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Abstract: Let D be a Dedekind domain and G be a periodic Abelian-by-finite group. In this paper we study DG -

modules in which every factor-module, apart from the trivial one, is DG -Artinian. In particular we prove that such

modules cannot be D -periodic and that G must be subject to some restrictions. Finally, we give a detailed description

of such modules when G is periodic Abelian and the spectrum of D is infinite.
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1. Introduction

Artinian modules are one of the classical objects of study in algebra. Their applications have been decisive in

studying finiteness conditions in groups, modules, Lie algebras, and other algebraic structures. In particular,

the knowledge of some details about the structure of Artinian modules over group rings is often necessary

to study generalized soluble groups. Nowadays, the theory of Artinian modules over group rings is very well

developed; it is rich in many important results and it has its own goals and themes of different nature. Many

famous algebraists contributed to this theory (see, for instance, [8], where some results on this subject are

collected). Certainly, the structure of an Artinian module A over some group ring RG depends essentially on

the structure of the group G . Artinian DG -modules, where D is a Dedekind domain, were fully described

only when G is a periodic Abelian-by-finite group of finite section rank (see [8, Chapter 12]). For periodic

groups, which are not Abelian-by-finite, the situation is very complicated. In fact, if G is a countable 2-group

of exponent 4 such that [G, G] = Z(G) is a group of order 2, and p is an odd prime, then there exists an

Artinian uncountable FpG -module (see [2]). Furthermore, if G is a Čarin group and p ̸∈ Π(G), then there also

exists an Artinian uncountable FpG -module (see [2]). On the other hand, if G is an Abelian nonperiodic group

such that |G/Gp| ≥ p2 and F is a field, then the problem of the description, with respect to representation

theory, of an Artinian FG-module is a “wild” one when p = char(F ) (see [6]).

Let R be a ring. If A is a module over R and B is a nonzero R -submodule of A , then we call proper

the factor-module A/B . We say that an R -module A is just non-Artinian if A is not Artinian as R -module,

but each proper factor-module of A is Artinian as R -module.
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In [3], where such modules were called almost Artinian, a description of the structure of just non-Artinian

modules over a Dedekind domain was obtained. Later, in [4], the structure of a just non-Artinian module over

a Noetherian domain of dimension 1 was obtained.

Just non-Artinian modules are partially connected with just infinite modules, that is, infinity modules

whose proper factor-modules are finite (see [7, Part II]). In [10] FG-modules were considered, where F is

a field, whose proper factor-modules have finite dimension over F . Another partial type of almost Artinian

modules was considered in [12].

In this paper we will study just non-Artinian modules over group rings DG , where D is a Dedekind

domain. As we have seen above, the description of Artinian DG -modules has been obtained for periodic

Abelian-by-finite groups. Therefore, it is natural to study just non-Artinian DG -modules with the condition

that G is a periodic Abelian-by-finite group.

Let A be a module over a ring R and put

TorR(A) = {a ∈ A |AnnR(a) ̸= ⟨0⟩}.

It is not hard to prove that, if R is an integral domain, then TorR(A) is an R -submodule of A , which is

called the R -periodic part of A . An R -module A is called R -periodic if A = TorR(A), while it is called

R -torsion-free if TorR(A) = ⟨0⟩ .
As we will see later, the study of just non-Artinian DG -modules A splits into two parts: analyzing the

case in which AnnD(A) is a maximal ideal of D and that in which A is D -torsion-free. In the first case, we

can consider A as an FG -module where F is a field and we obtain the following result.

Theorem A Let F be a field, G be a group such that G/CG(A) is a periodic Abelian-by-finite group, and A

be an FG-module. If every proper factor-module of A is Artinian, then A is an Artinian FG-module.

If R is a commutative ring, the prime spectrum, Spec(R), or just the spectrum, of R is the set of all

prime ideals of R . Let A be a module over R .

Let I be an ideal of R . Put

AI = {a ∈ A | aIn = ⟨0⟩ for some n ∈ N}.

Clearly AI is an R -submodule of A , and it is called the I -component of A . If A = AI , then A is called an

I -module.

We now define the R -assassinator of A as the set

AssR(A) = {P |P is a nonzero prime ideal of R such that AnnA(P ) ̸= ⟨0⟩}.

If D is a Dedekind domain and A is a D -module, then

TorD(A) =
⊕
P ∈π

AP

where π = AssR(A) (see, for example, [9, Corollary 3.8]). Finally, note that in Dedekind domains every nonzero

prime ideal is maximal.

We can now describe the structure of a D -torsion-free just non-Artinian DG -module A , when G is a

periodic Abelian group (see Proposition 15). Let F be the field of quotients of D and K be an algebraic closure
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of F . We can find in U(K) and isomorphic copy G∗ of G/CG(A), which must be a locally cyclic p′ -group, with

p = char(D). Put U = D[G∗] . We consider K as a DG -module with the action defined by right multiplication

of corresponding elements in D[G∗] . Let T/U=TorD(K/U). There is a finite subset π ⊆ AssD(K/U) such

that A is isomorphic to some DG -submodule of Tπ , where Tπ/U is the π -component of T/U .

If G is a periodic Abelian-by-finite group, then the following theorem gives a reduction to the case of

Abelian groups.

Theorem B Let D be a Dedekind domain with infinite spectrum, G be an Abelian-by-finite group with finite

0-rank, and A be a DG-module. Suppose that A is a just non-Artinian DG-module that is D -torsion-free and

such that CG(A) = ⟨1⟩ .
Let H be a normal subgroup of G of finite index and let X be a transversal to H in G such that 1 ∈ X .

Then A includes a DH -submodule T such that A/Tx is a just non-Artinian DH -module for every x in X .

Moreover, ∩
x∈X

Tx = ⟨0⟩

and ∩
x∈X

x−1CH(A/T )x = ⟨1⟩,

so that A is isomorphic to some DH -submodule of⊕
x∈X

A/Tx,

and H is isomorphic to some subgroup of

Dr
x∈X

(H/(x−1CH(A/T )x)).

A more detailed description of the structure of just non-Artinian DG -modules, with G periodic Abelian,

is given by the following theorems.

Let R be an integral domain and G be a group. An RG -module A is called almost RG-irreducible if

the factor-module A/B is R -periodic for every nonzero RG -submodule B of A .

Theorem C Let D be a Dedekind domain of characteristic p with infinite spectrum, G be a periodic Abelian

group, and A be a just non-Artinian DG-module. Then the following conditions hold:

(i) G/CG(A) is a locally cyclic p′ -group;

(ii) A is D -torsion-free;

(iii) A is almost DG-irreducible;

(iv) A includes a cyclic (and DG-Noetherian) DG-submodule C such that A/C is D -periodic and the set

AssD(A/C) is finite;

(v) A/C is DG-Artinian and it is a direct sum of finitely many monolithic DG-submodules;
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(vi) there exists a finite subset π of Spec(D) such that A ̸= AP for all P ̸∈ π ;

(vii) if P ̸∈ π and p > 0 , then A/AP is a direct sum of simple non-isomorphic DG-modules.

A Dedekind domain D is said to be a Dedekind Z -module (see, for example, [7, p. 133]) if Spec(D) is

infinite and the field D/P is locally finite for each ⟨0⟩ ̸= P ∈ Spec(D).

Theorem D Let D be a Dedekind Z -domain of characteristic 0 , G be a periodic Abelian group, and A be a

just non-Artinian DG-module. Then the following conditions hold:

(i) G/CG(A) is locally cyclic;

(ii) A is D -torsion-free;

(iii) A is almost DG-irreducible;

(iv) there exists a finite subset π of Spec(D) such that A ̸= AP for all P ̸∈ π ;

(v) if B is a nonzero submodule and P ∈ AssD(A/B) , then the Sylow p-subgroups of G/CG(A) are cyclic,

where char(D/P ) = p ;

(vi) A includes a nonzero cyclic (and DG-Noetherian) DG-submodule C such that A/C is D -periodic and

the set AssD(A/C) is finite;

(vii) a Sylow p-subgroup of G/CG(AP /C) , with p = char(D/P ) and P ∈ AssD(A/C) , is cyclic;

(viii) AP /C is a direct sum of finitely many monolith DQ-submodules, where Q/CG(AP /C) is a Sylow p′ -sub-

group of G/CG(AP /C) , where p = char(D/P ) .

2. D -Periodic just non-Artinian DG-modules

The following lemmas with their consequences are standard and their proof can omitted.

Lemma 1 Let R be a ring and A be a just non-Artinian R-module.

(i) If B is a nonzero submodule of A , then B is a just non-Artinian R -module and in particular B is not

Artinian.

(ii) If B and C are nonzero submodules of A , then B ∩ C ̸= ⟨0⟩ .

Lemma 2 Let R be a ring and A be a just non-Artinian R -module. If f is a nonzero R -endomorphism of A ,

then f is a monomorphism.

Corollary 3 Let R be a ring and A be a just non-Artinian R -module. Then the ring EndR(A) has no

zero-divisors.

Corollary 4 Let R be a ring and A be a just non-Artinian R -module. Furthermore, let I = AnnR(A) and C/I

be the center of R/I . Then C/I is an integral domain.
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Corollary 5 Let R be a domain, G be a group, and A be a just non-Artinian RG-module. Then

the center Z(G/CG(A)) of G/CG(A) is isomorphic to the multiplicative group of some field. In particu-

lar, Tor(Z(G/CG(A))) is a locally cyclic p′ -group, where p = char(R) .

Proof Put Z/CG(A) = Z(G/CG(A)). For each element z ∈ Z define the mapping µz : A −→ A by the rule

µz(a) = az, a ∈ A . It is not hard to see that µz is an RG -automorphism of A . Consider now the function

f : Z −→ AutRG(A), defined by the rule f(z) = µz, z ∈ Z . If z, y ∈ Z , then zy = xyz for some element

x ∈ CG(A). We then have

µzy(a) = a(zy) = a(xyz) = (ay)z = µz(ay) = µz(µy(a)) = (µz · µy)(a),

so that f(zy) = f(z) · f(y). It follows that f is a homomorphism. Clearly, Ker(f) = CG(A) and the center C

of EndRG(A) includes Im(f). By Corollary 3, EndRG(A) has no zero-divisors. It follows that C is an integral

domain. In this case C can be embedded in a field K . Thus, Z(G/CG(A)) is isomorphic to a subgroup of the

multiplicative group of K . Note that, if char(R) > 0, then

char(K) = char(C) = char(EndRG(A)) = char(R).

The last part of the statement follows from [5, Chapter 4, Proposition 4.1]. 2

Corollary 6 Let R be a ring, G be a group, and A be a just non-Artinian RG-module. If gCG(A) is a

nontrivial element of Z(G/CG(A)) , then CA(g) = ⟨0⟩ .

Proof Consider the mapping ξg : A −→ A , defined by the rule ξg(a) = a(g − 1), a ∈ A . The choice of g

implies that ξg is an RG -endomorphism. Lemma 2 shows that ξg is an RG -monomorphism. In particular,

CA(g) = AnnA(g − 1) = Ker(ξg) = ⟨0⟩ . 2

Corollary 7 Let R be a ring, G be a group, and A be a just non-Artinian RG-module. If p is a prime

in Π(Z(G/CG(A))) , then Ap = {a ∈ A | pna = 0 for some n ∈ N} = ⟨0⟩ .

Proof Let gCG(A) be a nontrivial p -element of Z(G/CG(A)). Suppose that Ap ̸= ⟨0⟩ and let 0 ̸= b ∈ Ap

and B = bZ⟨gCG(A)⟩ . Then the natural semidirect product B ⋊ ⟨gCG(A)⟩ is a finite p -group. It follows that

⟨0⟩ ̸= Z(B ⋊ ⟨gCG(A)⟩) ∩B = CB(g), and we obtain a contradiction with Corollary 6. 2

Proposition 8 Let D be a Dedekind domain with infinite spectrum, G be a locally (polycyclic-by-finite) group

of finite 0-rank, and A be a just non-Artinian DG-module. Then either A is a P -module for some maximal

ideal P of D or A is D -torsion-free.

Proof Suppose that T = TorD(A) ̸= ⟨0⟩ . If we assume that AssD(A) contains two distinct maximal ideals

P and Q , then AP ̸= ⟨0⟩ and AQ ̸= ⟨0⟩ . Clearly, AP and AQ are DG -submodules of A and they have trivial

intersection, contradicting Lemma 1(ii). This contradiction shows that AssD(A) = {P} .
Suppose now that T ̸= A . Then A/T is an Artinian DG -module that is D -torsion-free. Being Artinian,

A/T includes a nonzero simple DG -submodule M/T . On the other hand, [7, Corollary 1.16] shows that

AnnD(M/T ) ̸= ⟨0⟩ , from which it follows that M is D -periodic, a contradiction that proves the result. 2
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Let D be a Dedekind domain and A be a D -module. Suppose that A is a P -module for some maximal

ideal P of D . Put
ΩP, n(A) = {a ∈ A |AnnD(a) ≥ Pn}.

Clearly, ΩP, n(A) is a D -submodule of A , ΩP, n(A) ≤ ΩP, n+1(A) for each n ∈ N and

A =
∪
n∈N

ΩP, n(A).

Lemma 9 Let D be a Dedekind domain, G be a group, and A be a just non-Artinian DG-module. If A is a

P -module for some maximal ideal P of D , then A = ΩP, 1(A) .

Proof Suppose the contrary, and then A1 = ΩP, 1(A) ̸= ΩP, 2(A) = A2 . We have A2P ≤ A1 . Since P cannot

be ⟨0⟩ , we can choose an element y ∈ P\P 2 . Then A2P = A2y [9, Proposition 6.2]. Consider the mapping

ρ : A2 −→ A1 defined by the rule ρ(a) = ay, a ∈ A2 . Clearly, this mapping is a DG -endomorphism. Since

A2 ̸= A1 , ρ is nonzero, therefore, by Lemma 2, ρ it is a monomorphism. On the other hand, Ker(ρ) = A1 ̸= ⟨0⟩ .
This contradiction shows that A = A1 = A2 . 2

In the hypotheses of the above lemma, the equality A = ΩP, 1(A) means that AnnD(A) = P is a maximal

ideal of D . In this case, we can consider A as an FG -module, where F = D/P .

Lemma 10 Let F be a field, G be a group such that G/CG(A) is a periodic Abelian group, and A be an FG-

module. Then A cannot be a just non-Artinian FG-module.

Proof Let A be a just non-Artinian FG-module. Without loss of generality we may assume that CG(A) = ⟨1⟩ .
Then, by Corollary 5, G is locally cyclic. Thus, G has an ascending series of cyclic subgroups

⟨1⟩ ≤ ⟨g1⟩ ≤ . . . ≤ ⟨gn⟩ ≤ ⟨gn+1⟩ ≤ . . .
∪
n∈N

⟨gn⟩ = G.

Let ⟨x⟩ be an infinite cyclic group and J = F ⟨x⟩ be the group algebra of ⟨x⟩ over the field F . Letting j ∈ N ,

we can consider A as a JG -module if we define the action of x on A by the rule ax = agj , a ∈ A . Since gj

has a finite order, A is a periodic J -module. Since J is a principal ideal domain with infinite spectrum, we

can apply Proposition 8 and Lemma 9 and get that AnnJ(A) = M is a maximal ideal of J . Therefore,

A =
⊕
λ∈Λ

Bλ,

where Bλ ≃J J/M, λ ∈ Λ.

Let 0 ̸= b ∈ A , Bj = bF ⟨gj⟩, j ∈ N , and B = bFG . We have that Bj is a simple F ⟨gj⟩-modu-

le [8, Proposition 4.5] for every j ∈ N and that

B =
∪
j∈N

Bj .

Let C be a nonzero FG -submodule of B . Then there is a positive integer k such that C ∩ Bk ̸= ⟨0⟩ .
Then C ∩ Bk is a nonzero F ⟨gk⟩-submodule of Bk . The fact that Bk is a simple F ⟨gk⟩-module implies that
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C ∩ Bk = Bk , i.e. Bk ≤ C . Therefore, Bj ≤ C for each j ≥ k . Thus, B = C , or, in other words, B is a

simple FG-submodule of A . Since A/B is an Artinian FG-module, A must be FG -Artinian, and we obtain

a contradiction that proves the result. 2

Let R be a ring, and let A be an R -module. The submodule SocR(A) generated by all the min-

imal R -submodules of A is called the R -socle of A . If A has no such minimal submodules, we de-

fine SocR(A) = ⟨0⟩ . We note that SocR(A) is a direct sum of simple R -submodules.

Starting from the socle we define the upper socular series of A as

⟨0⟩ = S0 < S1 < . . . Sα < Sα+1 < . . . Sγ

where S1 = SocR(A), Sα+1/Sα = SocR(A/Sα) for any ordinal α ,

Sλ =
∪
β<λ

Sβ

for all limit ordinals λ , and SocR(A/Sγ) = ⟨0⟩ . The ordinal γ is called the socular height of A .

Proposition 11 Let R be a commutative ring, G be an Abelian-by-finite group, and A be an Artinian RG-mo-

dule. If A is finitely generated, then A has a finite RG-composition series.

Proof Take an arbitrary element b ∈ A and consider the cyclic RG -submodule bRG . Let H be an Abelian

normal subgroup of G having finite index. Denote by T a transversal to H in G . Then

RG =
⊕
x∈T

x(RH).

It follows that

bRG =
∑
x∈T

(bx)RH.

Since A is RH -Artinian (see, for example, [8, Theorem 5.2]), also

(bx)RH ≃ RH/AnnRH(bx)

is RH -Artinian. However, RH is a commutative ring, and so RH/AnnRH(bx) is Noetherian [11, Theorem

8.44]. Therefore, bRG is both RH -Noetherian and RH -Artinian, since T is finite. Hence, bRG is both

RG-Noetherian and RG -Artinian, and so it has a finite RG -composition series.

Let a1, . . . , an be elements of A such that A = a1RG + . . . + anRG . By what we have proved above,

each ajRG has a finite RG -composition series, for 1 ≤ j ≤ n . It follows that A has a finite RG -composition

series. 2

Corollary 12 Let R be a commutative ring, G be an Abelian-by-finite group, and A be an Artinian RG-mo-

dule. Then A has socular height at most ω , the first infinite ordinal.

Proof Let

⟨0⟩ = S0 ≤ S1 ≤ . . . Sα ≤ Sα+1 ≤ Sγ
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be the upper socular series of A . If a is an arbitrary element of A , then by Proposition 11, the cyċlic RG -

submodule aRG has a finite RG -composition series of length, say, n . Then, clearly, aRG ≤ Sn and A =∪
Sn = Sω , where n , in the union, ranges over all natural numbers. 2

Proof of Theorem A — Without loss of generality we may assume that CG(A) = ⟨1⟩ . Let H be a normal

Abelian subgroup of G of finite index and let T be a transversal to H in G . Let 0 ̸= b ∈ A and B = bFG .

If B is FG-Artinian, then, since A/B is FG -Artinian, also A is FG -Artinian. Thus, we may assume that B

is not FG-Artinian, and, in particular, B is not a simple FG -module. Then B includes a nonzero proper RG -

submodule C . Being Artinian and finitely generated, B/C has a finite FG-composition series by Proposition

11. Thus, B is FG-Noetherian and hence also FH -Noetherian (see [8, Theorem 5.3]).

Put D to be the set of all RH -submodules of B such that B/U has no finite FH -composition series.

This set is not empty, since ⟨0⟩ ∈ D . Since B is a Noetherian FH -module, then we can choose a maximal

element in D , say M . Therefore, every proper FH -factor-module of B/M has finite FH -composition series,

i.e. B/M is a just non-Artinian FH -module. Then, by Lemma 10, we get a contradiction that proves the

statement. 2

3. D -Torsion-free just non-Artinian DG-modules

Let D be a Dedekind domain with infinite spectrum, G be a periodic Abelian-by-finite group, and A be a just

non-Artinian DG -module. Then Proposition 8, Lemma 9, and Theorem A show that A must be D -torsion-free.

Therefore, we will now study the D -torsion-free case. Theorem B will allow us to reduce to the case in which

G is periodic Abelian.

Proof of Theorem B — Let 0 ̸= c ∈ A and C = cDG . Then C is a just non-Artinian DG -module. Take

a nonzero DG -submodule of C , say B . Then C/B is a DG -Artinian module and by Proposition 11 it follows

that C/B has a finite DG -composition series. Therefore, C is DG -Noetherian. Put

M = {U |U is a DH -submodule of C such that C/U has no finite DH -composition series}.

Since C is not DG -Artinian, it cannot be also DH -Artinian, so ⟨0⟩ ∈ M . Hence, M has a maximal element,

say B . Clearly, the intersection ∩
x∈X

Bx

is a DG -submodule and so it must be ⟨0⟩ .
Let T/B = TorD(A/B). Clearly T is a DH -submodule of A . Suppose that T0 = T ∩ C ̸= B , and

then C/T0 has a finite DH -composition series and therefore C/T0 is D -periodic. It follows that C/B is

D -periodic. We have C/Bx = Cx/Bx ≃D C/B ; thus, C/Bx is D -periodic for each x ∈ X and, by Remak’s

theorem, we obtain that C is D -periodic, a contradiction. This contradiction proves that T ∩C = B . It follows

that T/B is Artinian as a DH -module and, furthermore,

(C + T )/T ≃DH C/(C ∩ T ) = C/B.

Letting

T1 =
∩
x∈X

Tx,
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then T1 is a DG -submodule. Suppose that T1 ̸= ⟨0⟩ . Then A/T is Artinian as DH -module. Since T/B is

Artinian as DH -module, the DH -module A/B must be Artinian. Then A/Bx is also Artinian as DH -module

and by Remak’s theorem we obtain a contradiction. Therefore, T1 = ⟨0⟩ .
Let E/T be a nonzero DH -submodule of A/T . If K/T = (E/T ) ∩ ((C + T )/T ) is nonzero, then using

the isomorphism (C + T )/T ≃DH C/B , we obtain that (T +C)/K has a finite DH -composition series. Since

A/(C + T ) is Artinian as DH -module, A/K is Artinian as DH -module. Then

A/E ≃ (A/K)/(E/K)

is Artinian as DH -module.

Suppose now that the intersection (E/T )∩ ((C + T )/T ) = ⟨0⟩ . It follows that E/T is Artinian as DH -

module and so it is D -periodic. On the other hand, the choice of T yields that A/T is D -torsion-free. This

last contradiction proves that A/T is a just non-Artinian DH -module.

Finally, CH(A/Bx) = x−1CH(A/B)x for every x ∈ X , so∩
x∈X

x−1CH(A/B)x =
∩
x∈X

CH(A/Bx) = CH(A) = ⟨1⟩,

and Remak’s theorem gives the last embedding. 2

Proposition 13 Let D be a Dedekind domain with infinite spectrum, G be a periodic Abelian group, and A

be a just non-Artinian DG-module. Then A is D -torsion-free.

Proof Suppose that A is not D -torsion-free. Then Proposition 8 and Lemma 9 show that AnnD(A) = P is a

maximal ideal of D . Then we can consider A as an FG -module, where F = D/P . Now we can apply Lemma 10

and obtain a contradiction. 2

Lemma 14 Let D be a Dedekind domain with infinite spectrum, G be a group such that G/CG(A) is locally

(polycyclic-by-finite) with finite 0-rank, and A be a just non-Artinian DG-module. Then A is almost DG-

irreducible.

Proof Let 0 ̸= b ∈ A and B = bDG . Then B is a nonzero DG -submodule of A , so that A/B is an Artinian

DG -module and hence D -periodic [7, Corollary 1.16]. This shows that A is almost DG -irreducible. 2

Proposition 15 Let D be a Dedekind domain with infinite spectrum, G be a group such that G/CG(A) is

periodic Abelian, and A be a just non-Artinian DG-module. Furthermore, let F be the field of quotients of D

and K be the algebraic closure of F . Then there exists a subgroup G∗ of the multiplicative group U(K) of K

such that G∗ ≃ G/CG(A) . There exists also a DG-submodule V ≃DG A of K , containing D[G∗] , and such

that V/D[G∗] is contained in the π -component of K/D[G∗] , where π is a finite subset of AssD(K/D[G∗]) .

Proof Without loss of generality we may assume that CG(A) = ⟨1⟩ . Using Proposition 13 we have that

A is D -torsion-free, so we can suppose that A is contained in the FG -module B = A⊗D F . Then, for every

nonzero FG -submodule C of B , the intersection C ∩A is also nonzero and therefore, by Lemma 14, A/C ∩A

is D -periodic. Hence, B/A ∩ C is D -periodic, since also B/A is D -periodic. On the other hand, C is an

FG-submodule of B and so B = C , which shows that B is a simple FG -module.
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For each element x ∈ FG define the mapping µx : B −→ B by the rule µx(b) = bx, b ∈ B . It is not hard

to see that µx is an FG-endomorphism of B . Consider now the mapping Φ : FG −→ EndFG(B), defined by

the rule Φ(x) = µx, x ∈ FG . It is easy to see that Φ is a ring homomorphism. Put E = EndFG(B) and let

0 ̸= a ∈ A and γ ∈ E . Since B is a simple FG -module, B = aFG . Then we have γ(a) = ay for some element

y ∈ FG . If b ∈ B , then b = az for some element z ∈ FG . Thus,

γ(b) = γ(az) = (ay)z = (az)y = by,

which shows that γ = µy and E = Φ(FG).

Let Γ be the restriction of Φ to G . Then Im(Γ) ≤ U(E), so we can consider Γ as a monomorphism of

G in U(E). Then the equality E = Φ(FG) shows that E = F [Γ(G)] . The fact that B is a simple FG-module

implies by Schur’s lemma that E is a division ring and hence a field, since it is commutative. Furthermore,

since G is periodic, each element µg , g ∈ G , is algebraic over F , so that E is an algebraic field extension of

F .

Define now the mapping Θ : B −→ E by the following rule: if b ∈ B , then b = ay for some y ∈ FG ; put

Θ(b) = µy . We first show that this mapping is well defined. Indeed, let b = az, z ∈ FG . Then 0 = ay − az =

a(y− z), so that y− z ∈ AnnFG(a). Since G is Abelian, AnnFG(a) = AnnFG(B). Thus, 0 = µy−z = µy −µz ,

which shows that µy = µz . Thus, the application is well defined.

If au = d ∈ B, u ∈ FG , then b+ d = ay + au = a(y + u) and

Θ(b+ d) = µy+u = µy + µu = Θ(b) + Θ(d).

If v ∈ FG , then bv = (ay)v = a(yv) and Θ(bv) = µyv = µyv = Θ(b)v . Thus, Θ is an FG-homomorphism.

The equality E = Φ(FG) shows that Θ is also an epimorphism. Finally, the equality µy = 0 implies that

y ∈ AnnFG(B), from which it follows that ay = 0. Thus, Θ is an FG-isomorphism.

It follows that A ≃DG Θ(A) ≤ E . Putting A1 = aDG , we then have Θ(A1) = D[Γ(G)] . Since A is

almost DG -irreducible, Θ(A)/D[Γ(G)] is also D -periodic. It follows that AssD(Θ(A)/D[Γ(G)]) = π is finite.

Thus, Θ(A)/D[Γ(G)] is contained in the π -component of E/D[Γ(G)] . 2

The proof of Proposition 15 shows that cyclic submodules play an important role in the structure of just

non-Artinian DG -modules. Now we will consider some details of their structure.

Lemma 16 Let D be a Dedekind domain, G be a group, and A be a just non-Artinian DG-module. Suppose

that A is D -torsion-free. Let ⟨0⟩ ≠ P ∈ Spec(D) and suppose that A/AP is a cyclic nontrivial module and

that G/CG(A/AP ) is a periodic abelian p′ -group of finite special rank, where p = char(D/P ) . Then

A/AP = S1 ⊕ . . .⊕ Sn,

where Sj , Si are simple nonisomorphic DG-modules for 1 ≤ i ̸= j ≤ n .

Proof Since A is D -torsion-free, then AP ̸= ⟨0⟩ . It follows that A/AP is an artinian DG -module. Then

A/AP = U1/AP ⊕ . . .⊕ Un/AP , where Uj/AP is a simple DG -module for 1 ≤ j ≤ n (see [8, Theorem 12.8]).

Suppose that there are distinct indexes l and m such that

Ul/AP k ≃DG Um/AP.
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Put

V/AP =
⊕

j ̸∈{l,m}

Uj/AP,

then A/V = Wl ⊕Wm , where Wl and Wm are simple isomorphic DG -modules. Letting a be an element of A

such that A = aDG , then A/V = (a+ V )DG and so it is simple by [8, Proposition 4.5], a contradiction. 2

Proof of Theorem C — The first assertion follows from Corollary 5, the second point from Proposition 13,

and the third from Lemma 14. We now prove (iv). Let 0 ̸= c ∈ A and C = cDG . It is worth noting that

C is DG -Noetherian: in fact, every proper quotient is an Artinian DG -module, and so even DG -Noetherian.

By (iii) A/C is D -periodic, and so

A/C =
⊕
P∈η

AP /C,

where η = AssD(A/C) (see, for example, [9, Corollary 3.8]). Clearly, every P -component AP /C is a DG -

submodule. Therefore, it follows that η must be finite.

The fifth point follows from [8, Theorem 12.8]. Let us move on to prove (vi). By [7, Theorem 1.15]

there exists a finite subset σ of Spec(D) such that C ̸= CP for all P ̸∈ σ . Put π = σ ∪ η and ta-

ke P ∈ Spec(D)\π . Then C ̸= CP and C/CP must coincide with the P -component of A/CP , giving

the decomposition A/CP = C/CP ⊕ E/CP, where P ̸∈ AssD(E/CP ). Then (E/CP )P = E/CP (see, for

example [9, Lemma 6.7]) and it follows that (A/CP )P = E/CP . On the other hand,

(A/CP )P = (AP + CP )/CP = AP/CP.

Thus, we obtain (vi).

Now

A/AP ≃ (A/CP )/(AP/CP ) = (A/CP )/((A/CP )P ) = (A/CP )/(E/CP ) ≃ C/CP.

Using now Lemma 16, we obtain the last point. 2

Let D be a Dedekind domain. As we saw in the introduction, D is said to be a Dedekind Z -module if

Spec(D) is infinite and the field D/P is locally finite for each ⟨0⟩ ̸= P ∈ Spec(D). Clearly, Z is a Dedekind

Z -domain.

Put

Spchar(D) = {char(D/P ) |P ∈ Spec(D)}.

We note that, if D is a Dedekind Z -domain of characteristic 0, then Spchar(D) is infinite. Indeed, if Spchar(D)

is finite, then we can find an infinite subset π of Spec(D) and a prime p such that char(D/P ) = p for all

P ∈ π . Since D is a Dedekind domain, then ∩
P∈π

P = ⟨0⟩.

It follows that D can be embedded in Cr
P∈π

D/P . It is clear that every element of the Cartesian product has

characteristic p . Since D is isomorphic to a subring of Cr
P∈π

D/P , we obtain a contradiction.
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Proposition 17 Let R be a ring, G be a nilpotent group, and A be an Artinian RG-module. If the additive

group of A is a bounded Abelian p-group for some prime p , then each Sylow p-subgroup P/CG(A) of G/CG(A)

is bounded.

Proof We can assume that CG(A) = ⟨1⟩ . We only need to prove that the center of P is bounded, so we

may suppose that G is an Abelian p -group. Therefore, CA(H) is an RG -submodule of A for each subgroup

H of G . The fact that A is an Artinian RG-module implies that G includes a finite subgroup K such that

CA(K) = CA(J) for every finite p -subgroup J ≥ K . It follows that CA(K) = CA(G). Since the natural

semidirect product A⋊K is nilpotent (see, for example, [1]), A has a finite upper K -central series

⟨0⟩ = C0 ≤ C1 ≤ . . . ≤ Cn = A,

where C1 = CA(K), Cj+1/Cj = CA/Cj
(K/Cj), 1 ≤ j ≤ n − 1. Since G is Abelian, each term of this series is

an RG-submodule of A . Let a ∈ C2\C1 and g ∈ G . Then a(g − 1) ∈ C2 . If x is an arbitrary element of K ,

then (a(g − 1))(x− 1) ∈ C1 and we have

(a(g − 1))(x− 1) = a((x− 1)(g − 1)) = (a(x− 1))(g − 1) = 0

because a(x− 1) ∈ C1 = CA(G). It follows that a(g − 1) ∈ CA(x). Since it is valid for each element x ∈ K , it

follows that a(g− 1) ∈ CA(K) = CA(G), or, in other words, that the factor C2/C1 is G -central. Using similar

arguments, after finitely many steps, we obtain that the series {Cj | 0 ≤ j ≤ n} is G -central. Since A is an

Abelian p -group of exponent, say, pc , and the center of A ⋊ G is contained in A , then gp
c(n−1)

= 1 for each

element g ∈ G . 2

Lemma 18 Let D be a Dedekind domain of characteristic 0 , P be a maximal ideal of D such that

char(D/P ) = p > 0 , G be a periodic Abelian group, and A be a just non-Artinian DG-module that is D -

torsion-free. Suppose that A includes a nonzero DG-submodule B such that A/B is D -periodic and P ∈
AssD(A/B) . Then the Sylow p-subgroups of G/CG(A) are cyclic.

Proof Without loss of generality we may assume that CG(A) = ⟨1⟩ . Suppose by contradiction that a Sylow

p -subgroup P of G is infinite. Since A/B is D -periodic and P ∈ AssD(A/B), we have that

A/B = (A/B)P ⊕ V/B

where P ̸∈ AssD(V/B) and A/V is a nontrivial P -module. Let n be a positive integer. Since char(D/P ) = p ,

it follows that ΩP, 1(A/V ) is an elementary Abelian p -group and ΩP, n(A/V ) is a bounded p-group. Using

Proposition 17 we have that P/CP (ΩP, n(A/V )) must be bounded. By Corollary 5, we find that P is locally

cyclic; hence, P = CP (ΩP, n(A/V )), and so P = CP (A/V ).

Put A1/V = ΩP, 1(A/V ), Am/V = ΩP,m(A/V ) for m ∈ N , and fix a positive integer n . As we have

seen, A1/V is an elementary Abelian p -group and therefore pnA1 ≤ V ; in particular, pnA1 ̸= A1 . Clearly pnA1

is a nontrivial DG -submodule of A . Therefore, using Proposition 17, we find that P = CP (Am/pnA1) for each

natural number m . Thus, P = CP (A/p
nA1). The fact that char(D) = 0 implies that A is Z -torsion-free.

Then pnA1 ≃ A1 and so pn+1A1 < pnA1 . This means that∩
n∈N

pnA1 = ⟨0⟩

and P = CP (A), a contradiction. 2

1253



KURDACHENKO and TROMBETTI/Turk J Math

Proof of Theorem D — Theorem C proves (i), (ii), (iii), (iv), and (vi). Lemma 18 proves (v). To prove (vii)

use Lemma 18, the fact that CG(AP ) ≤ CG(AP /C), and point (i). The last part of the theorem will now be

proved. The Sylow p′ -subgroup Q/CG(AP /C) of G/CG(AP /C) has finite index. Then AP /C is an Artinian

DQ-module (see, for example, [8, Theorem 5.2]). The conclusion follows from [8, Theorem 12.8]. 2
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