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Abstract: We study the strongly semicommutative properties relative to a monoid crossed product. The concept of

strongly CM -semicommutative rings is introduced and investigated. Many results related to semicommutative properties

over polynomial rings, skew polynomial rings, monoid rings, and skew monoid rings are extended and unified.
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1. Introduction

Throughout, unless otherwise indicated, R denotes an associative ring with identity and M is a monoid. A

ring R is said to be a semicommutative ring if, for any a, b ∈ R , ab = 0 implies aRb = 0. Semicommutative

rings and related topics were investigated by many authors (see, for example, [2, 4, 5, 10], and [13]). It was

shown in [2] that the polynomial rings over semicommutative rings need not be semicommutative. Strongly

semicommutative rings were studied in [13]. A ring R is strongly semicommutative if f(x)g(x) = 0 implies

f(x)R[x]g(x) = 0, where f(x), g(x) ∈ R[x] . More generally, recall from [10] that a ring R is called strongly

M -semicommutative whenever αβ = 0 implies that αR[M ]β = 0, where α, β ∈ R[M ] . According to [1], a ring

R is α -compatible if for any a, b ∈ R , ab = 0 if and only if aα(b) = 0. It is clear that this happens only when

the endomorphism α is injective. Krempa [6] introduced the notion of an α -rigid ring. An endomorphism α

of a ring R is said to be rigid if aα(a) = 0 implies a = 0 for a ∈ R , while a ring R is said to be α -rigid if

there exists a rigid endomorphism α of R . By [1, Lemma 2.2], R is α -rigid if and only if R is α -compatible

and reduced.

A monoid M is called a u.p. -monoid (unique product monoid) if for any two nonempty finite subsets

A,B ⊆ M , there exists an element g ∈ M uniquely in the form of ab with a ∈ A and b ∈ B . If there

exists a monoid homomorphism ω : M → Aut(R), we denote by ωg(r) the image of r under ω(g) with

g ∈ M and r ∈ R . The monoid homomorphism ω : M → Aut(R) defined by ωg(r) = r for each g ∈ M

and r ∈ R is called the trivial monoid homomorphism. If R is a ring and M is a monoid, then the crossed

product R ∗ M over R consists of all finite sums R ∗ M = {
∑

rgg|rg ∈ R, g ∈ M} with addition defined

componentwise and multiplication defined by the distributive law and two rules that are called the twisting and

the action explained below. Specifically, we have the twisting operation gh = f(g, h)gh for every g, h ∈ M ,

where f : M ×M → U = U(R). For every r ∈ R and g ∈ M , we have gr = ωg(r)g with ω : M → Aut(R).

Note that the map ω is a weak action of M on R and f is a ω -cocycle (see [9]).
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A monoid crossed product is a quite general ring construction. Let R ∗M be a monoid crossed product

with twisting f and action ω . If the twisting f is trivial, that is f(x, y) = 1 for all x, y ∈ M , then R ∗ M

is the skew monoid ring R♯M . If the action ω is trivial, i.e. ωg = iR with iR the identity automorphism

over R , then R ∗M is the twisted monoid ring Rτ [M ] . If both the twisting f and the action ω are trivial,

then R ∗M is a monoid ring, denoted by R[M ] (see [3] and [11] for more details). For a ring R and a monoid

M with ω : M → Aut(R) a monoid homomorphism, we say that R is M -compatible (resp., M -rigid) if ωg

is compatible (resp., rigid) for any g ∈ M . According to [14], a ring R is called a CM -Armendariz ring if

whenever α = a1g1 + · · ·+ angn , β = b1h1 + · · ·+ bmhm ∈ R ∗M satisfy αβ = 0, we have aiωgi(bj) = 0 for all

i, j . If R is a CM -Armendariz ring with f trivial, then R is said to be a skew M -Armendariz ring. It is clear

that M -Armendariz rings [7] are just those CM -Armendariz rings with both twisting and action trivial. In

particular, if both the twisting f and action ω are trivial with M = (N ∪ {0},+), then R is CM -Armendariz

if and only R is Armendariz [12].

In this paper, we investigate a common generalization of strongly semicommutative properties over

polynomial rings, skew polynomial rings, monoid rings, and skew monoid rings. The main idea is to study

the strongly semicommutative properties relative to a monoid crossed product. The new class of strongly

CM -semicommutative rings defined for a monoid crossed product is introduced and studied. Some well-known

results on this subject are generalized and unified. If R is an M -rigid ring and M a monoid with action

ω : M → Aut(R), we show that the ring T3(R) is skew strongly M -semicommutative, where |M | ≥ 2. We

also study the relationship between the strongly CM -semicommutative property of a ring R and that of its

subrings induced by a central idempotent (see Proposition 2.12). Let I be an ω -invariant ideal of R and M

a u.p.-monoid with twisting f : M × M → U(R) and action ω : M → Aut(R). It is proved that if R/I

is strongly CM -semicommutative and I is an M -rigid ideal (as a ring without identity), then R is strongly

CM -semicommutative.

2. Strongly CM -semicommutative rings

In this section, we study the strongly semicommutative properties relative to a monoid crossed product. The

notion of strongly CM -semicommutative rings is introduced and studied. Some constructions of this class of

rings are also given.

We begin with the following definition:

Definition 2.1 Let R be a ring and M a monoid with twisting f : M × M → U(R) and action ω : M →
Aut(R) . We call R a strongly CM -semicommutative ring, i.e. R is strongly semicommutative with respect to

the monoid crossed product R ∗M if whenever α = a1g1 + · · ·+ angn , β = b1h1 + · · ·+ bmhm ∈ R ∗M satisfy

αβ = 0 , then α(R ∗M)β = 0 .

It is clear that a ring R is a strongly M -semicommutative ring if and only if it is a strongly CM -

semicommutative ring with both twisting and action trivial. If M = (N∪ {0},+) and both the twisting f and

action ω are trivial, then the class of strongly CM -semicommutative rings is precisely the class of strongly

semicommutative rings. Some other variants of strongly CM -semicommutative rings can be obtained when

specialized to special M , f , and ω .

In particular, we give the following two special classes of strongly CM -semicommutative rings, which

are closely related to some well-known results.
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Remark 2.2 Let R be a ring and M a monoid with twisting f : M×M → U(R) and action ω : M → Aut(R) .

Then:

(1) If R is strongly CM -semicommutative with f trivial, then we call R a skew strongly M -semicommutative

ring.

(2) If R is strongly CM -semicommutative with ω trivial, then R is called a strongly TM -semicommutative

( i.e. twisted M -semicommutative) ring.

It is a well-known fact that if a ring R is a reduced ring, then its polynomial ring R[x] is reduced. The

next lemma extends this result.

Lemma 2.3 Let M be a u.p.-monoid with twisting f : M ×M → U(R) and action ω : M → Aut(R) . If R is

an M -rigid ring, then R ∗M is reduced.

Proof Let α = a1g1 + · · · + angn ∈ R ∗ M such that α2 = 0. Then R is a CM -Armendariz ring by [14,

Proposition 2.2] and this implies that aiωgi(aj) = 0 for all i ,j . Since every M -rigid ring is M -compatible and

reduced, we conclude that ai = 0 for all 1 ≤ i ≤ n . It follows that α = 0, and hence R ∗M is reduced. 2

For a ring R , let

T3 (R) =


 a b c

0 a d
0 0 a

 |a, b, c, d ∈ R

 .

Let M be a monoid with ω : M → Aut(R) a monoid homomorphism. For every g ∈ M , ω can be extended to

a monoid homomorphism ω̄ from M to Aut(T3(R)) defined by ω̄g((aij)) = (ωg(aij)).

Lemma 2.4 [14, Proposition 2.8] Let R be an M -rigid ring and M a monoid with action ω : M → Aut(R) ,

where |M | ≥ 2 . Then R is skew M -Armendariz if and only if T3(R) is skew M -Armendariz.

Proposition 2.5 Let R be an M -rigid ring and M a monoid with action ω : M → Aut(R) , where |M | ≥ 2 .

Then T3(R) is skew strongly M -semicommutative.

Proof Assume that α = A1g1 + A2g2 + · · · + Angn , β = B1h1 + B2h2 + · · · + Bmhm ∈ T3(R)♯M such that

αβ = 0. Since R is M -rigid, R is skew M -Armendariz by [14, Proposition 2.2], and hence T3(R) is skew M -

Armendariz by Lemma 2.4. This implies that Aiωgi(Bj) = 0. Since R is M -rigid, T3(R) is an M -compatible

ring by [1, Example 1.2]. It follows that AiBj = 0 for all i, j . This implies that AiT3(R)Bj = 0 for all i, j by

[5, Proposition 1.2]. Then Aiω̄gi(T3(R))Bj = 0 since T3(R) is M -compatible, and hence Ai(T3(R)♯M)Bj = 0.

Therefore, α(T3(R)♯M)β = 0 and thus T3(R) is skew strongly M -semicommutative. 2

Corollary 2.6 [10, Proposition 2.1] Let M be a monoid with |M | ≥ 2 and R a reduced M -Armendariz ring.

Then T3(R) is a strongly M -semicommutative ring.

Recall that a ring R is a strongly M -reversible ring if αβ = 0 implies βα = 0 for all α, β ∈ R[M ] .

More generally, we say that a ring R is a strongly CM -reversible ring if whenever α = a1g1 + · · · + angn ,

β = b1h1 + · · ·+ bmhm ∈ R ∗M satisfy αβ = 0, then βα = 0.
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Lemma 2.7 Let R be a ring and M a u.p.-monoid with twisting f : M ×M → U(R) and action ω : M →
Aut(R) . If R is an M -rigid ring, then R is strongly CM -reversible.

Proof Suppose that α = a1g1 + · · · + angn , β = b1h1 + · · · + bmhm ∈ R ∗M such that αβ = 0. Then we

have (βα)2 = (βα)(βα) = β(αβ)α = 0, and thus βα = 0 since R ∗M is reduced by Lemma 2.3. This implies

that R is strongly CM -reversible. 2

We have the following proposition immediately.

Proposition 2.8 Let R be an M -rigid ring and M a u.p.-monoid with twisting f : M × M → U(R) and

action ω : M → Aut(R) . Then R is a strongly CM -semicommutative ring.

Proof Assume that α = a1g1 + · · ·+ angn , β = b1h1 + · · ·+ bmhm ∈ R ∗M such that αβ = 0. Because R is

a strongly CM -reversible ring by Lemma 2.7, we deduce that βα = 0. This implies that

(α(R ∗M)β)2 = (α(R ∗M)β)(α(R ∗M)β) = α(R ∗M)(βα)(R ∗M)β = 0.

Since R ∗ M is a reduced ring by Lemma 2.3, we get α(R ∗ M)β = 0. Therefore, R is strongly CM -

semicommutative. 2

Let R be a ring and M a monoid with twisting f : M ×M → U(R) and action ω : M → Aut(R). The

restrictions of f and ω on an ideal N of M are denoted by f̄ |N×N and ω̄|N , respectively.

Proposition 2.9 Let R be an M -rigid ring and M a u.p.-monoid with twisting f : M × M → U(R) and

action ω : M → Aut(R) . If R is a strongly CN -semicommutative ring for an ideal N of M , then R is

strongly CM -semicommutative.

Proof Assume that α = a1g1 + · · ·+ angn , 0 ̸= β = b1h1 + · · ·+ bmhm ∈ R ∗M such that αβ = 0. If we take

g ∈ N , then

gg1, gg2, · · · , ggn, h1g, h2g, · · · , hmg ∈ N .

Since every u.p.-monoid is a cancellative monoid, we get ggi ̸= ggj and hig ̸= hjg whenever i ̸= j . Let

α1 =
n∑

i=1

aiggi , β1 =
m∑
j=1

bjhjg . Then α1 , β1 ∈ R ∗ N . In the following, we freely use the fact that

ωgi(R)f(gi, hj) = Rf(gi, hj) = R for any gi, hj ∈ M . Since R is an M -rigid ring and αβ = 0, we get

α1β1 =
( n∑
i=1

aiggi
)
(

m∑
j=1

bjhjg
)
=

∑
i,j

aiωggi(bj)f(ggi, hjg)ggihjg = 0.

Now we claim that αγβ = 0 for any γ = c1t1 + c2t2 + · · ·+ cktk ∈ R ∗M . Because N is an ideal of M ,

it is clear that γ1 = c1t1g + c2t2g + · · ·+ cktkg ∈ R ∗N . Then

α1γ1β1 =
∑
i,j,k

aiωggi

(
ck
)
f
(
ggi, tkg

)
ωggitkg

(
bj
)
f
(
ggitkg, hjg

)
ggitkghjg = 0

since R is a strongly CN -semicommutative ring. This implies that
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aiωggi

(
ck
)
f
(
ggi, gtk

)
ωggigtk

(
bj
)
f
(
ggigtk, hjg

)
= 0

for each i, j, k . Therefore, we get aiωgi

(
ck
)
f
(
ggi, gtk

)
ωgitk

(
bj
)
= 0 for each i, j, k since R is an M -rigid ring.

Then aiωgi

(
ck
)
ωgitk

(
bj
)
= 0 for each i, j, k . It follows that

αγβ =
∑
i,j,k

aiωgi

(
ck
)
f
(
gi, tk

)
ωgitk

(
bj
)
f
(
gitk, hjg

)
gitkhj = 0.

Then we have α(R ∗M)β = 0, and the result follows. 2

Let I be an ideal of R and ω : M → Aut(R) a monoid homomorphism. An ideal I of R is said to be

an ω -invariant ideal of R in case ωg(I) ⊆ I for every g ∈ M . Note that ω̄ : M → Aut(R/I) defined by

ω̄g(r + I) = ωg(r) + I

is a monoid homomorphism. Moreover, it is easy to see that the twisting f : M×M → U(R) induces a twisting

f̄ : M ×M → U(R/I) given by

f̄(x, y) = f(x, y) + I .

Moreover, for every α =
n∑

i=1

aigi in R ∗M , we denote ᾱ =
n∑

i=1

āigi in (R/I) ∗M ∼= (R ∗M)/(I ∗M),

where āi = ai + I for 1 ≤ i ≤ n . It can be easily checked that the map µ : R ∗M → (R/I) ∗M defined by

µ(α) = ᾱ is a ring homomorphism.

Let I be any proper ideal of a ring R . One may suspect that if I (as a ring without identity) and

R/I are strongly CM -semicommutative, then R is strongly CM -semicommutative. However, the following

example erases this possibility.

Example 2.10 Let D be a division ring and M a u.p.-monoid with twisting f : M ×M → U(D) and action

ω : M → Aut (D) . Let

R =


 a b c

0 a d
0 0 a

 |a, b, c, d ∈ D

 ,

I =


 0 0 D

0 0 0
0 0 0

 .

Then R is a ring and I is a nonzero ω -invariant proper ideal of the ring R . Clearly, R is not

strongly CM -semicommutative (an easy example is that of both twisting f and action ω being trivial with

M = (N ∪ {0},+)) .

Moreover, I is a strongly CM -semicommutative ideal of R since D is a domain. Now we claim that

R/I is a strongly CM -semicommutative ring. In fact, if

α =
n∑

i=1

 ai bi 0
0 ai di
0 0 ai

gi, β =
n∑

j=1

 uj vj 0
0 uj wj

0 0 uj

gj

778



ZHAO, WEI/Turk J Math

are elements in (R/I) ∗M such that αβ = 0 , then we have


n∑

i=1

aigi
n∑

i=1

bigi 0

0
n∑

i=1

aigi
n∑

i=1

digi

0 0
n∑

i=1

aigi





m∑
j=1

ujhj

m∑
j=1

vjhj 0

0
m∑
j=1

ujhj

m∑
j=1

wjhj

0 0
m∑
j=1

ujhj

 = 0.

This implies that

( n∑
i=1

aigi
)( m∑

j=1

ujhj

)
=

∑
i,j

aiωgi(uj)f(gi, hj)gihj = 0 .

Since D is a division ring, it is easy to see that D is an M -rigid ring and thus D is CM -Armendariz. It

follows that aiωgi(uj) = 0 , and hence aiuj = 0 since D is an M -rigid ring. Then we have

n∑
i=1

aigi = 0 or
m∑
j=1

ujhj = 0.

Because D is a division ring, it is clear that α((R/I) ∗ M)β = 0 . This shows that R/I is strongly CM -

semicommutative, as desired.

However, we can give an affirmative answer as in the following proposition.

Proposition 2.11 Let I be an ω -invariant ideal of R and M a u.p.-monoid. If R/I is strongly CM -

semicommutative and I is an M -rigid ideal, then R is strongly CM -semicommutative.

Proof Let α = a1g1 + a2g2 + · · ·+ angn and β = b1h1 + b2h2 + · · ·+ bmhm be elements in R ∗M such that

αβ = 0. Then we have α(R ∗ M)β ⊆ I ∗ M . Sine I is an M -rigid ideal and M is a u.p.-monoid, I ∗ M is

reduced by Lemma 2.3. Furthermore, since I is an ω -invariant ideal, we have

β(I ∗M)α ⊆ I ∗M , (β(I ∗M)α)2 = 0.

Because I ∗M is reduced, this implies that β(I ∗M)α = 0. Therefore, we have

(
(α(R ∗M)β)(I ∗M)

)2
= α(R ∗M)

(
β(I ∗M)α

)
(R ∗M)β(I ∗M) = 0.

It follows that α(R ∗M)β(I ∗M) = 0, and thus we have

(α(R ∗M)β)2 ⊆ α(R ∗M)β(I ∗M) = 0

since α(R ∗ M)β ⊆ I ∗ M , proving (α(R ∗ M)β)2 = 0. Therefore, we have α(R ∗ M)β = 0 and the result

follows. 2

The next proposition gives the relationship between the strongly CM -semicommutative property of a

ring R and that of its subrings induced by a central idempotent.
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Proposition 2.12 Let e be a central idempotent of R such that ωg(e) = e for each g ∈ M . Then R is strongly

CM -semicommutative if and only if eR and (1− e)R are strongly CM -semicommutative.

Proof If R is strongly CM -semicommutative, it is easy to see that eR and (1 − e)R are strongly CM -

semicommutative. Assume that eR and (1− e)R are strongly CM -semicommutative. Let α, β ∈ R ∗M such

that αβ = 0. Then eα, eβ ∈ eR ∗M and (1− e)α, (1− e)β ∈ (1− e)R ∗M . Because e is a central idempotent

of R and ωg(e) = e for each g ∈ M , we have

eαeβ = 0, (1− e)α(1− e)β = 0.

It suffices to show that α(R∗M)β = 0. Since e is a central idempotent of R and eR and (1−e)R are strongly

CM -semicommutative, we have

eα(eR ∗M)eβe = 0, (1− e)α
(
(1− e)R ∗M

)
(1− e)β(1− e) = 0.

This implies that

0 = α(R ∗M)β = eα(R ∗M)β + (1− e)α(R ∗M)β

= eαe(R ∗M)eβe+ (1− e)α(1− e)(R ∗M)(1− e)β(1− e)

= eα(eR ∗M)eβe+ (1− e)α
(
(1− e)R ∗M

)
(1− e)β(1− e).

Therefore, R is strongly CM -semicommutative. 2

Let R be an algebra over a commutative ring S . Recall that the Dorroh extension D of R by S is the

ring R× S with operations

(r1, s1) + (r2, s2) = (r1 + r2, s1 + s2), and

(r1, s1)(r2, s2) = (r1r2 + s1r2 + s2r1, s1s2),

where ri ∈ R and si ∈ S . Let M be a monoid with twisting f : M ×M → U(R) and action ω : M → Aut(R).

If there are action ω̄ : M → Aut(S) and twisting f̄ : M ×M → U(S), then we have the ring S ∗M . For any

σ =
n∑

i=1

sigi , τ =
s∑

k=1

cktk ∈ S ∗M and α =
m∑
j=1

ajhj ∈ R ∗M ,

we have the following:

σα =
∑

i+j=l

siωgi(aj)f(gi, hj)gihj ,

στ = (
n∑

i=1

sigi)(
s∑

k=1

cktk) =
∑

i+k=l

siω̄gi(ck)f̄(gi, tk)gitk .

Proposition 2.13 Let R be an algebra over a commutative ring S and D the Dorroh extension of R by S .

If R is strongly CM -semicommutative and S is a domain, then D is strongly CM -semicommutative.

Proof Assume that

α = (α1, α2) =
n∑

i=1

(ai, si)gi = (
n∑

i=1

aigi,
n∑

i=1

sigi),
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β = (β1, β2) =
m∑
j=1

(bj , tj)hj = (
m∑
j=1

bjhj ,
m∑
j=1

tjhj)

are elements in D∗M such that αβ = 0. By definition, we have (α1, α2)(β1, β2) = (α1β1+α2β1+β2α1, α2β2) =

0. It follows that α1β1 + α2β1 + β2α1 = 0 and α2β2 = 0. Then we have

α2β2 = (
n∑

i=1

sigi)(
m∑
j=1

tjhj) =
∑
i,j

siω̄gi(tj)f̄(gi, hj)gihj = 0.

This implies that siω̄gi(tj) = 0. Since S is a domain, si = 0 or ω̄gi(tj) = 0, and thus si = 0 or tj = 0 because ω̄

is an automorphism of S . Therefore, we have α2 = 0 or β2 = 0. If α2 = 0, then α1β1+β2α1 = α1(β1+β2) = 0.

For any γ = (γ1, γ2) ∈ D ∗ M , it suffices to show that αγβ = 0. In fact, since R is strongly CM -

semicommutative, we have α1(γ1 + γ2)(β1 + β2) = 0. This implies that

αγβ = (α1γ1β1 + α1γ1β2 + α1γ2β1 + α1γ2β2 + α2γ1β1 + α2γ2β1 + β2α2γ1, α2γ2β2) = 0.

Similarly, if β2 = 0, then we have α1β1 + α2β1 = (α1 + α2)β1 = 0. For any δ = (δ1, δ2) ∈ D ∗M , since R is

strongly CM -semicommutative, we have (α1 + α2)(δ1 + δ2)β1 = 0 since δ1 + δ2 ∈ R ∗M . This implies that

(α1δ1β1 + α1δ1β2 + α1δ2β1 + β2δ2α1 + α2δ1β1 + α2δ2β1 + β2α2δ1, α2δ2β2) = 0.

It follows that αδβ = (α1, α2)(δ1, δ2)(β1, β2) = 0. This implies that D is a strongly CM -semicommutative

ring. 2

Let △ be a multiplicative monoid consisting of central regular elements of R . Then it is easy to see that

△−1R ={u−1a|u ∈ △, a ∈ R} is a ring. Let M be a monoid with ω : M → Aut(R) a monoid homomorphism.

If ωg(△) ⊆ △ for every g ∈ M , then ω can be extended to ω̄ : M → Aut(△−1R) defined by

ω̄g(u
−1a) = ωg(u)

−1ωg(a).

Note that if f : M ×M → U(R) is a twisted function, then f is also a twisted function from M ×M to

△−1R since U(R) ⊆ U(△−1R).

Proposition 2.14 Let M be a cancellative monoid with twisting f : M × M → U(R) and action ω : M →
Aut(R) . Then R is strongly CM -semicommutative if and only if △−1R is strongly CM -semicommutative.

Proof It suffices to show the necessity. Suppose that R is a strongly CM -semicommutative ring. Let

α =
m∑
i=1

u−1
i aigi , β =

n∑
j=1

v−1
j bjhj ∈ △−1R ∗ M such that αβ = 0. Since △ is a multiplicative monoid

consisting of central regular elements of R , we have

0 = αβ =
( m∑
i=1

u−1
i aigi

)( n∑
j=1

v−1
j bjhj

)
=

∑
k=i+j

u−1
i aiωgi

(
v−1
j bj

)
f(gi, hj)gihj

=
∑

k=i+j

aiωgi(bj)(uiωgi(vj))
−1f(gi, hj)gihj .
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Let α̃ =
m∑
i=1

aigi , β̃ =
n∑

j=1

bjhj . Then we have α̃, β̃ ∈ R∗M , and thus we get α̃β̃ =
∑

k=i+j

aiωgi(bj)f(gi, hj)gihj =

0. Since R is strongly CM -semicommutative, we have

α̃γ̃β̃ =
∑

i+j+k=l

aiωgi

(
ck
)
f
(
gi, pk

)
ωgipk

(
bj
)
f
(
gipk, hj

)
gipkhj = 0

for any γ̃ =
t∑

k=1

ckpk ∈ R ∗M , where l = 3, · · · ,m+ n+ t . Therefore, for any γ =
t∑

k=1

η−1
k ckpk ∈ △−1R ∗M ,

we have

0 = αγβ =
( m∑
i=1

u−1
i aigi

)( t∑
k=1

η−1
k ckpk

)( n∑
j=1

v−1
j bjhj

)
=

∑
i+j+k=l

aiωgi

(
ck
)
f
(
gi, pk

)
ωgipk

(
bj
)(
uiωgi

(
ηk
)
ωgipk

(
νj
))−1

f
(
gipk, hj

)
gipkhj

since △ is a multiplicative monoid consisting of central regular elements of R and all ui, vj and ηk ∈ △ for all

i, j, k . This implies that △−1R is strongly CM -semicommutative. 2

Corollary 2.15 Let M be a cancellative monoid with monoid homomorphism ω : M → Aut(R) . Then R is

skew strongly M -semicommutative if and only if △−1R is skew strongly M -semicommutative.

Corollary 2.16 Let M be a cancellative monoid. Then R is strongly M -semicommutative if and only if

△−1R is strongly M -semicommutative.

The ring of Laurent polynomials in x , with coefficients in a ring R , consists of all formal sum
∑n

i=k mix
i

with obvious addition and multiplication, where mi ∈ R and k, n are (possibly negative) integers. Denote it

by R[x;x−1] .

Corollary 2.17 Let R be a reduced ring and M a monoid. Then R[x] is strongly M -semicommutative if and

only if R[x;x−1] is strongly M -semicommutative.

Proof Let △ = {1, x, x2, · · ·} . Then clearly △ is a multipicatively closed subset of R[x] . Since R[x;x−1] ∼=
△−1R[x] , it follows that R[x;x−1] is strongly M -semicommutative by Proposition 2.14. 2

The next construction is due to Nagata [8]. Let R be a commutative ring, M be an R -module, and

α be an endomorphism of R . Given R ⊕ M , we have a (possibly noncommutative) ring structure with the

following multiplication:

(r1,m1)(r2,m2) = (r1r2, α(r1)m2 + r2m1),

where ri ∈ R and mi ∈ M . We shall call this extension the skew-trivial extension of R by M and α . Let

τ = a1g1 + a2g2 + · · ·+ angn ∈ R ∗M . If α is an endomorphism of R , in the following we denote by

α(τ) = α(a1)g1 + α(a2)g2 + · · ·+ α(an)gn

the image of τ under α .
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Proposition 2.18 Let R be a commutative domain and M a u.p.-monoid with twisting f : M ×M → U(R)

and action ω : M → Aut(R) . If α is an injective endomorphism of R , then the skew-trivial extension R ⊕ R

of R by R and α is strongly CM -semicommutative.

Proof Suppose that (µ1, µ2) =
n∑

i=1

(ai, bi)gi, (ν1, ν2) =
m∑
j=1

(cj , dj)hj ∈ (R⊕R)∗M such that (µ1, µ2)(ν1, ν2) =

0. For any (ω1, ω2) ∈ (R⊕R) ∗M , it suffices to show that (µ1, µ2)(ω1, ω2)(ν1, ν2) = 0. Then we have

µ1ν1 = 0, α(µ1)ν2 + ν1µ2 = 0.

Since R is a commutative domain, we have µ1 = 0 or ν1 = 0. If µ1 = 0, then we have ν1µ2 = 0. Note that

R is a strongly CM -semicommutative ring by Proposition 2.8 since R is an α -rigid ring and α is an injective

endomorphism of R . This implies that ν1ω1µ2 = 0. Therefore, we have

(µ1, µ2)(ω1, ω2)(ν1, ν2) = (µ1ω1ν1, α(µ1)α(ω1)ν2 + ν1α(µ1)ω2 + ν1ω1µ2)

= (µ1ω1ν1, ν1ω1µ2) = 0,

proving R ⊕ R is strongly CM -semicommutative. If ν1 = 0, then α(µ1)ν2 = 0. It follows that α(µ1) = 0

(and thus µ1 = 0 since α is injective) or ν2 = 0 since R is a domain. In this case, it is easy to see that

(µ1, µ2)(ω1, ω2)(ν1, ν2) = 0. This also shows that R⊕R is strongly CM -semicommutative. 2

Corollary 2.19 Let R be a commutative domain and M a u.p.-monoid with twisting f : M ×M → U(R) . If

α is an injective endomorphism of R , then R⊕R is strongly TM -semicommutative.

Given a ring R and a bimodule RMR , the trivial extension of R by M is the ring T (R,M) = R
⊕

M

with the usual addition and the following multiplication:

(r1,m1)(r2,m2) = (r1r2, r1m2 +m1r2).

Let R be a commutative ring. It is clear that if α ≡ IR , then the skew-trivial extension of R by M and

α is just the usual trivial extension of R by M .

Corollary 2.20 If R is a commutative domain, then the trivial extension T (R,R) of R by R is strongly

M -semicommutative.

More generally, we have the following:

Proposition 2.21 Let R be a ring and M a u.p.-monoid with twisting f : M × M → U(R) and action

ω : M → Aut(R) . If R is an M -rigid ring, then T (R,R) is strongly CM -semicommutative.

Proof Let α = (α1, α2), β = (β1, β2) ∈ T (R,R) ∗M such that αβ = 0. Then we have

α1β1 = 0, α1β2 + α2β1 = 0.

We claim that αγβ = 0 for any γ = (γ1, γ2) ∈ T (R,R) ∗M . Since R ∗M is a reduced ring by Lemma 2.3, it

follows that β1α1 = 0. Multiplying
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α1β2 + α2β1 = 0

by β1 on the left, we obtain β1α2β1 = 0. This implies that (α2β1)
2 = 0, and hence α2β1 = 0. Therefore,

α1β2 = 0. Since R is strongly CM -semicommutative by Proposition 2.8, we get α1(R ∗ M)β1 = 0, α2(R ∗
M)β1 = 0 and α1(R ∗M)β2 = 0. This implies that

αγβ = (α1γ1β1, α1γ1β2 + α1γ2β1 + α2γ1β1) = 0.

Therefore, T (R,R) is strongly CM -semicommutative. 2

The next proposition gives the condition under which a semicommutative ring is strongly CM -semicommu-

tative.

Proposition 2.22 Let R be an M -compatible CM -Armendariz ring. If R is semicommutative, then R is

strongly CM -semicommutative.

Proof Let α = a1g1 + a2g2 + · · · + angn , β = b1h1 + b2h2 + · · · + bmhm ∈ R ∗M such that αβ = 0. Since

R is a CM -Armendariz ring, we get aiωgi(bj) = 0 for all i, j . This implies that aiωgitk(bj) = 0 for all i, j

and tk ∈ M since R is M -compatible. Because R is a semicommutative ring, we have aiRωgitk(bj) = 0 for

all i, j and tk ∈ M . Let γ = c1t1 + c2t2 + · · · + csts be any element in R ∗M . Since ωgi

(
ck
)
f
(
gi, tk

)
= R ,

we have αγβ =
∑
i,j,k

aiωgi

(
ck
)
f
(
gi, tk

)
ωgitk

(
bj
)
f
(
gitk, hj

)
gitkhj = 0. This implies that R is a strongly CM -

semicommutative ring. 2

Corollary 2.23 Let R be an M -Armendariz ring. If R is a semicommutative ring, then R is strongly M -

semicommutative.
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