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Abstract: In this paper, we classify umbilic-free hypersurfaces of the unit sphere that have constant para-Blaschke

eigenvalues and possess parallel Möbius form. To achieve the classification, we first of all show that, under the condition

of having constant para-Blaschke eigenvalues, an umbilic-free hypersurface of the unit sphere is of parallel Möbius form

if and only if its Möbius form vanishes identically.
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1. Introduction

In [22], Wang established the Möbius geometry of submanifolds in the unit sphere Sn+p of dimension (n+p) (cf.

also [1] for p = 1). This includes associated with an n -dimensional umbilic-free submanifold x : Mn → Sn+p

the introduction of the Möbius metric g , the Möbius second fundamental form B , the Möbius form Φ , and

the Blaschke tensor A (for their definitions see Section 2 below).

Since the publication of [22], the study of Möbius geometry of submanifolds in Sn+p has made a lot of

progress and many interesting results have been obtained. Among them, we have witnessed the study of both

the so-called Möbius isoparametric hypersurfaces and the so-called Blaschke isoparametric hypersurfaces, where

a hypersurface in Sn+1 is called Möbius isoparametric if it satisfies two conditions that Φ = 0 and all the

eigenvalues of B with respect to g (which are called Möbius principal curvatures) are constant [12]. Similarly,

a hypersurface in Sn+1 is called Blaschke isoparametric if it satisfies two conditions that Φ = 0 and all the

eigenvalues of A with respect to g are constant [20].

After a series of partial results in [12] and later [3–6, 9, 10, 13], a complete classification of Möbius

isoparametric hypersurfaces in Sn+1 was finished recently by Li et al. (cf. Theorem 1.1 in [15], together

with [12]). Similarly, after many partial results in [7, 17–21], Li and Wang [16] also proved that a Blaschke

isoparametric hypersurface in Sn+1 with more than two distinct Blaschke eigenvalues is Möbius isoparametric.

This, along with applications of the main result reported by Li et al. [15], Li and Zhang [19] and Liu et al. [21],

finally completes the classification of Blaschke isoparametric hypersurfaces in Sn+1 .

Moreover, for the purpose of extending the interesting Möbius geometric characterization of hypersurfaces

in space forms with constant mean curvature and constant scalar curvature, due to Li and Wang [13], one also
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considered the so-called para-Blaschke tensor (cf. [26]) defined by D(λ) := A+ λB for a real number λ . After

the results in [2] and [26], Li and Wang [16] proved that a hypersurface in Sn+1 must be Möbius isoparametric

provided that Φ = 0 and D(λ) (for some λ ∈ R) has more than two distinct constant eigenvalues. Together

with results given by Li and Wang [13] and Zhong and Sun [26] and Theorem 1.1 given by Li et al. [15], Li

and Wang’s [16] above-mentioned result finally completes the classification of umbilic-free hypersurfaces with

the conditions Φ = 0 and that D(λ) has constant eigenvalues for some λ ∈ R .

From the fact that the four Möbius invariants g, B, A , and Φ are related by the complicated integrability

conditions, in [8] the authors studied Möbius isoparametric hypersurfaces of Sn+1 by focusing on the relation

between its two conditions. As a result they obtained the following

Theorem 1.1 ([8]) Let x : Mn → Sn+1 be an umbilic-free hypersurface. Assume that Φ is parallel, namely

when denoting ∇ the Levi-Civita connection of the Möbius metric g we have ∇Φ = 0 , and that additionally it

satisfies either

(1) n = 2 , or

(2) n ≥ 3 and B has constant eigenvalues;

then we have Φ = 0 .

Theorem 1.1 implies that the two conditions of Möbius isoparametric hypersurfaces become equivalent to

that of ∇Φ = 0 and all the Möbius principal curvatures are constant.

In this paper, instead of B we consider a natural counterpart of Theorem 1.1 on the Blaschke tensor

A , and even more general the para-Blaschke tensor D(λ) for some real number λ . Exactly, we will prove the

following result:

Theorem 1.2 Let x : Mn → Sn+1 (n ≥ 3) be an umbilic-free hypersurface such that, for some λ ∈ R , D(λ)

has constant eigenvalues. Then the Möbius form satisfies ∇Φ = 0 if and only if Φ = 0 .

Remark 1.3 Even though it looks similar, when compared with the proof of Theorem 1.1, that of Theorem 1.2

is more involved. In fact, only after finishing the complete classification of submanifolds in the unit sphere with

parallel Möbius second fundamental form [11, 24] do we come to realize some key facts in our present proof of

Theorem 1.2.

Remark 1.4 Related to Theorem 1.2 there have some other similar results. We recall that Zhang [25] showed

that if ∇Φ = 0 and A = λg for some smooth function, then Φ = 0 and λ is a constant. Furthermore, Xia

[23] showed that if ∇Φ = 0 and A+ λB = µg for some functions λ, µ , then Φ = 0 and thus the result given

by Li and Wang in [13] can also be achieved under some weaker condition.

Remark 1.5 The above two theorems and related facts motivate us to raise the following problem: Try to

construct an umbilic-free hypersurface x : Mn → Sn+1 for which ∇Φ = 0 whereas Φ ̸= 0 .

Finally, a combination of the results in [15, 16, 19, 21] would give the classification of Blaschke isopara-

metric hypersurface in Sn+1 . For the convenience of readers, as an immediate consequence of Theorem 1.2, we

would state the following results.
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Corollary 1.6 Let x : Mn → Sn+1 be an umbilic-free hypersurface with parallel Möbius form. If for some

λ ∈ R the para-Blaschke tensor D(λ) has constant eigenvalues, then x is Möbius equivalent to an open part of

one of the following hypersurfaces:

(i) a hypersurface with constant mean curvature and constant scalar curvature in Sn+1 , or the image of σ of

a hypersurface with constant mean curvature and constant scalar curvature in Rn+1 , or the image of τ

of a hypersurface with constant mean curvature and constant scalar curvature in the (n+ 1)-dimensional

hyperbolic space Hn+1 of constant sectional curvature −1 ;

(ii) the image of σ of a cone over a hypersurface with constant mean curvature and constant scalar curvature

in Sk ⊂ Rk+1 ↪→ Rn+1 for some k ≤ n ;

(iii) the image of τ of a rotational hypersurface over a hypersurface with constant mean curvature and constant

scalar curvature in Hk+1 ↪→ Hn+1 for some k ≤ n .

Here the notations τ and σ and the construction of “cone” and “rotational hypersurface” are introduced later

in Section 4.

We organize the paper as follows. In Section 2, we review the Möbius invariants and integrability

conditions for hypersurfaces in Sn+1 . In Section 3, we prove Theorem 1.2. In Section 4, we complete the proof

of Corollary 1.6.

2. Preliminaries

In this section, we recall some fundamental facts and formulas. For proofs and more details, we refer to Wang

[22].

For an immersed umbilic-free hypersurface x : Mn → Sn+1 ⊂ Rn+2 , let {ei}ni=1 be a local orthonormal

basis with respect to the induced metric I = dx · dx and {θi}ni=1 its dual basis. Let II =
∑

i,j hijθi ⊗ θj

be the second fundamental form of x , with the squared length ∥II∥2 =
∑

i,j(hij)
2 and the mean curvature

H = 1
n

∑
i hii . The Möbius metric g of x : Mn → Sn+1 satisfies g = ρ2dx · dx , where ρ2 = n

n−1 (∥II∥
2−nH2).

Let Ei = ρ−1ei, ωi = ρθi ; then {E1, . . . , En} is an orthonormal basis for (Mn, g) with dual basis {ω1, . . . , ωn} .
Let ωij be the connection 1-form of the Möbius metric g ; it is defined by the structure equations dωi =∑

j ωij ∧ ωj , ωij + ωji = 0.

For x : Mn → Sn+1 , we define its Blaschke tensor, its Möbius form, and its Möbius second fundamental

form by A =
∑

i,j Aijωi⊗ωj , Φ =
∑

i Ciωi , and B =
∑

i,j Bijωi⊗ωj , respectively. The coefficients Bij , Aij ,

and Ci can be calculated by the associated Euclidean invariants of x as follows (cf. [22]):

Bij = ρ−1
(
hij −Hδij

)
, (2.1)

Aij = −ρ−2
{
Hessij(log ρ)− ei(log ρ)ej(log ρ)−Hhij

}
(2.2)

− 1
2ρ

−2
(
∥∇(log ρ)∥2 − 1 +H2

)
δij ,

Ci = −ρ−2
{
ei(H) +

∑
j

(hij −Hδij)ej(log ρ)
}
, (2.3)

where Hessij and ∇ are the Hessian matrix and the gradient with respect to dx · dx .
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The components of the covariant differentiation of Φ,A , and B :

∇Φ =
∑
i,j

Ci,jωiωj , ∇A =
∑
i,j,k

Aij,kωiωjωk, ∇B =
∑
i,j,k

Bij,kωiωjωk

are defined, respectively, by ∑
j

Ci,jωj = dCi +
∑
j

Cjωji, (2.4)

∑
k

Aij,kωk = dAij +
∑
k

Aikωkj +
∑
k

Akjωki, (2.5)

∑
k

Bij,kωk = dBij +
∑
k

Bikωkj +
∑
k

Bkjωki. (2.6)

The integrability conditions of the Möbius invariants are given by

Aij,k −Aik,j = BikCj −BijCk, (2.7)

Ci,j − Cj,i =
∑
k

(BikAkj −AikBkj), (2.8)

Bij,k −Bik,j = Ckδij − Cjδik, (2.9)

Rijkl = BikBjl −BilBjk +Aikδjl +Ajlδik −Ajkδil −Ailδjk, (2.10)

∑
i

Bii = 0,
∑
i,j

(Bij)
2 = n−1

n , (2.11)

where Rijkl denotes the components of the curvature tensor of g .

The second covariant derivative of Ci is defined by∑
k

Ci,jkωk = dCi,j +
∑
k

Ck,jωki +
∑
k

Ci,kωkj . (2.12)

From the exterior differentiation of (2.4), we have the following Ricci identity:

Ci,jk − Ci,kj =
∑
l

ClRlijk. (2.13)

3. Proof of Theorem 1.2

Let x : Mn → Sn+1 be an immersed umbilic-free hypersurface; we assume that ∇Φ = 0 and, for λ ∈ R ,

the para-Blaschke tensor D(λ) := A + λB has t distinct constant eigenvalues D1, D2, . . . , Dt of multiplicities

m1,m2, . . . ,mt , respectively. Then around each point we can choose an orthonormal frame field {Ei} , with
{ωi} its dual, such that Φ =

∑
i Ciωi and moreover D(λ) is diagonalized:

D
(λ)
ij = Aij + λBij = diδij . (3.1)
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Without loss of generality, we assume that the matrix (Dij) takes the form

(D
(λ)
ij ) = diag (D1, . . . , D1︸ ︷︷ ︸

m1

, D2, . . . , D2︸ ︷︷ ︸
m2

, . . . , Dt, . . . , Dt︸ ︷︷ ︸
mt

). (3.2)

In the sequel we denote [i] = {j | dj = di} and Is = {i | di = Ds}, 1 ≤ s ≤ t .

Lemma 3.1 The orthonormal frame field {Ei} can be chosen such that, in addition to (3.2), the components

of Φ take the form

(C1, C2, . . . , Cn) = (C1̄, 0, . . . , 0︸ ︷︷ ︸
m1

, C2̄, 0, . . . , 0︸ ︷︷ ︸
m2

, · · · , Ct̄, 0, . . . , 0︸ ︷︷ ︸
mt

) (3.3)

Proof According to (3.2) we consider each eigenspace of D(λ) corresponding to its eigenvalue Ds , and aim

at finding its new orthonormal basis such that (3.3) holds.

For s = 1, we make the following orthogonal transformation

(Ē1, . . . , Ēm1) = (E1, . . . , Em1)T1, T1 ∈ SO(m1),

where if (C1, . . . , Cm1) = 0 we take T1 = id, whereas if (C1, . . . , Cm1) ̸= 0 we take T1 such that

Ē1 =
C1E1 + C2E2 + · · ·+ Cm1Em1√

C2
1 + C2

2 + · · ·+ C2
m1

.

Similarly, for s = 2, we make the following orthogonal transformation

(Ēm1+1, . . . , Ēm1+m2) = (Em1+1, . . . , Em1+m2)T2, T2 ∈ SO(m2),

where if (Cm1+1, . . . , Cm1+m2) = 0 we take T2 = id, whereas if

(Cm1+1, . . . , Cm1+m2) ̸= 0

we take T2 such that

Ēm1+1 =
Cm1+1Em1+1 + Cm1+2Em1+2 + · · ·+ Cm1+m2Em1+m2√

C2
m1+1 + C2

m1+2 + · · ·+ C2
m1+m2

.

Repeating this procedure up to s = t , we will have an orthonormal frame field {Ē1, . . . , Ēn} , defined by

(Ē1, . . . , Ēn) = (E1, . . . , En)


T1

T2

. . .

Tt

 , Ts ∈ SO(ms).

Let {ω̄i} be the dual frame of {Ēi} and we write Φ =
∑

i C̄iω̄i ; then it is easily seen that with respect

to {Ēi}ni=1 both (3.2) and (3.3) hold, e.g., if
∑m1

i=1 Ciωi ̸= 0, then, by denoting Ēj = bj1E1 + · · · + bjm1Em1 ,
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2 ≤ j ≤ m1 , we have 
C̄1 = Φ(Ē1) =

n∑
i=1

Ciωi(Ē1) =
√
C2

1 + C2
2 + · · ·+ C2

m1
̸= 0,

C̄j = Φ(Ēj) =
n∑

i=1

Ciωi(Ēj) =

m1∑
i=1

Cibji = 0, 2 ≤ j ≤ m1.

Hence we complete the proof of Lemma 3.1. 2

From now on, we will take orthonormal frame fields {Ei}ni=1 such that both (3.2) and (3.3) hold.

Lemma 3.2 Assume that ∇Φ = 0 and that in (3.1) all {di} are constants: then we have:

Bij = 0, Aij = 0, if [i] ̸= [j], (3.4)

Dij,k = 0, if [i] = [j], (3.5)

Cs̄Rs̄ijk = 0, if [i] = [k] ̸= [j], j ∈ Is, (3.6)

where ∑
k

Dij,kωk := dD
(λ)
ij +

∑
k

D
(λ)
ik ωkj +

∑
k

D
(λ)
kj ωki. (3.7)

Proof Since ∇Φ = 0, from (2.8) and (3.1), we get

0 = (dj − di)Bij , 0 = (dj − di)Aij , ∀ i, j, (3.8)

from which (3.4) immediately follows.

Substitute (3.1) into (3.7), and using the assumption that di = const. we obtain

∑
k

Dij,kωk = (di − dj)ωij , ∀ i, j, (3.9)

which implies (3.5).

By using (2.10), (3.1), and (3.4), we have

Rlijk = 0, if [i] = [k] ̸= [j] and [l] ̸= [j]. (3.10)

On the other hand, the condition ∇Φ = 0 implies that Ci,jk = 0. Then, by (2.13) and (3.10), we get

0 =
∑
l∈[j]

ClRlijk, if [i] = [k] ̸= [j]. (3.11)

Combining (3.11) with (3.3), we immediately get (3.6). 2

Lemma 3.3 Assume that ∇Φ = 0 and Φ ̸= 0 ; then in (3.3) at least two elements of {C1̄, C2̄, . . . , Ct̄} are
nonzero.

1185



ZHAI et al./Turk J Math

Proof Since Φ ̸= 0, without loss of generality, we assume that C1̄ ̸= 0.

Suppose on the contrary that if Cq̄ = 0 for all 2 ≤ q ≤ t , then, by (2.4), we have

0 =
∑
j

Ci,jωj = C1̄ω1̄i, i ̸= 1̄.

Thus, we obtain ω1̄i = 0 for all i . Then, from (3.9), we obtain that

Di1,k = 0, ∀ i, k.

This combining with (3.1), (3.5), (2.7), and (2.9) gives that

0 = Di1̄,k −Dik,1̄ = BikC1̄ −Bi1̄Ck + λ(δi1̄Ck − δikC1̄), if [i] = [k]. (3.12)

It follows that
C1̄(Bik − λδik) = Ck(Bi1̄ − λδi1̄), if [i] = [k]. (3.13)

From (3.13) and (3.4), we obtain

Bik = λδik, if (i, k) ̸= (1̄, 1̄). (3.14)

Hence, by (2.11), we have

B1̄1̄ + (n− 1)λ = 0, (B1̄1̄)
2 + (n− 1)λ2 = n−1

n .

It follows that x has two distinct constant principal curvatures. By Theorem 1.1 we know that Φ = 0, which

is a contradiction.

We complete the proof of Lemma 3.3. 2

Using Lemma 3.3, we can further get the following result.

Lemma 3.4 Assume that ∇Φ = 0 and Φ ̸= 0 ; then t ≤ 3 .

Proof According to Lemma 3.3, we can assume that C1̄ ̸= 0 and C2̄ ̸= 0.

If t ≥ 4, then (3.6) implies that

0 = R1̄3̄1̄3̄ = B1̄1̄B3̄3̄ +D1 +D3 − λ(B1̄1̄ +B3̄3̄), (3.15)

0 = R1̄4̄1̄4̄ = B1̄1̄B4̄4̄ +D1 +D4 − λ(B1̄1̄ +B4̄4̄), (3.16)

0 = R2̄3̄2̄3̄ = B2̄2̄B3̄3̄ +D2 +D3 − λ(B2̄2̄ +B3̄3̄), (3.17)

0 = R2̄4̄2̄4̄ = B2̄2̄B4̄4̄ +D2 +D4 − λ(B2̄2̄ +B4̄4̄). (3.18)

From (3.15) and (3.17), we obtain

(B3̄3̄ − λ)(B1̄1̄ −B2̄2̄) +D1 −D2 = 0. (3.19)

Similarly, from (3.15), (3.16), we get

(B1̄1̄ − λ)(B3̄3̄ −B4̄4̄) +D3 −D4 = 0. (3.20)

Since D1 ̸= D2 and D3 ̸= D4 , (3.19) and (3.20) show that

(B1̄1̄ −B2̄2̄)(B3̄3̄ −B4̄4̄) ̸= 0. (3.21)
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On the other hand, (3.15)+(3.18)-(3.16)-(3.17) immediately gives that

0 = (B1̄1̄ −B2̄2̄)(B3̄3̄ −B4̄4̄),

which is a contradiction to (3.21). This proves Lemma 3.4. 2

Proof of Theorem 1.2 It is sufficient to prove the nontrivial part, i.e. if we assume that ∇Φ = 0 and for

some λ ∈ R the para-Blaschke tensor D(λ) of x has constant eigenvalues, then it must be that Φ = 0.

First of all, according to Lemma 3.3, the assertion holds if t = 1. Alternatively, another proof of this

case can be found in [23].

Next, suppose on the contrary that Φ ̸= 0; making use of Lemma 3.4, we will derive a contradiction by

dividing the remaining discussions into two independent cases:

(i) t = 2, n ≥ 3;

(ii) t = 3, n ≥ 3.

Case (i). t = 2, n ≥ 3. We assume that C1̄ ̸= 0 and C2̄ ̸= 0.

From (3.5), (3.1) and (2.7), (2.9), we have


0 = Da1̄,b −Dab,1̄ = BabC1̄ −Ba1̄Cb + λ(δa1̄Cb − δabC1̄), if a, b ∈ I1,

0 = Dp2̄,q −Dpq,2̄ = BpqC2̄ −Bp2̄Cq + λ(δp2̄Cq − δpqC2̄), if p, q ∈ I2.
(3.22)

The above equations and (3.3) imply that

Bab = λδab, if a, b ∈ I1 and (a, b) ̸= (1̄, 1̄), (3.23)

Bpq = λδpq, if p, q ∈ I2 and (p, q) ̸= (2̄, 2̄). (3.24)

Hence, by (3.23), (3.24), and (2.11), we get

{∑
i Bii = B1̄1̄ +B2̄2̄ + (n− 2)λ = 0,∑
i,j(Bij)

2 = (B1̄1̄)
2 + (B2̄2̄)

2 + (n− 2)λ2 = n−1
n .

(3.25)

Since λ = const. , by (3.25) we know that

B1̄1̄ = const., B2̄2̄ = const. (3.26)

Hence all Möbius principal curvatures are constant. By Theorem 1.1 we obtain Φ = 0, which is a

contradiction.

This completes the proof of Case (i).

Case (ii). t = 3, n ≥ 3.

In this case, we assume that the para-Blaschke tensor D(λ) has three distinct constant eigenvalues

D1, D2, D3 of multiplicities m1,m2,m3 , respectively.
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If n = 3, according to Lemma 3.3, without loss of generality, we can assume that C1 ̸= 0 and C2 ̸= 0;

then, by (3.6), (2.10), and (3.1), we get

0 = R1212 = B11B22 +D1 +D2 − λ(B11 +B22), (3.27)

0 = R1313 = B11B33 +D1 +D3 − λ(B11 +B33), (3.28)

0 = R2323 = B22B33 +D2 +D3 − λ(B22 +B33). (3.29)

Then the summation (3.27)+(3.28) gives that

B11(B22 +B33) + 2D1 +D2 +D3 − λ(2B11 +B22 +B22) = 0. (3.30)

This, together with the fact B11 +B22 +B33 = 0, implies that

(B11)
2 + λB11 − (2D1 +D2 +D3) = 0.

Hence B11 = const. and thus by (2.11) we see that all the Möbius principal curvatures are constant. By

Theorem 1.1 we obtain the desired contradiction.

If n ≥ 4, again we assume that C1̄ ̸= 0 and C2̄ ̸= 0. Then, by (3.6), we obtain

R1̄i1̄i = R2̄k2̄k = 0, ∀ i ∈ I2 ∪ I3, ∀ k ∈ I1 ∪ I3.

It follows from (3.1) and (2.10) that

B2̄2̄Bkk − λ(B2̄2̄ +Bkk) = −(D1 +D2), ∀ k ∈ I1, (3.31)

B1̄1̄Bii − λ(B1̄1̄ +Bii) = −(D1 +D2), ∀ i ∈ I2, (3.32)

B1̄1̄Bjj − λ(B1̄1̄ +Bjj) = −(D1 +D3), ∀ j ∈ I3, (3.33)

B2̄2̄Bkk − λ(B2̄2̄ +Bkk) = −(D2 +D3), ∀ k ∈ I3. (3.34)

Now the subtraction (3.32)–(3.33) gives that

(B1̄1̄ − λ)(Bii −Bjj) = D3 −D2 ̸= 0, i ∈ I2, j ∈ I3.

Analogously, from (3.32), (3.33), and (3.34), we can get

(B2̄2̄ − λ)(Bkk −Bjj) = D3 −D1 ̸= 0, k ∈ I1, j ∈ I3,

(B3̄3̄ − λ)(B2̄2 −B1̄1̄) = D1 −D2 ̸= 0.

The above equations imply that

B1̄1̄ ̸= λ, B2̄2̄ ̸= λ, B3̄3̄ ̸= λ. (3.35)

Again, using the equations (3.31)–(3.34), we get

(B1̄1̄ − λ)(Bii −Bjj) = 0, if [i] = [j] ̸= [1], (3.36)

(B2̄2̄ − λ)(Bii −Bjj) = 0, if [i] = [j] = [1]. (3.37)
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Hence, we have

Bii = Bjj ̸= λ, if [i] = [j]. (3.38)

Claim 1. m1 = m2 = 1 and C3̄ = 0.

In fact, if m1 ≥ 2, similar to (3.22), from (3.5), (3.1) and (2.7), (2.9), we get

0 = Da1̄,a −Daa,1̄ = BaaC1̄ −Ba1̄Ca + λ(δa1̄Ca − δaaC1̄), if a ∈ I1. (3.39)

It follows that Baa = λ for all a ∈ I1, a ̸= 1̄, a contradiction to (3.38).

Hence we have m1 = 1. Similarly, we also have m2 = 1.

Finally, if C3̄ ̸= 0, then we have 1 = m3 = n− 2 ≥ 2, still a contradiction.

This verifies Claim 1.

From (3.6), (2.10) and (3.1), (3.4), we get

0 = R1̄i1̄k = B1̄1̄Bik +Aik = (B1̄1̄ − λ)Bik, if i, k ∈ I3, i ̸= k.

From the fact B1̄1̄ ̸= λ , we have

Bik = 0, if i, k ∈ I3, i ̸= k. (3.40)

From the above discussion, we get

(Bij) = diag(B11, B22, B3̄3̄, . . . , B3̄3̄). (3.41)

Using the fact B11 +B22 +m3B3̄3̄ = 0 we get

(B11)
2 +B22B11 +m3B3̄3̄B11 = 0.

This combining with (3.32) and (3.33) gives that

(B11)
2 + λm3B11 − [(1 +m3)D1 +D2 +m3D3] = 0.

Thus B11 = const. and therefore, by (2.11), all Bii (1 ≤ i ≤ n) are constant. By Theorem 1.1 we know that

Φ = 0, again a contradiction.

This completes the proof of Case (ii).

We have completed the proof of Theorem 1.2.

4. Proof of Corollary 1.6

Let Hn+p denote the (n + p)-dimensional hyperbolic space of constant sectional curvature −1, which can be

defined by

Hn+p = {(y0, y1) ∈ R+ × Rn+p| − y20 + y1 · y1 = −1},

where · denotes the canonical Euclidean inner product. Let Sn+p
+ be the open hemisphere in Sn+p whose

first coordinate is positive. Then we have two conformal diffeomorphisms σ : Rn+p ↪→ Sn+p \ {(−1, 0)} and

τ : Hn+p ↪→ Sn+p
+ as follows:

σ(u) =
( 1−|u|2
1+|u|2 ,

2u
1+|u|2

)
, u ∈ Rn+p, (4.1)
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τ(y0, y1) =
(

1
y0
, y1

y0

)
, (y0, y1) ∈ Hn+p. (4.2)

By use of σ and τ , we can regard submanifolds in Rn+p and Hn+p as submanifolds in Sn+p , respectively.

Definition 4.1 ([14]) Given an immersed r -dimensional submanifold u : Mr → Sr+p , for n ≥ r+1 , the cone

C over u in Rn+p is defined by

C : Mr × R+ × Rn−r−1 → Rr+p+1 × Rn−r−1 := Rn+p

with C(q, t, v) = (tu(q), v) , where q ∈ Mr, t ∈ R+ and v ∈ Rn−r−1 .

Definition 4.2 ([14]) Let Rk+1
+ = {(x1, . . . , xk+1) ∈ Rk+1|xk+1 > 0} be the upper half-space, and u =

(u1, . . . , uk+1) : Mk → Rk+1
+ be an immersed hypersurface. The rotational hypersurface over u in Rn+1 is

defined as

f : Mk × Sn−k → Rn+1,

f(q, v) = (u(q), v) = (u1, . . . , uk, uk+1v),

where q ∈ Mk and v ∈ Sn−k .

Proof of Corollary 1.6.

Assume that the umbilic-free hypersurface x : Mn → Sn+1 satisfies ∇Φ = 0 and, for λ ∈ R , the

para-Blaschke tensor D(λ) has constant eigenvalues.

First, from Theorem 1.2 we have Φ = 0.

Next, if D(λ) has exactly one eigenvalue, then by [13], x is Möbius equivalent to one of the hypersurfaces

as stated in (i).

If D(λ) has two distinct eigenvalues, then, according to Zhong and Sun [26], x is Möbius equivalent to an

isoparametric hypersurface with two principal curvatures in Sn+1 , or a hypersurface as indicated in Example

3.2 or Example 3.3 of [26]. It can be verified that the hypersurface in Example 3.2 there is Möbius equivalent

to the cone in Definition 4.1, and the hypersurface in Example 3.2 there is Möbius equivalent to the rotational

hypersurface in Definition 4.2. Thus, in this case, x is Möbius equivalent to one of the hypersurfaces as stated

in (i), or (ii), or (iii). Here we would mention that the above Examples 3.2 and 3.3 in [26] were restated as

hypersurfaces (C1) and (C2) in Theorem 5.9 of [7], respectively.

Finally, if D(λ) has more than two distinct eigenvalues, then, according to [16], x is Möbius isoparametric

and, by the main theorem of [15], x is locally Möbius equivalent to either the image of σ of an isoparametric

hypersurface in Sn+1 , or the cone over an isoparametric hypersurface in Sk ⊂ Rk+1 ↪→ Rn+1 (k ≤ n). Hence,

x is locally Möbius equivalent to one of the hypersurfaces as stated in (i) or (ii).

This completes the proof of Corollary 1.6.
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[11] Hu ZJ, Zhai SJ. Submanifolds with parallel Möbius second fundamental form in the unit sphere. Preprint, 2015.
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