
Turk J Math

(2018) 42: 1156 – 1165

c⃝ TÜBİTAK
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Abstract: This paper deals with an extension of proper efficiency that considers bounded and unbounded trade-offs

between objective functions. While trade-offs between objective functions are unbounded, the rate of growth for these

trade-offs is computed by applying a metric. A new concept, namely quasi-proper efficiency is introduced that shows

that rate of growth of trade-off between objective functions. Two appropriate characterizations for this concept are

developed: the first one is based on a scalar function utilizing the Chebyshev norm and the second one is in terms of the

concept of stability.
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1. Introduction

In many decision-making problems, the decisions are characterized by several criteria. If these criteria cannot

be brought to a common scale by some utility functions, we refer to such problems as multicriteria or vector

optimization problems. The common practice is to obtain the set of efficient decisions that are not dominated

by any others [9]. Because of the conflicting nature of the objectives, Pareto optimal (or efficient) solutions

were identified where the value of any objective function without impairing at least one of the others cannot

be improved [14]. The concept of efficiency plays a useful role in analyzing the vector optimization problem.

In order to exclude certain efficient solutions that display an undesirable anomaly and to provide a more

satisfactory characterization, a slightly restricted definition of efficiency, namely properly efficient solution, has

been proposed [6].

The notions of proper efficiency are introduced and studied by Kuhn and Tucker [12], Geoffrion [6],

Borwein [2, 3], Benson [1], Hartley [8], Henig [9], and Borwein and Zhuang [4, 5]. A comprehensive survey of

proper efficiencies can be found in [7].

Trade-off analysis is one of the most important elements in quantitative efficiency analysis. A trade-off

denotes the amount of giving up in one of the objective functions that leads to improvement of another objective

[14]. There are different concepts of proper efficiency that give different interpretations of trade-offs between

the objective functions [11, 15–17].

As seen, the above-mentioned definitions do not lead to any meaningful and quantitative analysis for

efficient solutions in which trade-off between some objective functions are unbounded. In order to overcome

this deficiency, recently Jiang and Deng in [10] proposed a new concept of enhanced efficiency, namely α -proper

efficiency corresponding to a positive parameter α .
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This paper suggests an analysis for evaluating efficient solutions with some unbounded trade-offs. In the

following, we analyze unboundedness trade-offs between objective functions. Consider the following multiob-

jective problem

min
x∈X

f(x), (1)

where X ⊆ Rn is a feasible set, and f = (f1, ..., fp) : X → Rp is a vector function. The trade-off between two

objective functions fi and fj at x̂ ∈ X is defined as follows denoted by Tij(x, x̂).

Definition 1.1 [14] Let x̂ ∈ X and let i, j ∈ {1, ..., p} with fi(x) < fi(x̂) j ∈ {1, ..., p} with fj(x̂) < fj(x) .

Tij(x, x̂) in which

Tij(x, x̂) =
fi(x̂)− fi(x)

fj(x)− fj(x̂)
(2)

is said to be a trade-off between objective functions fi and fj at x̂ .

As a matter of fact, the concept of trade-off is a gain-to-loss ratio between two objective functions in order

to improve one of them while the other one is impaired. In other words, in the definition of Tij(x, x̂) the

value fi(x̂)− fi(x) is the gain and the value fj(x)− fj(x̂) is the loss while x̂ moves to the solution x . Being

unboundedness in Tij(x, x̂) is a factor for filtering of the efficiency solution of a multiobjective optimization

problem. In other words, x̂ can move to the solution x and the ratio Tij(x, x̂) is infinite, that is, the improvement

of fi is enormous. With these words, Geoffrion defined proper efficiency by eliminating unbounded trade-offs

between objective functions [6]. In the following, the definition of efficiency and proper efficiency in Geoffrion’s

sense are given. Before these definitions we introduce some notations as follows:

Rp
+ =

{
y : yi ≧ 0, ∀i ∈ {1, 2, ..., p}

}
, Rp

++ =
{
y : yi > 0, ∀i ∈ {1, 2, ..., p}

}
.

For y1, y2 ∈ Rp , we use the following notations:

y1 ≦ y2 ⇔ y2 − y1 ∈ Rp
+,

y1 ≤ y2 ⇔ y2 − y1 ∈ Rp
+ and y1 ̸= y2,

y1 < y2 ⇔ y2 − y1 ∈ Rp
++.

Definition 1.2 [14] The element x̂ ∈ X is said to be an efficient solution of the problem (1) if there exists no

element x ∈ X such that f(x) ≤ f(x̂) .

Definition 1.3 [6] An efficient solution x̂ ∈ X is called a properly efficient solution in Geoffrion’s sense if

there exists a positive real number M such that for any x ∈ X , i ∈ {1, ..., p} with fi(x) < fi(x̂) there is an

index j ∈ {1, ..., p} with fj(x̂) < fj(x) such that

fi(x̂)− fi(x)

fj(x)− fj(x̂)
≤ M. (3)

The number M > 0 satisfying the requirement of Definition 1.3 is called a proper constant of (1) at x̂ .
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Consider the problem minx∈X f(x1, x2) = (x1, x2), where X =
{
(x1, x2) ∈ R2 : (x1 − 1)2 + (x2 − 1)2 ≤

1, x1, x2 ∈ [0, 1]
}
. Let x̂ = (1, 0). Set xε

1 := 1 − ε , where ε ∈ [0, 1]. Then xε
2 = 1 −

√
1− ε2 . In this case,

f1(x
ε) < f1(x̂) and f2(x̂) < f2(x

ε). Moreover,

f1(x̂)− f1(x
ε)

f2(xε)− f2(x̂)
=

ε

1−
√
1− ε2

→ ∞, whenever ε → 0.

Hence x̂ = (1, 0) is not a properly efficient solution due to the unbounded treatment of T12(x
ε, x̂) as ε tends

to zero. However, T12(x
ε, x̂) takes large values only when ε is infinitesimal. That is, a enormous improvement

is not gained by moving from x̂ to xε . An important and significant point in this analysis is that gained

improvement by moving from x̂ to xε is an unrealistic improvement. In other words, unboundedness in this

example is obtained for infinitesimal gain. Hence, it is irrational to eliminate such a solution in order to achieve

an unrealistic improvement. Now we consider another example in which the ratio Tij(x, x̂) at an efficient

solution will be infinite whenever the gain improvement is an actual improvement. Consider the problem

minx∈X (f1(x), f2(x)), where X = R\{0} and f1(x) =
1

f2(x)
= x . It is clear that the set of efficient solution

is {(x, 1
x )| x < 0} . Consider the efficient solution x̂ = (−1,−1). Define x(n) = (−1 − n, 1

−1−n ), where n is a

natural number. One has

Tij(x(n), x̂) =
−1− (−1− n)

1
−1−n − (−1)

=
n
n

n+1

= n+ 1.

It is clear that Tij(x(n), x̂) → ∞ as n → ∞ . The gained improvement in this example is n and o(n) =

∥f(x(n))− f(x̂)∥ . With these words, eliminating x̂ to achieve x(n) is rational and useful, practically, because

the improvement is so large. Based on these words, to separate these two cases, unbounded trade-off with

infinitesimal gain and unbounded trade-off with enormous improvement, and for an appropriate filtering of

efficient solution we define the following concept of efficiency called quasi-proper efficiency.

Definition 1.4 Let s be a nonnegative real number. An efficient solution x̂ ∈ X is said to be a quasi-properly

efficient solution of order s (QPE(s)) for the problem (1), if there exists a positive real number M such that

for all x ∈ X and i ∈ {1, ..., p} with fi(x) < fi(x̂) , there is j ∈ {1, ..., p} such that fj(x̂) < fj(x) and

fi(x̂)− fi(x)

fj(x)− fj(x̂)
≤ M

∥f(x)− f(x̂)∥s
. (4)

It can be seen that for s = 0, this definition coincides with proper efficiency in Geoffrion’s sense.

This paper is organized as follows. Section 2 contains some basic definitions and notations that are

used throughout the paper. Section 3 is devoted to introducing a special type of enhanced efficiency, namely

quasi-proper efficiency. This concept is illustrated by some examples. In Section 4, we establish two main

characterizations of quasi-properly efficient solutions.

2. Quasi-proper efficiency

In order to deal with efficient solutions with some unbounded trade-offs, Jiang and Deng in [10] proposed a

new concept of enhanced efficiency, namely α -proper efficiency corresponding to positive parameter α . They
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showed for some bounded constraint polynomial multiobjective optimization problems in the presence of some

condition such as stability and some error bound efficiency implies α -properly efficient with a known estimate

on α . The definition of α -proper efficiency due to Jiang and Deng is as follows.

Definition 2.1 [10] Let α be a positive real number. An efficient solution x̂ ∈ X is said to be an α-proper

efficiency solution of problem (1) if there exists a positive number M such that for all x ∈ X

∥[f(x̂)− f(x)]+∥∞ ≤ M
(
∥[f(x)− f(x̂)]+∥∞ + ∥[f(x)− f(x̂)]+∥α∞

)
. (5)

Jiang and Deng [10] showed that if α > 0 then x̂ is an α -proper efficiency solution if and only if there exists

an M > 0 such that x̂ is a minimizer of the following problem:

min
x∈X

p∑
i=1

fi(x) +M
(
∥[f(x)− f(x̂)]+∥∞ + ∥[f(x)− f(x̂)]+∥α∞

)
. (6)

In the sequel, we compare the proposed definition, quasi-proper efficiency in Definition 1.4 with α -proper

efficiency.

The following example shows that it is possible that there are some efficient solutions that are not

considered by Definition 2.1 but are considered by Definition 1.4.

Example 2.2 Consider problem min0≤x≤ 1
2
(f1(x), f2(x)) in which

f1(x) =

{
lnx if x ̸= 0
0 if x = 0

and f2(x) = x2 .

If we set x̂ := 0 , it is seen that f1(x) < f1(x̂) and f2(x̂) < f2(x) , for any 0 < x ≤ 1
2 . Thus x̂ is an

efficient point and the trade-off between objective functions is unbounded. It can be easily shown that for any

number s > 2 there exists an M > 0 such that

f1(x̂)− f1(x)

f2(x)− f2(x̂)
=

− lnx

x2
≤ M

xs
<

M

∥f(x)− f(x̂)∥s
, for all 0 < x ≤ 1

2
. (7)

In other words, the rate of growth of the corresponding unbounded trade-off is not greater than the rate of growth

for 1
∥f(x)−f(x̂)∥s . Thus x̂ = 0 is a QPE(s) solution.

Now we show that Definition 2.1 does not hold at x̂ = 0 , for any α ≥ 0 .

Clearly, ∥[f(x)− f(0)]+∥∞ = x2 and ∥[f(0)− f(x)]+∥∞ = − lnx , for all 0 ≤ x ≤ 1
2 . Consequently, for

any α ≥ 0 ,

lim
x→0+

∥[f(0)− f(x)]+∥∞
∥[f(x)− f(0)]+∥∞ + ∥[f(x)− f(0)]+∥α∞

= lim
x→0+

− lnx

x2 + x2α
= ∞.

Hence, for any α ≥ 0 and M > 0 there is some 0 < x ≤ 1
2 such that

∥[f(x̂)− f(x)]+∥∞
∥[f(x)− f(x̂)]+∥∞ + ∥[f(x)− f(x̂)]+∥α∞

> M,
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and therefore

∥[f(x̂)− f(x)]+∥∞ >M
(
∥[f(x)− f(x̂)]+∥∞

+ ∥[f(x)− f(x̂)]+∥α∞
)
.

Indeed, Definition 2.1 does not yield any meaningful interpretation for this unbounded trade-off.

3. Characterization of quasi-proper efficiency

This section investigates some characterizations for characterizing quasi-properly efficient solutions based on a

scalar function utilizing the Chebyshev norm.

Lemma 3.1 Let s ≥ 0 . A feasible solution x̂ ∈ X is a QPE(s) solution if and only if there exists a positive

real number M such that for all x ∈ X the following inequality holds:

∥f(x)− f(x̂)∥s∥[f(x̂)− f(x)]+∥∞ ≤ M∥[f(x)− f(x̂)]+∥∞. (8)

Proof ⇒) Let x ∈ X . If ∥[f(x̂)−f(x)]+∥∞ = 0, (8) holds. Hence, we can assume that ∥[f(x̂)−f(x)]+∥∞ > 0.

Let
fl(x)(x̂)− fl(x)(x) := ∥[f(x̂)− f(x)]+∥∞,

while l(x) ∈ {1, ..., p} .
Since x̂ is a QPE(s), there exists an index j ∈ {1, ..., p} such that

∥f(x)− f(x̂)∥s
(
fl(x)(x̂)− fl(x)(x)

)
≤ M

(
fj(x)− fj(x̂)

)
,

and therefore

∥f(x)− f(x̂)∥s∥[f(x̂)− f(x)]+∥∞ =∥f(x)− f(x̂)∥s
(
fl(x)(x̂)− fl(x)(x)

)
≤M

(
fj(x)− fj(x̂)

)
≤M∥[f(x)− f(x̂)]+∥∞.

⇐) Let i ∈ {1, ..., p} and x ∈ X with fi(x) < fi(x̂). Thus, ∥[f(x̂)−f(x)]+∥∞ > 0. By (8), ∥[f(x)−f(x̂)]+∥∞ >

0. Assume that fj(x)− fj(x̂) = ∥[f(x)− f(x̂)]+∥∞ (j ∈ {1, ..., p}). Relation (8) implies that

∥f(x)− f(x̂)∥s
(
fi(x̂)− fi(x)

)
≤∥f(x)− f(x̂)∥s∥[f(x̂)− f(x)]+∥∞

≤M∥[f(x)− f(x̂)]+∥∞

=M
(
fj(x)− fj(x̂)

)
.

Hence, x̂ is a QPE(s) of Problem (1). Thus the proof is completed. 2

Now we can propose a scalar function to characterize a quasi-properly efficient solution. Corresponding to

parameters M > 0 and s ≥ 0 the following scalar function is introduced

f̄(x;M, s) = ∥f(x)− f(x̂)∥s
( p∑

i=1

(
fi(x)− fi(x̂)

))
+M∥[f(x)− f(x̂)]+∥∞. (9)

The following theorem provides a sufficient condition for efficiency of solution x̂ using the scalar function given

in (9).
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Theorem 3.2 Let M > 0 . Consider the scalar problem:

min
x∈X

f̄(x;M, s). (10)

If x̂ is a minimizer of Problem (10) then x̂ is an efficient solution of Problem (1).

Proof By contrary, assume that x̂ is not an efficient solution. Then there exists some x′ ∈ X such that

f(x′) ≤ f(x̂). Therefore ∥[f(x′)− f(x̂)]+∥∞ = 0, ∥f(x′)− f(x̂)∥s > 0, and
∑p

i=1 fi(x
′) <

∑p
i=1 fi(x̂). Hence,

f̄(x′;M, s) < f̄(x̂;M, s) = 0. This contradiction completes the proof. 2

Theorem 3.3 gives a necessary condition for efficiency.

Theorem 3.3 [10] Let x̂ be an efficient solution of Problem (1). Then x̂ solves the following problem:

min
x∈X

p∑
i=1

fi(x) + ∥[f(x̂)− f(x)]+∥1,

where ∥.∥1 stands for ℓ1 -norm.

Partially similar to the idea of Theorem 3.1 in [10] the following theorem gives a characterization for quasi-

properly efficient solutions.

Theorem 3.4 Let s be a nonnegative real number.

i) If x̂ is a QPE(s) of Problem (1) then there exists a positive real number M such that x̂ solves Problem

(10).

ii) Let X be a bounded set and f = (f1, ..., fp) is a continuous function. If there exists a positive real

number M such that x̂ solves Problem (10) then x̂ is a QPE(s) of Problem (1).

Proof

i) Since x̂ is an efficient solution, by Theorem 3.3

p∑
i=1

fi(x̂) ≤
p∑

i=1

fi(x) + ∥[f(x̂)− f(x)]+∥1,

for all x ∈ X . Therefore, for all x ∈ X ,

0 ≤∥f(x)− f(x̂)∥s
p∑

i=1

(
fi(x)− fi(x̂)

)
+ ∥f(x)− f(x̂)∥s∥[f(x̂)− f(x)]+∥1

≤∥f(x)− f(x̂)∥s
p∑

i=1

(
fi(x)− fi(x̂)

)
+ p∥f(x)− f(x̂)∥s∥[f(x̂)− f(x)]+∥∞

≤∥f(x)− f(x̂)∥s
p∑

i=1

(
fi(x)− fi(x̂)

)
+ pM̄∥[f(x)− f(x̂)]+∥∞,

for some M̄ > 0 satisfying Lemma 3.1.

Setting M := pM̄ . Hence, f̄(x̂;M, s) = 0 ≤ f̄(x;M, s), for all x ∈ X .
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ii) Consider x ∈ X and i ∈ {1, ..., p} with fi(x) < fi(x̂). Then ∥[f(x)− f(x̂)]+∥∞ > 0. Because, in the

case ∥[f(x)− f(x̂)]+∥∞ = 0 then f(x) ≤ f(x̂). Hence f̄(x;M, s) < 0, which is a contradiction because x̂ is a

minimizer of f̄(·;M, s). Since x̂ solves Problem (10), for any i ∈ {1, ..., p}

∥f(x)− f(x̂)∥s
(
fj(x̂)− fj(x)

)
≤ ∥f(x)− f(x̂)∥s

p∑
i=1
i ̸=j

(
fi(x)− fi(x̂)

)
.

Without loss of generality, assume that

∥[f(x̂)− f(x)]+∥∞ = fj(x̂)− fj(x), for some j ∈ {1, ..., p}.

Therefore,

∥f(x)− f(x̂)∥s∥[f(x̂)− f(x)]+∥∞ = ∥f(x)− f(x̂)∥s
(
fj(x̂)− fj(x)

)
≤ ∥f(x)− f(x̂)∥s

p∑
i=1
i ̸=j

(
fi(x)− fi(x̂)

)
+M∥[f(x)− f(x̂)]+∥∞

≤ L(p− 1)∥[f(x)− f(x̂)]+∥∞ +M∥[f(x)− f(x̂)]+∥∞

≤ (L(p− 1) +M)∥[f(x)− f(x̂)]+∥∞,

where L is an upper bound of ∥f(x) − f(x̂)∥s because of boundedness of X and continuity of f . Setting

M̂ := L(p− 1) +M , conclude that

∥f(x)− f(x̂)∥s∥[f(x̂)− f(x)]+∥∞ ≤ M̂∥[f(x)− f(x̂)]+∥∞, for all x ∈ X;

thus, x̂ is a QPE(s). 2

The boundedness assumption in Theorem 3.4 (ii) is redundant for locally efficient solutions. Hence, it can be

stated as an “if and only if” proposition for local solutions as stated in Corollary 3.5.

Corollary 3.5 Let s ∈ R be a nonnegative number. Then x̂ is a locally QPE(s) of Problem (1) if and only if

there exists a positive real number M such that x̂ is a local minimizer of Problem (10).

In the sequel, quasi-properly efficient solutions are characterized based on the notion of stability. To this aim,

consider the following problem

P̄ (0) : min φ(x)
s.t. f(x) ≤ 0,

x ∈ X,

where φ : Rn → R is an arbitrary scalar function. Now, related to any y ∈ Rp , the perturbation Problem P̄ (y)

is defined as follows:

P̄ (y) : min φ(x)
s.t. f(x) ≤ y,

x ∈ X,

Denote by A(y) the feasible set of Problem P̄ (y) and set
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v(y) =

{
inf{φ(x) : x ∈ A(y)}, if A(y) ̸= ∅
∞, if A(y) = ∅.

Assume that x̂ is a minimizer of Problem P̄ (0), that is

v(0) = inf{φ(x) : x ∈ A(0)} = φ(x̂).

In this case, Problem P̄ (0) is said to be stable [13] at x̂ if there exists an M > 0 such that

v(y)− v(0)

∥y∥1
≥ −M, for all y ̸= 0. (11)

Theorem 3.6 Assume that x̂ ∈ X is an efficient solution of the problem (1) and s be a nonnegative real

number. Then

i) If x̂ is a QPE(s) solution of (1) then P (0) is stable at x̂ , where

P (y) : v(y) := min ∥f(x)− f(x̂)∥s
∑p

i=1

(
fi(x)− fi(x̂)

)
s.t. f(x)− f(x̂) ≤ y,

x ∈ X.

ii) Let X be a bounded set. If P (0) is stable at x̂ then x̂ is a QPE(s) solution of (1).

Proof i) The first part is proved by contradiction. Assume that P (0) is not stable at x̂ . Thus there exists

{yk} ⊂ Rp
+ with ∥yk∥1 > 0 for all k = 1, 2, ... , such that

v(yk)− v(0)

∥yk∥1
→ −∞,

and v(yk) < v(0), for all k ∈ N . Hence, for any k ∈ N there is xk ∈ X such that f(xk)− f(x̂) ≤ yk and

∥f(xk)− f(x̂)∥s
∑p

i=1

(
fi(xk)− fi(x̂)

)
∥yk∥1

→ −∞. (12)

Since x̂ is a QPE(s), by Theorem 3.4 there is an M > 0 such that for any x ∈ X

0 ≤ ∥f(x)− f(x̂)∥s
p∑

i=1

(
fi(x)− fi(x̂)

)
+M∥[f(x)− f(x̂)]+∥∞.

Hence, for any k ∈ N

0 ≤∥f(xk)− f(x̂)∥s
p∑

i=1

(
fi(xk)− fi(x̂)

)
+M∥[f(xk)− f(x̂)]+∥∞

≤∥f(xk)− f(x̂)∥s
p∑

i=1

(
fi(xk)− fi(x̂)

)
+M∥yk∥∞

≤∥f(xk)− f(x̂)∥s
p∑

i=1

(
fi(xk)− fi(x̂)

)
+M∥yk∥1.

Thus,
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∥f(xk)− f(x̂)∥s
∑p

i=1

(
fi(xk)− fi(x̂)

)
∥yk∥1

≥ −M,

which contradicts (12). Hence, the proof of the first part is completed.

ii) To prove the second part, assume that P (0) is stable at x̂ . By contradiction, assume that x̂ is not

QPE(s). Thus, for any sequence {Mk} with Mk → +∞ , from Theorem 3.4 (ii), there exists a sequence {xk}
such that

∥f(xk)− f(x̂)∥s
p∑

i=1

(
fi(xk)− fi(x̂)

)
+Mk∥[f(xk)− f(x̂)]+∥∞ < 0. (13)

From (13) and
∑p

i=1[fi(xk)− fi(x̂)]+ ≤ p∥[f(xk)− f(x̂)]+∥∞ , for any k ∈ N , the following inequality holds:

∥f(xk)− f(x̂)∥s
p∑

i=1

(
fi(xk)− fi(x̂)

)
+Mk

1

p

p∑
i=1

[fi(xk)− fi(x̂)]+ < 0. (14)

Since x̂ is an efficient solution, (14) implies that
∑p

i=1[fi(xk) − fi(x̂]+ > 0. Now set yk := [f(xk) − f(x̂)]+.

Therefore ∥yk∥1 > 0 and f(xk) − f(x̂) ≤ yk . Hence, xk is a feasible point for P (yk), for all k . On the other

hand, v(yk) ≤ ∥f(xk)− f(x̂)∥s
∑p

i=1

(
fi(xk)− fi(x̂)

)
and v(0) = 0. Thus,

v(yk)− v(0)

∥yk∥1
≤
∥f(xk)− f(x̂)∥s

∑p
i=1

(
fi(xk)− fi(x̂)

)
∥yk∥1

≤−Mk

1
p∥yk∥1
∥yk∥1

=
−Mk

p
→ −∞, as k → +∞,

which contradicts (11). Thus x̂ is a QPE(s). 2

It should be noted that Lee et al. obtained similar necessary and sufficient conditions for properly efficient

solutions in Hartley’s sense using stability [13].

4. Conclusion

In this paper, we introduce a new concept of efficiency, namely quasi-proper efficiency, and characterize it. In

the interactive optimization literature proper efficiency and quasi-proper efficiency play important roles and can

be used as an efficient guideline in applications. It should be noted that scalar problems given in this paper

just propose some characterizations for quasi-proper efficiency. In order to have a computational procedure, by

comparing available approximation of the efficient frontier, we can consider some certain values of “M ” and

determine so-called “M -proper efficiency ” and “M -quasi-proper efficiency ”.
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