

b
− 2a10b12

+228a2b4 + 40ab9 − 30a11b7 + 139a12b2 − 10a21b5 + a20b10 + b14 = 0,

which is equivalent to[
b5(a2 − b2)

(
1 +

4a2

b10

)
− 5a11

(
1 +

4b2

a10

)]2
− 45a12b2

(
1 +

4b2

a10

)(
1 +

4a2

b10

)
= 0.

Using (1.11) in the above, we see that

a10

b2
+

25a11

b7
φ4(q5)

φ4(q)
− 1 +

15a6

b6
φ2(q5)

φ2(q)
= 0.

Employing (1.12) in the above, we obtain

a10

b2
+ 25q4/3a3b

(
f10
f2

)4

− 1 + 15q2/3
a2

b2

(
f10
f2

)2

= 0.
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Replacing q by −q above, expressing a(−q) and b(−q) in terms of fn by employing (1.3), and then multiplying

throughout by f10
2 f2

5 , we obtain the required result. 2

Remark Now we shall provide a technique to identify the multiplier, which we have used in each of the proofs.

To obtain a multiplier in a and b , we first divide Somos’s identity to be proved by any one of the terms present

in the identity itself. After rearranging the terms, we employ (1.3) and then replace q by −q . Further, we

employ (1.12) and (1.11) consecutively. Finally, we factorize the resulting identity to obtain a known modular

equation (1.10) and a polynomial in a and b and akbl , which is the multiplier itself, and this multiplier is not

unique. If we change the dividing term in Somos’s identity, we obtain a new multiplier in a and b . Since proofs

of Somos’s identities are monotonous, we have proved only some of his identities and the remaining identities

can be proved by the same technique.

3. Application to partitions

Somos’s identities that we proved in Section 2 have applications in color partitions. In this section, we choose

to demonstrate this by giving partition-theoretic interpretations for Theorem 2.1 and 2.2. For simplicity, we

define

(qr±; qs)∞ := (qr, qs−r; qs)∞, (r < s); r, s ∈ N.

For example, (q2±; q8)∞ means (q2, q6; q8)∞ , which is (q2; q8)∞ (q6; q8)∞ .

Definition 3.1 A positive integer n has l colors if there are l copies of n available colors and all of them are

viewed as distinct objects. Partitions of a positive integer into parts with colors are called “colored partitions”.

For example, if 2 is allowed to have two colors, say b (blue) and g (green), then all the colored partitions of 4

are 4, 3 + 1, 2g + 2b, 2b + 2g, 2g + 2g, 2b + 1 + 1, 2g + 1 + 1, 1 + 1 + 1 + 1. Also,

1

(qa; qb)k∞

is the generating function for the number of partitions of n , where all the parts are congruent to a (mod b)

and have k colors.

Theorem 3.1 Let p1(n) denote the number of partitions of n into parts congruent to ±1,±3 (mod 10) with

seven colors and ±2,±4 (mod 10) with four colors. Let p2(n) denote the number of partitions of n into parts

congruent to ±1,±3,+5 (mod 10) with five colors. Let p3(n) denote the number of partitions of n into parts

congruent to ±1,±3 (mod 10) with eight colors and ±2,±4 (mod 10) with four colors and +5 (mod 10) with

one color. Then for any positive integer n ≥ 1 , the following equality holds true:

20p1(n− 1) + 4p2(n)− 5p3(n) = 0.

Proof Rewriting Theorem 2.1 subject to the common base q10 , we obtain

1 +
20q

(q1±7 , q2±4 , q3±7 , q4±4 ; q10)∞
+

4

(q1±5 , q3±5 , q5+5 ; q10)∞

− 5

(q1±8 , q2±4 , q3±8 , q4±4 , q5+1 ; q10)∞
= 0.

771



SRIVATSA KUMAR and ANU RADHA/Turk J Math

The quotients of the above identity represent the generating functions for p1(n), p2(n), and p3(n), respectively.

Hence, the above identity is equivalent to

1 + 20q

∞∑
n=0

p1(n)q
n + 4

∞∑
n=0

p2(n)q
n − 5

∞∑
n=0

p3(n)q
n = 0,

where we set p1(0) = p2(0) = p3(0) = 1. On equating the coefficients of qn in the above, we obtain the desired

result. 2

Example Table 1 verifies the case for n = 2 in the above theorem.

Table 1.

p1(1) = 7 1r, 1w, 1g, 1b, 1y, 1o, 1bl.
p2(2) = 15 1r + 1r, 1w + 1w, 1g + 1g, 1b + 1b, 1bl + 1bl, 1r + 1w, 1r + 1g, 1r + 1b,

1r + 1bl, 1w + 1g, 1w + 1b, 1w + 1bl, 1g + 1b, 1g + 1bl, 1b + 1bl.
p3(2) = 40 1r + 1r, 1w + 1w, 1g + 1g, 1b + 1b, 1bl + 1bl, 1y + 1y, 1o + 1o, 1m + 1m,

1r + 1w, 1r + 1g, 1r + 1b, 1r + 1bl, 1r + 1y, 1r + 1o, 1r + 1m, 1w + 1g,
1w + 1bl, 1w + 1b, 1w + 1y, 1w + 1o, 1w + 1m, 1g + 1b, 1g + 1bl, 1g + 1y,
1g + 1o, 1g + 1m, 1b + 1bl, 1b + 1y, 1b + 1o, 1b + 1m, 1bl + 1y, 1bl + 1o,
1bl + 1m, 1y + 1o, 1y + 1m, 1o + 1m, 2r, 2w, 2g, 2b.

Theorem 3.2 Let p1(n) denote the number of partitions of n into parts congruent to ±1,±3 (mod 10) with

six colors and ±2,±4 (mod 10) with two colors. Let p2(n) denote the number of partitions of n into parts

congruent to ±2,±4 (mod 10) with two colors. Let p3(n) denote the number of partitions of n into parts

congruent to ±1,±3 (mod 10) with two colors. Let p4(n) denote the number of partitions of n into parts

congruent to ±1,±2,±3,±4 (mod 10) with four colors. Then, for any positive integer n ≥ 1 , the following

equality holds true:

p1(n) + p2(n− 1)− p3(n)− 5p4(n− 1) = 0.

Proof On rewriting Theorem 2.2 subject to the common base q10 , we obtain

1

(q1±6 , q2±2 , q3±6 , q4±2 ; q10)∞
+

q

(q2±2 , q4±2 ; q10)∞
− 1

(q1±2 , q3±2 ; q10)∞

− 5q

(q1±4 , q2±4 , q3±4 , q4±4 ; q10)∞
= 0.

The four quotients of the above identity represent the generating functions for p1(n), p2(n), p3(n), and p4(n),

respectively. Hence, the above identity is equivalent to

∞∑
n=0

p1(n)q
n + q

∞∑
n=0

p2(n)q
n −

∞∑
n=0

p3(n)q
n − 5q

∞∑
n=0

p4(n)q
n = 0,

where we set p1(0) = p2(0) = p3(0) = 1. On equating the coefficients of qn in the above, we obtain the desired

result. 2

Example Table 2 verifies the case for n = 2 in the above theorem.
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Table 2.

p1(2) = 23 1r + 1r, 1w + 1w, 1b + 1b, 1g + 1g, 1y + 1y, 1o + 1o, 1r + 1w, 1r + 1b,
1r + 1g, 1r + 1y, 1r + 1o, 1w + 1b, 1w + 1g, 1w + 1y, 1w + 1o, 1b + 1g,
1b + 1y, 1b + 1o, 1g + 1y, 1g + 1o, 1y + 1o, 2r, 2w.

p2(1) = 0
p3(2) = 3 1r + 1r, 1w + 1w, 1r + 1w.
p4(1) = 4 1r, 1w, 1b, 1g.
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