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Abstract: The proper forcing axiom is shown to imply that a compact scattered sequential space with scattering height

at most ω1 must have sequential order at most ω .
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1. Introduction

For all undefined notions we refer the reader to [7, 10]. One of the most interesting questions on the study of

sequential spaces is what is the bound of sequential order for a compact sequential space. In 1974, Bashkirov

[1] proved that it follows from CH that there are compact sequential spaces of any sequential order up to and

including ω1 . Since that time it has been an open problem to determine how large the sequential order of a

compact sequential space may be. To date, all the consistency examples have been scattered (e.g., see also [4, 8])

including the prototype example of the one-point compactification of the standard Mrowka space constructed

from an infinite maximal almost disjoint family of subsets of ω . To illustrate the Mrowka example, let us recall

M = ω ∪A , where A is an infinite maximal almost disjoint family of subsets of ω . The topology on the set M

is generated by the neighborhood system {B(x)}x∈M , where B(n) = {{n}} for every natural number n , and

B(a) = {{a} ∪ (a \ {1, 2, 3, . . . , i}) : i = 1, 2, 3, . . . } if a ∈ A . Since the topology on M is locally compact, take

the one-point compactification of M , denoted as M0 = M ∪ {∞} , where ∞ ̸∈ M . M0 is a sequential space

(see, e.g., [12]), and since A is maximal almost disjoint family, there is no sequence from ω converging to ∞ .

Thus the sequential order of M0 is 2 (see [4]). It is a remarkable state of affairs that there is no ZFC result

closing the gap between two and ω1 . Moreover, the largest sequential order known to follow from Martin’s

Axiom is 5 [4]. The author showed in [5] that the proper forcing axiom (PFA) imposes a bound of ω on the

sequential order in a restricted class of scattered spaces. See [2] for basic information on proper poset and PFA.

This paper improves that result in that it provides information about the limitations of sequential order in

arbitrary scattered spaces.

The definitions of sequential space, sequential order, and scattered space are provided below.

Definition 1.1 For any ordinal θ and θ -sequence {xα : α ∈ θ} from a space X , we let {xα : α < θ} → x

denote the relation that for every neighborhood U of x ∈ X , there is a β < θ such that {xα : β < α < θ} ⊂ U .

When {xα : α < θ} → x holds, we say that the θ -sequence converges to x .
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Definition 1.2 Let X be a space.

1. A space X is scattered if every subset of X has a relative isolated point.

2. A subset A of a space X is sequentially closed if every ω -sequence from A that converges in X converges

to a point in A .

3. A space X is sequential if every sequentially closed set is closed.

4. The sequential limit operator of a space X is defined on each A ⊂ X by transfinite recursion with A(0)

equaling A . For any A ⊂ X , A(1) is defined to be A∪{x ∈ X : (∃{an : n ∈ ω} ⊂ A) {an : n ∈ ω} → x} ,

and, for an ordinal α > 1 , we define A(α) to be
(∪

β<α A(β)
)(1)

.

5. The sequential order of a sequential space X is the minimum ordinal θ satisfying that, for all A ⊂ X ,

A(θ) is sequentially closed, i.e. the sequential order of X is the minimal ordinal θ such that Ā = A(θ)

for every A ⊂ X .

Our proof of the main result will be a new application of the following result that is a strengthening of

a similar result from [5].

Proposition 1.3 ([6]) PFA implies that if D is a subset of a compact sequential space and if x ∈ D \D(1) ,

then there is an ω1 -sequence {xα : α ∈ ω1} ⊂ D(1) that converges to x .

2. Sequential order in scattered spaces

Now we apply Proposition 1.3 to the structure of compact scattered sequential spaces.

Recall that the Cantor–Bendixson derivative of a space is obtained by eliminating all isolated points with

the relative topology.

Definition 2.1 If X is a scattered space, then the Cantor–Bendixson rank of X (also called the height of a

scattered space) is the ordinal ρ satisfying that the Cantor–Bendixson derivative process terminates at stage ρ .

By transfinite recursion, the scattering levels, {Xα : α < ρ} , are defined according to the properties that X0 is

the set of isolated points of X , and, for each α ≤ ρ , Xα is the set of isolated points of X \
∪
{Xβ : β < α} .

The value of ρ is the minimum ordinal such that Xρ+1 is empty.

Given a scattered space X , we let ρX(x) = α (or simply ρ(x) = α) for x ∈ X , where x ∈ Xα .

Theorem 2.2 PFA implies that if X is a compact scattered sequential space with sequential order greater than

ω , then the scattering height of X is at least ω1 .

Proof Assume that the sequential order of X is greater than ω . Choose countable D ⊂ X so that D(ω) is not

sequentially closed. Since D(ω+1) ̸= D(ω) , fix a point w ∈ D(ω+1) \D(ω) and a sequence {wn : n ∈ ω} ⊂ D(ω)

that converges to w by following Proposition 1.3. Since D(ω+1) = D , we may pass to the subspace equaling

the closure of D , and thereby assume that D is dense in X . For each x ∈ X , fix a compact open set Wx so

that x ∈ Wx and ρ(y) < ρ(x) for all y ∈ Wx \ {x} . We may assume that Ww = X .
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Claim 1 There is a family of sets {D(n, σ) : n ∈ ω, σ ∈ ω<ω
1 } together with, for each n ∈ ω and σ ∈ ω<ω

1 ,

points

{z(n, σ,m) : m ∈ ω}, {x(n, σ,m, α) : α ∈ ω1}, {y(n, σ, α) : α ∈ ω1}
and a subset Jn,σ ⊂ ω , satisfying the following, for all n, σ

1. D(n, ∅) is equal to D ∩Wwn ,

2. D(n, σ) is a countable subset of Wwn ∩D(k) for some k ∈ ω ,

3. {z(n, σ,m) : m ∈ ω} ⊂ D(n, σ)(<ω1) and converges to wn ,

4. {x(n, σ,m, α) : α ∈ ω1} ⊂ D(n, σ)(1) converges to z(n, σ,m) ,

5. {x(n, σ,m, α) : m ∈ Jn,σ} converges to y(n, σ, α) ,

6. D(n, σ) ⊂ {y(n, σ ↾ j, α) : σ(j) ≤ α} where j = dom(σ) .

Proof of Claim Assume that D(n, σ), like D(n, ∅), is a countable subset of Wwn ∩ D(k) for some k

satisfying that wn is in the sequential closure of D(n, σ), i.e. wn is in the set of limits of convergent countable

sequences from D(n, σ). We inductively choose J ’s as in Claim 1. Choose distinct {z(n, σ,m) : m ∈ ω} ,
also from the sequential closure of D(n, σ), converging to wn . Choose {x(n, σ,m, α) : α ∈ ω1} ⊂ D(n, σ)(1)

converging to z(n, σ,m). By PFA, there is an infinite Jn,σ ⊂ ω so that, for each α ∈ ω1 , the sequence

{x(n, σ,m, α) : m ∈ Jn,σ} converges. Indeed, PFA implies p > ω1 , where p denotes the smallest cardinality

of any family of infinite subsets of ω that has a strong finite intersection property but does not have a

pseudointersection. Recall that an infinite subset B of ω is a pseudointersection of a family F of infinite

subsets of ω if B \ F is finite for all F ∈ F . We can find such a Jn,σ by induction at each stage α ; for more

details see, e.g., Theorem 6.9., page 132 in [11].

Let y(n, σ, α) be chosen so that {x(n, σ,m, α) : m ∈ Jn,σ} → y(n, σ, α). We check that {y(n, σ, α) : α ∈
ω1} → wn . Let A be any compact open subset of Wwn with wn /∈ A . Choose m0 so that z(n, σ,m) /∈ A

for all m > m0 . Choose α0 so that for all m > m0 and all α > α0 , x(n, σ,m, α) /∈ A . It then follows that

y(n, σ, α) /∈ A for all α > α0 .

For each γ < ω1 , wn is in the sequential closure of the set {y(n, σ, α) : γ ≤ α} . Since wn is a limit of the

sequence {y(n, σ, α) : α ∈ ω1} , choose a cub, i.e. closed and unbounded set, C = {γξ : ξ ∈ ω1} ⊂ ω1 so that,

for each ξ , wn is in the sequential closure of {y(n, σ, α) : γξ ≤ α < γξ+1} . For each ξ ∈ ω1 , let D(n, σ⌢⟨ξ⟩)

equal {y(n, σ, α) : γξ ≤ α < γξ+1} . By construction, {x(n, σ,m, α) : m ∈ ω, α ∈ ω1} is a subset of D(k+1) ;

hence D(n, σ⌢⟨ξ⟩) is a subset of D(k+2) and wn is in the sequential closure of D(n, σ⌢⟨ξ⟩). Then item (6) is

satisfied.

By indexing ω × ω<ω
1 in order-type ω1 (order-preserving with respect to domain on ω<ω

1 ), we can

recursively choose the sets Jn,σ as in item (5) so that they form a mod finite chain. This completes the proof

of the Claim. 2

Fix any sufficiently large κ so that the space X is in H(κ); H(κ) is the collection of sets that have

cardinality less than κ , and such κ always exists; see, e.g., [9]. By the downward Löwenheim–Skolem Theorem,

H(κ) has an elementary submodel. Recall that a submodel M of H is elementary if any statement is true in
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H is also true in M ; for more details see, e.g., [3]. Let M0 be an elementary submodel of H(κ) of cardinality

ℵ1 so that M0 contains ω1 , {X} and the sequences constructed in the Claim. By induction on γ ∈ ω1 , choose

a mod finite descending sequence {Jγ : γ ∈ ω1} of infinite subsets of J from Claim 1, together with an ∈-chain

of elementary submodels {Mγ : γ ∈ ω1} so that Jγ ∈ Mγ+1 and for each ω -sequence ⟨xn : n ∈ ω⟩ ∈ Xω ∩Mγ ,

the sequence ⟨xn : n ∈ Jγ⟩ converges to a point in Mγ ∩X . By PFA, let I be any infinite pseudointersection

of the family {Jγ : γ ∈ ω1} . Also let M denote the union of the sequence {Mγ : γ ∈ ω1} .
The family from Claim 1 is the skeleton of a larger family of points of interest. Given a sequence

σ⃗ = {σn : n ∈ ω} ⊂ ω<ω
1 and an ordinal γ ∈ ω1 , we define the set V (σ⃗, γ) to be a special set of limits of the

sequence {D(n, σ⌢
n ⟨γ⟩) : n ∈ ω} . That is, we let V (σ⃗, γ) denote the set of v ∈ V (σ⃗, γ) that satisfy that for

each compact open A ⊂ Wv \ {v} , there is an n0 such that, for all n0 < n ∈ I , the set D(n, σ⌢
n ⟨γ⟩)∩ (Wv \A)

is not empty.

Claim 2 Let σ⃗ = {σn : n ∈ ω} ∈ (ω<ω
1 )

ω
. Assume that vγ ∈ V (σ⃗, γ) for each γ ∈ ω1 . Then, for each

uncountable Γ ⊂ ω1 , {vγ : γ ∈ Γ} converges to w .

Proof of Claim Let A be any compact open subset of Ww with A /∈ w . Since w is the limit of the

sequence {wn : n ∈ ω} , choose n0 so that wn /∈ A for all n > n0 . For each n > n0 , choose mn so that

z(n, σn,m) ∈ Ww \ A for all m > mn by item (3). Choose α0 < ω1 so that for each n > n0 and m > mn ,

x(n, σn,m, α) ∈ Ww \ A for all α ≥ α0 by item (4). It then follows that {y(n, σn, α) : α0 < α} ⊂ Ww \ A for

all n > n0 . Note that wn is in the sequential closure of the set {y(n, σ, α) : γ ≤ α} and α0 is countable. Now

it follows that, for each n > n0 , D(n, σ⌢
n ⟨γ⟩) is contained in Ww \A for all but countably many γ . Since each

vγ is in the closure of
∪
{D(n, σ⌢

n ⟨γ⟩) : n0 < n ∈ I} , we have that vγ ∈ Ww \A for all but countably many γ .
2

Now let Σ denote the set of sequences σ⃗ = {σn : n ∈ ω} from (ω<ω
1 )ω that are elements of M and

that satisfy that the sequence {dom(σn) : n ∈ ω} diverges to infinity. We will be examining the properties of

members of V (σ⃗, γ) for elements σ⃗ of Σ and γ ∈ ω1 . For each σ ∈ ω<ω
1 and each γ ∈ ω1 , let σ⃗⌢⟨γ⟩ denote

the sequence {σ⌢
n ⟨γ⟩ : n ∈ ω} . Of course σ⃗⌢⟨γ⟩ ∈ Σ for each σ⃗ ∈ Σ.

For each σ⃗ ∈ Σ, let µ(σ⃗) denote the minimum ordinal satisfying that there is a sequence {vγ : γ ∈ ω1}
satisfying that vγ ∈ V (σ⃗, γ) and ρ(vγ) ≤ µ(σ⃗) for all γ ∈ ω1 . We may assume there is a bound µ̄ ∈ ω1 such

that µ(σ⃗) ≤ µ̄ for all σ⃗ ∈ Σ because it follows from Claim 2 that ρ(w) is at least as large as µ(σ⃗) for any

σ⃗ ∈ Σ.

Define the natural ordering <∗ on Σ to mean, for σ⃗, τ⃗ ∈ Σ, σ⃗ <∗ τ⃗ providing σn ⊂ τn for all but finitely

many n . Now let us define µ∗(σ⃗) to be the minimum of the set {µ(τ⃗) : σ⃗ <∗ τ⃗ ∈ Σ} .

Claim 3 For each σ⃗ ∈ Σ , there is a γ0 so that µ(σ⃗) ≤ µ∗(σ⃗⌢⟨γ⟩) for all γ0 < γ ∈ ω1 .

Proof of Claim It follows from the definitions of µ(σ⃗⌢⟨γ⟩) and µ∗(σ⃗⌢⟨γ⟩) that we can choose some

vγ ∈ V (σ⃗, γ) with ρ(vγ) = µ∗(σ⃗⌢⟨γ⟩). Since each is an element of ω1 , there is some ξ < ω1 such that

ρ(vγ) = ξ for cofinally many γ ∈ ω1 . Of course, by definition of µ(σ⃗), we have that µ(σ⃗) ≤ ξ . 2

Claim 4 There is a σ⃗ ∈ Σ such that µ∗(σ⃗) = µ(σ⃗) .
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Proof of Claim If σ⃗, τ⃗ are in Σ, and σ⃗ <∗ τ⃗ , then µ∗(σ⃗) ≤ µ∗(τ⃗). Now define β(σ⃗) to be the minimum

ordinal such that µ∗(τ⃗) ≤ β(σ⃗) for all τ⃗ ∈ Σ such that σ⃗ <∗ τ⃗ . It follows that if σ⃗ <∗ τ⃗ , then β(τ⃗) ≤ β(σ⃗).

For this reason we can choose σ⃗ so that β(σ⃗) is minimal.

If there is a τ⃗ such that σ⃗ <∗ τ⃗ and µ∗(τ⃗) = β(σ⃗), then for almost all γ , β(σ⃗) = µ∗(τ⃗) ≤ µ(τ⃗) ≤
µ∗(τ⃗⌢⟨γ⟩) = β(σ⃗).

To prove there is a σ⃗ <∗ τ⃗ , so that µ∗(τ⃗) = β(σ⃗) we use the idea that ω -chains in <∗ are bounded.

The only complication to this is that we are restricted to chains in M . Choose an increasing sequence

{βn : n ∈ ω} ∈ M0 cofinal in β(σ⃗). Using cofinality, clearly H(κ) models that there is a function f : ω → Σ

such that, for each n ∈ ω , σ⃗ <∗ f(n) <∗ f(n+1) and satisfying that βn < µ∗(f(n)). Since all f(n) ∈ Σ and Σ

consists of elements from M =
∪

γ Mγ , one can choose an α ∈ ω1 so that f(n) ∈ Mα for all n . Now we work

in Mα+1 . Set Σα = Σ ∩ Mα , which is an element of Mα+1 . Using Jα ∈ Mα as a parameter, we define, for

τ⃗ ∈ Σα and γ ∈ ω1 , V (τ⃗ , γ, Jα) to be all those v ∈ X∩Mα satisfying that for each compact open A ⊂ Wv \{v}
there is an n0 such that for all n0 < n ∈ Jα , the set D(n, τ⌢n ⟨γ⟩)∩ (Wv \A) is not empty. It is easily checked,

by elementarity, that if v ∈ Mα then v ∈ V (τ⃗ , γ) if and only if v ∈ V (τ⃗ , γ, Jα). We can make use of the fact

that V (τ⃗ , γ, Jα) is in Mα+1 . Similarly, we can define Σα, V (τ⃗ , γ, Jα)-versions of µ(τ⃗ ; Jα) and µ∗(τ⃗ ; Jα). It

also follows from elementarity of Mα that these will equal the original values. Now H(κ) recognizes that there

is a <∗ -increasing sequence from Σ ∩Mα , namely f , such that σ⃗ < ∗f(0) and βn < µ∗(f(n); Jα) for each n .

Thus if we follow inductive method, by f elementarity, in the next step again there is a function g ∈ Mα+1 with

this same property. We define τ⃗ ∈ Σ so that g(n) <∗ τ⃗ for all n . It follows now that βn < µ∗(g(n)) ≤ µ∗(τ⃗)

for all n . This implies that µ∗(τ⃗) = β(σ⃗) as required. 2

For each γ < δ ∈ ω1 we may choose vγ,δ ∈ V (σ⃗⌢⟨γ, δ⟩) such that ρ(vγ,δ) = µ(σ⃗). Recall that, by Claim

2, {vγ,δ : δ ∈ ω1} converges to w . For each γ < δ and n , choose d(n, γ, δ) ∈ D(n, σ⌢
n ⟨γ, δ⟩) so that for all but

finitely many n ∈ I , d(n, γ, δ) ∈ Wvγ,δ
. Recall that there is a α = α(n, γ, δ) so that d(n, γ, δ) = y(n, σn, α).

Fix such a value α(n, γ, δ) for each n ∈ ω and γ < δ ∈ ω1 . Recall that when γδ was in the cub defining

D(n, σ⌢
n ⟨γ, δ⟩) we have that γδ ≤ α(n, γ, δ). Therefore the sequence {x(n, σ⌢

n ⟨γ⟩,m, α(n, γ, δ)) : δ ∈ ω1}
converges to z(n, σ⌢⟨γ⟩,m).

Choose a function fγ,δ ∈ ωω so that, for all n ∈ I such that d(n, γ, δ) ∈ Wvγ , the sequence

{x(n, σn,m, α) : m ∈ I \ fγ,δ(n)} (here fγ,δ(n) denotes the nth-component of the function fγ,δ ) is contained

in Wvγ . Since PFA implies that ω1 < b , b is the minimal cardinality of an unbounded family in ωω , there is

a function h ∈ ωω such that fγ,δ <∗ h for all γ < δ ∈ ω1 .

For each γ ∈ ω1 , choose a point wγ,h ∈ X that is the limit of a converging subsequence of {z(n, σ⌢
n ⟨γ⟩, h(n)) :

n ∈ I} . Note that wγ,h ∈ D(ω) ; hence wγ,h ̸= w . Since {vγ,δ : γ < δ ∈ ω1} converges to w , there is a δ0 such

that vγ,δ /∈ Wwγ,h
for γ > δ0 . Using that, for each n , the sequence {x(n, σ⌢⟨γ⟩, h(n), α) : α ∈ ω1} converges

to z(n, σ⌢
n ⟨γ⟩, h(n)), choose a δγ such that vγ,δγ /∈ Wwγ,h

, and for infinitely many n ∈ I ,

x(n, σ⌢⟨γ⟩, h(n), α(n, γ, δγ)) is in Wwγ,h
. Let v′γ denote a point in Wwγ,h

∩Wvγ,δγ
that is a limit of the sequence

{x(n, σ⌢⟨γ⟩, h(n), α(n, γ, δγ)) : n ∈ I} . Although h need not have been chosen from M , and so there is no

guarantee that v′γ is from V (σ⃗, γ), we can use the fact that vγ,δγ = vγ is in V (σ⃗, γ) and apply elementarity of

M to assert that, for each γ ∈ ω1 , there is a pair vγ , v
′
γ ∈ V (σ⃗, γ) such that vγ′ ∈ Wvγ \{vγ} and ρ(vγ) = µ(σ⃗).

However, we now have a contradiction. By Claim 2, the sequence {v′γ : γ ∈ ω1} fulfills the defining conditions
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of µ(σ⃗), and so the value of ρ(v′γ) is at least µ(σ⃗) for uncountably many γ . On the other hand, for such a γ ,

ρ(v′γ) < ρ(vγ) = µ(σ⃗). This shows there is no countable bound on µ(τ⃗) for τ⃗ ∈ Σ and completes the proof. 2
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