
Turk J Math

(2018) 42: 1130 –

c⃝ TÜBİTAK

doi:10.3906/mat-1711-76

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

The united stable solution set of interval continuous-time algebraic Riccati

equation and verified numerical computation of its outer estimation

Tayyebe HAQIRI1,2,∗, Mahmoud MOHSENI MOGHADAM3, Azim RIVAZ3

1School of Mathematics and Computer Science, Damghan University, Damghan, Iran
2Member of Young Researchers Society of Shahid Bahonar University of Kerman, Kerman, Iran

3Department of Applied Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University
of Kerman, Kerman, Iran

Received: 19.11.2016 • Accepted/Published Online: 13.10.2017 • Final Version: 08.05.2018

Abstract: This paper introduces the interval continuous-time algebraic Riccati equation A∗X +XA+Q−XGX = 0,

where A,G , and Q are known n×n complex interval matrices, G and Q are Hermitian, and X is an unknown matrix

of the same size, and develops two approaches for enclosing the united stable solution set of this interval equation.

We first discuss the united stable solution set and then derive a nonlinear programming method in order to find an

enclosure for the united stable solution set. We also advance an efficient technique for enclosing the united stable

solution set based on a variant of the Krawczyk method together with some modifications. These modifications enable

us to reduce the computational complexity significantly. Various numerical experiments established upon a number of

standard benchmark examples are also given to show the efficiency of this modified Krawczyk technique.

Key words: Interval continuous-time algebraic Riccati equation, united stable solution set, Krawczyk’s method, verified

computation, interval analysis, preconditioning

1. Introduction

The continuous-time algebraic Riccati equation (CARE)

A∗X +XA+Q−XGX = 0; A,G,Q ∈ Cn×n, G∗ = G,Q∗ = Q, (1.1)

plays a fundamental role in many areas such as control theory, filter design, model reduction, differential

equations, and robust control [5, 6, 11, 19, 20, 31], where X is an unknown matrix and A∗ denotes the

conjugate transpose of the matrix A . Here we mention one of the relevant examples that arises in the theory

of automatic control and linear filtering, i.e. linear-quadratic optimal control problem or LQ, in brief. This is a

typical problem where CAREs are involved [5]:

Consider the differential equation

x′(t) = Ax(t) + Fu(t), (1.2)

with A ∈ Cn×n and F ∈ Cn×m , where x(t) ∈ Cn is the state vector and u(t) ∈ Cm is the control input vector.

The differential equation (1.2) defines a continuous-time linear dynamical system and a classic problem is to

∗Correspondence: haqiri@math.uk.ac.ir

2010 AMS Mathematics Subject Classification: 65G40, 65F30

1130

HAQIRI et al./Turk J Math

compute an optimal feedback control

u(t) = Gx(t),

for G ∈ Cm×n . This optimal feedback control minimizes

J(u) =

∫ +∞

0

|x∗(t)Cx(t) + u∗(t)Ru(t)|dt,

where C ∈ Cn×n is Hermitian positive semidefinite and R ∈ Cm×m is Hermitian positive definite. Under

suitable assumptions on A,F , and C , the CARE

C +XA+A∗X −XFR−1F ∗X = 0

has a unique Hermitian positive semidefinite stabilizing solution and the desired optimal feedback control is

u(t) = −R−1F ∗Xx(t).

Recall that a Hermitian solution Xs (Xa) of CARE (1.1) is called stabilizing (resp. anti-stabilizing) if

all the eigenvalues of the closed loop matrix A − GXs (resp. A − GXa) have negative (resp. positive) real

parts or A − GXs are Hurwitz stable [5, 19]. In practice only these two solutions are needed in engineering

applications. Moreover, the verification of an anti-stabilizing solution is completely analogous to the verification

of a stabilizing solution; it is sufficient to switch the sign of A,G , and Q and everything works. A complete

discussion of the theoretical properties and numerical algorithms for CAREs are given in [19] and [25] and the

references therein.

To further highlight the importance of matrix equation (1.1), consider two common matrix equations

included, namely, the Lyapunov matrix equation A∗X +XA+Q = 0 and the matrix square root X2 +Q = 0.

The Lyapunov matrix equation has a vital role in many areas particularly in studying stability, controllability,

and observability in dynamical systems or in solving PDEs on tensorized domains [8]. The matrix square

root plays key roles in, for example, the matrix sign function [15, Chapter 5], the definite generalized eigenvalue

problem [15, Chapter 2], the polar decomposition [15, Chapters 2 and 8], and the geometric mean [15, Chapter 2].

The problem of computing verified solutions to CARE (or some particular types of it) has been addressed

before in the literature; see for instance [13, 22]. Moreover, except when we are computing, nearly all measure-

ments, experiments, and models of real life or physical phenomena contain uncertainty. Indeed, the elements

of A,G , and Q in equation (1.1) almost always contain doubt. Thus, they would be represented in interval

form to guarantee bounds on the set of possible result values. Thus, the following interval continuous-time

algebraic Riccati equation (ICARE) should be solved:

A∗X +XA−XGX +Q = 0, (1.3)

where boldface letters A,G , and Q are known interval matrices and A∗ is a matrix whose center and radius

are the conjugate transpose of center and radius of A , respectively. We also assume that the interval elements

in all interval matrices are mutually independent and the matrices G and Q are Hermitian interval matrices. A

Hermitian interval matrix is a square interval matrix such that both its center and radius matrices are Hermitian.

This definition is not taken directly from another paper; it is not particularly complicated or innovative, but

we do not know of a reference where it appears in that exact form. Moreover, note that this definition does not

imply that each point matrix in a Hermitian interval matrix is Hermitian. Meanwhile, we shall call the point

matrix mid(A−GX), X ∈ Cn×n , a closed loop matrix associated to ICARE (1.3).

1131

HAQIRI et al./Turk J Math

As we know, a few works concerning the interval form of CARE (1.1) (or some special cases of it) have

already been done; see e.g. [9, 12, 14, 28–30]. Seif et al. [28] propose different techniques for approximating an

outer estimation for the united solution set of the interval Sylvester matrix equation AX +XB = C in which

A and B are real interval matrices of size m and n , respectively. Most of these techniques have an exponential

complexity in m and n . In [29, 30], Shashikhin uses an interval linear system correspondence to the interval

Sylvester matrix equation to find an interval enclosure for the united solution set. Hansen and Walster [12,

Chapter 8] describe a procedure for computing the roots of the one-dimensional quadratic equation

ax2 + bx+ c = 0, (1.4)

where a,b , and c are real intervals and x is an unknown real number. The interval roots of (1.4) are the

set of real roots x of the quadratic equations ax2 + bx + c = 0, for all a ∈ a, b ∈ b and c ∈ c . Hashemi

and Dehghan [14] propose a major modification of the Krawczyk operator with a significant reduction in

computational complexity of obtaining an outer estimation of the united solution set to the interval Lyapunov

matrix equation AX + XAT = Q , which is applicable when the point matrix mid(A) is diagonalizable.

Generalized solution sets of the interval generalized Sylvester matrix equation
∑p

i=1 AiXi +
∑q

j=1 YjBj = C

and several approaches for inner and outer estimations for some special cases of AE-solution sets are presented

in [9].

We provide here a brief characterization of the united stable solution set of ICARE (1.3) and a nonlinear

programming approach built on this characterization. Then we present a method that uses interval arithmetic

to compute a certified enclosure for the united stable solution set of ICARE (1.3). This algorithm is based on

the modified Krawczyk method used e.g. in [10, 13], and includes some improvements. In particular, we utilize

two changes of bases:

• First change of basis is applied to original interval equation (1.3) expecting better performance due to a

reduction in the spectral condition number of the eigenvector matrix of the midpoint closed loop matrix.

• The second improvement consists of a new change of basis that precedes again applying the Krawczyk

method with the aim of reducing the wrapping effects. This technique was used before, e.g. in [10, 13].

There are also other improvements:

• An enclosure for the so-called slope matrix is needed where we are applying the Krawczyk method. The

interval evaluation of the Jacobian of the function at hand is the typical choice to find this enclosure, but

in order to result in a tighter interval matrix, we use a slightly different algebraic expression.

• To verify the stabilizing property of all solutions in the computed interval matrix, X , we have used the

method described in Algorithm 7 from [13] based on the method in [21] and in [22, Lemma 2.4]. In fact,

this is an indirect strategy for proving uniqueness: if all the matrices inside the interval matrix A−GX

are Hurwitz stable then it is automatically verified that the interval matrix X contains the only one

stabilizing solution Xs of each CARE in the united stable solution set [5, Corollary 3.10].

One can see then that the resulting modified Krawczyk method has several steps in common with the

Krawczyk method described in [13]. This time, though, the improvements are used skillfully to establish

a relation between “verified stabilizing solution of continuous-time algebraic Riccati equation” and “verified

1132

HAQIRI et al./Turk J Math

outer estimation of the united stable solution set of interval continuous-time algebraic Riccati equation”. Indeed,

Haqiri and Poloni [13] develop algorithms that use interval arithmetic, combined those with the latest techniques

on stabilization, resulting in a method to compute a verified enclosure for the stabilizing solution of a continuous-

time algebraic Riccati equation that is competitive to the floating point ones.

This paper is structured as follows. After introducing some symbols and notation in Section 2, we

define and partially characterize the united stable solution set to the interval continuous-time algebraic Riccati

equation (1.3) in Section 3. In Sections 3.1 and 3.2, we develop two approaches for finding outer estimations

of the united stable solution set. We test the performance of our Krawczyk-type algorithm on a number of

standard benchmark examples in Section 4 and present the conclusion in Section 5.

2. Notation and preliminary concepts

We use K to denote either of the fields of real, R , or complex numbers, C . With the notations Kn,Kn×n, IKn ,

and IKn×n , we denote, respectively, the space of n-dimensional vectors, the space of n×n matrices, the set of

all n-dimensional interval vectors, and the set of all n× n interval matrices, all over K . In the present paper,

starting from the introduction, all interval quantities will be typeset in boldface whereas lower case will imply

scalar quantities or vectors and upper case will denote matrices. Underscores and overscores will show lower

bounds and upper bounds of interval quantities, correspondingly.

The Kronecker product of two matrices A = (Aij) ∈ Km×n and B ∈ Kp×q denoted by A⊗B ∈ Kmp×nq

is an m × n block matrix whose (i, j) block is the p × q matrix [AijB] . Moreover, A denotes the complex

conjugate of A and when A is an invertible matrix, then A−T := (AT)−1 and A−∗ := (A∗)−1 . The Hadamard

division of a matrix A = (Aij) ∈ Km×n by a matrix B = (Bij) ∈ Km×n denoted by A./B results in an m× n

matrix C = (Cij) whose (i, j) element is given by Cij = Aij/Bij provided that Bij ̸= 0, for each 1 ≤ i ≤ m

and 1 ≤ j ≤ n . For a given diagonal matrix D ∈ Kn×n , diag(D) ∈ Kn is the vector whose (i, 1) element is

the i−th diagonal entry of D . Conversely, given a vector d = (d1, d2, . . . , dn)
T ∈ Kn , Diag(d) ∈ Kn×n is the

diagonal matrix whose (i, i) entry is di . Moreover, vec is the operator that stacks the columns of a matrix

vertically from first to last. IN is also the identity matrix of size N . Furthermore, most of these notions and

operations are analogously defined for interval quantities [17, 23].

We use here the definition of complex intervals as discs: a complex interval x is a closed circular

disc of radius rad (x) ∈ R with rad (x) ≥ 0 and center mid (x) ∈ C . Indeed, it is defined as x := {z ∈
C : |z − mid (x)| ≤ rad (x)} = ⟨mid (x), rad (x)⟩ . The operations on the circular complex intervals, IC , are

introduced as the generalizations of operations on complex numbers [2]. For all the four basic arithmetic

operations ◦ ∈ {+,−, ·, /} one has

x ◦ y ⊇ {x ◦ y : x ∈ x, y ∈ y}, (2.1)

in which x,y ∈ IC (in the case of division, we need to assume that 0 /∈ y for the operation to be well defined).

The magnitude of x ∈ IC is defined as mag(x) := max{|x| : x ∈ x} . The interval hull □(x,y) of

two intervals in IC is the interval of smallest radius containing x and y . Moreover, int(X) is the topological

interior of X ∈ ICm×n .

An m × n interval matrix A := (Aij) ∈ ICm×n is denoted by A = ⟨mid(A), rad(A)⟩ in which

Aij = ⟨mid(Aij), rad(Aij)⟩ ∈ IC , with rad(Aij) ≥ 0; 1 ≤ i ≤ m, 1 ≤ j ≤ n . For interval vectors and

matrices, mid, rad,mag, and □ will be applied component-wise. Particularly, if Σ is a bounded set of m × n

1133

HAQIRI et al./Turk J Math

real matrices, then we have □Σ := [inf Σ, supΣ] [24].

If D = Diag
(
(d1,d2, . . . ,dN)T

)
is a diagonal interval matrix and 0 /∈ di for each i = 1, 2, . . . , N , then

we may define

D−1 := Diag
(
(
1

d1
,
1

d2
, . . . ,

1

dN
)T

)
,

otherwise, the definition of inverse of an interval matrix may be problematic in general.

Different parts of the following lemmas, which also appear e.g. in [10] or [16], include some basic properties

of the Kronecker product and the vec operator.

Lemma 2.1 Assume that A = (Aij) , B = (Bij) , C = (Cij) , and D = (Dij) be complex matrices with

compatible sizes. Then,

1. (A⊗B)(C ⊗D) = AC ⊗BD ,

2. A⊗ (B + C) = (A⊗B) + (A⊗ C) ,

3. (A⊗B)∗ = A∗ ⊗B∗ ,

4. (A⊗B)−1 = A−1 ⊗B−1 , if A and B are invertible,

5. vec(ABC) = (CT ⊗A) vec(B) ,

6.
(
Diag(vec(A))

)−1

vec(B) = vec(B./A) , if Aij ̸= 0 for each (i, j) .

Lemma 2.2 Let A = (Aij) , B = (Bij) , and C = (Cij) be complex interval matrices of compatible sizes.

Then,

1.
{
(CT ⊗A) vec(B) : A ∈ A, B ∈ B, C ∈ C

}
⊆

vec
(
A(BC)

)
,

vec
(
(AB)C

)
,

2.
(
Diag(vec (A))

)−1

vec(B) = vec(B./A) , if 0 /∈ Aij for all (i, j) .

The next lemma contains some information about the main properties of mid, rad, and □ .

Lemma 2.3 (see e.g. [2, 24]) Let A , B ∈ ICn×n and X be a matrix with complex elements and compatible

size. Then,

1. A ⊆ B ⇔ |mid(B)−mid(A)| ≤ rad(B)− rad(A) ,

2. mid(A±B) = mid(A)±mid(B) ,

3. rad(A±B) = rad(A) + rad(B) ,

4. mid(AX) = mid(A)X ,

5. mid(XA) = Xmid(A) ,

1134

HAQIRI et al./Turk J Math

6. rad(AX) = rad(A)|X| ,

7. rad(XA) = |X| rad(A) .

3. The united stable solution set of ICARE: partial characterization and estimation

The most common approach to define a solution set of an interval matrix equation is the one that we describe

more exactly for ICARE (1.3) in this section: the united solution set defined as

Σ(CARE;A,G,Q) :=

{X ∈ Kn×n : ((∃A ∈ A)(∃G ∈ G)(∃Q ∈ Q)(A∗X +XA+Q = XGX))}.

This solution set is formed by all possible solutions of all point CAREs, A∗X + XA + Q = XGX with A ∈
A, G ∈ G , and Q ∈ Q . The united solution set has abundant applications in the so-called scientific computation

field such as computational optimization, numerical simulations, and verification in system engineering [1]. On

the other hand, the stabilizing solution is the one of interest in almost all applications [5, 11] and so we adjust

the above definition to the united stable solution set as

Σs(CARE;A,G,Q) :=

{X ∈ Kn×n : ((∃A ∈ A)(∃G ∈ G)(∃Q ∈ Q)

(A∗X +XA+Q = XGX) and A−GX is Hurwitz stable)}.

Σs(CARE;A,G,Q) contains (at most) one solution per CARE since the stabilizing solution is unique (when it

exists) [13, Theorem 3.9].

According to the description provided above, we focus on the united stable solution set to ICARE.

The following theorem about the united stable solution set of ICARE (1.3) is very similar to results for

the interval Lyapunov matrix equation [12] and the interval generalized Sylvester matrix equation [9].

Theorem 3.1

Σs(CARE;A,G,Q) ⊆ {X ∈ Kn×n : (A∗X +XA−XGX) ∩ (−Q) ̸= ∅}, (3.1)

and

Σs(CARE;A,G,Q) ⊆ {X ∈ Kn×n : 0 ∈ A∗X +XA−XGX +Q}, (3.2)

where 0 ∈ Rn×n . Moreover,

X ∈ Σs(CARE;A,G,Q) ⇒ |mid(A)∗X +Xmid(A)−Xmid(G)X +mid(Q)| (3.3)

≤ rad(A)∗|X|+ |X| rad(A) + |X| rad(G)|X|+ rad(Q).

Proof Since Σs(CARE;A,G,Q) ⊆ Σ(CARE;A,G,Q), we only need to show that relations (3.1), (3.2), and (3.3)

are valid for Σ(CARE;A,G,Q). Now let X ∈ Σ(CARE;A,G,Q). Thus, A∗X + XA − XGX = −Q for some

A ∈ A, G ∈ G , and Q ∈ Q ; hence −Q ∈ (A∗X+XA−XGX)∩(−Q). Since A∗X+XA−XGX∩(−Q) ̸= ∅ ,
0 ∈ A∗X +XA−XGX +Q and the first part of the theorem follows. For the second part, note that by the

first part if X ∈ Σ(CARE;A,G,Q) then

X ∈ {X ∈ Kn×n : (A∗X +XA−XGX) ∩ (−Q) ̸= ∅}.

1135

HAQIRI et al./Turk J Math

Thus, |mid(A∗X + XA − XGX) − mid(−Q)| ≤ rad(A∗X + XA − XGX) + rad(−Q). Now, by means of

Lemma 2.3, we conclude that

|mid(A)∗X +Xmid(A)−Xmid(G)X +mid(Q)|

≤ rad(A)∗|X|+ |X| rad(A) + |X| rad(G)|X|+ rad(Q).

2

Because Σs(CARE;A,G,Q) is generally not an interval matrix, it is usually impractical to try to use it. Instead,

it is common practice to seek an interval matrix containing Σs(CARE;A,G,Q), for example, the interval hull

of Σ(CARE;A,G,Q). Besides, only some estimation of the rigorous solution set suffices for factual goals in real

life conditions. From this point on, let us suppose that Σ(CARE;A,G,Q) and Σs(CARE;A,G,Q) are nonempty

and bounded.

3.1. Outer estimation of Σs(CARE;A,G,Q) via a nonlinear programming approach (for real data

only)

Continuous-time algebraic Riccati equations frequently arise with real coefficient matrices and so it is natural

to investigate. Such equations are the topic of this section and, of course, the preceding theorems in Section 3

apply but more structure can be expected in the solution set of a “real”CARE. The stabilizing solution of the

real CARE

ATX +XA+Q = XGX; A,G,Q ∈ Rn×n, GT = G,QT = Q,

is real [6]. Thus, if A,G , and Q belong to IRn×n and G and Q are symmetric, then every X ∈
Σs(CARE;A,G,Q) is also real. A square real interval matrix A := [mid(A) − rad(A),mid(A) + rad(A)] is

called symmetric if both mid(A) and rad(A) are symmetric. Thus, a symmetric interval matrix may also

contain nonsymmetric matrices.

Afterwards, the inequality (3.3) appearing in Theorem 3.1 can provide us with an approach to discover

an outer estimation for Σ(CARE;A,G,Q) (in real case) that itself is an enclosure for Σs(CARE;A,G,Q).

By definition, □Σ(CARE;A,G,Q) is the tightest interval matrix that encloses Σ(CARE;A,G,Q). There-

upon, it could be supposed as the sharpest outer estimation for Σ(CARE;A,G,Q). Since we have assumed that

the solution set Σ(CARE;A,G,Q) is nonempty and bounded, we can define its exact interval hull as

□Σ(CARE;A,G,Q) := [X,X],

where for i, j = 1 : n,
X = (Xij), Xij = inf{Xij : X = (Xij) ∈ Σ(CARE;A,G,Q)},

X = (Xij), Xij = sup{Xij : X = (Xij) ∈ Σ(CARE;A,G,Q)}.

Now inequality (3.3) appearing in the last part of Theorem 3.1 turns out to be{
mid(A)∗X +X mid(A)−X mid(G)X − rad(A)∗|X| − |X| rad(A)− |X| rad(G)|X| ≤ −Q,

mid(A)∗X +X mid(A)−X mid(G)X + rad(A)∗|X|+ |X| rad(A) + |X| rad(G)|X| ≥ −Q,

in which X is an arbitrary member of Σ(CARE;A,G,Q). If S = (Sij) denotes the sign matrix of X , then

|X| = S⊙X , where ⊙ denotes the so-called Hadamard or component-wise product. Now, in order to determine

1136

HAQIRI et al./Turk J Math

the lower and upper bound for each element Xij of X = (Xij), the following nonlinear programming problems

for all possible cases of S and fixed (i, j), 1 ≤ i, j ≤ n should be solved:

min /max Xij

s.t.{
mid(A)∗X + X mid(A) − X mid(G)X − rad(A)∗(S ⊙ X) − (S ⊙ X) rad(A) − (S ⊙ X) rad(G)(S ⊙ X) ≤ −Q,

mid(A)∗X + X mid(A) − X mid(G)X + rad(A)∗(S ⊙ X) + (S ⊙ X) rad(A) + (S ⊙ X) rad(G)(S ⊙ X) ≥ −Q.

Therefore, we are required to solve 2n2 × 2n
2

nonlinear programming problems that may grow expo-

nentially as the dimension n increases, making this algorithm cumbersome and time-consuming for matrices of

high order. Fortunately, the next section exploits a method for obtaining an outer estimation for the united

stable solution set with complex coefficients and without this computational issue.

3.2. Verified outer estimation of Σs(CARE;A,G,Q) via a modified Krawczyk algorithm

There exist several modifications of Krawczyk’s algorithm; see e.g. [13, 15]. The main purpose of these

modifications is to make the Krawczyk algorithm as efficient as possible via, for example, decreasing the wrapping

effects or some heuristic attempts. The next sections include some of these approaches.

3.2.1. Preconditioning the original ICARE

Before using the modified Krawczyk operator for obtaining an outer estimation for Σs(CARE;A,G,Q), we want

to propose a preconditioning technique provided that the matrix mid (A−GX̌) is diagonalizable where X̌ is

an accurate approximation to the stabilizing solution of the midpoint system associated to ICARE (1.3), i.e.

mid(A)∗X +Xmid(A) + mid(Q)−Xmid(G)X = 0. (3.4)

Thus, assume that there exist matrices V1,W1 , and Λ1 ∈ Cn×n such that an approximate spectral decomposi-

tion of mid (A−GX̌) is available as

mid(A−GX̌) ≈ V1Λ1W1 with V1,W1,Λ1 ∈ Cn×n, (3.5a)

Λ1 = Diag(λ11, λ12, . . . , λ1n), V1W1 ≈ In. (3.5b)

Of course, W1 = V −1
1 in theory, but it will turn out to have this appended notation available due to the fact

that the exact inverse of a matrix is often not attainable when we are computing in floating point arithmetic. A

similar reason is valid for λ1i, i = 1, 2, . . . , n , computed numerically with a standard method such as MATLAB’s

eig.

Then the right preconditioner V1 and the left preconditioner V ∗
1 will change the original equation (1.3)

to the right-left preconditioned system

A∗
cXc +XcAc +Qc = XcGcXc, (3.6)

where

Ac = V −1
1 AV1, Xc = V ∗

1 XV1, Qc = V ∗
1 QV1, Gc = V −1

1 GV −∗
1 , (3.7)

1137

HAQIRI et al./Turk J Math

assuming that V1 and W1 in (3.5) are nonsingular. Note that the subscript “c”does not mean the center

matrix. Then the center and radius matrices of Gc and Qc are easily seen to be Hermitian again

(mid (Gc))
∗ = (mid (V −1

1 GV −∗
1))∗ = V −1

1 (mid(G))∗V −∗
1

V −1
1 mid(G)V −∗

1 = mid (V −1
1 GV −∗

1) = mid (Gc),

and

(rad (Gc))
∗ = (rad (V −1

1 GV −∗
1))∗ = |V −1

1 |(rad(G))∗|V −∗
1 |

|V −1
1 | rad(G)|V −∗

1 | = rad (V −1
1 GV −∗

1) = rad (Gc).

A similar argument reveals that (mid (Qc))
∗ = mid (Qc) and (rad (Qc))

∗ = rad (Qc).

Consequently, the matrix Ac −GcX̌c has an approximate diagonal center matrix, since

mid (Ac −GcX̌c) = mid (Ac)−mid (GcX̌c) =

mid (V −1
1 AV1)−mid (V −1

1 GX̌V1) = V −1
1 mid (A−GX̌)V1 ≈ Λ1.

Hence, it is natural that we suppose that Ac −GcX̌c is diagonalizable and

mid(Ac −GcX̌c) ≈ V2Λ2W2 with V2,W2,Λ2 ∈ Cn×n, (3.8a)

Λ2 = Diag(λ21, λ22, . . . , λ2n), V2W2 ≈ In. (3.8b)

Afterwards, we can see that this fact is very useful in the simplification of the Krawczyk operator. However,

V1,W1 , and Λ2 are computed numerically and therefore they fulfill (3.8) just approximately.

3.2.2. Applying the Krawczyk operator in a residual format

In this section, as well as in the next section, we actually deal with a variant of the Krawczyk method that is

simply a mean value form evaluation of the modified Newton operator.

Let H : CN×N −→ CN×N be a Fréchet differentiable matrix function. Recall that the Fréchet derivative

of H at X ∈ CN×N [15] is the unique function LH(X, .) that is linear in its second argument and for all

E ∈ CN×N satisfies

H(X + E)−H(X)− LH(X,E) = O(∥E∥).

Associated with the Fréchet derivative, its Kronecker form is the unique matrix KH(X) ∈ CN2×N2

such that

for any E ∈ CN×N

vec(LH(X,E)) = KH(X) vec(E),

holds.

Now suppose that

F (Xc) := A∗
cXc +XcAc +Qc −XcGcXc, (3.9)

where Ac, Gc , and Qc are arbitrary point matrices chosen from Ac,Gc , and Qc in (3.7), respectively. Note that

the matrix function F in (3.9) does not necessarily meet the condition that the closed loop matrix Ac −GcXc

1138

HAQIRI et al./Turk J Math

is diagonalizable for every Xc ∈ Cn×n . Now, for applying the modified Krawczyk algorithm, we consider the

vector form of (3.9), f : Cn2 −→ Cn2

written as

f(xc) := vec(A∗
cXc +XcAc +Qc −XcGcXc), xc := vec (Xc). (3.10)

The Frećhet derivative of the function in (3.9) at Xc ∈ Cn×n with X∗
c = Xc is LF (Xc, E) = E(Ac −

GcXc) + (Ac −GcXc)
∗E . In addition, from Lemma 2.1 it turns out that the Kronecker form of LF (Xc, E) is

KF (Xc) = In ⊗ (Ac −GcXc)
∗ + (Ac −GcXc)

T ⊗ In, (3.11)

as long as Xc is Hermitian. We now want to state an important result in all the modified Krawczyk-type

algorithms, but first we need a definition.

Definition 3.2 (see e.g. [13]) Suppose h : Ψ ⊆ CN → CN and x, y ∈ CN . Then the slope S(h;x, y) :

Ψ×Ψ → CN×N is defined to be that mapping such that

h(y)− h(x) = S(h;x, y)(y − x).

Theorem 3.3 (see e.g. [10]) Assume that h : Ψ ⊂ CN → CN is continuous. Let R ∈ CN×N , x̌ ∈ Ψ , and

z ∈ ICN be such that x̌+z ⊂ Ψ . Moreover, assume that S ⊂ CN×N is a set of matrices such that S(h; x̌, x′) ∈ S
for every x′ ∈ x̌+ z =: x . If

Kh(x̌, R, z,S) := {−Rh(x̌) + (IN −RS)z : S ∈ S, z ∈ z} ⊆ int(z),

then the function h has a zero x∗ in x̌ + Kh(x̌, R, z,S) ⊆ x . Moreover, if S(h; y, y′) ∈ S for each y, y′ ∈ x ,

then x∗ is the only zero of h contained in x .

The Krawczyk operator [18] associated to f in (3.10) is given by

kf (x̌c, R, z,S) := −Rf(x̌c) + (IN −RS)z, xc := vec(Xc),

where S is an interval matrix containing all slopes S(f ; yc, y
′
c) for yc, y

′
c ∈ xc := x̌c + z . Thus, Krawczyk’s

algorithm has this advantage that it does not involve the inversion of interval matrices.

Let a mapping h : Ω ⊆ CN −→ CN be given by a mathematical expression h(x). As a result of (2.1),

we have the following inclusion property : if h is the interval evaluation of h , then

h(x) := {h(x) : x ∈ x} ⊆ h(x). (3.12)

Recall that if one replaces the variable x ∈ CN in h(x) by the interval vector x ∈ ICN and also each arithmetic

operation in the formula with the corresponding interval operation then the interval (arithmetic) evaluation of

h(x) over x , h(x), will be obtained [3]. We will utilize the same approach to define the interval evaluation

of a matrix function as well. On the other hand, different equivalent formulas for h(x) could give different

interval evaluations. Indeed, the process of turning the customary arithmetic into interval arithmetic is not free

of pitfalls; issues such as interval dependency and the wrapping phenomenon have to be considered carefully.

We refer the reader to the review article [26] for a thorough introduction.

1139

HAQIRI et al./Turk J Math

The following result that appeared in [13] shows that a variant of the interval arithmetic evaluation of

the Kronecker form of the Fréchet derivative of F in (3.9) can be used to obtain an enclosure for the slope(s)

in the modified Krawczyk method. Indeed, Theorem 3.3 ensures that there is a unique answer in the computed

interval matrix X when S contains all slopes S(f ; y, y′) for all y, y′ ∈ x while if S contains only the slopes

S(f ; x̌, y) for all y ∈ x , as a result, there will be an answer in X , not necessarily unique.

Theorem 3.4 [13, Theorem 3.8] Let f be as in (3.10), X ∈ ICn×n be an interval matrix, and X̌c ∈ X be

Hermitian. Then the interval matrix

In ⊗ (Ac −GcX̌c)
∗ + (Ac −GcX)T ⊗ In

contains all slopes S(f ; x̌c, yc) = In ⊗ (Ac −GcX̌c)
∗ +(Ac −GcYc)

T ⊗ In for each Yc ∈ X , where x̌c = vec(X̌c)

and yc = vec(Yc).

Note one subtle point: we can write A∗
c − X̌cGc = (Ac − GcX̌c)

∗ because X̌c is Hermitian. One could

obtain the equivalent expression In ⊗ (Ac − GcX)∗ + (Ac − GcX̌c)
T ⊗ In with a similar proof, but this form

would require this surplus hypothesis that X is a Hermitian interval matrix.

For applying the modified Krawczyk operator, we also need to clarify the preconditioner matrix R .

Furthermore, we assume the nonsingularity of V2 and W2 . It follows from (3.8) and (3.11) that KF (X̌c) can

be factorized as

KF (X̌c) = In ⊗ (Ac −GcX̌c)
∗ + (Ac −GcX̌c)

T ⊗ In (3.13)

= (V −T
2 ⊗W ∗

2)(In ⊗ (W2(Ac −GcX̌c)W
−1
2)∗

+ (V −1
2 (Ac −GcX̌c)V2)

T ⊗ In)(V
T
2 ⊗W−∗

2).

If we have an accurate computed solution for (3.4), then we can expect that

W2(Ac −GcX̌c)W
−1
2 ≈ Λ2, and V −1

2 (Ac −GcX̌c)V2 ≈ Λ2.

Hence, we can choose R as

R = (V −T
2 ⊗W ∗

2)∆
−1(V T

2 ⊗W−∗
2) ≈ (KF (X̌c))

−1, ∆ := In ⊗ Λ∗
2 + ΛT

2 ⊗ In,

provided that ∆ is also invertible.

Obviously, Ac and Gc in (3.9) are not necessarily equal to mid(Ac) and mid(Gc) nor are the matrices

V2 and W2 equal to V1 and W1 in (3.5).

As a result of the inclusion property of circular arithmetic (3.12), we can now compute two enclosures for

two terms in each member of Kf (x̌c, R, z,S), namely vec(L) for l := −Rf(x̌c) and vec(U) for u := (In2−RS)z .

More details are presented via formulas below

l := −Rf(x̌c)

= −(In ⊗W ∗
2 V

∗
2)[In ⊗ Λ∗

2 + ΛT
2 ⊗ In]

−1(In ⊗W−1
2 V −1

2)f(x̌c),

1140

HAQIRI et al./Turk J Math

and

u :=(In2 −RS)z = (In2 − (V −T
2 ⊗W ∗

2)∆
−1(V T

2 ⊗W−∗
2)

(In ⊗ (Ac −GcYc)
∗ + (Ac −GcY

′

c)
T ⊗ In))z

= ((V −T
2 ⊗W ∗

2)∆
−1

(∆− In ⊗ (W2(Ac −GcYc)W
−1
2)∗ − (V −1

2 (Ac −GcY
′

c)V2)
T ⊗ In)

(V T
2 ⊗W−∗

2))z.

3.2.3. Reducing wrapping effects

When solving equations by interval methods, the major difficulty is the wrapping effect. As said in [13], the

wrapping effect that is intrinsic to interval computations is completely due to the fact that the image of an

interval quantity (vector) under a map is not an interval quantity (vector), and so there is an overestimation in

enclosing the image with an interval quantity (vector); see [26] for more details.

The key insight here is that for the purpose of reducing wrapping effects it will be useful to have a

new change of basis via an affine transformation. We should start again from our crucial assumption, i.e. the

existence of eigenvalue decomposition (3.8) and define

f̂(x̂) := (V T
2 ⊗W−∗

2)f((V −T
2 ⊗W ∗

2)x̂). (3.14)

We continue to assume that an accurate approximation of the stabilizing solution of (3.4), i.e. X̌ , is available. It

is obvious from (3.14) that if x̌c = vec(X̌c) is an approximate solution to f(x) = 0, then ˆ̌xc := (V T
2 ⊗W−∗

2)x̌c

is an approximate solution to f̂(x̂) = 0. Thus, we avoided computing any transformation from x̌c to ˆ̌xc .

This point is important since we have often the stabilizing solution of (3.9) instead of the stabilizing solution

of (3.14).

As a consequence of this refinement, a set of slopes for f̂ can be defined as

Ŝ := {S(f̂ ; x̂c, ŷc), x̂c, ŷc ∈ x̂ := ˆ̌xc + ẑ}.

The members of Ŝ can be computed by defining xc = (V −T
2 ⊗W ∗

2)x̂c , yc = (V −T
2 ⊗W ∗

2)ŷc as

S(f̂ ; ŷc, ŷ
′
c)(ŷc − ŷ′c) = f̂(ŷc)− f̂(ŷ′c)

= (V T
2 ⊗W−∗

2)(f(yc)− f(y′c))

= (V T
2 ⊗W−∗

2)S(f ; yc, y
′
c)(yc − y′c)

= (V T
2 ⊗W−∗

2)S(f ; yc, y
′
c)(V

−T
2 ⊗W ∗

2)(ŷc − ŷ′c).

Thence,

S(f̂ ; x̂c, ŷc) = (V T
2 ⊗W−∗

2)S(f ;xc, yc)(V
−T
2 ⊗W ∗

2).

Now we are ready to compute the superset

kf̂ (
ˆ̌xc, R̂, ẑ, Ŝ) = −R̂f̂(ˆ̌xc) + (In2 − R̂Ŝ)ẑ

1141

HAQIRI et al./Turk J Math

for

Kf̂ (
ˆ̌xc, R̂, ẑ, Ŝ) := {−R̂f̂(ˆ̌xc) + (In2 − R̂S)ẑ : S ∈ Ŝ, ẑ ∈ ẑ}. (3.15)

Regarding

(In ⊗ (W2(Ac −GcX̌c)W
−1
2)∗ + (V −1

2 (Ac −GcX̌c)V2)
T ⊗ In) ≈ In ⊗ Λ∗

2 + ΛT
2 ⊗ In,

a natural choice for R̂ is the diagonal matrix

R̂ = ∆−1, ∆ = In ⊗ Λ∗
2 + ΛT

2 ⊗ In.

Moreover, vec(Ẑ) := ẑ ,

Ŝ = {S(f̂ ; ŷc, ŷ′c), ŷc, ŷ′c ∈ x̂ := (V T
2 ⊗W−∗

2)x̌c + ẑ},

and

Ŝ = In ⊗ (W2(Ac −GcX̌c)W
−1
2)∗ + (V −1

2 (Ac −GcX̌c)V2)
T ⊗ In.

Now we can observe that Ŝ ⊆ Ŝ . A detailed computation of the enclosure

kf̂ (
ˆ̌xc, R̂, ẑ, Ŝ) = −R̂f̂(ˆ̌xc) + (In2 − R̂Ŝ)ẑ

= −∆−1((V T
2 ⊗W−∗

2)f(x̌c)

− (∆− In ⊗ (W2(Ac −GcX̌c)W
−1
2)∗

− (V −1
2 (Ac −GcX̌c)V2)

T ⊗ In)ẑ),

for Kf̂ (
ˆ̌xc, R̂, ẑ, Ŝ) is displayed in Algorithm 1. More precisely, we begin by recalling the extension of the

enclosure property of interval circular arithmetic (3.12) to interval matrix operations and then Lemmas 2.1

and 2.2 provide us

−R̂f̂(ˆ̌xc) = −∆−1(V T
2 ⊗W−∗

2)f(x̌c) ∈ − vec((I∗W2
F̂V2)./D) = l̂ := vec(L̂).

Thus,

{−R̂f̂(ˆ̌xc) : Ac ∈ Ac, Gc ∈ Gc, Qc ∈ Qc} ⊆ vec(L̂).

Similarly for the set of (In2 − R̂S)ẑ in (3.15), we can write

{((Λ∗
2 −W−∗

2 (Ac −GcX̌c)
∗W ∗

2)⊗ In)ẑ : Ac ∈ Ac, Gc ∈ Gc, ẑ ∈ ẑ} ⊆ (3.16)

vec((Λ∗
2 − (I∗W2

(Ac −GcX̌c)
∗W ∗

2))W
∗
2 ẐIV2),

and

{(In ⊗ (Λ2 − V −1
2 (Ac −Gc(X̌c + Z))V2))ẑ : Ac ∈ Ac, Gc ∈ Gc, ẑ ∈ ẑ} ⊆ (3.17)

vec(W ∗
2 ẐIV2(Λ2 − (IV2(Ac −Gc(X̌c +W ∗

2 ẐIV2))V2))).

1142

HAQIRI et al./Turk J Math

Relations (3.16) and (3.17) assert that

{(In2 − R̂S)ẑ : S ∈ Ŝ, ẑ ∈ ẑ} = {∆−1(((Λ∗
2 −W−∗

2 (Ac −GcX̌c)
∗W ∗

2)⊗ In

+In ⊗ (Λ2 − V −1
2 (Ac −Gc(X̌c + Z))V2)))ẑ : Ac ∈ Ac, Gc ∈ Gc, ẑ ∈ ẑ} ⊆

û := vec(Û).

Hence,

{−R̂f̂(ˆ̌xc) + (In2 − R̂S)ẑ : S ∈ Ŝ, ẑ ∈ ẑ} ⊆ vec(K̂).

Remarks are in order to clarify some points:

• As any inclusion method based on interval arithmetic tools, the Krawczyk method starts with an interval

vector that contains a solution of a given (system of) equation(s) and improves this inclusion, iteratively.

More often, an including interval vector is not known and one tries to compute an interval vector containing

a solution by some operator such as ε-inflation process, which is commonly utilized today and introduced

in e.g. [26]. In Algorithm 1, we start from the interval evaluation of F (X̌) as the residual matrix

Z0 := F(X̌), and proceed enlarging this interval with the ε-inflation technique.

• There are slightly different versions of the iterative strategy in the literature to find a suitable interval

matrix. For example, one of them involves intersecting the intervals obtained in different steps [10] while

verifynlss in Intlab has a variant that does not update the derivatives, but it has an intersection in it.

Here we will apply the simplest approach, following e.g. [13, 26], since we have tentatively found it to have

better results with respect to the spent time.

• Point 2 of Lemma 2.2 has been used to transform the multiplication Γ−1 vec(B) into B./C , where B

is an N × N interval matrix, Γ is a diagonal matrix, and C := (Γ̄ii + Γjj). This point will appear in

Algorithm 1 Lines 10 and 18.

• We will terminate Algorithm 1 with an error whenever one of the matrices V1, V2,W1,W2 , or ∆ cannot

be inverted in a certified way in interval arithmetic.

• With respect to the lack of an associated law for multiplication of interval matrices, we omit parentheses

everywhere regarding that evaluation is done from left to right.

Furthermore, when the stabilizability check succeeds, it is guaranteed that the interval matrix X contains

exactly one solution per CARE in Σs(CARE;A,G,Q), which is the stabilizing one. Therefore, it is not possible

that an interval solution, which is guaranteed to contain the unique stabilizing solutions of CAREs, actually

also contains some nonstabilizing solutions. Besides, the cost for this verification is O(n3) floating point

operations [13].

One example of software that provides a fast implementation of a reliable interval arithmetic is the

MATLAB toolbox INTLAB [27]; older versions of INTLAB are freely available for noncommercial use. The

default arithmetic for both real and complex intervals in INTLAB is the midpoint-radius arithmetic [26].

The computational complexity analysis of Algorithm 1 yields the next result.

Theorem 3.5 Algorithm 1 requires at most O(n3s) arithmetic operations in which s is the number of required

iterations by the for loop.

1143

HAQIRI et al./Turk J Math

Proof Computing X̌ in Line 1, computing the eigendecompositions in Lines 2 and 4, and also computing the

interval matrices IV2 and IW2 need O(n3) operations. Furthermore, all the other operations that only involve

n× n matrices have again cost O(n3), at most. 2

Algorithm 1 Efficient computation of an interval matrix X containing the united stable solution of

ICARE (1.3) utilizing a modified Krawczyk algorithm.

1: Compute an approximate stabilizing solution X̌ of CARE (3.4) {For instance, using ordered Schur method

followed by one step of Newton refinement in simulated quadruple precision}

2: Compute approximations V1 , W1 , and Λ1 for the eigendecomposition of mid (A−GX̌) in floating point

{For instance, using the MATLAB command eig}
3: Compute Ac,Gc , and Qc satisfying (3.7)

4: Compute approximations V2 , W2 , and Λ2 for the eigendecomposition of mid (Ac −GcX̌c) in floating point

{For instance, using the MATLAB command eig}

5: Compute with floating point arithmetic D := (Dij) such that Dij ≈ (Λ̄2)ii + (Λ2)jj

6: Compute interval matrices IV2 and IW2 containing V −1
2 and W−1

2 , resp. {For instance, using verifylss.m

from INTLAB.} If this fails, or if D has any zero elements, return failure

7: X̌c = ⟨X̌c, 0⟩ {To ensure that all operations involving X̌c are verified ones}

8: F = Qc + X̌cAc + (A∗
c − X̌cGc)X̌c {Gathering X̌c in order to reduce the wrapping effects}

9: F̂ = I∗W2
FV2

10: L̂ = −F̂./D

11: Ẑ = L̂
12: for k = 1, 2, . . . , kmax do

13: Set Ẑ = □(0, Ẑ · ⟨1, 0.1⟩+ ⟨0, realmin⟩) {ε -inflation technique}

14: M̂ = W ∗
2 ẐIV2

15: N̂ = I∗W2
(Ac −GcX̌c)

∗W ∗
2 {Subject to Theorem 3.4}

16: Ô = IV2(Ac −Gc(X̌c + M̂))V2

17: P̂ = (Λ∗
2 − N̂)M̂+ M̂(Λ2 − Ô)

18: Û = P̂./D

19: K̂ = L̂+ Û

20: if K̂ ⊂ int(Ẑ) {Successful inclusion} then

21: Return X = I∗V1
(X̌c +W ∗

2 K̂IV2)IV1 {Back transformations due to (3.7) and (3.14)}

22: end if

23: Ẑ = K̂
24: end for
25: Return failure {Maximum number of iterations reached}

1144

HAQIRI et al./Turk J Math

4. Computational experiments

In this part, we test Algorithm 1 on a set of generated interval matrices. These interval matrices are built on a

large set of standard benchmark problems for Riccati equations [4, 7] designed to be challenging for nonverified

CARE solvers in machine arithmetic. The results are reported in Tables 1–9. Moreover, the Test number

follows the order used in [7].

Table 1. Comparison among various perturbation parameters α in the fixed perturbation approach before and after

preconditioning.

Test α = 1e− 9 α = 1e− 7 α = 1e− 5 α = 1e− 3

number in [7] size time itr time itr time itr time itr

mr stab mr stab mr stab mr stab

2 2 5.21e-02 1 6.76e-02 2 ⋆ ⋆ ⋆ ⋆

3.98e-05 1 4.48e-03 1 NaN ⋆ NaN ⋆

7.62e-02 1 6.93e-02 1 6.90e-02 1 1.98e-01 2

5.33e-07 1 5.33e-05 1 5.33e-03 1 5.71e-01 -1

3 4 8.52e-02 1 8.52e-02 1 8.51e-02 1 ⋆ ⋆

1.21e-06 1 1.21e-04 1 1.22e-02 1 NaN ⋆

1.09e-01 1 1.07e-01 1 1.07e-01 1 1.29e-01 2

3.39e-07 1 3.39e-05 1 3.40e-03 1 3.68e-01 1

4 8 5.51e-02 1 5.51e-02 1 5.41e-02 1 1.14e-01 5

5.20e-07 1 5.20e-05 1 5.22e-03 1 1.11e+00 1

7.23e-02 1 7.29e-02 1 7.21e-02 1 1.02e-01 3

3.15e-07 1 3.15e-05 1 3.16e-03 1 4.88e-01 1

5 9 5.55e-02 1 5.56e-02 1 5.55e-02 1 7.13e-02 2

3.20e-07 1 3.20e-05 1 3.20e-03 1 3.38e-01 1

7.38e-02 1 7.38e-02 1 7.29e-02 1 2.14e-01 2

4.13e-06 1 4.13e-04 1 4.13e-02 1 4.75e+00 -1

6 30 2.24e-01 2 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

1.13e-01 -1 NaN ⋆ NaN ⋆ NaN ⋆

2.90e-01 1 3.30e-01 2 ⋆ ⋆ ⋆ ⋆

3.43e-02 -1 3.49e+00 -1 NaN ⋆ NaN ⋆

7 2 5.26e-02 1 5.24e-02 1 5.23e-02 1 5.20e-02 1

5.64e-09 1 5.64e-07 1 5.64e-05 1 5.67e-03 1

3.40e-02 1 3.37e-02 1 3.38e-02 1 3.44e-02 1

9.93e-09 1 9.93e-07 1 9.93e-05 1 1.00e-02 1

To get interval coefficients, we randomly perturb the set above. Indeed, we have imagined those situations

in which one wishes to find the stabilizing solution of a CARE while required data have been interrupted for some

reason(s). To achieve this goal, we have considered two kinds of perturbation in the numerical experiments:

fixed and proportional. In the “fixed” form, the perturbation radius matrix is a nonnegative matrix whose

1145

HAQIRI et al./Turk J Math

Table 2. Comparison among various perturbation parameters α in the fixed perturbation approach before and after

preconditioning.

Test α = 1e− 9 α = 1e− 7 α = 1e− 5 α = 1e− 3

number in [7] size time itr time itr time itr time itr

mr stab mr stab mr stab mr stab

9 2 5.22e-02 1 5.24e-02 1 ⋆ ⋆ ⋆ ⋆

3.36e-02 1 3.40e+00 1 NaN ⋆ NaN ⋆

3.44e-02 1 3.45e-02 1 9.79e-02 2 ⋆ ⋆

2.83e-02 1 2.83e+00 1 3.09e+02 -1 NaN ⋆

10 2 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

NaN ⋆ NaN ⋆ NaN ⋆ NaN ⋆

3.69e-02 1 3.67e-02 1 4.48e-02 2 ⋆ ⋆

3.54e-02 -1 3.48e+00 -1 4.01e+02 -1 NaN ⋆

11 2 7.45e-02 1 8.34e-02 1 8.34e-02 1 9.37e-02 2

6.82e-08 1 6.82e-06 1 6.84e-04 1 8.74e-02 1

4.75e-02 1 5.24e-02 1 5.29e-02 1 5.23e-02 1

6.82e-08 1 6.82e-06 1 6.83e-04 1 7.27e-02 1

12 2 8.34e-02 1 8.35e-02 1 8.32e-02 1 8.47e-02 1

5.93e-06 1 5.93e-04 1 5.93e-02 1 6.02e+00 -1

4.76e-02 1 4.80e-02 1 4.74e-02 1 4.82e-02 1

2.30e-06 1 2.30e-04 1 2.30e-02 1 2.30e+00 -1

14 2 5.33e-02 1 5.24e-02 1 5.20e-02 1 5.19e-02 1

2.77e-08 1 2.77e-06 1 2.77e-04 1 2.88e-02 1

3.42e-02 1 3.38e-02 1 3.37e-02 1 3.39e-02 1

1.30e-08 1 1.30e-06 1 1.30e-04 1 1.31e-02 1

17 2 8.28e-02 1 8.30e-02 1 8.40e-02 1 8.33e-02 1

1.28e-08 1 1.28e-06 1 1.28e-04 1 1.36e-02 1

4.81e-02 1 4.74e-02 1 4.72e-02 1 5.22e-02 1

1.27e-08 1 1.27e-06 1 1.27e-04 1 1.30e-02 1

entries are positive multiples of random matrix entries. The results of this approach are shown in Tables 1–4

below. For the “proportional” one, the perturbation radius matrix is a positive multiple of the corresponding

mag. The results of the alternative approach are presented in Tables 5–9.

The suggested algorithm was tested in MATLAB 2013a with INTLAB v6 and run on a laptop with 2.00

GHz CPU and 1 GB of RAM. In addition, realmin in Algorithm 1 refers to the smallest positive normalized

floating point number.

In all tables, we report the results of all experiments before and after preconditioning in two successive

rows, respectively. We also use four values for the parameter α listed in the first row of all tables, in order to

perturb matrices.

For simplicity sake, the center matrices are just those given in the benchmark [7] and their radius matrices

for the fixed mode are achieved by the MATLAB commands

1146

HAQIRI et al./Turk J Math

Table 3. Comparison among various perturbation parameters α in the fixed perturbation approach before and after

preconditioning.

Test α = 1e− 9 α = 1e− 7 α = 1e− 5 α = 1e− 3

number in [7] size time itr time itr time itr time itr

mr stab mr stab mr stab mr stab

19 3 2.62e-02 1 2.62e-02 1 2.58e-02 1 3.35e-02 2

5.29e-08 1 5.29e-06 1 5.30e-04 1 6.26e-02 1

3.45e-02 1 3.41e-02 1 3.43e-02 1 3.42e-02 1

2.84e-08 1 2.84e-06 1 2.84e-04 1 2.89e-02 1

20 3 3.35e-02 2 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

5.42e+10 1 NaN ⋆ NaN ⋆ NaN ⋆

4.15e-02 2 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

1.94e+10 -1 NaN ⋆ NaN ⋆ NaN ⋆

21 4 4.29e-02 1 4.29e-02 1 ⋆ ⋆ ⋆ ⋆

7.82e-05 1 7.87e-03 1 NaN ⋆ NaN ⋆

5.45e-02 1 5.40e-02 1 5.70e-02 1 ⋆ ⋆

1.94e-05 1 1.94e-03 1 1.99e-01 -1 NaN ⋆

22 4 4.31e-02 1 4.33e-02 1 6.35e-02 2 ⋆ ⋆

2.06e-04 -1 2.79e-03 -1 3.15e-01 -1 NaN ⋆

5.41e-02 1 5.41e-02 1 5.43e-02 1 ⋆ ⋆

3.43e-05 -1 3.43e-03 -1 3.55e-01 -1 NaN ⋆

23 4 5.12e-02 1 5.08e-02 1 ⋆ ⋆ ⋆ ⋆

5.44e-06 1 5.47e-04 1 NaN ⋆ NaN ⋆

5.37e-02 1 5.35e-02 1 5.66e-02 1 ⋆ ⋆

3.65e-06 1 3.65e-04 1 3.67e-02 -1 NaN ⋆

25 77 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

NaN ⋆ NaN ⋆ NaN ⋆ NaN ⋆

1.18e+00 1 1.27e+00 2 ⋆ ⋆ ⋆ ⋆

1.40e-03 1 1.51e-01 -1 NaN ⋆ NaN ⋆

For i =1:33

[A, G, Q] = ChuLM07Carex(i) ; n = length (Q) ;

r e s e t (RandStream . getGlobalStream ()) ;RND = rand (n , n) ;

IA = midrad (A, alpha ∗RND) ; IG = midrad (G, alpha ∗RND) ;

IQ = midrad (Q, alpha ∗RND) ; end ,

in which IA, IG, and IQ are equal to the interval matrices A,G , and Q , respectively. In the proportional

approach, we employ the mag of the center matrix instead of the random matrix RND.

The approximate solution of CARE associated with the left half plane for the midpoint system (3.4)

(required in Line 1 of Algorithm 1) is obtained using the method described in [22] (ordered Schur method

followed by one step of Newton refinement in simulated quadruple precision). You may change it easily to have

the antistabilizing solutions instead of the stabilizing ones.

1147

HAQIRI et al./Turk J Math

Table 4. Comparison among various perturbation parameters α in the fixed perturbation approach before and after

preconditioning.

Test α = 1e− 9 α = 1e− 7 α = 1e− 5 α = 1e− 3

number in [7] size time itr time itr time itr time itr

mr stab mr stab mr stab mr stab

27 397 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

NaN ⋆ NaN ⋆ NaN ⋆ NaN ⋆

8.78e+01 4 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

8.51e-02 -1 NaN ⋆ NaN ⋆ NaN ⋆

28 8 2.79e-02 1 2.70e-02 1 2.69e-02 1 ⋆ ⋆

2.33e-08 1 2.33e-06 1 2.34e-04 1 NaN ⋆

3.75e-02 1 3.64e-02 1 5.30e-02 1 3.57e-02 1

1.70e-08 1 3.27e-06 1 7.08e-04 1 2.67e-02 1

29 64 1.04e-01 1 1.21e-01 2 ⋆ ⋆ ⋆ ⋆

1.40e-06 1 1.64e-04 1 NaN ⋆ NaN ⋆

1.72e-01 1 1.72e-01 1 4.82e-01 2 ⋆ ⋆

1.84e-06 1 1.89e-04 1 2.62e-02 -1 NaN ⋆

32 100 4.78e-01 1 4.33e-01 1 4.42e-01 3 ⋆ ⋆

2.39e-08 1 2.40e-06 1 2.87e-04 1 NaN ⋆

7.21e-01 1 5.96e-01 1 5.80e-01 1 ⋆ ⋆

2.39e-08 1 2.39e-06 1 2.43e-04 1 NaN ⋆

33 60 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

NaN ⋆ NaN ⋆ NaN ⋆ NaN ⋆

4.93e-01 1 5.95e-01 3 ⋆ ⋆ ⋆ ⋆

7.32e-03 1 1.10e+00 -1 NaN ⋆ NaN ⋆

To show the quality of the obtained enclosure X , we display the maximum radius mr of the entries of

X , that is

mr := max rad (Xij), X = (Xij).

Note that when enclosing Σs(CARE;A,G,Q), we want an enclosure as tight as possible, hence a small mr . This

gives us more restricting information on the solution set Σs(CARE;A,G,Q). If we get a large set, even if it is

all composed of stabilizing matrices, it is just less specific.

As one can see, in most of the cases, the algorithm with preconditioning obtains smaller values of mr .

However, in some cases this is not true. That is almost always the case with preconditioning: sometimes the

problem becomes better, sometimes it becomes worse, and it is difficult to tell exactly why beforehand. As far

as we know there is not much theory to deal with this.

In order to show the efficiency of our algorithm, when it is successful, the number of iterations executed

in Algorithm 1 for the Krawczyk loop, itr, is also presented. In any problem, if the algorithm breaks down or

does not converge within the maximum number of steps, i.e. itrmax = 10, then we report NaN for mr and ⋆ for

time and itr. When a test fails for all the alpha values, the entire row is removed. The size of any test (value

of n) and the total time (in seconds) are reported too.

1148

HAQIRI et al./Turk J Math

Table 5. Comparison among various perturbation parameters α in the proportional perturbation approach before and

after preconditioning.

Test α = 1e− 9 α = 1e− 7 α = 1e− 5 α = 1e− 3

number in [7] size time itr time itr time itr time itr

mr stab mr stab mr stab mr stab

2 2 5.83e-02 1 6.70e-02 2 ⋆ ⋆ ⋆ ⋆

7.54e-05 1 9.64e-03 1 NaN ⋆ NaN ⋆

7.47e-02 1 6.93e-02 1 2.03e-01 1 5.17e-02 3

2.12e-06 1 2.12e-04 1 2.13e-02 -1 2.75e+00 -1

3 4 8.55e-02 1 8.49e-02 1 8.53e-02 1 ⋆ ⋆

7.50e-07 1 7.50e-05 1 7.55e-03 1 NaN ⋆

5.36e-02 1 5.36e-02 1 5.37e-02 1 5.38e-02 1

3.50e-07 1 3.50e-05 1 3.50e-03 1 3.70e-01 1

4 8 5.46e-02 1 5.45e-02 1 5.43e-02 1 5.38e-02 1

1.05e-07 1 1.05e-05 1 1.05e-03 1 1.10e-01 1

3.60e-02 1 3.65e-02 1 3.60e-02 1 3.60e-02 1

7.89e-08 1 7.89e-06 1 7.89e-04 1 8.26e-02 1

5 9 5.57e-02 1 5.56e-02 1 5.53e-02 1 2.28e-01 2

9.11e-07 1 9.11e-05 1 9.12e-03 1 1.01e+00 -1

3.67e-02 1 3.70e-02 1 3.68e-02 1 1.36e-01 2

2.61e-06 1 2.61e-04 1 2.61e-02 1 2.81e+00 -1

6 30 2.30e-01 2 3.42e-01 4 ⋆ ⋆ ⋆ ⋆

3.61e-03 -1 4.11e-01 -1 NaN ⋆ NaN ⋆

2.54e-01 2 2.49e-01 2 4.51e-01 4 ⋆ ⋆

1.06e-03 -1 1.06e-01 -1 1.13e+01 -1 NaN ⋆

7 2 2.66e-02 1 2.60e-02 1 2.59e-02 1 2.64e-02 1

5.37e-09 1 5.37e-07 1 5.37e-05 1 5.40e-03 1

3.43e-02 1 3.39e-02 1 3.45e-02 1 3.46e-02 1

8.28e-09 1 8.28e-07 1 8.28e-05 1 8.32e-03 1

When the algorithm is successful, we check afterwards whether A −GX is Hurwitz stable using Algo-

rithm 7 in [13]. A number 1 in the corresponding stab column confirms the stability property of all solutions

contained in the result enclosure X , number −1 means failure to verify the stabilizing property, and a star

means that the algorithm had already failed to compute an inclusion interval. As one can see, there is an

acceptable number of cases in which the stabilization procedure fails.

Although the algorithm is iterative, actually one step in most of the examples is sufficient to attain

convergence. Thus, in practice the cost of the algorithm is cubic. Moreover, in all cases, the number of required

iterations after preconditioning is not greater than the number of iterations needed before preconditioning.

Meanwhile, there is no case where the original CARE (1.3) has a solution, but the preconditioned system (3.6)

does not.

In addition to all these, the norm-2 condition numbers of V1 and V2 for α = 1e − 3 in the fixed and

proportional cases are compared. As shown in Figures 1 and 2, most of the points lie below the axes bisector

1149

HAQIRI et al./Turk J Math

Table 6. Comparison among various perturbation parameters α in the proportional perturbation approach before and

after preconditioning.

Test α = 1e− 9 α = 1e− 7 α = 1e− 5 α = 1e− 3

number in [7] size time itr time itr time itr time itr

mr stab mr stab mr stab mr stab

8 2 2.58e-02 1 2.56e-02 1 2.57e-02 1 2.54e-02 1

4.89e+03 1 4.01e+05 1 4.00e+07 1 4.02e+09 1

3.39e-02 1 3.38e-02 1 3.38e-02 1 3.38e-02 1

7.66e+04 1 4.73e+05 1 4.01e+07 1 4.03e+09 1

9 2 2.63e-02 1 2.60e-02 1 2.59e-02 1 ⋆ ⋆

3.20e-05 1 3.20e-03 1 3.21e-01 1 NaN ⋆

3.45e-02 1 3.44e-02 1 3.44e-02 1 3.47e-02 1

3.04e-05 1 3.04e-03 1 3.04e-01 1 3.07e+01 1

11 2 8.35e-02 1 8.32e-02 1 8.31e-02 1 8.34e-02 1

3.22e-08 1 3.22e-06 1 3.22e-04 1 3.52e-02 1

4.86e-02 1 4.78e-02 1 4.78e-02 1 5.26e-02 1

3.22e-08 1 3.22e-06 1 3.22e-04 1 13.31e-02 1

12 2 8.29e-02 1 8.34e-02 1 8.38e-02 1 8.62e-02 1

1.41e-05 1 1.41e-03 1 1.41e-01 1 1.46e+01 -1

4.82e-02 1 4.76e-02 1 4.78e-02 1 4.91e-02 1

4.83e-06 1 4.83e-04 1 4.83e-02 1 4.86e+00 -1

13 2 5.16e-02 1 1.66e-01 1 6.17e-02 1 6.12e-02 1

6.02e-03 1 4.02e-01 -1 4.00e+01 -1 4.07e+03 -1

3.43e-02 1 9.11e-02 1 4.21e-02 1 4.70e-02 1

4.14e-03 1 4.00e-01 -1 4.00e+01 -1 4.06e+03 -1

14 2 5.19e-02 1 5.15e-02 1 5.14e-02 1 5.18e-02 1

3.60e-08 1 3.60e-06 1 3.60e-04 1 3.79e-02 1

4.05e-02 1 4.04e-02 1 4.06e-02 1 4.07e-02 1

1.89e-08 1 1.89e-06 1 1.89e-04 1 1.91e-02 1

(drawn in red), which means that V2 has generally a lower condition number than V1 . There are only one

experiment in the proportional case (Test 28) and two experiments in the fixed case (Tests 28 and 29) for which

cond(V2) > cond(V1).

Considering the fact that there is no other algorithm that can be compared with the existing algorithm

(as we know), the reader may be confused about the conservativeness of the enclosure obtained by Algorithm 1.

On the other hand, the nonlinear programming approach mentioned in Section 3.1 is not a verified computation.

In addition, it has been only devoted to real data. Therefore, comparing the results of these two methods is

not allowed.

1150

HAQIRI et al./Turk J Math

Table 7. Comparison among various perturbation parameters α in the proportional perturbation approach before and

after preconditioning.

Test α = 1e− 9 α = 1e− 7 α = 1e− 5 α = 1e− 3

number in [7] size time itr time itr time itr time itr

mr stab mr stab mr stab mr stab

15 2 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

NaN ⋆ NaN ⋆ NaN ⋆ NaN ⋆

4.04e-02 1 4.05e-02 1 ⋆ ⋆ ⋆ ⋆

9.71e-09 1 9.82e-07 1 NaN ⋆ NaN ⋆

16 2 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

NaN ⋆ NaN ⋆ NaN ⋆ NaN ⋆

4.05e-02 1 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

9.82e-09 1 NaN ⋆ NaN ⋆ NaN ⋆

17 2 8.23e-02 1 8.26e-02 1 8.22e-02 1 1.04e-01 2

3.24e-08 1 3.24e-06 1 3.25e-04 1 3.88e-02 1

6.29e-02 1 5.72e-02 1 6.26e-02 1 5.67e-02 1

3.51e-08 1 3.51e-06 1 3.51e-04 1 3.70e-02 1

19 3 5.20e-02 1 5.17e-02 1 5.21e-02 1 6.68e-02 2

4.54e-08 1 4.54e-06 1 4.55e-04 1 5.22e-02 1

3.45e-02 1 3.43e-02 1 3.44e-02 1 3.44e-02 1

2.56e-08 1 2.56e-06 1 2.56e-04 1 2.60e-02 1

20 3 5.20e-02 1 5.19e-02 1 6.68e-02 2 5.47e-02 2

4.26e+07 1 4.73e+07 1 5.71e+08 1 6.49e+10 1

3.49e-02 1 4.19e-02 2 3.43e-02 1 3.42e-02 1

4.85e+06 1 7.46e+06 1 2.68e+08 1 2.68e+10 1

21 4 4.30e-02 1 4.28e-02 1 4.29e-02 1 ⋆ ⋆

2.00e-06 1 2.00e-04 1 2.04e-02 1 NaN ⋆

5.42e-02 1 5.40e-02 1 4.94e-02 1 6.46e-02 2

1.11e-06 1 1.11e-04 1 1.11e-02 1 1.29e+00 -1

One thing we could do in order to resolve this ambiguity is choosing random matrices in each interval

matrix, solving the resulting CARE in nonverified floating point arithmetics, repeat, for example, 10,000 times,

and check what is the mr of the interval hull of all the 10,000 solutions we found. This test was carried out

on those examples in which n < 10 for α = 1e − 9 or α = 1e − 3 and only when the results of verification

of the stabilizing property are positive. The results of this attempt are presented in Figure 3. As expected, in

all experiments, all points lie above or on the axes bisector and this means that at least for small dimensions

and not-so-large radius of uncertainties, in general, the maximum radius of X obtained by Algorithm 1, mr , is

greater than or equal to the maximum radii of the enclosure obtained by the random approach, mrr . Actually,

the gap between these two values is negligible.

1151

HAQIRI et al./Turk J Math

Table 8. Comparison among various perturbation parameters α in the proportional perturbation approach before and

after preconditioning.

Test α = 1e− 9 α = 1e− 7 α = 1e− 5 α = 1e− 3

number in [7] size time itr time itr time itr time itr

mr stab mr stab mr stab mr stab

22 4 4.35e-02 1 4.35e-02 1 4.26e-02 1 ⋆ ⋆

1.81e-04 -1 3.35e-04 -1 1.60e-02 -1 NaN ⋆

6.17e-02 1 6.50e-02 1 6.53e-02 1 ⋆ ⋆

2.83e-06 -1 2.83e-04 -1 2.85e-02 -1 NaN ⋆

23 4 4.27e-02 1 4.26e-02 1 ⋆ ⋆ ⋆ ⋆

8.41e-06 1 8.49e-04 1 NaN ⋆ NaN ⋆

6.44e-02 1 6.44e-02 1 6.75e-02 1 ⋆ ⋆

5.24e-06 1 5.24e-04 1 5.29e-02 -1 NaN ⋆

25 77 7.28e-01 1 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

4.35e-05 1 NaN ⋆ NaN ⋆ NaN ⋆

1.27e+00 2 1.21e+00 2 1.37e+00 3 ⋆ ⋆

1.63e-05 1 1.63e-03 1 1.73e-01 -1 NaN ⋆

26 237 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

NaN ⋆ NaN ⋆ NaN ⋆ NaN ⋆

1.94e+01 2 2.10e+01 3 ⋆ ⋆ ⋆ ⋆

6.72e-04 1 7.71e-02 -1 NaN ⋆ NaN ⋆

27 397 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

NaN ⋆ NaN ⋆ NaN ⋆ NaN ⋆

7.60e+01 2 7.72e+01 2 ⋆ ⋆ ⋆ ⋆

1.16e-04 1 1.17e-02 -1 NaN ⋆ NaN ⋆

5. Conclusion

This paper focused on the united stable solution set to the interval continuous-time algebraic Riccati equation.

After providing a weak characterization of the united stable solution set, we proposed a nonlinear programming

technique and then a modified Krawczyk method on the preconditioned interval equation to efficiently compute

an outer estimation for the united stable solution set. This modified Krawczyk method keeps the computational

complexity down to cubic. Moreover, numerical experiments show the performance of Algorithm 1 on different

terms.

Our modification to the Krawczyk method is based on the diagonalization of a closed loop matrix. If

this decomposition does not exist, the problem of obtaining the outer estimation for the united stable solution

set is not solved. This problem is still a topic for future research. One open problem is also to develop some

estimations for different AE-solution sets to the interval algebraic Riccati equations. Another future work will

be to develop a fast and more efficient verification algorithm for solutions of interval discrete-time algebraic

Riccati equations. Moreover, the problem of how to compute an inner estimation for the united stable solution

set of interval continuous-time algebraic Riccati equation is currently under consideration. We also wish to

present, in future, an approach for finding the algebraic solutions of the interval algebraic Riccati equations.

1152

HAQIRI et al./Turk J Math

Table 9. Comparison among various perturbation parameters α in the proportional perturbation approach before and

after preconditioning.

Test α = 1e− 9 α = 1e− 7 α = 1e− 5 α = 1e− 3

number in [7] size time itr time itr time itr time itr

mr stab mr stab mr stab mr stab

28 8 2.82e-02 1 2.78e-02 1 2.68e-02 1 4.18e-02 3

1.39e-08 1 1.39e-06 1 1.40e-04 1 1.95e-02 1

5.55e-02 1 3.62e-02 1 3.60e-02 1 3.56e-02 1

1.95e-08 1 1.71e-06 1 1.73e-04 1 2.01e-02 1

29 64 1.03e-01 1 1.02e-01 1 ⋆ ⋆ ⋆ ⋆

1.09e-07 1 1.10e-05 1 NaN ⋆ NaN ⋆

1.70e-01 1 1.68e-01 1 1.69e-01 1 ⋆ ⋆

1.51e-07 1 1.33e-05 1 1.40e-03 1 NaN ⋆

32 100 3.53e-01 1 3.47e-01 1 3.95e-01 2 ⋆ ⋆

5.71e-10 1 5.71e-08 1 6.51e-06 1 NaN ⋆

6.65e-01 2 6.20e-01 2 6.64e-01 3 ⋆ ⋆

4.69e-10 1 4.70e-08 1 5.79e-06 1 NaN ⋆

33 60 6.30e-01 1 5.30e-01 4 ⋆ ⋆ ⋆ ⋆

1.46e-04 1 1.89e-02 -1 NaN ⋆ NaN ⋆

4.85e-01 1 5.43e-01 1 9.19e-01 2 ⋆ ⋆

1.23e-05 1 1.23e-03 1 1.26e-01 -1 NaN ⋆

10−1 101 103 105 107 109

100

102

104

106

108

cond(V1)

c
o
n
d
(V

2
)

10−1 101 103 105 107 109

100

102

104

106

108

cond(V1)

c
o
n
d
(V

2
)

Figure 1. cond(V2) vs. cond(V1) when α = 1e − 3 in

the fixed perturbation approach.

Figure 2. cond(V2) vs. cond(V1) when α = 1e − 3 in

the proportional perturbation approach.

1153

HAQIRI et al./Turk J Math

10
−13

10
−8

10
−3

10
2

10
7

10
12

10
−11

10
−6

10
−1

10
4

10
9

mrr

m
r

α = 1e − 9

α = 1e − 3

Figure 3. mr vs. mrr when α = 1e− 9 and α = 1e− 3 in the proportional perturbation approach.

Acknowledgments

The authors would like to thank the editor and the anonymous reviewers. Reviewers’ insightful comments led

us to an improvement of the work. They also wish to thank Dr Milan Hladik and Dr Federico Poloni for their

helpful suggestions concerning this paper.

References

[1] Adams E, Kulisch U. Scientific Computing with Automatic Result Verification. San Diego, CA, USA: Academic

Press, 1992.

[2] Alefeld G, Herzberger J. Introduction to Interval Computations. New York, NY, USA: Academic Press, 1983.

[3] Alefeld G, Mayer G. Interval analysis: theory and applications. J Comput Appl Math 2000; 121: 421-464.

[4] Benner P, Li JR, Penzl T. Numerical solution of large-scale Lyapunov equations, Riccati equations, and linear-

quadratic optimal control problems. Numer Linear Algebra Appl 2008; 15: 755-777.

[5] Bini DA, Iannazzo B, Meini B. Numerical Solution of Algebraic Riccati Equations. Philadelphia, PA, USA: Society

for Industrial and Applied Mathematics, 2012.

[6] Bittanti S, Laub AJ, Willems JC. The Riccati Equation. Heidelberg, Germany: Springer, 2012.

[7] Chu D, Liu X, Mehrmann V. A numerical method for computing the Hamiltonian Schur form. Numer Math 2007;

105: 375-412.

[8] Datta BN. Numerical Methods for Linear Control Systems. San Diego, CA, USA: Elsevier Academic Press, 2004.

[9] Dehghani-Madiseh M, Dehghan M. Generalized solution sets of the interval generalized Sylvester matrix equation∑p
i=1 AiXi +

∑q
j=1 YjBj = C and some approaches for inner and outer estimations. Comput Math Appl 2014; 68:

1758-1774.

[10] Frommer A, Hashemi B. Verified computation of square roots of a matrix. SIAM J Matrix Anal Appl 2009; 31:

1279-1302.

[11] Gajic Z, Lim MT, Skataric D, Su WC, Kecman V. Optimal Control: Weakly Coupled Systems and Applications.

Boca Raton, FL, USA: CRC Press, 2008.

[12] Hansen E, Walster GW. Global Optimization Using Interval Analysis: Revised and Expanded. Boca Raton, FL,

USA: CRC Press, 2003.

1154

HAQIRI et al./Turk J Math

[13] Haqiri T, Poloni F. Methods for verified solutions to continuous-time algebraic Riccati equations. J Comput Appl

Math 2017; 313: 515-535.

[14] Hashemi B, Dehghan M. The interval Lyapunov matrix equation: analytical results and an efficient numerical

technique for outer estimation of the united solution set. Math Comput Model 2012; 55: 622-633.

[15] Higham NJ. Functions of Matrices. Theory and Computation. Philadelphia, PA, USA: Society for Industrial and

Applied Mathematics, 2008.

[16] Horn RA, Johnson CR. Topics in Matrix Analysis. Cambridge, UK: Cambridge University Press, 1994.

[17] Kearfott RB. Interval computations: introduction, uses, and resources. Euromath Bull 1996; 2: 95-112.

[18] Krawczyk R. Newton-algorithms for evaluation of roots with error bounds. Computing 1969; 4: 187-201.

[19] Lancaster P, Rodman L. Algebraic Riccati equations. New York, NY, USA: Oxford University Press, 1995.

[20] Mehrmann V. The autonomous linear quadratic control problem: theory and numerical solution. Heidelberg,

Germany: Springer, 1991.

[21] Miyajima S. Fast enclosure for all eigenvalues and invariant subspaces in generalized eigenvalue problems. SIAM J

Matrix Anal Appl 2014; 353: 1205-1225.

[22] Miyajima S. Fast verified computation for solutions of continuous-time algebraic Riccati equations. Jpn J Ind Appl

Math 2015; 32: 529-544.

[23] Moore RE, Kearfott RB, Cloud MJ. Introduction to Interval Analysis. Philadelphia, PA, USA: Society for Industrial

and Applied Mathematics, 2009.

[24] Neumaier A. Interval Methods for Systems of Equations. Cambridge, UK: Cambridge University Press, 1990.

[25] Poloni F. Algorithms for quadratic matrix and vector equations. PhD, Scuola Normale Superiore, Pisa, Italy, 2010.

[26] Rump SM. Verification methods: rigorous results using floating-point arithmetic. Acta Numer 2010; 19: 287-449.

[27] Rump SM: INTLAB-INTerval LABoratory. In: Tibor C, editor. Developments in Reliable Computing 1999, Dor-

drecht, Netherlands: Kluwer Academic Publishers, 1999, pp. 77-104.

[28] Seif NP, Hussein SA, Deif AS. The interval Sylvester equation. Computing 1994; 52: 233-244.

[29] Shashikhin VN. Robust assignment of poles in large-scale interval systems. Autom Remote Control 2002; 63: 200-

208.

[30] Shashikhin VN. Robust stabilization of linear interval systems. J Appl Math Mech 2002; 66: 393-400.

[31] Zhou K, Doyle JC, Glover K. Robust and Optimal Control. Upper Saddle River, NJ, USA: Prentice Hall, 1996.

1155

	Introduction
	Notation and preliminary concepts
	The united stable solution set of ICARE: partial characterization and estimation
	Outer estimation of s(CARE;A,G,Q) via a nonlinear programming approach (for real data only)
	Verified outer estimation of s(CARE;A,G,Q) via a modified Krawczyk algorithm
	Preconditioning the original ICARE
	Applying the Krawczyk operator in a residual format
	Reducing wrapping effects

	Computational experiments
	Conclusion

