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Abstract: In this paper, using the Boole summation formula, we obtain a new integral representation of n -th quasi-
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are analogues of the corresponding results by Apostol on some series involving the Riemann zeta function ζ(s).
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1. Introduction

The Hurwitz-type Euler zeta function is defined as follows

ζE(s, a) =
∞∑

n=0

(−1)n

(n+ a)s
(1)

for complex arguments s with Re(s) > 0 and a with Re(a) > 0, which is a deformation of the well-known

Hurwitz zeta function

ζ(s, a) =
∞∑

n=0

1

(n+ a)s
(2)

for Re(s) > 1 and Re(a) > 0. Note that ζ(s, 1) = ζ(s), the Riemann zeta function. The series (1) converges

for Re(s) > 0 and it can be analytically continued to the complex plane without any pole. For further results

concerning the Hurwitz-type Euler zeta function, we refer to the recent works in [10] and [14]. Let a = 1 in

(1); it reduces to the Euler zeta function

ζE(s) = ζE(s, 1) =
∞∑

n=1

(−1)n−1

ns
(3)

for Re(s) > 0, which is also a special case of Witten zeta functions in mathematical physics (see [20, p.

248, (3.14)]). In fact, it is shown that the Euler zeta function ζE(s) is summable (in the sense of Abel) to

(1−21−s)ζ(s) for all values of s. Several properties of ζE(s) can be found in [3, 10, 12, 16]. For example, in the

form on [1, p. 811], the left-hand side is the special values of the Riemann zeta functions at positive integers,
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and the right-hand side is the special values of Euler zeta functions at positive integers. In number theory, the

Hurwitz-type Euler zeta function (1) represents the partial zeta function in one version of Stark’s conjecture of

cyclotomic fields (see [15, p. 4249, (6.13)]). The corresponding L -functions (the alternating L -series) have also

appeared in a decomposition of the (S, {2})-refined Dedekind zeta functions of cyclotomic fields (see [12, p. 81,

(3.8)]). Recently, using Log Gamma functions, Can and Daǧli proved a derivative formula of these L-functions

(see [8, Eq. (4.13)]).

The Euler polynomials En(x) are defined by the generating function

2ext

et + 1
=

∞∑
n=0

En(x)
tn

n!
(4)

for |t| < π (see, for details, [11, 21, 27]). They are the special values of (1) at nonpositive integers (see [10,

p. 520, Corollary 3], [9, p. 761, (2.3)], [14, p. 2983, (3.1)], [29, p. 41, (3.8)] and (46) below). The integers

En = 2nEn (1/2) , n ∈ N0 = N ∪ {0}, are called Euler numbers. For example, E0 = 1, E2 = −1, E4 = 5,

and E6 = −61. The Euler numbers and polynomials (so called by Scherk in 1825) appear in Euler’s famous

book, Insitutiones Calculi Differentials (1755, pp. 487-491 and p. 522). Notice that the Euler numbers with odd

subscripts vanish, that is, E2m+1 = 0 for all m ∈ N0.

For n ∈ N0, the n -th quasi-periodic Euler functions are defined by

En(x+ 1) = −En(x) (5)

for all x ∈ R, and
En(x) = En(x) for 0 ≤ x < 1 (6)

(see [7, p. 661]). For arbitrary real numbers x, [x] denotes the greatest integer not exceeding x and {x} denotes

the fractional part of real number x; thus

{x} = x− [x]. (7)

Then, for r ∈ Z and n ∈ N0, we have

En(x) = (−1)[x]En({x}), En(x+ r) = (−1)rEn(x) (8)

(see [4, (1.2.9)] and [7, (3.3)]). For further properties of the quasi-periodic Euler functions, we refer to [4, 7, 8, 13].

In this paper, we obtain a new integral representation of n-th quasi-periodic Euler functions En(x) as

follows.

Theorem 1.1 Let n ∈ N0 and let En(x) be the n-th quasi-periodic Euler functions. Then for x > 0

En(x) = (−1)nn!
1

πi

∫
(c)

Γ(s)

Γ(s+ n+ 1)
ζE(−s− n)x−sds,

where (c) denotes the vertical straight line from c− i∞ to c+ i∞ with 0 < c < 1 and Γ(s) denotes the Euler

gamma function.

Remark 1.2 We remark that this theorem is an analogue of a result by Li et al. on Riemann zeta functions

(see [19, Proposition 1]).
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Furthermore, we also obtain the following two theorems on series involving Euler zeta functions ζE(s).

They are the analogues of the corresponding results of Apostol [2] on some series involving the Riemann zeta

function.

Theorem 1.3 Let
(−s

r

)
denote the binomial symbol defined through the Euler gamma function Γ(s) as follows

(
−s

r

)
= (−1)r

(
s+ r − 1

r

)
= (−1)r

Γ(s+ r)

Γ(s)r!
,

where s ∈ C and r ∈ N. Then the following identities hold:

1. For k odd and k > 1, we have

ζE(s)
(
1− k−s

)
=

1

2

k−1∑
h=1

(−1)h−1

hs
+

∞∑
r=1

(
−s

2r

)
ζE(s+ 2r)

ks+2r

E2r(k)

2
.

2. For k odd and k > 1, we have

k−1∑
h=1

(−1)h

hs
=

∞∑
r=0

(
−s

2r + 1

)
ζE(s+ 2r + 1)

ks+2r+1
(E2r+1(k) + E2r+1(0)).

Theorem 1.4 Let µ be the Möbius function. Then for k odd and k > 1, we have

ζE(s)
∑
d|k

µ(d)d−s = 2

∞∑
r=0

(
−s

2r

)
ζE(s+ 2r)k−2r−sH(2r, k)−H(−s, k),

where

H(α, k) =

[ k2 ]∑
h=1

(h,k)=1

(−1)hhα (α ∈ C)

is the alternating sum of the α-th power of those integers not exceeding
[
k
2

]
that are relatively prime to k.

Remark 1.5 The evaluations of series involving Riemann zeta function ζ(s) and related functions have a

long history that can be traced back to Christian Goldbach (1690–1764) and Leonhard Euler (1707–1783) (see,

for details, [26, Chapter 3]). Ramaswami [24] presented numerous interesting recursion formulas that can be

employed to get the analytic continuation of Riemann zeta function ζ(s) over the whole complex plane. Apostol

[2] also gave some formulas involving the Riemann zeta function ζ(s); some of them are generalizations of

Ramaswami’s identities. For more results, we refer to, e.g., Apostol [2], Choi and Srivastava [26], Landau [18],

Murty and Reece [23], Ramaswami [24], and Srivastava [25].

2. Proof Theorem 1.1

To derive Theorem 1.1, we need the following lemmas.

In this section, we first present the Boole summation formula as follows:
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Lemma 2.1 ([8, Boole summation formula]) Let α, β , and l be integers such that α < β and l > 0. If f (l)(t)

is absolutely integrable over [α, β], then

2

β−1∑
n=α

(−1)nf(n) =
l−1∑
r=0

Er(0)

r!

(
(−1)β−1f (r)(β) + (−1)αf (r)(α)

)

+
1

(l − 1)!

∫ β

α

El−1(−t)f (l)(t)dt,

where En(t) is the n-th quasi-periodic Euler functions defended by (6) and (8).

Remark 2.2 The alternating version of Euler–MacLaurin summation formula is the Boole summation formula

(see, for example, [8, Theorem 1.2] and [21, 24.17.1–2]), which is proved by Boole [5], but a similar one may

be known by Euler as well (see [22]). Recently, Can and Daǧli derived a generalization of the above Boole

summation formula involving Dirichlet characters (see [8, Theorem 1.3]).

A proof of Lemma 2.1 can be found, for example, in [6, Section 5] and [8, Theorem 1.3].

Using the Boole summation formula (see Lemma 2.1 above), we obtain the following formula.

Lemma 2.3 The integral representation

ζE(−u, a) =
1

2

l−1∑
r=0

(
u

r

)
Er(0)a

u−r

+
1

2(l − 1)!

Γ(u+ 1)

Γ(u+ 1− l)

∫ ∞

0

El−1(−t)(t+ a)u−ldt,

holds true for all complex numbers u and Re(a) > 0, where l is any natural number subject only to the condition

that l > Re(u).

Proof The proof from Lemma 2.1 is exactly like the proof given by Can and Daǧli [8, Theorem 1.4] when

χ = χ0, where χ0 is the principal character modulo 1, and so we omit it. 2

Proof of Theorem 1.1 Putting a = 1 and u = s in Lemma 2.3, by (3), we find that

2ζE(−s) =
l−1∑
r=0

(
s

r

)
Er(0) +

1

(l − 1)!

Γ(s+ 1)

Γ(s+ 1− l)

∫ ∞

1

El−1(1− t)ts−ldt. (9)

By Dirichlet’s test in analysis (e.g., [17, p. 333, Theorem 2.6]), the integral on the right-hand side of the above

equation converges absolutely for Re(s) < l and the convergence is uniform in every half-plane Re(s) ≤ l − δ ,

δ > 0, and so ζE(−s) is an analytic function of s in the half-plane Re(s) < l. Since

El−1(1− t) = (−1)l−1El−1(t) (t ∈ R) (10)
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(see [8, (2.7) with χ = χ0 ] and [13, (2.7)]), for Re(s) > l − 1, we have∫ 1

0

El−1(1− t)ts−ldt = (−1)l−1

∫ 1

0

El−1(t)t
s−ldt

= (−1)l−1

∫ 1

0

El−1(t)t
s−ldt

= (−1)l−1
l−1∑
m=0

(
l − 1

m

)
Em(0)

1

s−m
,

(11)

and thus the expression

1

(l − 1)!

Γ(s+ 1)

Γ(s+ 1− l)

∫ 1

0

El−1(1− t)ts−ldt =
l−1∑
k=0

(
s

k

)
Ek(0), (12)

is valid for Re(s) > l − 1. Therefore by (9) and (12), for l − 1 < Re(s) < l, we have

2ζE(−s) =
1

(l − 1)!

Γ(s+ 1)

Γ(s+ 1− l)

∫ 1

0

El−1(1− t)ts−ldt

+ (−1)l−1 1

(l − 1)!

Γ(s+ 1)

Γ(s+ 1− l)

∫ ∞

1

El−1(t)t
s−ldt

=
(−1)l−1

(l − 1)!

Γ(s+ 1)

Γ(s+ 1− l)

∫ ∞

0

El−1(t)t
s−ldt.

(13)

Replacing s by s+ l − 1 in (13), for 0 < Re(s) < 1, we have∫ ∞

0

El−1(t)t
s−1dt =

2(−1)l−1(l − 1)!Γ(s)

Γ(s+ l)
ζE(1− s− l).

Finally, by Mellin’s inversion formula (see, e.g., [11, p. 49] and [19, p. 1127]), we obtain

El−1(t) = 2(−1)l−1(l − 1)!
1

2πi

∫
(c)

Γ(s)

Γ(s+ l)
ζE(1− s− l)t−sds,

where (c) denotes the vertical straight line from c− i∞ to c+ i∞ with 0 < c < 1 and t > 0. Thus the proof

of Theorem 1.1 is completed.

3. Proofs of Theorem 1.3 and Theorem 1.4

In this section, we prove Theorem 1.3 and Theorem 1.4 by a method similar to that used by Apostol in [2].

First we need the following lemmas.

Lemma 3.1 Let a be a complex number with a positive real part. The Hurwitz-type Euler zeta function satisfies

the following:

1. Difference equation: For k ∈ N,

(−1)k−1ζE(s, a+ k) + ζE(s, a) =
k−1∑
h=0

(−1)h(a+ h)−s.
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2. Distribution relation: For an odd positive integer k,

ζE(s, ka) = k−s
k−1∑
r=0

(−1)rζE

(
s, a+

r

k

)
.

Proof From the definition of ζE(s, a), it is easy to show that ζE(s, a + 1) + ζE(s, a) = a−s. We can rewrite

this identity as

ζE(s, a+ h+ 1) + ζE(s, a+ h) = (a+ h)−s, (14)

where h ∈ N0. Taking the alternating sum on both sides of the above identity as h ranges from 0 to k − 1, we

have

(−1)k−1ζE(s, a+ k) + ζE(s, a) =

k−1∑
h=0

(−1)h(a+ h)−s,

which completes the proof of Part 1.

Part 2 can be derived directly from the definition of ζE(s, a) (see (1) above). 2

Lemma 3.2 The following identities hold:

1. Let a ∈ R and a > 0. Then

ζE(s, x+ a) =
∞∑
r=0

(
−s

r

)
ζE(s+ r, a)xr, |x| < a,

in which we understand 00 = 1 if r = 0, and 0r = 0 otherwise.

2. Let |x| < a+ 1 with a ∈ R and a > 0. Then

ζE(s, a+ 1− x) =
∞∑
r=0

(−1)r−1

(
−s

r

){
ζE(s+ r, a)− a−s−r

}
xr.

Remark 3.3 Part 1 of Lemma 3.2 (and then (4.8) and (4.9) below) is a special case of [23, Theorem 2.4].

Part 2 of Lemma 3.2, when a = 1 , is similar to Eq. (18) in a 2001 book by Srivastava and Choi [26, p. 147].

Proof of Lemma 3.2 Note that for |x| < a

ζE(s, x+ a)− ζE(s, a) =

∞∑
n=0

(−1)n
{

1

(n+ x+ a)s
− 1

(n+ a)s

}
. (15)

Writing the summand as

1

(n+ x+ a)s
− 1

(n+ a)s
=

1

(n+ a)s

((
1 +

x

n+ a

)−s

− 1

)
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and using the binomial theorem,

1

(n+ x+ a)s
− 1

(n+ a)s
=

1

(n+ a)s

( ∞∑
r=0

(
−s

r

)(
x

n+ a

)r

− 1

)

=
1

(n+ a)s

∞∑
r=1

(
−s

r

)(
x

n+ a

)r

.

(16)

The right side of (15), by (16), is

∞∑
r=1

(
−s

r

)
xr

∞∑
n=0

(−1)n

(n+ a)s+r
=

∞∑
r=1

(
−s

r

)
ζE(s+ r, a)xr, (17)

where a > 0. By using (15) and (17), we obtain the first part.

For the second part, note that from the binomial theorem we have

(a− x)−s = a−s
(
1− x

a

)−s

= a−s
∞∑
r=0

(
−s

r

)(
−x

a

)r
(18)

for |x| < a. Setting h = 0 and replacing a by a− x in (14), we get

ζE(s, a− x+ 1) + ζE(s, a− x) = (a− x)−s. (19)

If we replace x by −x in Part 1 and use (18) and (19), we get

∞∑
r=0

(−1)r
(
−s

r

){
ζE(s+ r, a)− a−s−r

}
xr = ζE(s, a− x)− (a− x)−s

= −ζE(s, a+ 1− x).

Thus the result follows.

Lemma 3.4 Suppose k is an odd positive integer. Then we have

ζE(s)
(
1− k−s

)
=

∞∑
r=1

(−1)r
(
−s

r

)
ζE(s+ r)

ks+r

Er(k) + Er(0)

2
.

Proof Suppose k is an odd positive integer. If we take a = 1 and x = −h/k, 0 ≤ h ≤ k − 1 in Part 1 of

Lemma 3.2, multiply by (−1)h , and sum over h, then we have

k−1∑
h=0

(−1)hζE

(
s, 1− h

k

)
=

∞∑
r=0

(−1)r
(
−s

r

)
ζE(s+ r)

kr

k−1∑
h=0

(−1)hhr, (20)

in which we understand 0r = 1 if r = 0, and 0r = 0 otherwise. Note that for an odd positive integer k we

have {
1, 1− 1

k
, . . . , 1− k − 1

k

}
=

{
1

k
,
2

k
, . . . ,

1

k
+

k − 1

k

}
. (21)
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If we put a = 1/k in Part 2 of Lemma 3.1 and use (21), we get

k−1∑
h=0

(−1)hζE

(
s, 1− h

k

)
=

k−1∑
h=0

(−1)hζE

(
s,

1

k
+

h

k

)
= ksζE(s, 1)

= ksζE(s).

(22)

Hence, by (20) and (22), we have

ζE(s) =
∞∑
r=0

(−1)r
(
−s

r

)
ζE(s+ r)

ks+r

k−1∑
h=0

(−1)hhr

= ζE(s)k
−s +

∞∑
r=1

(−1)r
(
−s

r

)
ζE(s+ r)

ks+r

k−1∑
h=0

(−1)hhr

(23)

for odd k . Moreover, it is easily seen that

k−1∑
h=0

(−1)hhr =
Er(k) + Er(0)

2
for odd k (24)

(see [21, Equation 24.4.8] and [27, Theorem 2.1]). Thus, the proof is completed by (23) and (24). 2

Lemma 3.5 Suppose k is an odd positive integer with k > 1 . Then we have

ζE(s)
(
1− k−s

)
=

k−1∑
h=1

(−1)h−1

hs
+

∞∑
r=1

(
−s

r

)
ζE(s+ r)

ks+r

Er(k) + Er(0)

2
.

Proof Suppose k ∈ N. If we take a = 1 and x = h/k, 0 ≤ h ≤ k − 1 in Part 1 of Lemma 3.2, multiply by

(−1)h , and sum over h, then we have

k−1∑
h=0

(−1)hζE

(
s, 1 +

h

k

)
=

∞∑
r=0

(
−s

r

)
ζE(s+ r)

kr

k−1∑
h=0

(−1)hhr

=
∞∑
r=1

(
−s

r

)
ζE(s+ r)

kr
Er(k) + Er(0)

2
+ ζE(s).

(25)

Now, setting a = 1 in Part 1 of Lemma 3.1, we obtain

(−1)k−1ζE(s, k + 1) + ζE(s, 1) =
k−1∑
h=0

(−1)h(h+ 1)−s (k ∈ N),

which is equivalent to

(−1)kζE(s, k) + ζE(s) =
k−1∑
h=1

(−1)h−1h−s (26)
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for k ≥ 2. We set a = 1 in Part 2 of Lemma 3.1 and use (26); then the first term of (25) equals

k−1∑
h=0

(−1)hζE

(
s, 1 +

h

k

)
= ksζE(s, k)

= ks

(
ζE(s)−

k−1∑
h=1

(−1)h−1h−s

) (27)

for odd k > 1, and so by combining (25) and (27) we obtain the result. 2

Now we give proofs of Theorem 1.3 and Theorem 1.4, respectively.

Proof of Theorem 1.3 It needs to be noted that

Ek(0) = 0

if k is even ([27, p. 5, Corollary 1.1(ii)]). Using the above identity, adding Lemma 3.4 and Lemma 3.5, we

obtain Part 1 of Theorem 1.3. Subtracting Lemma 3.5 from Lemma 3.4, we have Part 2 of Theorem 1.3.

Proof of the Theorem 1.4 For α ∈ C, we introduce the alternating sum

H(α, k) =

[ k2 ]∑
h=1

(h,k)=1

(−1)hhα.

From now on, let k denote an odd integer and k > 1. By taking a = 1 and x = h/k, (h, k) = 1 in Part 1 of

Lemma 3.2, 1 ≤ h ≤
[
k
2

]
, multiplying by (−1)h , and summing over h, we obtain

[ k2 ]∑
h=1

(h,k)=1

(−1)hζE

(
s, 1 +

h

k

)
=

∞∑
r=0

(
−s

r

)
ζE(s+ r)k−rH(r, k). (28)

Similarly, we have

[ k2 ]∑
h=1

(h,k)=1

(−1)h−1ζE

(
s, 1− h

k

)
= −

∞∑
r=0

(−1)r
(
−s

r

)
ζE(s+ r)k−rH(r, k). (29)

Setting h = 0 in (14), the left-hand side of (28) equals

−
[ k2 ]∑
h=1

(h,k)=1

(−1)hζE

(
s,

h

k

)
+ ksH(−s, k). (30)
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If k is odd, (k − 1)/2 is an integer and so we get

k − 1

2
=

[
k

2

]
⇔ k

2
=

[
k

2

]
+

1

2

⇔ k = 2

[
k

2

]
+ 1

⇔ k −
[
k

2

]
=

[
k

2

]
+ 1.

(31)

Hence

1−
[
k
2

]
k

=

[
k
2

]
+ 1

k
, 1−

[
k
2

]
− 1

k
=

[
k
2

]
+ 2

k
, . . . , 1− 1

k
=

k − 1

k
,

which leads easily to the required

−
[ k2 ]∑
h=1

(h,k)=1

(−1)hζE

(
s, 1− h

k

)
=

k∑
h=[ k2 ]+1

(h,k)=1

(−1)hζE

(
s,

h

k

)
,

that is,

[ k2 ]∑
h=1

(h,k)=1

(−1)h
{
ζE

(
s,

h

k

)
− ζE

(
s, 1− h

k

)}
=

k∑
h=1

(h,k)=1

(−1)hζE

(
s,

h

k

)
. (32)

Now subtracting (28) from (29), from (30) and (32), we have

k∑
h=1

(h,k)=1

(−1)hζE

(
s,

h

k

)
= ksH(−s, k)− 2

∞∑
r=0

(
−s

2r

)
ζE(s+ 2r)k−2rH(2r, k). (33)

By the definition of the Möbius functions, for n ∈ N , we have

∑
d|n

µ(d) =

[
1

n

]
=

{
1 if n = 1

0 if n > 1

(see [2, p. 25, Theorem 2.1]). Recalling from Part 2 of Lemma 3.1 that

ζE(s, ka) = k−s
k−1∑
r=0

(−1)rζE

(
s, a+

r

k

)
, (34)

and letting a = 1/k in (34), we obtain

ζE(s) = k−s
k−1∑
r=0

(−1)rζE

(
s,

r + 1

k

)

= k−s
k∑

r=1

(−1)r−1ζE

(
s,

r

k

)
,

(35)
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where k is odd. Hence the left-hand side of (33) may be rewritten as

k∑
h=1

(h,k)=1

(−1)hζE

(
s,

h

k

)
=

k∑
h=1

(−1)h
∑

d|(h,k)

µ(d)ζE

(
s,

h

k

)

=
k∑

h=1

(−1)h
∑

d|h,d|k

µ(d)ζE

(
s,

h

k

)

=
∑
d|k

µ(d)

k/d∑
m=1

(−1)mdζE

(
s,

md

k

)

=
∑
d|k

µ(d)

k/d∑
m=1

(−1)mζE

(
s,

m

k/d

)
(use replace k/d by k in (35))

= −ksζE(s)
∑
d|k

µ(d)d−s,

(36)

since d is odd in the case k is odd. Thus, by combining (33) and (36), the proof of Theorem 1.4 is completed.

4. Some further identities

In the spirit of Euler, by working with the formal power series, we have

∞∑
n=0

(−1)n+1ζE(−n)tn

n!
=

∞∑
n=0

( ∞∑
k=1

(−1)kkn

)
(−1)ntn

n!

=

∞∑
k=1

(−1)k

( ∞∑
n=0

(−kt)n

n!

)
.

(37)

The last term of (37) converges to

− 1

et + 1
. (38)

Thus, directly from definition (4), (38) may be written

− 1

et + 1
= −1

2

∞∑
n=0

En(0)
tn

n!
(39)

Applying the reflection formula of Euler polynomials (see [21, 24.4.4]):

En(1− x) = (−1)nEn(x), (40)

with x = 0, by (37), (38), and (39), we obtain

ζE(−n) =
(−1)n

2
En(0) =

1

2
En(1) (41)
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for n ∈ N0, which imply ζE(−1) = 1/4, ζE(−2) = 0, ζE(−3) = −1/8, . . . (see [10, p. 520, Corollary 3]). The

following identity involving Euler polynomials

En(x) = 2xn −
n∑

r=0

(
n

r

)
(−1)n−rEn−r(0)x

r (n ∈ N0) (42)

follows from the known formula (see [11, p. 41, (6)] and [21, 24.4.2])

En(x+ 1) + En(x) = 2xn (n ∈ N0), (43)

in the case we replace En(x + 1) by
∑n

r=0

(
n
r

)
En−r(1)x

r in (43), then set x = 0, and replace n by n − r in

(40).

Putting a = 1 and s = −n in Part 1 of Lemma 3.2, we obtain the result

ζE(−n, x+ 1) =
n∑

r=0

(
n

r

)
ζE(r − n)xr, |x| < 1. (44)

Next setting a = x, s = −n , and h = 0 in (14), we have

ζE(−n, x+ 1) + ζE(−n, x) = xn. (45)

Combining (44) and (45), we have

ζE(−n, x) = xn −
n∑

r=0

(
n

r

)
ζE(r − n)xr,

and by (41) and (42), we have

ζE(−n, x) =
1

2

(
2xn −

n∑
r=0

(
n

r

)
(−1)n−rEn−r(0)x

r

)

=
1

2
En(x)

(46)

for n ∈ N0 (see [10, p. 520, (3.20)], [16, p. 4, (1.22)], and [29, p. 41, (3.8)]).

For a = 1, Part 2 of Lemma 3.2 yields

ζE(s, 2− x) =
∞∑
r=0

(−1)r−1

(
−s

r

)
{ζE(s+ r)− 1}xr, (47)

where |x| < 2 (cf. [26, p. 146, (18)]). Replacing the summation index r in (47) by r + 1, and setting x = 1,

we arrive immediately at an analogue form of (2.3) in [25]:

∞∑
r=1

(−1)r
(
−s

r

)
{ζE(s+ r)− 1}+ 2ζE(s) = 1. (48)
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Letting x = −1 in (47) and using (14) with a = 1, 2 and h = 0, that is, ζE(s, 3) = ζE(s) + 1/2s − 1, we find

that

ζE(s) = 1− 1

2s+1
− 1

2

∞∑
r=1

(
−s

r

)
{ζE(s+ r)− 1} , (49)

which provides a companion of Landau’s formula (see [18, p. 274, (3)] and [28, p. 33, (2.14.1)]). Setting x = 1/2

in (47), and using (14) with a = 1/2 and h = 0, that is, ζE(s, 3/2) + ζE(s, 1/2) = 2s, we obtain a series

representation for β(s):

β(s) = 1 +
∞∑
r=0

(−1)r

2r+s

(
−s

r

)
{ζE(s+ r)− 1}

= 1 +
∞∑
r=0

1

2r+s

(
s+ r − 1

r

)
{ζE(s+ r)− 1} ,

(50)

where β(s) denotes the Dirichlet beta function defined by (see [1, p. 807, 23.2.21])

β(s) =
∞∑

n=0

(−1)n

(2n+ 1)s
.

The above series converges for all Re(s) > 0. Setting s = 2 in (50), we deduce

Catalan’s constant G = β(2) = 1 +

∞∑
r=1

r

2r+1
{ζE(r + 1)− 1} , (51)

which is one of the basic constants whose irrationality and transcendence (though strongly suspected) remain

unproven (cf. [26, p. 29, (16)]).
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