

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2018) 42: 1166 – 1179 © TÜBİTAK doi:10.3906/mat-1704-107

Research Article

Some series involving the Euler zeta function

Min-Soo KIM*

Division of Mathematics, Science, and Computers, Kyungnam University, Changwon, Gyeongnam, Republic of Korea

Received: 25.04.2017	٠	Accepted/Published Online: 16.10.2017	•	Final Version: 08.05.2018
----------------------	---	---------------------------------------	---	---------------------------

Abstract: In this paper, using the Boole summation formula, we obtain a new integral representation of *n*-th quasiperiodic Euler functions $\overline{E}_n(x)$ for $n = 1, 2, \ldots$. We also prove several series involving Euler zeta functions $\zeta_E(s)$, which are analogues of the corresponding results by Apostol on some series involving the Riemann zeta function $\zeta(s)$.

Key words: Hurwitz-type Euler zeta functions, Euler zeta functions, Euler polynomials, Boole summation formula, quasi-periodic Euler functions

1. Introduction

The Hurwitz-type Euler zeta function is defined as follows

$$\zeta_E(s,a) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+a)^s}$$
(1)

for complex arguments s with $\operatorname{Re}(s) > 0$ and a with $\operatorname{Re}(a) > 0$, which is a deformation of the well-known Hurwitz zeta function

$$\zeta(s,a) = \sum_{n=0}^{\infty} \frac{1}{(n+a)^s} \tag{2}$$

for $\operatorname{Re}(s) > 1$ and $\operatorname{Re}(a) > 0$. Note that $\zeta(s, 1) = \zeta(s)$, the Riemann zeta function. The series (1) converges for $\operatorname{Re}(s) > 0$ and it can be analytically continued to the complex plane without any pole. For further results concerning the Hurwitz-type Euler zeta function, we refer to the recent works in [10] and [14]. Let a = 1 in (1); it reduces to the Euler zeta function

$$\zeta_E(s) = \zeta_E(s, 1) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^s}$$
(3)

for Re(s) > 0, which is also a special case of Witten zeta functions in mathematical physics (see [20, p. 248, (3.14)]). In fact, it is shown that the Euler zeta function $\zeta_E(s)$ is summable (in the sense of Abel) to $(1-2^{1-s})\zeta(s)$ for all values of s. Several properties of $\zeta_E(s)$ can be found in [3, 10, 12, 16]. For example, in the form on [1, p. 811], the left-hand side is the special values of the Riemann zeta functions at positive integers,

^{*}Correspondence: mskim@kyungnam.ac.kr

²⁰¹⁰ AMS Mathematics Subject Classification: 11M35, 33E20, 33B15, 11B68

and the right-hand side is the special values of Euler zeta functions at positive integers. In number theory, the Hurwitz-type Euler zeta function (1) represents the partial zeta function in one version of Stark's conjecture of cyclotomic fields (see [15, p. 4249, (6.13)]). The corresponding L-functions (the alternating L-series) have also appeared in a decomposition of the $(S, \{2\})$ -refined Dedekind zeta functions of cyclotomic fields (see [12, p. 81, (3.8)]). Recently, using Log Gamma functions, Can and Dağli proved a derivative formula of these L-functions (see [8, Eq. (4.13)]).

The Euler polynomials $E_n(x)$ are defined by the generating function

$$\frac{2e^{xt}}{e^t + 1} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!}$$
(4)

for $|t| < \pi$ (see, for details, [11, 21, 27]). They are the special values of (1) at nonpositive integers (see [10, p. 520, Corollary 3], [9, p. 761, (2.3)], [14, p. 2983, (3.1)], [29, p. 41, (3.8)] and (46) below). The integers $E_n = 2^n E_n (1/2), n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, are called Euler numbers. For example, $E_0 = 1, E_2 = -1, E_4 = 5$, and $E_6 = -61$. The Euler numbers and polynomials (so called by Scherk in 1825) appear in Euler's famous book, Insitutiones Calculi Differentials (1755, pp. 487-491 and p. 522). Notice that the Euler numbers with odd subscripts vanish, that is, $E_{2m+1} = 0$ for all $m \in \mathbb{N}_0$.

For $n \in \mathbb{N}_0$, the *n*-th quasi-periodic Euler functions are defined by

$$\overline{E}_n(x+1) = -\overline{E}_n(x) \tag{5}$$

for all $x \in \mathbb{R}$, and

$$\overline{E}_n(x) = E_n(x) \quad \text{for } 0 \le x < 1 \tag{6}$$

(see [7, p. 661]). For arbitrary real numbers x, [x] denotes the greatest integer not exceeding x and $\{x\}$ denotes the fractional part of real number x; thus

$$\{x\} = x - [x]. \tag{7}$$

Then, for $r \in \mathbb{Z}$ and $n \in \mathbb{N}_0$, we have

$$\overline{E}_n(x) = (-1)^{[x]} E_n(\{x\}), \quad \overline{E}_n(x+r) = (-1)^r \overline{E}_n(x)$$
(8)

(see [4, (1.2.9)] and [7, (3.3)]). For further properties of the quasi-periodic Euler functions, we refer to [4, 7, 8, 13].

In this paper, we obtain a new integral representation of *n*-th quasi-periodic Euler functions $\overline{E}_n(x)$ as follows.

Theorem 1.1 Let $n \in \mathbb{N}_0$ and let $\overline{E}_n(x)$ be the *n*-th quasi-periodic Euler functions. Then for x > 0

$$\overline{E}_n(x) = (-1)^n n! \frac{1}{\pi i} \int_{(c)} \frac{\Gamma(s)}{\Gamma(s+n+1)} \zeta_E(-s-n) x^{-s} \mathrm{d}s,$$

where (c) denotes the vertical straight line from $c - i\infty$ to $c + i\infty$ with 0 < c < 1 and $\Gamma(s)$ denotes the Euler gamma function.

Remark 1.2 We remark that this theorem is an analogue of a result by Li et al. on Riemann zeta functions (see [19, Proposition 1]).

Furthermore, we also obtain the following two theorems on series involving Euler zeta functions $\zeta_E(s)$. They are the analogues of the corresponding results of Apostol [2] on some series involving the Riemann zeta function.

Theorem 1.3 Let $\binom{-s}{r}$ denote the binomial symbol defined through the Euler gamma function $\Gamma(s)$ as follows

$$\binom{-s}{r} = (-1)^r \binom{s+r-1}{r} = (-1)^r \frac{\Gamma(s+r)}{\Gamma(s)r!},$$

where $s \in \mathbb{C}$ and $r \in \mathbb{N}$. Then the following identities hold:

1. For k odd and k > 1, we have

$$\zeta_E(s)\left(1-k^{-s}\right) = \frac{1}{2}\sum_{h=1}^{k-1}\frac{(-1)^{h-1}}{h^s} + \sum_{r=1}^{\infty}\binom{-s}{2r}\frac{\zeta_E(s+2r)}{k^{s+2r}}\frac{E_{2r}(k)}{2}$$

2. For k odd and k > 1, we have

$$\sum_{h=1}^{k-1} \frac{(-1)^h}{h^s} = \sum_{r=0}^{\infty} {\binom{-s}{2r+1}} \frac{\zeta_E(s+2r+1)}{k^{s+2r+1}} (E_{2r+1}(k) + E_{2r+1}(0)).$$

Theorem 1.4 Let μ be the Möbius function. Then for k odd and k > 1, we have

$$\zeta_E(s) \sum_{d|k} \mu(d) d^{-s} = 2 \sum_{r=0}^{\infty} {\binom{-s}{2r}} \zeta_E(s+2r) k^{-2r-s} H(2r,k) - H(-s,k),$$

where

$$H(\alpha,k) = \sum_{\substack{h=1\\(h,k)=1}}^{\left\lfloor\frac{k}{2}\right\rfloor} (-1)^h h^\alpha \quad (\alpha \in \mathbb{C})$$

is the alternating sum of the α -th power of those integers not exceeding $\left\lceil \frac{k}{2} \right\rceil$ that are relatively prime to k.

Remark 1.5 The evaluations of series involving Riemann zeta function $\zeta(s)$ and related functions have a long history that can be traced back to Christian Goldbach (1690–1764) and Leonhard Euler (1707–1783) (see, for details, [26, Chapter 3]). Ramaswami [24] presented numerous interesting recursion formulas that can be employed to get the analytic continuation of Riemann zeta function $\zeta(s)$ over the whole complex plane. Apostol [2] also gave some formulas involving the Riemann zeta function $\zeta(s)$; some of them are generalizations of Ramaswami's identities. For more results, we refer to, e.g., Apostol [2], Choi and Srivastava [26], Landau [18], Murty and Reece [23], Ramaswami [24], and Srivastava [25].

2. Proof Theorem 1.1

To derive Theorem 1.1, we need the following lemmas.

In this section, we first present the Boole summation formula as follows:

Lemma 2.1 ([8, Boole summation formula]) Let α, β , and l be integers such that $\alpha < \beta$ and l > 0. If $f^{(l)}(t)$ is absolutely integrable over $[\alpha, \beta]$, then

$$2\sum_{n=\alpha}^{\beta-1} (-1)^n f(n) = \sum_{r=0}^{l-1} \frac{E_r(0)}{r!} \left((-1)^{\beta-1} f^{(r)}(\beta) + (-1)^{\alpha} f^{(r)}(\alpha) \right) + \frac{1}{(l-1)!} \int_{\alpha}^{\beta} \overline{E}_{l-1}(-t) f^{(l)}(t) dt,$$

where $\overline{E}_n(t)$ is the *n*-th quasi-periodic Euler functions defended by (6) and (8).

Remark 2.2 The alternating version of Euler-MacLaurin summation formula is the Boole summation formula (see, for example, [8, Theorem 1.2] and [21, 24.17.1–2]), which is proved by Boole [5], but a similar one may be known by Euler as well (see [22]). Recently, Can and Dağli derived a generalization of the above Boole summation formula involving Dirichlet characters (see [8, Theorem 1.3]).

A proof of Lemma 2.1 can be found, for example, in [6, Section 5] and [8, Theorem 1.3]. Using the Boole summation formula (see Lemma 2.1 above), we obtain the following formula.

Lemma 2.3 The integral representation

$$\begin{aligned} \zeta_E(-u,a) &= \frac{1}{2} \sum_{r=0}^{l-1} \binom{u}{r} E_r(0) a^{u-r} \\ &+ \frac{1}{2(l-1)!} \frac{\Gamma(u+1)}{\Gamma(u+1-l)} \int_0^\infty \overline{E}_{l-1}(-t) (t+a)^{u-l} \mathrm{d}t, \end{aligned}$$

holds true for all complex numbers u and $\operatorname{Re}(a) > 0$, where l is any natural number subject only to the condition that $l > \operatorname{Re}(u)$.

Proof The proof from Lemma 2.1 is exactly like the proof given by Can and Dağli [8, Theorem 1.4] when $\chi = \chi_0$, where χ_0 is the principal character modulo 1, and so we omit it.

Proof of Theorem 1.1 Putting a = 1 and u = s in Lemma 2.3, by (3), we find that

$$2\zeta_E(-s) = \sum_{r=0}^{l-1} \binom{s}{r} E_r(0) + \frac{1}{(l-1)!} \frac{\Gamma(s+1)}{\Gamma(s+1-l)} \int_1^\infty \overline{E}_{l-1}(1-t) t^{s-l} \mathrm{d}t.$$
(9)

By Dirichlet's test in analysis (e.g., [17, p. 333, Theorem 2.6]), the integral on the right-hand side of the above equation converges absolutely for $\operatorname{Re}(s) < l$ and the convergence is uniform in every half-plane $\operatorname{Re}(s) \leq l - \delta$, $\delta > 0$, and so $\zeta_E(-s)$ is an analytic function of s in the half-plane $\operatorname{Re}(s) < l$. Since

$$\overline{E}_{l-1}(1-t) = (-1)^{l-1}\overline{E}_{l-1}(t) \quad (t \in \mathbb{R})$$

$$\tag{10}$$

(see [8, (2.7) with $\chi = \chi_0$] and [13, (2.7)]), for Re(s) > l - 1, we have

$$\int_{0}^{1} \overline{E}_{l-1}(1-t)t^{s-l} dt = (-1)^{l-1} \int_{0}^{1} \overline{E}_{l-1}(t)t^{s-l} dt$$

$$= (-1)^{l-1} \int_{0}^{1} E_{l-1}(t)t^{s-l} dt$$

$$= (-1)^{l-1} \sum_{m=0}^{l-1} {l-1 \choose m} E_{m}(0) \frac{1}{s-m},$$
(11)

and thus the expression

$$\frac{1}{(l-1)!} \frac{\Gamma(s+1)}{\Gamma(s+1-l)} \int_0^1 \overline{E}_{l-1}(1-t) t^{s-l} dt = \sum_{k=0}^{l-1} \binom{s}{k} E_k(0),$$
(12)

is valid for $\operatorname{Re}(s) > l - 1$. Therefore by (9) and (12), for $l - 1 < \operatorname{Re}(s) < l$, we have

$$2\zeta_{E}(-s) = \frac{1}{(l-1)!} \frac{\Gamma(s+1)}{\Gamma(s+1-l)} \int_{0}^{1} \overline{E}_{l-1}(1-t) t^{s-l} dt + (-1)^{l-1} \frac{1}{(l-1)!} \frac{\Gamma(s+1)}{\Gamma(s+1-l)} \int_{1}^{\infty} \overline{E}_{l-1}(t) t^{s-l} dt$$
(13)
$$= \frac{(-1)^{l-1}}{(l-1)!} \frac{\Gamma(s+1)}{\Gamma(s+1-l)} \int_{0}^{\infty} \overline{E}_{l-1}(t) t^{s-l} dt.$$

Replacing s by s + l - 1 in (13), for 0 < Re(s) < 1, we have

$$\int_0^\infty \overline{E}_{l-1}(t) t^{s-1} dt = \frac{2(-1)^{l-1}(l-1)!\Gamma(s)}{\Gamma(s+l)} \zeta_E(1-s-l).$$

Finally, by Mellin's inversion formula (see, e.g., [11, p. 49] and [19, p. 1127]), we obtain

$$\overline{E}_{l-1}(t) = 2(-1)^{l-1}(l-1)! \frac{1}{2\pi i} \int_{(c)} \frac{\Gamma(s)}{\Gamma(s+l)} \zeta_E(1-s-l) t^{-s} \mathrm{d}s,$$

where (c) denotes the vertical straight line from $c - i\infty$ to $c + i\infty$ with 0 < c < 1 and t > 0. Thus the proof of Theorem 1.1 is completed.

3. Proofs of Theorem 1.3 and Theorem 1.4

In this section, we prove Theorem 1.3 and Theorem 1.4 by a method similar to that used by Apostol in [2]. First we need the following lemmas.

Lemma 3.1 Let a be a complex number with a positive real part. The Hurwitz-type Euler zeta function satisfies the following:

1. Difference equation: For $k \in \mathbb{N}$,

$$(-1)^{k-1}\zeta_E(s,a+k) + \zeta_E(s,a) = \sum_{h=0}^{k-1} (-1)^h (a+h)^{-s}.$$

2. Distribution relation: For an odd positive integer k,

$$\zeta_E(s, ka) = k^{-s} \sum_{r=0}^{k-1} (-1)^r \zeta_E\left(s, a + \frac{r}{k}\right).$$

Proof From the definition of $\zeta_E(s, a)$, it is easy to show that $\zeta_E(s, a + 1) + \zeta_E(s, a) = a^{-s}$. We can rewrite this identity as

$$\zeta_E(s, a+h+1) + \zeta_E(s, a+h) = (a+h)^{-s}, \tag{14}$$

where $h \in \mathbb{N}_0$. Taking the alternating sum on both sides of the above identity as h ranges from 0 to k-1, we have

$$(-1)^{k-1}\zeta_E(s,a+k) + \zeta_E(s,a) = \sum_{h=0}^{k-1} (-1)^h (a+h)^{-s},$$

which completes the proof of Part 1.

Part 2 can be derived directly from the definition of $\zeta_E(s, a)$ (see (1) above).

Lemma 3.2 The following identities hold:

1. Let $a \in \mathbb{R}$ and a > 0. Then

$$\zeta_E(s, x+a) = \sum_{r=0}^{\infty} {\binom{-s}{r}} \zeta_E(s+r, a) x^r, \quad |x| < a,$$

in which we understand $0^0 = 1$ if r = 0, and $0^r = 0$ otherwise.

2. Let |x| < a + 1 with $a \in \mathbb{R}$ and a > 0. Then

$$\zeta_E(s, a+1-x) = \sum_{r=0}^{\infty} (-1)^{r-1} {\binom{-s}{r}} \left\{ \zeta_E(s+r, a) - a^{-s-r} \right\} x^r.$$

Remark 3.3 Part 1 of Lemma 3.2 (and then (4.8) and (4.9) below) is a special case of [23, Theorem 2.4]. Part 2 of Lemma 3.2, when a = 1, is similar to Eq. (18) in a 2001 book by Srivastava and Choi [26, p. 147].

Proof of Lemma 3.2 Note that for |x| < a

$$\zeta_E(s, x+a) - \zeta_E(s, a) = \sum_{n=0}^{\infty} (-1)^n \left\{ \frac{1}{(n+x+a)^s} - \frac{1}{(n+a)^s} \right\}.$$
(15)

Writing the summand as

$$\frac{1}{(n+x+a)^s} - \frac{1}{(n+a)^s} = \frac{1}{(n+a)^s} \left(\left(1 + \frac{x}{n+a} \right)^{-s} - 1 \right)$$

1171

and using the binomial theorem,

$$\frac{1}{(n+x+a)^s} - \frac{1}{(n+a)^s} = \frac{1}{(n+a)^s} \left(\sum_{r=0}^{\infty} {\binom{-s}{r}} \left(\frac{x}{n+a} \right)^r - 1 \right)$$
$$= \frac{1}{(n+a)^s} \sum_{r=1}^{\infty} {\binom{-s}{r}} \left(\frac{x}{n+a} \right)^r.$$
(16)

The right side of (15), by (16), is

$$\sum_{r=1}^{\infty} {\binom{-s}{r}} x^r \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+a)^{s+r}} = \sum_{r=1}^{\infty} {\binom{-s}{r}} \zeta_E(s+r,a) x^r,$$
(17)

where a > 0. By using (15) and (17), we obtain the first part.

For the second part, note that from the binomial theorem we have

$$(a-x)^{-s} = a^{-s} \left(1 - \frac{x}{a}\right)^{-s} = a^{-s} \sum_{r=0}^{\infty} {\binom{-s}{r}} \left(-\frac{x}{a}\right)^r$$
(18)

for |x| < a. Setting h = 0 and replacing a by a - x in (14), we get

$$\zeta_E(s, a - x + 1) + \zeta_E(s, a - x) = (a - x)^{-s}.$$
(19)

If we replace x by -x in Part 1 and use (18) and (19), we get

$$\sum_{r=0}^{\infty} (-1)^r {\binom{-s}{r}} \left\{ \zeta_E(s+r,a) - a^{-s-r} \right\} x^r = \zeta_E(s,a-x) - (a-x)^{-s}$$
$$= -\zeta_E(s,a+1-x).$$

Thus the result follows.

Lemma 3.4 Suppose k is an odd positive integer. Then we have

$$\zeta_E(s) \left(1 - k^{-s} \right) = \sum_{r=1}^{\infty} (-1)^r \binom{-s}{r} \frac{\zeta_E(s+r)}{k^{s+r}} \frac{E_r(k) + E_r(0)}{2}.$$

Proof Suppose k is an odd positive integer. If we take a = 1 and $x = -h/k, 0 \le h \le k-1$ in Part 1 of Lemma 3.2, multiply by $(-1)^h$, and sum over h, then we have

$$\sum_{h=0}^{k-1} (-1)^h \zeta_E\left(s, 1-\frac{h}{k}\right) = \sum_{r=0}^{\infty} (-1)^r \binom{-s}{r} \frac{\zeta_E(s+r)}{k^r} \sum_{h=0}^{k-1} (-1)^h h^r,$$
(20)

in which we understand $0^r = 1$ if r = 0, and $0^r = 0$ otherwise. Note that for an odd positive integer k we have

$$\left\{1, 1 - \frac{1}{k}, \dots, 1 - \frac{k-1}{k}\right\} = \left\{\frac{1}{k}, \frac{2}{k}, \dots, \frac{1}{k} + \frac{k-1}{k}\right\}.$$
(21)

If we put a = 1/k in Part 2 of Lemma 3.1 and use (21), we get

$$\sum_{h=0}^{k-1} (-1)^h \zeta_E\left(s, 1 - \frac{h}{k}\right) = \sum_{h=0}^{k-1} (-1)^h \zeta_E\left(s, \frac{1}{k} + \frac{h}{k}\right)$$

= $k^s \zeta_E(s, 1)$
= $k^s \zeta_E(s).$ (22)

Hence, by (20) and (22), we have

$$\zeta_E(s) = \sum_{r=0}^{\infty} (-1)^r {\binom{-s}{r}} \frac{\zeta_E(s+r)}{k^{s+r}} \sum_{h=0}^{k-1} (-1)^h h^r$$

$$= \zeta_E(s)k^{-s} + \sum_{r=1}^{\infty} (-1)^r {\binom{-s}{r}} \frac{\zeta_E(s+r)}{k^{s+r}} \sum_{h=0}^{k-1} (-1)^h h^r$$
(23)

for odd k. Moreover, it is easily seen that

$$\sum_{h=0}^{k-1} (-1)^h h^r = \frac{E_r(k) + E_r(0)}{2} \quad \text{for odd } k$$
(24)

(see [21, Equation 24.4.8] and [27, Theorem 2.1]). Thus, the proof is completed by (23) and (24). \Box

Lemma 3.5 Suppose k is an odd positive integer with k > 1. Then we have

$$\zeta_E(s)\left(1-k^{-s}\right) = \sum_{h=1}^{k-1} \frac{(-1)^{h-1}}{h^s} + \sum_{r=1}^{\infty} \binom{-s}{r} \frac{\zeta_E(s+r)}{k^{s+r}} \frac{E_r(k) + E_r(0)}{2}.$$

Proof Suppose $k \in \mathbb{N}$. If we take a = 1 and $x = h/k, 0 \le h \le k - 1$ in Part 1 of Lemma 3.2, multiply by $(-1)^h$, and sum over h, then we have

$$\sum_{h=0}^{k-1} (-1)^h \zeta_E\left(s, 1+\frac{h}{k}\right) = \sum_{r=0}^{\infty} {\binom{-s}{r}} \frac{\zeta_E(s+r)}{k^r} \sum_{h=0}^{k-1} (-1)^h h^r$$

$$= \sum_{r=1}^{\infty} {\binom{-s}{r}} \frac{\zeta_E(s+r)}{k^r} \frac{E_r(k) + E_r(0)}{2} + \zeta_E(s).$$
(25)

Now, setting a = 1 in Part 1 of Lemma 3.1, we obtain

$$(-1)^{k-1}\zeta_E(s,k+1) + \zeta_E(s,1) = \sum_{h=0}^{k-1} (-1)^h (h+1)^{-s} \quad (k \in \mathbb{N}),$$

which is equivalent to

$$(-1)^{k}\zeta_{E}(s,k) + \zeta_{E}(s) = \sum_{h=1}^{k-1} (-1)^{h-1} h^{-s}$$
(26)

for $k \ge 2$. We set a = 1 in Part 2 of Lemma 3.1 and use (26); then the first term of (25) equals

$$\sum_{h=0}^{k-1} (-1)^h \zeta_E\left(s, 1 + \frac{h}{k}\right) = k^s \zeta_E(s, k)$$

$$= k^s \left(\zeta_E(s) - \sum_{h=1}^{k-1} (-1)^{h-1} h^{-s}\right)$$
(27)

for odd k > 1, and so by combining (25) and (27) we obtain the result.

Now we give proofs of Theorem 1.3 and Theorem 1.4, respectively.

Proof of Theorem 1.3 It needs to be noted that

$$E_k(0) = 0$$

if k is even ([27, p. 5, Corollary 1.1(ii)]). Using the above identity, adding Lemma 3.4 and Lemma 3.5, we obtain Part 1 of Theorem 1.3. Subtracting Lemma 3.5 from Lemma 3.4, we have Part 2 of Theorem 1.3.

Proof of the Theorem 1.4 For $\alpha \in \mathbb{C}$, we introduce the alternating sum

$$H(\alpha, k) = \sum_{\substack{h=1\\(h,k)=1}}^{\left[\frac{k}{2}\right]} (-1)^h h^{\alpha}.$$

From now on, let k denote an odd integer and k > 1. By taking a = 1 and x = h/k, (h, k) = 1 in Part 1 of Lemma 3.2, $1 \le h \le \left\lfloor \frac{k}{2} \right\rfloor$, multiplying by $(-1)^h$, and summing over h, we obtain

$$\sum_{\substack{h=1\\(h,k)=1}}^{\left\lfloor\frac{k}{2}\right\rfloor} (-1)^h \zeta_E\left(s, 1+\frac{h}{k}\right) = \sum_{r=0}^{\infty} \binom{-s}{r} \zeta_E(s+r)k^{-r}H(r,k).$$
(28)

Similarly, we have

$$\sum_{\substack{h=1\\(h,k)=1}}^{\lfloor\frac{k}{2}\rfloor} (-1)^{h-1} \zeta_E\left(s, 1-\frac{h}{k}\right) = -\sum_{r=0}^{\infty} (-1)^r \binom{-s}{r} \zeta_E(s+r) k^{-r} H(r,k).$$
(29)

Setting h = 0 in (14), the left-hand side of (28) equals

$$-\sum_{\substack{h=1\\(h,k)=1}}^{\left[\frac{k}{2}\right]} (-1)^h \zeta_E\left(s,\frac{h}{k}\right) + k^s H(-s,k).$$
(30)

If k is odd, (k-1)/2 is an integer and so we get

$$\frac{k-1}{2} = \left[\frac{k}{2}\right] \Leftrightarrow \frac{k}{2} = \left[\frac{k}{2}\right] + \frac{1}{2}$$
$$\Leftrightarrow k = 2\left[\frac{k}{2}\right] + 1$$
$$\Leftrightarrow k - \left[\frac{k}{2}\right] = \left[\frac{k}{2}\right] + 1.$$
(31)

Hence

$$1 - \frac{\left[\frac{k}{2}\right]}{k} = \frac{\left[\frac{k}{2}\right] + 1}{k}, 1 - \frac{\left[\frac{k}{2}\right] - 1}{k} = \frac{\left[\frac{k}{2}\right] + 2}{k}, \dots, 1 - \frac{1}{k} = \frac{k - 1}{k},$$

which leads easily to the required

$$-\sum_{\substack{h=1\\(h,k)=1}}^{\left[\frac{k}{2}\right]} (-1)^h \zeta_E\left(s,1-\frac{h}{k}\right) = \sum_{\substack{h=\left[\frac{k}{2}\right]+1\\(h,k)=1}}^k (-1)^h \zeta_E\left(s,\frac{h}{k}\right),$$

that is,

$$\sum_{\substack{h=1\\(h,k)=1}}^{\left\lfloor\frac{k}{2}\right\rfloor} (-1)^h \left\{ \zeta_E\left(s,\frac{h}{k}\right) - \zeta_E\left(s,1-\frac{h}{k}\right) \right\} = \sum_{\substack{h=1\\(h,k)=1}}^k (-1)^h \zeta_E\left(s,\frac{h}{k}\right).$$
(32)

Now subtracting (28) from (29), from (30) and (32), we have

$$\sum_{\substack{h=1\\(h,k)=1}}^{k} (-1)^h \zeta_E\left(s,\frac{h}{k}\right) = k^s H(-s,k) - 2\sum_{r=0}^{\infty} \binom{-s}{2r} \zeta_E(s+2r) k^{-2r} H(2r,k).$$
(33)

By the definition of the Möbius functions, for $n \in \mathbb{N}$, we have

$$\sum_{d|n} \mu(d) = \begin{bmatrix} \frac{1}{n} \end{bmatrix} = \begin{cases} 1 & \text{if } n = 1\\ 0 & \text{if } n > 1 \end{cases}$$

(see [2, p. 25, Theorem 2.1]). Recalling from Part 2 of Lemma 3.1 that

$$\zeta_E(s,ka) = k^{-s} \sum_{r=0}^{k-1} (-1)^r \zeta_E\left(s,a+\frac{r}{k}\right),$$
(34)

and letting a = 1/k in (34), we obtain

$$\zeta_E(s) = k^{-s} \sum_{r=0}^{k-1} (-1)^r \zeta_E\left(s, \frac{r+1}{k}\right)$$

$$= k^{-s} \sum_{r=1}^k (-1)^{r-1} \zeta_E\left(s, \frac{r}{k}\right),$$
(35)

where k is odd. Hence the left-hand side of (33) may be rewritten as

$$\sum_{\substack{h=1\\(h,k)=1}}^{k} (-1)^{h} \zeta_{E}\left(s,\frac{h}{k}\right) = \sum_{h=1}^{k} (-1)^{h} \sum_{d|(h,k)} \mu(d) \zeta_{E}\left(s,\frac{h}{k}\right)$$
$$= \sum_{h=1}^{k} (-1)^{h} \sum_{d|h,d|k} \mu(d) \zeta_{E}\left(s,\frac{h}{k}\right)$$
$$= \sum_{d|k} \mu(d) \sum_{m=1}^{k/d} (-1)^{md} \zeta_{E}\left(s,\frac{md}{k}\right)$$
$$= \sum_{d|k} \mu(d) \sum_{m=1}^{k/d} (-1)^{m} \zeta_{E}\left(s,\frac{m}{k/d}\right)$$
$$(use replace k/d by k in (35))$$
$$= -k^{s} \zeta_{E}(s) \sum_{d|k} \mu(d) d^{-s},$$

since d is odd in the case k is odd. Thus, by combining (33) and (36), the proof of Theorem 1.4 is completed.

4. Some further identities

In the spirit of Euler, by working with the formal power series, we have

$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1} \zeta_E(-n) t^n}{n!} = \sum_{n=0}^{\infty} \left(\sum_{k=1}^{\infty} (-1)^k k^n \right) \frac{(-1)^n t^n}{n!}$$
$$= \sum_{k=1}^{\infty} (-1)^k \left(\sum_{n=0}^{\infty} \frac{(-kt)^n}{n!} \right).$$
(37)

The last term of (37) converges to

$$-\frac{1}{e^t+1}.\tag{38}$$

Thus, directly from definition (4), (38) may be written

$$-\frac{1}{e^t+1} = -\frac{1}{2} \sum_{n=0}^{\infty} E_n(0) \frac{t^n}{n!}$$
(39)

Applying the reflection formula of Euler polynomials (see [21, 24.4.4]):

$$E_n(1-x) = (-1)^n E_n(x), (40)$$

with x = 0, by (37), (38), and (39), we obtain

$$\zeta_E(-n) = \frac{(-1)^n}{2} E_n(0) = \frac{1}{2} E_n(1) \tag{41}$$

for $n \in \mathbb{N}_0$, which imply $\zeta_E(-1) = 1/4$, $\zeta_E(-2) = 0$, $\zeta_E(-3) = -1/8$,... (see [10, p. 520, Corollary 3]). The following identity involving Euler polynomials

$$E_n(x) = 2x^n - \sum_{r=0}^n \binom{n}{r} (-1)^{n-r} E_{n-r}(0) x^r \quad (n \in \mathbb{N}_0)$$
(42)

follows from the known formula (see [11, p. 41, (6)] and [21, 24.4.2])

$$E_n(x+1) + E_n(x) = 2x^n \quad (n \in \mathbb{N}_0),$$
(43)

in the case we replace $E_n(x+1)$ by $\sum_{r=0}^n {n \choose r} E_{n-r}(1) x^r$ in (43), then set x = 0, and replace n by n-r in (40).

Putting a = 1 and s = -n in Part 1 of Lemma 3.2, we obtain the result

$$\zeta_E(-n, x+1) = \sum_{r=0}^n \binom{n}{r} \zeta_E(r-n) x^r, \quad |x| < 1.$$
(44)

Next setting a = x, s = -n, and h = 0 in (14), we have

$$\zeta_E(-n, x+1) + \zeta_E(-n, x) = x^n.$$
(45)

Combining (44) and (45), we have

$$\zeta_E(-n,x) = x^n - \sum_{r=0}^n \binom{n}{r} \zeta_E(r-n)x^r,$$

and by (41) and (42), we have

$$\zeta_E(-n,x) = \frac{1}{2} \left(2x^n - \sum_{r=0}^n \binom{n}{r} (-1)^{n-r} E_{n-r}(0) x^r \right)$$

= $\frac{1}{2} E_n(x)$ (46)

for $n \in \mathbb{N}_0$ (see [10, p. 520, (3.20)], [16, p. 4, (1.22)], and [29, p. 41, (3.8)]).

For a = 1, Part 2 of Lemma 3.2 yields

$$\zeta_E(s, 2-x) = \sum_{r=0}^{\infty} (-1)^{r-1} {\binom{-s}{r}} \left\{ \zeta_E(s+r) - 1 \right\} x^r, \tag{47}$$

where |x| < 2 (cf. [26, p. 146, (18)]). Replacing the summation index r in (47) by r + 1, and setting x = 1, we arrive immediately at an analogue form of (2.3) in [25]:

$$\sum_{r=1}^{\infty} (-1)^r \binom{-s}{r} \left\{ \zeta_E(s+r) - 1 \right\} + 2\zeta_E(s) = 1.$$
(48)

Letting x = -1 in (47) and using (14) with a = 1, 2 and h = 0, that is, $\zeta_E(s, 3) = \zeta_E(s) + 1/2^s - 1$, we find that

$$\zeta_E(s) = 1 - \frac{1}{2^{s+1}} - \frac{1}{2} \sum_{r=1}^{\infty} {\binom{-s}{r}} \left\{ \zeta_E(s+r) - 1 \right\},\tag{49}$$

which provides a companion of Landau's formula (see [18, p. 274, (3)] and [28, p. 33, (2.14.1)]). Setting x = 1/2in (47), and using (14) with a = 1/2 and h = 0, that is, $\zeta_E(s, 3/2) + \zeta_E(s, 1/2) = 2^s$, we obtain a series representation for $\beta(s)$:

$$\beta(s) = 1 + \sum_{r=0}^{\infty} \frac{(-1)^r}{2^{r+s}} {-s \choose r} \left\{ \zeta_E(s+r) - 1 \right\}$$

= $1 + \sum_{r=0}^{\infty} \frac{1}{2^{r+s}} {s+r-1 \choose r} \left\{ \zeta_E(s+r) - 1 \right\},$ (50)

where $\beta(s)$ denotes the Dirichlet beta function defined by (see [1, p. 807, 23.2.21])

$$\beta(s) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^s}.$$

The above series converges for all $\operatorname{Re}(s) > 0$. Setting s = 2 in (50), we deduce

Catalan's constant
$$G = \beta(2) = 1 + \sum_{r=1}^{\infty} \frac{r}{2^{r+1}} \{\zeta_E(r+1) - 1\},$$
 (51)

which is one of the basic constants whose irrationality and transcendence (though strongly suspected) remain unproven (cf. [26, p. 29, (16)]).

Acknowledgment

The author thanks the referees for their very careful reading of this manuscript and for their very insightful comments and suggestions.

References

- Abramowitz M, Stegun I. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. New York, NY, USA: Dover, 1972.
- [2] Apostol TM. Some series involving the Riemann zeta function. Proc Amer Math Soc 1954; 5: 239-243.
- [3] Ayoub R. Euler and the zeta function. Amer Math Monthly 1974; 81: 1067-1086.
- [4] Bayad A. Arithmetical properties of elliptic Bernoulli and Euler numbers. Int J Algebra 2010; 4: 353-372.
- [5] Boole G. A Treatise on the Calculus of Finite Differences. New York, NY, USA: Dover, 1960.
- [6] Borwein JM, Calkin NJ, Manna D. Euler-Boole summation revisited. Amer Math Monthly 2009; 116: 387-412.
- [7] Carlitz L. Multiplication formulas for products of Bernoulli and Euler polynomials. Pacific J Math 1959; 9: 661-666.
- [8] Can M, Dağli MC. Character analogue of the Boole summation formula with applications. Turk J Math 2017; 41: 1204-1223.

- [9] Chang CH, Ha CW. A multiplication theorem for the Lerch zeta function and explicit representations of the Bernoulli and Euler polynomials. J Math Anal Appl 2006; 315: 758-767.
- [10] Choi J, Srivastava HM. The multiple Hurwitz zeta function and the multiple Hurwitz-Euler eta function. Taiwanese J Math 2011; 15: 501-522.
- [11] Erdélyi A, Magnus W, Oberhettinger F, Francesco GT. Higher Transcendental Functions, Vol. 1. New York, NY, USA: McGraw-Hill, 1953.
- [12] Hu S, Kim MS. The (S, {2})-Iwasawa theory. J Number Theory 2016; 158: 73-89.
- [13] Hu S, Kim D, Kim MS. On reciprocity formula of Apostol-Dedekind sum with quasi-periodic Euler functions. J Number Theory 2016; 162: 54-67.
- [14] Kim MS, Hu S. On *p*-adic Hurwitz-type Euler zeta functions. J Number Theory 2012; 132: 2977-3015.
- [15] Kim MS, Hu S. On *p*-adic Diamond-Euler Log Gamma functions. J Number Theory 2013; 133: 4233-4250.
- [16] Kim T. Euler numbers and polynomials associated with zeta functions. Abstr Appl Anal 2008; 2008: Article ID 581582, 11 pages.
- [17] Lang S. Undergraduate Analysis. New York, NY, USA: Springer-Verlag, 1997.
- [18] Landau E. Handbuch der Lehre von der Verteilung der Primzahlen. New York, NY, USA: Chelsea Publishing Co., 1953.
- [19] Li HL, Ma J, Zhang WP. On some Diophantine Fourier series. Acta Math Sinica (Engl. Ser.) 2010; 26: 1125-1132.
- [20] Min J. Zeros and special values of Witten zeta functions and Witten L-functions. J Number Theory 2014; 134: 240-257.
- [21] NIST. Digital Library of Mathematical Functions. Available at http://dlmf.nist.gov/.
- [22] Nörlund NE. Vorlesungen uber Differenzenrechnung. Berlin, Germany: Springer-Verlag, 1924.
- [23] Murty MR, Reece M. A simple derivation of $\zeta(1-K) = -B_K/K$. Funct Approx Comment Math 2000; 28: 141-154.
- [24] Ramaswami V. Notes on Riemann's ζ -Function. J London Math Soc 1934; 9: 165-169.
- [25] Srivastava HM. Sums of certain series of the Riemann zeta function. J Math Anal Appl 1988; 134: 129-140.
- [26] Srivastava HM, Choi J. Series associated with the zeta and related functions. Dordrecht, Netherlands: Kluwer Academic Publishers, 2001.
- [27] Sun ZW. Introduction to Bernoulli and Euler polynomials. A lecture given in Taiwan on June 6, 2002. http://math.nju.edu.cn/ zwsun/BerE.pdf.
- [28] Titchmarsh EC. The theory of the Riemann zeta-function. New York, NY, USA: The Clarendon Press, Oxford University Press, 1986.
- [29] Williams KS, Zhang NY. Special values of the Lerch zeta function and the evaluation of certain integrals. Proc Amer Math Soc 1993; 119: 35-49.