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Abstract: In this paper, we introduce the concepts of order-congruences and strong order-congruences on an ordered

semihypergroup S, and obtain the relationship between strong order-congruences and pseudoorders on S. Furthermore,

we characterize the (strong) order-congruences by the ρ -chains, where ρ is a (strong) congruence on S. Moreover, we

give a method of constructing order-congruences, and prove that every hyperideal I of an ordered semihypergroup S

is congruence class of one order-congruence on S if and only if I is convex. Finally, we define and study the strong

order-congruence generated by a strong congruence. As an application of the results of this paper, we solve an open

problem on ordered semihypergroups given by Davvaz et al.
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1. Introduction

In mathematics, an ordered semigroup (S, ·,≤) is a semigroup (S, ·) with an order relation “ ≤ ” such that

a ≤ b implies xa ≤ xb and ax ≤ bx for any x ∈ S. Ordered semigroups have several applications in the theory

of sequential machines, formal languages, computer arithmetics, and error-correcting codes. As we know,

congruences on ordered semigroups play an important role in studying the structures of ordered semigroups,

for example, see [13–15, 22–24]. For any congruence ρ on an ordered semigroup S, in general, we do not know

whether the quotient semigroup S/ρ is also an ordered semigroup. Even if S/ρ is an ordered semigroup, the

order on S/ρ is not necessarily relative to the order on the original ordered semigroup S. As to the above-

mentioned questions, Kehayopulu and Tsingelis [13, 14] introduced the concept of pseudoorder on an ordered

semigroup S and proved that if σ is a pseudoorder on S , then there exists a congruence σ̄ on S such that S/σ̄

is an ordered semigroup. In the same papers a necessary and sufficient condition such that S is a subdirect

product of some ordered semigroups was given and two isomorphism theorems of S were established. Since

then, Xie [23] introduced the concept of regular congruences on an ordered semigroup S, and proved that ρ is

a regular congruence on S if and only if there exists a pseudoorder σ on S such that ρ = σ ∩ σ−1.

On the other hand, algebraic hyperstructures, particularly hypergroups, were introduced by Marty

[17] in 1934. In a classical algebraic structure the composition of two elements is an element, while in an

algebraic hyperstructure the composition of two elements is a set. Thus algebraic hyperstructures are a suitable
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generalization of classical algebraic structures. Surveys of hyperstructure theory can be found in the books by

Corsini [4], Corsini and Leoreanu [5], Davvaz and Leoreanu-Fotea [8], and Vougiouklis [20]. In the hyperstructure

theory, semihypergroups are the simplest algebraic hyperstructures that are a generalization of the concept of

semigroups. At present, many researchers have studied different aspects of semihypergroups. For more details,

the reader is referred to [1, 3, 6, 9, 10, 12, 16, 18, 25]. Especially, regular and strong regular relations on

semihypergroups have been introduced and investigated in [4].

A theory of hyperstructures on ordered semigroups has been recently developed. In [11], Heidari and

Davvaz applied the theory of hyperstructures to ordered semigroups and introduced the concept of ordered

semihypergroups, which is a generalization of the concept of ordered semigroups. Later on, a lot of papers on

ordered semihypergroups have been written; for instance, see [2, 7, 19, 26]. It is worth pointing out that Davvaz

et al. [7] introduced the concept of a pseudoorder on an ordered semihypergroup, and extended some results

in [13] on ordered semigroups to ordered semihypergroups. In particular, they posed an open problem about

ordered semihypergroups: Is there a regular relation ρ on an ordered semihypergroup (S, ∗,≤) for which S/ρ

is an ordered semihypergroup? As a further study, in this paper we define and study the order-congruences

and strong order-congruences on an ordered semihypergroup, and extend some results in ordered semigroups

to ordered semihypergroups. The rest of this paper is organized as follows. After an introduction, in Section

2 we recall some basic notions and results from the hyperstructure theory. In Section 3, we introduce the

concepts of order-congruences and strong order-congruences on an ordered semihypergroup S, and establish

the relationship between strong order-congruences and pseudoorders on S. Moreover, we described the least

pseudoorder containing a strong order-congruence on an ordered semihypergroup, and give out a homomorphism

theorem of ordered semihypergroups by pseudoorders. In Section 4, we characterize the strong order-congruences

(resp. order-congruences) by the ρ -chains, where ρ is a strong congruence (resp. congruence). Furthermore,

we provide a method of constructing order-congruences, and prove that every hyperideal I of an ordered

semihypergroup S is congruence class of one order-congruence on S if and only if I is convex. By this

constructing method of order-congruences, we answer to the open problem given by Davvaz et al. in [7].

Finally, we define and discuss the strong order-congruence generated by a strong congruence.

2. Preliminaries and some notations

Recall that a hypergroupoid (S, ∗) is a nonempty set S together with a hyperoperation, that is a map ∗ :

S ×S → P ⋆(S), where P ⋆(S) denotes the set of all the nonempty subsets of S. The image of the pair (x, y) is

denoted by x∗y. If x ∈ S and A,B are nonempty subsets of S, then A∗B is defined by A∗B =
∪

a∈A,b∈B

a∗ b.

Also A∗x is used for A∗{x} and x∗A for {x}∗A. Generally, the singleton {x} is identified by its element x.

We say that a hypergroupoid (S, ∗) is a semihypergroup if the hyperoperation “ ∗ ” is associative, that

is, (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, z ∈ S (see [4]).

We now recall the notion of ordered semihypergroups from [11].

Definition 2.1 An algebraic hyperstructure (S, ∗,≤) is called an ordered semihypergroup (also called po-

semihypergroup in [11]) if (S, ∗) is a semihypergroup and (S,≤) is a partially ordered set such that: for any

x, y, a ∈ S, x ≤ y implies a ∗ x ≤ a ∗ y and x ∗ a ≤ y ∗ a. Here, if A,B ∈ P ⋆(S), then we say that A ≤ B if

for every a ∈ A there exists b ∈ B such that a ≤ b.

Clearly, every ordered semigroup is an ordered semihypergroup.
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Let (S,≤) be a partially ordered set (or briefly poset). For ∅ ≠ H ⊆ S, we define

(H] := {t ∈ S | t ≤ h for some h ∈ H}.

A nonempty subset A of a poset S is called convex if a ≤ b ≤ c implies b ∈ A for all a, c ∈ A, b ∈ S. A

nonempty subset B of a poset S is called strongly convex if B = (B] (equivalently, a ∈ S, b ∈ B and a ≤ b

imply a ∈ B). Any strongly convex subset of S is clearly a convex subset; however, the converse does not hold

in general.

By a subsemihypergroup of an ordered semihypergroup S we mean a nonempty subset A of S such that

A ∗ A ⊆ A. A nonempty subset A of a semihypergroup (S, ∗) is called a left (resp. right) hyperideal of S if

S ∗ A ⊆ A (resp. A ∗ S ⊆ A). If A is both a left and a right hyperideal of S, then it is called a hyperideal of

S. A nonempty subset A of an ordered semihypergroup (S, ∗,≤) is called an ordered hyperideal of S if A is a

strongly convex hyperideal of S.

Let ρ be an equivalence relation on a semihypergroup (S, ∗) or an ordered semigroup (S, ∗,≤). If A and

B are nonempty subsets of S, then we write AρB to denote that for every a ∈ A, there exists b ∈ B such that

aρb and for every b ∈ B there exists a ∈ A such that aρb. We write AρB if for every a ∈ A and for every

b ∈ B we have aρb. The equivalence relation ρ is called congruence (also called regular relation in [4, 7]) if for

every (x, y) ∈ S × S the implication xρy ⇒ a ∗ x ρ a ∗ y and x ∗ a ρ y ∗ a, for all a ∈ S, is valid. ρ is called

strong congruence (also called strongly regular relation in [4, 7]) if for every (x, y) ∈ S×S, from xρy , it follows

that a ∗ x ρ a ∗ y and x ∗ a ρ y ∗ a for all a ∈ S.

Lemma 2.2 ([4]) Let (S, ∗) be a semihypergroup and ρ an equivalence relation on S. Then

(i) If ρ is a congruence, then (S/ρ,⊗) is a semihypergroup with respect to the following hyperoperation:

(a)ρ ⊗ (b)ρ =
∪

c∈a∗b
(c)ρ, and it is called a factor semihypergroup.

(ii) If ρ is a strong congruence, then (S/ρ,⊗) is a semigroup with respect to the following operation: (a)ρ ⊗
(b)ρ = (c)ρ for all c ∈ a ∗ b, and it is called a factor semigroup.

Let I be a hyperideal of a semihypergroup (S, ∗). The relation ρI on S is defined as follows:

ρI := {(x, y) ∈ S\I × S\I | x = y} ∪ (I × I).

Clearly, ρI is an equivalence relation on S. Moreover, we have the following lemma.

Lemma 2.3 Let (S, ∗) be a semihypergroup and I a hyperideal of S. Then ρI is a congruence on S and it is

called Rees congruence induced by I.

Proof Let x, y ∈ S and xρIy. Then x = y ∈ S\I or x, y ∈ I. We consider the following cases:

Case 1. If x = y ∈ S\I, then, for any z ∈ S, x ∗ z = y ∗ z. Hence x ∗ z ρI y ∗ z.
Case 2. Let x, y ∈ I. Since I is a hyperideal of S, we have x ∗ z ⊆ I, y ∗ z ⊆ I for any z ∈ S. Thus, for

any a ∈ x ∗ z, b ∈ y ∗ z, we have (a, b) ∈ I × I ⊆ ρI . Therefore, x ∗ z ρI y ∗ z. 2

Similarly, we can show that z ∗ x ρI z ∗ y for any z ∈ S. We have thus shown that ρI is a congruence on

S.
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Remark 2.4 (1) S/ρI = {{x} | x ∈ S\I} ∪ {I}.

(2) By Lemmas 2.2 and 2.3, (S/ρI ,⊗I) forms a factor semihypergroup, which is called Rees factor semihy-

pergroup (also called Rees quotient semihypergroup). Here the hyperoperation ⊗I on S/ρI is defined by

(a)ρI
⊗I (b)ρI

=
∪

c∈a∗b
(c)ρI

.

A relation ρ on an ordered semihypergroup (S, ∗,≤) is called pseudoorder if it satisfies the following

conditions: (1) ≤⊆ ρ, (2) aρb and bρc imply aρc, i.e. ρ◦ρ ⊆ ρ and (3) aρb implies a∗ c ρ b∗c and c∗a ρ c∗ b,
for all c ∈ S (see [7]).

Lemma 2.5 Let (S, ∗,≤) be an ordered semihypergroup and ρ a pseudoorder on S. Then (S/ρ∗,⊗,⪯ρ) is an

ordered semigroup, where ρ∗ (= ρ∩ ρ−1) is a strong congruence on S , and the order relation ⪯ρ is defined as

follows:

⪯ρ:= {((x)ρ∗ , (y)ρ∗) ∈ S/ρ∗ × S/ρ∗ | (x, y) ∈ ρ}.

Let (S, ∗,≤) and (T, ⋄,⪯) be two ordered semihypergroups, f : S → T a mapping from S to T. f

is called isotone if x ≤ y implies f(x) ⪯ f(y), for all x, y ∈ S. f is called reverse isotone if x, y ∈ S ,

f(x) ⪯ f(y) implies x ≤ y. f is called homomorphism (resp. strong homomorphism) if it is isotone and

satisfies f(x)⋄f(y) =
∪

z∈x∗y
f(z) (resp. f(x)⋄f(y) = f(z), ∀z ∈ x∗y ), for all x, y ∈ S. f is called isomorphism

(resp. strong isomorphism) if it is homomorphism (resp. strong homomorphism), onto, and reverse isotone.

The ordered semihypergroups S and T are called strongly isomorphic, in symbol S ∼= T, if there exists a strong

isomorphism between them.

Remark 2.6 Let S and T be two ordered semihypergroups. Then

(1) If f is a strong homomorphism and reverse isotone mapping from S to T, then S ∼= Im(f).

(2) In particular, if S and T are both ordered semigroups, then, in this case, the concepts of strong isomorphisms

of ordered semihypergroups and isomorphisms of ordered semigroups coincide.

The reader is referred to [5, 21] for notation and terminology not defined in this paper.

3. Strong order-congruences and order-congruences on ordered semihypergroups

As we know, pseudoorders on ordered semihypergroups play an important role in studying the structures of

ordered semihypergroups (see [7]). To investigate the properties of pseudoorders on ordered semihypergroups

in detail, in this section we shall introduce the concepts of order-congruences and strong order-congruences on

an ordered semihypergroup, and study the relationship between strong order-congruences and pseudoorders.

Definition 3.1 Let (S, ∗,≤) be an ordered semihypergroup. A congruence (resp. strong congruence) ρ is called

an order-congruence (resp. a strong order-congruence) if there exists an order relation “ ⪯ ” on (S/ρ,⊗) such

that:

(1) (S/ρ,⊗,⪯) is an ordered semihypergroup (resp. ordered semigroup), where the hyperoperation “ ⊗ ” is

defined as one in Lemma 2.2.
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(2) The canonical epimorphism φ : S → S/ρ, x 7→ (x)ρ is isotone, that is, φ is a homomorphism (resp. strong

homomorphism) from S onto S/ρ.

It is clear that the equality relation 1S and the universal relation S×S on S are both order-congruences.

In general, an example of order-congruence is given as follows:

Example 3.2 We consider a set S := {a, b, c, d, e} with the following hyperoperation “∗” and the order “ ≤ ” :

∗ a b c d e
a {b, d} {b, d} {d} {d} {d}
b {b, d} {b, d} {d} {d} {d}
c {d} {d} {d} {d} {d}
d {d} {d} {d} {d} {d}
e {d} {d} {d} {d} {d}

≤:= {(a, a), (a, b), (b, b), (c, c), (c, e), (d, b), (d, c), (d, e), (d, d), (e, e)}.

We give the covering relation “≺” and the figure of S as follows:

≺= {(a, b), (d, b), (d, c), (c, e)}.

b b
b
b

b
@
@
@
@@a

b c

d

e

Then (S, ∗,≤) is an ordered semihypergroup. Let ρ1, ρ2 be congruences on S defined as follows:

ρ1 := {(a, a), (b, b), (c, c), (d, d), (e, e), (d, e), (e, d)},

ρ2 := {(a, a), (b, b), (c, c), (d, d), (e, e), (c, e), (e, c)}.

Then S/ρ1 = {{a}, {b}, {c}, {d, e}}, S/ρ2 = {{a}, {b}, {c, e}, {d}}. Moreover, we have

(1) ρ1 is not an order-congruence on S. In fact, if ρ1 is an order-congruence on S, then there exists an order

“⪯1” on S/ρ1 such that (S/ρ1,⊗1,⪯1) is an ordered semihypergroup and the mapping φ1 : S → S/ρ1, x 7→
(x)ρ1 is isotone. Since d ≤ c, we have (d)ρ1 ⪯1 (c)ρ1 . Also, since c ≤ e, we have (c)ρ1 ⪯1 (e)ρ1 = (d)ρ1 .

Then (d)ρ1 = (c)ρ1 . Impossible.

(2) ρ2 is an order-congruence on S. In fact, let S/ρ2 = {x, y, z, w}, where x = {a}, y = {b}, z = {c, e}, w =

{d}.

The hyperoperation “⊗2” and the order “⪯2” on S/ρ2 are as follows:

⊗2 x y z w
x {y, w} {y, w} {w} {w}
y {y, w} {y, w} {w} {w}
z {w} {w} {w} {w}
w {w} {w} {w} {w}
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⪯2:= {(x, x), (y, y), (z, z), (w,w), (x, y), (w, y), (w, z)}.

We give the covering relation “≺” and the figure of S/ρ2 as follows:

≺2= {(x, y), (w, y), (w, z)}.

b b
bb

@
@
@
@@x

y z

w

Then (S/ρ2,⊗2,⪯2) is an ordered semihypergroup and the mapping φ2 : S → S/ρ2, x 7→ (x)ρ2 is isotone.

Hence ρ2 is an order-congruence on S.

Proposition 3.3 Let (S, ∗,≤) be an ordered semihypergroup and ρ a pseudoorder on S. Then ρ∗ is a strong

order-congruence on S, where ρ∗ = ρ ∩ ρ−1.

Proof By Lemma 2.5, (S/ρ∗,⊗,⪯ρ) is an ordered semigroup, where the order relation ⪯ρ is defined as follows:

⪯ρ:= {((x)ρ∗ , (y)ρ∗) ∈ S/ρ∗ × S/ρ∗ | (x, y) ∈ ρ}.

Also, let x, y ∈ S and x ≤ y. Then, since ρ is a pseudoorder on S, (x, y) ∈≤⊆ ρ, and thus ((x)ρ∗ , (y)ρ∗) ∈⪯ρ,

i.e. (x)ρ∗ ⪯ρ (y)ρ∗ . Therefore, ρ∗ is a strong order-congruence on S. 2

In order to establish the relationship between strong order-congruences and pseudoorders on an ordered

semihypergroup, the following lemma is essential.

Lemma 3.4 Let (S, ∗,≤) be an ordered semihypergroup and σ a relation on S. Then the following statements

are equivalent:

(1) σ is a pseudoorder on S .

(2) There exist an ordered semihypergroup (T, ⋄,⪯) and a strong homomorphism φ : S → T such that

−→
kerφ := {(a, b) ∈ S × S | φ(a) ⪯ φ(b)} = σ,

where
−→
kerφ is called the directed kernel of φ.

Proof (1) ⇒ (2). Let σ be a pseudoorder on S. We denote by σ∗ the strong congruence on S defined by

σ∗ := {(a, b) ∈ S × S | (a, b) ∈ σ, (b, a) ∈ σ}(= σ ∩ σ−1).

Then, by Lemma 2.5, the set S/σ∗ := {(a)σ∗ | a ∈ S} with the operation (a)σ∗ ⊗ (b)σ∗ = (c)σ∗ , ∀c ∈ a ∗ b, for
all a, b ∈ S and the order

⪯σ:= {((x)σ∗ , (y)σ∗) ∈ S/σ∗ × S/σ∗ | (x, y) ∈ σ}

is an ordered semigroup. Let T = (S/σ∗,⊗,⪯σ) and φ be the mapping of S onto S/σ∗ defined by φ : S →
S/σ∗ | a 7→ (a)σ∗ . Then, by Proposition 3.3, φ is a strong homomorphism from S onto S/σ∗ and clearly,
−→
kerφ = σ.
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(2) ⇒ (1). Let (S, ∗,≤) be an ordered semihypergroup. If there exist an ordered semihypergroup

(T, ⋄,⪯) and a strong homomorphism φ : S → T such that
−→
kerφ = σ, then σ is a pseudoorder on S. Indeed,

let (a, b) ∈≤ . Then, by hypothesis, φ(a) ⪯ φ(b). Thus (a, b) ∈
−→
kerφ = σ, and we have ≤⊆ σ. Moreover,

let (a, b) ∈ σ and (b, c) ∈ σ. Then φ(a) ⪯ φ(b) ⪯ φ(c). Hence φ(a) ⪯ φ(c), i.e. (a, c) ∈
−→
kerφ = σ.

Also, if (a, b) ∈ σ, then φ(a) ⪯ φ(b). Since (T, ⋄,⪯) is an ordered semihypergroup, for any c ∈ S we have

φ(a) ⋄ φ(c) ⪯ φ(b) ⋄ φ(c). Since φ is a strong homomorphism from S to T, for every x ∈ a ∗ c and y ∈ b ∗ c,
we have

φ(x) = φ(a) ⋄ φ(c) ⪯ φ(b) ⋄ φ(c) = φ(y).

Then (x, y) ∈
−→
kerφ = σ, and thus a ∗ c σ b ∗ c. In the same way, it can be shown that c ∗ a σ c ∗ b. 2

Theorem 3.5 Let (S, ∗,≤) be an ordered semihypergroup and ρ a strong congruence on S. Then the following

statements are equivalent:

(1) ρ is a strong order-congruence on S.

(2) There exists a pseudoorder σ on S such that ρ = σ ∩ σ−1.

(3) There exist an ordered semihypergroup T and a strong homomorphism φ : S → T such that ρ = ker(φ),

where kerφ = {(a, b) ∈ S × S | φ(a) = φ(b)} is the kernel of φ.

Proof (1) ⇒ (2). Let ρ be a strong order-congruence on S. Then there exist an order relation “⪯” on

the factor semigroup (S/ρ,⊗) such that (S/ρ,⊗,⪯) is an ordered semigroup, and φ : S → S/ρ is a strong

homomorphism. Let σ =
−→
kerφ. By Lemma 3.4, σ is a pseudoorder on S and it is easy to check that ρ = σ∩σ−1 .

(2) ⇒ (3). For a pseudoorder σ on S, by Lemma 3.4, there exist an ordered semihypergroup T and a

strong homomorphism φ : S → T such that σ =
−→
kerφ. Then we have

kerφ =
−→
kerφ ∩ (

−→
kerφ)−1 = σ ∩ σ−1 = ρ.

(3) ⇒ (1). By hypothesis and Lemma 3.4,
−→
kerφ is a pseudoorder on S. Then, by Lemma 2.5, ρ =

−→
kerφ∩ (

−→
kerφ)−1 is a strong congruence on S. Thus, by the proof of Lemma 3.4, ρ is a strong order-congruence

on S. 2

Lemma 3.6 (1) For a strong order-congruence ρ on S, since the order “⪯” such that (S/ρ,⊗,⪯) is an

ordered semigroup is not unique in general, we have the pseudoorder σ containing ρ such that ρ = σ ∩σ−1

is not unique.

(2) If σ is a pseudoorder on an ordered semihypergroup S, then ρ = σ ∩ σ−1 is the greatest strong order-

congruence on S contained in σ . In fact, if ρ1 is a strong order-congruence on S contained in σ, then

ρ1 = ρ1 ∩ ρ−1
1 ⊆ σ ∩ σ−1 = ρ.

Theorem 3.7 Let ρ be a strong order-congruence on an ordered semihypergroup (S, ∗,≤). Then the least

pseudoorder σ containing ρ is the transitive closure of relations ≤ ◦ρ (resp. ρ◦ ≤) , that is,

σ =
∞∪

n=1

(≤ ◦ρ)n =
∞∪

n=1

(ρ◦ ≤)n.
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Proof

(1) Let σ1 =
∞∪

n=1
(≤ ◦ρ)n. Clearly, ρ ⊆≤ ◦ρ ⊆ σ1. Similarly, since ≤⊆ ≤ ◦ ρ , we have ≤⊆ σ1.

(2) If (a, b) ∈ σ1 , (b, c) ∈ σ1 , then there exist m,n ∈ Z+ such that (a, b) ∈ (≤ ◦ρ)m and (b, c) ∈ (≤ ◦ρ)n,
where Z+ denotes the set of positive integers. Thus (a, c) ∈ (≤ ◦ρ)m+n ⊆ σ1, i.e. σ1 is transitive.

(3) Let (a, b) ∈ σ1 and c ∈ S. Then there exists n ∈ Z+ such that (a, b) ∈ (≤ ◦ρ)n, that is, there exist

a1, b1, a2, b2, . . . , an ∈ S such that

a ≤ a1ρb1 ≤ a2ρb2 ≤ · · · ≤ anρb.

Since (S, ∗,≤) is an ordered semihypergroup and ρ is a strong congruence on S, we have

a ∗ c ≤ a1 ∗ c ρ b1 ∗ c ≤ a2 ∗ c ρ b2 ∗ c ≤ · · · ≤ an ∗ c ρ b ∗ c.

Then, for any x ∈ a ∗ c, y ∈ b ∗ c, there exist xi ∈ ai ∗ c (i = 1, 2, . . . , n), yj ∈ bj ∗ c (j = 1, 2, . . . , n− 1) such

that
x ≤ x1ρy1 ≤ x2ρy2 ≤ · · · ≤ xnρy.

It thus implies that (x, y) ∈ (≤ ◦ρ)n ⊆ σ1, and we obtain that a ∗ c σ1 b ∗ c. Similar to the above way, it

can be shown that c ∗ a σ1 c ∗ b. Thus
∞∪

n=1
(≤ ◦ρ)n is a pseudoorder on S containing ρ.

Furthermore, since σ is transitive, and ρ ⊆ σ,≤⊆ σ , we have
∞∪

n=1
(≤ ◦ρ)n ⊆ σ. Thus, by hypothesis,

σ =
∞∪

n=1
(≤ ◦ρ)n . In the same way, we can conclude that σ =

∞∪
n=1

(ρ◦ ≤)n . 2

Let σ be a pseudoorder on an ordered semihypergroup (S, ∗,≤). Then, by Theorem 3.5, ρ = σ ∩ σ−1

is a strong order-congruence on S. We denote by ρ♯ the canonical epimorphism from S onto S/ρ, i.e.

ρ♯ : S → S/ρ | x 7→ (x)ρ, which is a strong homomorphism. In the following, we give out a homomorphism

theorem of ordered semihypergroups by pseudoorders, which is a generalization of Theorem 1 in [14]. In fact,

in Theorem 3.8, if our ordered semihypergroup is an ordered semigroup, i.e. the hyperoperation is an ordinary

binary operation, we shall obtain Theorem 1 in [14].

Theorem 3.8 Let (S, ∗,≤) and (T, ⋄,⪯) be two ordered semihypergroups, φ : S → T a strong homomorphism.

Then: If σ is a pseudoorder on S such that σ ⊆
−→
kerφ, then there exists the unique strong homomorphism

f : S/ρ → T | (a)ρ 7→ φ(a) such that the diagram

S

ρ♯

��

φ // T

S/ρ

f

>>||||||||

commutes, where ρ = σ ∩ σ−1. Moreover, Im(φ) = Im(f). Conversely, if σ is a pseudoorder on S for which

there exists a strong homomorphism f : (S/ρ,⊗,⪯σ) → (T, ⋄,⪯) (ρ = σ ∩ σ−1) such that the above diagram

commutes, then σ ⊆
−→
kerφ.
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Proof Let σ be a pseudoorder on S such that σ ⊆
−→
kerφ, f : S/ρ → T | (a)ρ 7→ φ(a). Then

(1) f is well defined. Indeed, if (a)ρ = (b)ρ, then (a, b) ∈ ρ ⊆ σ. Since σ ⊆
−→
kerφ, we have (φ(a), φ(b)) ∈⪯ .

Furthermore, since (b, a) ∈ σ ⊆
−→
kerφ, we have (φ(b), φ(a)) ∈⪯ . Therefore, φ(a) = φ(b).

(2) f is a strong homomorphism and φ = f ◦ ρ♯. In fact: By Lemma 3.4, there exist an order relation

“⪯σ ” on the factor semigroup (S/ρ,⊗) such that (S/ρ,⊗,⪯σ) is an ordered semigroup and the canonical

epimorphism ρ♯ is a strong homomorphism. Moreover, we have

(a)ρ ⪯σ (b)ρ ⇒ (a, b) ∈ σ ⊆
−→
kerφ

⇒ φ(a) ⪯ φ(b)

⇒ f((a)ρ) ⪯ f((b)ρ).

Also, let (a)ρ, (b)ρ ∈ S/ρ. For any (c)ρ ∈ (a)ρ ⊗ (b)ρ, we have c ∈ a ∗ b. Since φ is a strong homomorphism

from S to T, we have

f((a)ρ) ⋄ f((b)ρ) = φ(a) ⋄ φ(b) = φ(c) = f((c)ρ).

Furthermore, for any a ∈ S, (f ◦ ρ♯)(a) = f((a)ρ) = φ(a), and thus φ = f ◦ ρ♯.

We claim that f is a unique strong homomorphism from S/ρ to T. To prove our claim, let g be a strong

homomorphism from S/ρ to T such that φ = g ◦ ρ♯. Then

f((a)ρ) = φ(a) = (g ◦ ρ♯)(a) = g((a)ρ).

Moreover, Im(f) = {f((a)ρ) | a ∈ S} = {φ(a) | a ∈ S} = Im(φ).

Conversely, let σ be a pseudoorder on S, f : S/ρ → T is a strong homomorphism, and φ = f ◦ ρ♯. Then

σ ⊆
−→
kerφ. Indeed, by hypothesis, we have

(a, b) ∈ σ ⇔ (a)ρ ⪯σ (b)ρ ⇒ f((a)ρ) ⪯ f((b)ρ)

⇒ (f ◦ ρ♯)(a) ⪯ (f ◦ ρ♯)(b)

⇒ φ(a) ⪯ φ(b) ⇒ (a, b) ∈
−→
kerφ,

where the order ⪯σ on S/ρ is defined as in the proof of Lemma 3.4, that is

⪯σ:= {((x)ρ, (y)ρ) ∈ S/ρ× S/ρ | (x, y) ∈ σ}.

2

Corollary 3.9 Let (S, ∗,≤) and (T, ⋄,⪯) be two ordered semihypergroups and φ : S → T a strong homomor-

phism. Then S/kerφ ∼= Im(φ), where kerφ is the kernel of φ.

Proof Let σ =
−→
kerφ and ρ =

−→
kerφ ∩ (

−→
kerφ)−1. Then, by Theorems 3.5 and 3.8, ρ is a strong order-

congruence on S and f : S/ρ → T | (a)ρ 7→ φ(a) is a strong homomorphism. Moreover, f is inverse isotone.

In fact, let (a)ρ, (b)ρ be two elements of S/ρ such that f((a)ρ) ⪯ f((b)ρ). Then φ(a) ⪯ φ(b), and we have

(a, b) ∈
−→
kerφ. Thus, by Lemma 3.4, ((a)ρ, (b)ρ) ∈⪯σ, i.e. (a)ρ ⪯σ (b)ρ. Clearly, ρ = kerφ. By Remark 2.6(1),

S/kerφ ∼= Im(f). Also, by Theorem 3.8, Im(f) = Im(φ). Therefore, S/kerφ ∼= Im(φ). 2

Note that if S and T are both ordered semigroups, then Corollary 3.9 coincides with Corollary in [14].
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4. Characterizations of (strong) order-congruences on ordered semihypergroups

In the above section, we have characterized the strong order-congruences by the properties of pseudoorders on

an ordered semihypergroup. In the current section, we shall give out other characterizations of (strong) order-

congruences on ordered semihypergroups. In order to prove the main results in this section, we first introduce

the following concept.

Definition 4.1 Let (S, ∗,≤) be an ordered semihypergroup and ρ an equivalence relation on S. A finite

sequence of the form (x, a1, b1, a2, b2, . . . , an−1, bn−1, an, y) of elements in S is called a ρ-chain if

(1) (a1, b1) ∈ ρ, (a2, b2) ∈ ρ, . . . , (an−1, bn−1) ∈ ρ, (an, y) ∈ ρ;

(2) x ≤ a1, b1 ≤ a2, b2 ≤ a3, . . . , bn−2 ≤ an−1, bn−1 ≤ an.

Briefly we write

x ≤ a1ρb1 ≤ a2ρb2 ≤ · · · ≤ anρy.

The number n is called the length, x and y initial and terminal elements, respectively, of the ρ-chain. A

ρ-chain is called close if its initial and teriminal elements are equal, i.e. x = y .

We denote by ρCxy the set of all ρ-chains with x as the initial and y as the terminal elements in the

sequel.

Lemma 4.2 Let (S, ∗,≤) be an ordered semihypergroup and ρ a congruence on S . Then the following

statements are true:

(1) (x, y) ∈ (≤ ◦ρ)n if and only if there exists a ρ-chain with length n in ρCxy , i.e. ρCxy ̸= ∅.

(2) For any z ∈ S, if ρCxy ̸= ∅ for some x, y ∈ S, then for every u ∈ x ∗ z, there exists v ∈ y ∗ z such that
ρCuv ̸= ∅.

(3) For any z ∈ S, if ρCxy ̸= ∅ for some x, y ∈ S, then for every u′ ∈ z ∗ x, there exists v′ ∈ z ∗ y such that

ρCu′v′ ̸= ∅.

Proof

(1) The proof is straightforward by Definition 4.1 and we omit it.

(2) Let (x, a1, b1, a2, b2, . . . , an−1, bn−1, an, y) ∈ ρCxy and z ∈ S. Then

x ≤ a1ρb1 ≤ a2ρb2 ≤ · · · ≤ an−1ρbn−1 ≤ anρb.

Since (S, ∗,≤) is an ordered semihypergroup and ρ is a congruence on S, we have

x ∗ z ≤ a1 ∗ z ρ b1 ∗ z ≤ a2 ∗ z ρ b2 ∗ z ≤ · · · ≤ an−1 ∗ z ρ bn−1 ∗ z ≤ an ∗ z ρ y ∗ z.

Then, for any u ∈ x ∗ z, there exist xi ∈ ai ∗ z (i = 1, 2, . . . , n), yj ∈ bj ∗ z (j = 1, 2, . . . , n − 1), v ∈ y ∗ z
such that

u ≤ x1ρy1 ≤ x2ρy2 ≤ · · · ≤ xn−1ρyn−1 ≤ xnρv.

It thus implies that (u, x1, y1, x2, y2, . . . , xn−1, yn−1, xn, v) ∈ ρCuv , i.e. ρCuv ̸= ∅.

(3) It is similar to that of (2) and we omit it. 2
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Lemma 4.3 Let (S, ∗,≤) be an ordered semihypergroup and ρ a strong congruence on S . If ρCxy ̸= ∅ for some

x, y ∈ S, then, for any z ∈ S, we have ρCuv ̸= ∅ and ρCu′v′ ̸= ∅ for every u ∈ x∗z, v ∈ y∗z, u′ ∈ z∗x, v′ ∈ z∗y.

Proof The proof is similar to that of Lemma 4.2 with a slight modification. 2

Lemma 4.4 Let S be an ordered semihypergroup and ρ a (strong) congruence on S. If (x, y) ∈ ρ , (k, z) ∈ ρ ,

then ρCxk ̸= ∅ if and only if ρCyz ̸= ∅.

Proof (=⇒). If ρCxk ̸= ∅, by Lemma 4.2(1), there exists n ∈ Z+ such that (x, k) ∈ (≤ ◦ρ)n. Since (x, y) ∈ ρ,

(z, k) ∈ ρ, we have

y ≤ yρx(≤ ◦ρ)nk ≤ kρz,

which implies that (y, z) ∈ (≤ ◦ρ)n+2 . By Lemma 4.2(1), we have ρCyz ̸= ∅. 2

(⇐=). Similar to the proof of necessity and we omit it.

Now we shall give a characterization of order-congruences on an ordered semihypergroup.

Theorem 4.5 Let (S, ∗,≤) be an ordered semihypergroup and ρ a congruence on S . Then ρ is an order-

congruence on S if and only if every close ρ-chain is contained in a single equivalent class of ρ.

Proof Let ρ be an order-congruence on S. Then there exists an order ⪯ on the factor semihypergroup

(S/ρ,⊗) such that (S/ρ,⊗,⪯) is an ordered semihypergroup and φ : S → S/ρ is a homomorphism. For any

x ∈ S, and every close ρ -chain (x, a1, b1, . . . , an, x) in ρCxx , we have

x ≤ a1ρb1 ≤ a2ρb2 ≤ · · · ≤ anρx.

Then,

φ(x) ⪯ φ(a1) = φ(b1) ⪯ φ(a2) = φ(b2) ⪯ · · · ⪯ φ(an) = φ(x).

It implies that φ(x) = φ(a1) = φ(b1) = φ(a2) = φ(b2) = · · · = φ(an). Consequently, (x, a1, b1, . . . , an, x) is

contained in a single ρ -class.

Conversely, since ρ is a congruence on S, by Lemma 2.2, (S/ρ,⊗) is a semihypergroup. We define a

relation “⪯” on the factor semihypergroup (S/ρ,⊗) as follows:

⪯:= {((x)ρ, (y)ρ) | ρCxy ̸= ∅}.

(1) ⪯ is well defined. In fact, let x1, y1 ∈ S be such that (x)ρ = (x1)ρ, (y)ρ = (y1)ρ . If (x)ρ ⪯ (y)ρ, then

ρCxy ≠ ∅. By Lemma 4.4, we have ρCx1y1 ̸= ∅, and (x1)ρ ⪯ (y1)ρ.

(2) ⪯ is an ordered relation on S/ρ.

(α) ⪯ is reflexive. In fact, since for any x ∈ S , x ≤ xρx , and we have ρCxx ̸= ∅, i.e. ((x)ρ, (x)ρ) ∈⪯ .

(β) ⪯ is transitive. Indeed, let ((x)ρ, (y)ρ)∈ ⪯, ((y)ρ, (z)ρ)∈ ⪯ . Then we have ρCxy ̸= ∅, ρCyz ̸= ∅. By
Lemma 4.2(1), there exist m,n ∈ Z+ such that (x, y) ∈ (≤ ◦ρ)m, (y, z) ∈ (≤ ◦ρ)n. Then we have

(x, z) ∈ (≤ ◦ρ)m ◦ (≤ ◦ρ)n = (≤ ◦ρ)m+n,

i.e. ρCxz ̸= ∅. Thus ((x)ρ, (z)ρ)∈ ⪯ .
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(γ) ⪯ is anti-symmetric. In fact, if ((x)ρ, (y)ρ) ∈⪯ , ((y)ρ, (x)ρ) ∈⪯, then ρCxy ̸= ∅, ρCyx ̸= ∅. Similar to

the above proof, it can be obtained that ρCxx ̸= ∅, i.e. there exists a close ρ -chain in ρCxx containing x

and y . By hypothesis, (x)ρ = (y)ρ.

(3) (S/ρ,⊗,⪯) is an ordered semihypergroup. Indeed, let (x)ρ ⪯ (y)ρ and (z)ρ ∈ S/ρ. Then ρCxy ̸= ∅. By

Lemma 4.2(2), for every u ∈ x ∗ z, there exists v ∈ y ∗ z such that ρCuv ̸= ∅, i.e. (u)ρ ⪯ (v)ρ. Thus

(x)ρ ⊗ (z)ρ =
∪

u∈x∗z
(u)ρ ⪯

∪
v∈y∗z

(v)ρ = (y)ρ ⊗ (z)ρ.

Similarly, it can be shown that (z)ρ ⊗ (x)ρ ⪯ (z)ρ ⊗ (y)ρ.

(4) The mapping φ : S → S/ρ | x 7→ (x)ρ is isotone. In fact, let x, y ∈ S be such that x ≤ y. Then

(x, y) ∈≤ ◦ρ, we have ρCxy ̸= ∅, i.e. (x)ρ ⪯ (y)ρ.

Therefore, ρ is an order-congruence on S. 2

Similarly, strong order-congruences on an ordered semihypergroup can be characterized as follows:

Theorem 4.6 Let (S, ∗,≤) be an ordered semihypergroup and ρ a strong congruence on S . Then ρ is a strong

order-congruence on S if and only if every close ρ-chain is contained in a single equivalent class of ρ.

Proof The proof is similar to that of Theorem 4.5 with suitable modification by using Lemma 4.3. 2

By Theorem 4.5, we immediately obtain the following corollary:

Corollary 4.7 If ρ is an order-congruence on an ordered semihypergroup S, then every ρ-class in S is convex.

Proof Let ρ be an order-congruence on S and I a congruence class of ρ. If x ≤ y ≤ z and x, z ∈ I, then

(x)ρ = (z)ρ. Thus we have x ≤ yρy ≤ zρx. Hence (x, y, y, z, x) is a close ρ -chain and by Theorem 4.5 we have

(x)ρ = (y)ρ = (z)ρ. It thus follows that y ∈ I, and I is convex. 2

Furthermore, we have the following theorem.

Theorem 4.8 Let (S, ∗,≤) be an ordered semihypergroup and I a hyperideal of S. Then I is a congruence

class of one order-congruence on S if and only if I is convex.

Proof The proof is straightforward by Corollary 4.7.

Conversely, let ρI be the Rees congruence induced by I on S. By Remark 2.4(1), I is a congruence class

of ρI . Now we define a relation “ ⪯I ” on the factor semihypergroup (S/ρI ,⊗) as follows:

(x)ρI
⪯I (y)ρI

⇔ (x ≤ y) or (x ≤ a, a′ ≤ y for some a, a′ ∈ I).

We claim that ρI is an order-congruence on S. To prove our claim, we first show that ⪯I is order relation on

S/ρI , i.e. ⪯I is reflexive, anti-symmetric, and transitive.

(1) Let (x)ρI
be any element of S/ρI . Then, since x ≤ x, we have (x)ρI

⪯I (x)ρI
.
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(2) Let (x)ρI
⪯I (y)ρI

and (y)ρI
⪯I (x)ρI

. Then x ≤ y or x ≤ a, a′ ≤ y for some a, a′ ∈ I, and y ≤ x or

y ≤ b, b′ ≤ x for some b, b′ ∈ I. We consider the following four cases:

Case 1. If x ≤ y and y ≤ x, then x = y, and thus (x)ρI
= (y)ρI

.

Case 2. If x ≤ y and y ≤ b, b′ ≤ x for some b, b′ ∈ I, then b′ ≤ x ≤ y ≤ b. Since I is convex and b, b′ ∈ I,

we have x, y ∈ I. Thus (x)ρI
= (y)ρI

= I.

Case 3. Let x ≤ a, a′ ≤ y for some a, a′ ∈ I and y ≤ x. Similar to the proof of Case 2, we have

(x)ρI = (y)ρI .

Case 4. Let x ≤ a, a′ ≤ y for some a, a′ ∈ I and y ≤ b, b′ ≤ x for some b, b′ ∈ I. Then b′ ≤ x ≤ a and

a′ ≤ y ≤ b. Since I is convex, we have x, y ∈ I. Thus (x)ρI
= (y)ρI

.

(3) Let (x)ρI
⪯I (y)ρI

and (y)ρI
⪯I (z)ρI

. Then x ≤ y or x ≤ a, a′ ≤ y for some a, a′ ∈ I, and y ≤ z or

y ≤ b, b′ ≤ z for some b, b′ ∈ I. There are four cases to be considered:

Case 1. If x ≤ y and y ≤ z, then x ≤ z, and thus (x)ρI
⪯I (y)ρI

.

Case 2. If x ≤ y and y ≤ b, b′ ≤ z for some b, b′ ∈ I, then x ≤ y ≤ b and b′ ≤ z. By the definition of ⪯I ,

(x)ρI
⪯I (z)ρI

.

Case 3. Let x ≤ a, a′ ≤ y for some a, a′ ∈ I and y ≤ z. Analogous to the proof of Case 2, we have

(x)ρI
⪯I (z)ρI

.

Case 4. Let x ≤ a, a′ ≤ y for some a, a′ ∈ I and y ≤ b, b′ ≤ z for some b, b′ ∈ I. Then x ≤ a and b′ ≤ z.

Hence (x)ρI
⪯I (z)ρI

.

Now we show that (S/ρI ,⊗I ,⪯I) is an ordered semihypergroup. Let (x)ρI
⪯I (y)ρI

and z ∈ S. Then

x ≤ y or x ≤ a, a′ ≤ y for some a, a′ ∈ I. We consider the following two cases:

Case 1. If x ≤ y, then x ∗ z ≤ y ∗ z. Thus for every u ∈ x ∗ z, there exists v ∈ y ∗ z such that u ≤ v,

and we have (u)ρI
⪯I (v)ρI

. Thus

(x)ρI
⊗I (z)ρI

=
∪

u∈x∗z
(u)ρI

⪯I

∪
v∈y∗z

(v)ρI
= (y)ρI

⊗I (z)ρI
.

Case 2. Let x ≤ a, a′ ≤ y for some a, a′ ∈ I. Then x ∗ z ≤ a ∗ z, a′ ∗ z ≤ y ∗ z. Thus for every u ∈ x ∗ z,
there exists b ∈ a ∗ z such that u ≤ b, and for some b′ ∈ a′ ∗ z there exists v ∈ y ∗ z such that b′ ≤ v. Since I

is a hyperideal of S and a, a′ ∈ I, we have b ∈ a ∗ z ⊆ I, b′ ∈ a′ ∗ z ⊆ I. On the other hand, u ≤ b, b′ ≤ v for

some b, b′ ∈ I. Hence (u)ρI ⪯I (v)ρI , and thus (x)ρI ⊗I (z)ρI ⪯I (y)ρI ⊗I (z)ρI .

Similar to the above way, we can show that (z)ρI
⊗I (x)ρI

⪯I (z)ρI
⊗I (y)ρI

. Therefore, (S/ρI ,⊗I ,⪯I)

is an ordered semihypergroup.

Furthermore, by the definition of ⪯I , it can be obtained that the canonical epimorphism φ : S →
S/ρI , x 7→ (x)ρI is isotone. Thus ρI is an order-congruence on S. The proof is completed. 2

By the proof of above theorem, we immediately obtain the following corollary:

Corollary 4.9 Let (S, ∗,≤) be an ordered semihypergroup and I an ordered hyperideal of S. Then (S/ρI ,⊗I ,⪯I )

forms an ordered semihypergroup and the Rees congruence ρI induced by I on S is an order-congruence, where

the order relation “⪯I ” on S/ρI is defined as follows:

(x)ρI
⪯I (y)ρI

⇔ (x ≤ y) or (x ≤ a, a′ ≤ y for some a, a′ ∈ I).
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As an application of Corollary 4.9, we can give an answer to the open problem given by Davvaz et al. in

[7].

Open Problem Is there a congruence relation (also called regular relation in [7]) ρ on an ordered semihyper-

group (S, ∗,≤) for which S/ρ is an ordered semihypergroup?

To solve the above problem, we need only show that ρI is not a strong congruence on S in general. We

illustrate it by the following example.

Example 4.9 We consider a set S := {a, b, c, d, e, f} with the following hyperoperation “ ∗ ” and the order

“ ≤ ” :

∗ a b c d e f
a {a} {a, b} {c} {c, d} {e} {e, f}
b {b} {b} {d} {d} {f} {f}
c {c} {c, d} {c} {c, d} {c} {c, d}
d {d} {d} {d} {d} {d} {d}
e {e} {e, f} {c} {c, d} {e} {e, f}
f {f} {f} {d} {d} {f} {f}

≤:= {(a, a), (a, b), (b, b), (c, c), (c, d), (d, d), (e, e), (e, f), (f, f)}.
We give the covering relation “≺” and the figure of S as follows:

≺= {(a, b), (c, d), (e, f)}.

b b
b b b

b
a c

b d

e

f

Then (S, ◦,≤) is an ordered semihypergroup. Let I = {c, d}. One can easily verify that I is an ordered hyperideal

of S. Then ρI = {(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (c, d), (d, c)}. By Lemma 2.3, ρI is a congruence on S.

However, we claim that ρI is not a strong congruence on S. In fact, since (e, e) ∈ ρI , while e ∗ b ρI e ∗ b does

not hold.

As a generalization of Proposition 2.7 in [23], we have the following theorem. The following theorem can

be proved using similar techniques as in the proof of Theorem 4.8.

Theorem 4.10 Let (S, ∗,≤) be an ordered semihypergroup and I an ordered hyperideal of S . We define a

relation “⪯1” on S/ρI (= {{x} | x ∈ S\I} ∪ {I}) as follows:

⪯1:= {(I, {x}) | x ∈ S\I} ∪ {({x}, {y}) | x, y ∈ S\I, x ≤ y} ∪ {(I, I)}.

Then (S/ρI ,⊗I ,⪯1) is an ordered semihypergroup, and ρI is an order-congruence on S.

Proposition 4.11 Let (S, ∗,≤) be an ordered semihypergroup and I an ordered hyperideal of S . Then the

order relations in Corollary 4.9 and Theorem 4.11 are different. Moreover, ⪯I⊆⪯1 .
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Proof Let (x)ρI
, (y)ρI

∈ S/ρI and (x)ρI
⪯I (y)ρI

. Then x ≤ y or x ≤ a, a′ ≤ y for some a, a′ ∈ I. Since

(I] = I, we have x ≤ y or x ∈ I and a′ ≤ y for some a′ ∈ I. The first case implies (x)ρI
⪯1 (y)ρI

, and the

second case implies (x)ρI
⪯1 (a′)ρI

⪯1 (y)ρI
, i.e. (x)ρI

⪯1 (y)ρI
. Thus ⪯I⊆⪯1 . 2

The following example shows that ⪯I&⪯1 in general.

Example 4.12 We consider a set S := {a, b, c, d} with the following hyperoperation “ ∗ ” and the order “ ≤ ” :

∗ a b c d
a {a, d} {a, d} {a, d} {a}
b {a, d} {b} {a, d} {a, d}
c {a, d} {a, d} {c} {a, d}
d {a} {a, d} {a, d} {d}

≤:= {(a, a), (a, c), (b, b), (c, c), (d, c), (d, d)}.

We give the covering relation “≺” and the figure of S as follows:

≺= {((a, c), (d, c)}.

b
bb b�

��

@
@@

b

c

a d

Then (S, ∗,≤) is an ordered semihypergroup. It is easy to check that I = {a, d} is an ordered hyperideal of S.

Since a ̸≤ b and there does not exist x ∈ I such that x ≤ b, we have (a)ρI ̸⪯I (b)ρI . However, by the definition

of ⪯1, we have (a)ρI
⪯1 (b)ρI

.

In the following we shall consider the strong order-congruence generated by a strong congruence on an

ordered semihypergroup.

Definition 4.13 Let ρ be a strong congruence on an ordered semihypergroup S. A strong order-congruence σ

is called the strong order-congruence generated by ρ on S, if σ satisfies the following conditions:

(1) ρ ⊆ σ.

(2) If there is a strong order-congruence η on S such that ρ ⊆ η, then σ ⊆ η.

Theorem 4.14 Let ρ be a strong congruence on an ordered semihypergroup (S, ∗,≤). Then

(1) If we define a relation ρ on S as follows:

(x, y ∈ S) (x, y) ∈ ρ if and only if ρCxy ̸= ∅,

then ρ is a pseudoorder on S.

(2) Rρ is a relation on S defined as follows:

(x, y ∈ S) (x, y) ∈ Rρ ⇐⇒ (x, y) ∈ ρ and (y, x) ∈ ρ.

Then Rρ is the strong order-congruence generated by ρ on S.
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Proof

(1) Let x, y ∈ S such that x ≤ y. Then there is a ρ-chain from x to y : (x, y, y), i.e. ρCxy ̸= ∅. Thus

x ≤ y implies xρy, and we have ≤⊆ ρ. Suppose that (x, y) ∈ ρ and (y, z) ∈ ρ. Then there exist

a1, a2, . . . , an, b1, b2, . . . , bn−1, c1, c2, . . . , cm, d1, d2, . . . , dm ∈ S such that

x ≤ a1ρb1 ≤ a2ρb2 ≤ · · · ≤ an−1ρbn−1 ≤ anρy,

y ≤ c1ρd1 ≤ c2ρd2 ≤ · · · ≤ cm−1ρdm−1 ≤ dmρz.

Thus, x ≤ a1ρb1 ≤ a2ρb2 ≤ · · · ≤ an−1ρbn−1 ≤ anρy ≤ c1ρd1 ≤ c2ρd2 ≤ · · · ≤ cm−1ρdm−1 ≤ dmρz, which

is a ρ -chain from x to z. Hence (x, z) ∈ ρ and ρ is transitive. Furthermore, let (x, y) ∈ ρ and z ∈ S.

Then ρCxy ̸= ∅. By Lemma 4.3, for every u ∈ x ∗ z, v ∈ y ∗ z, u′ ∈ z ∗ x, v′ ∈ z ∗ y, we have ρCuv ̸= ∅ and

ρCu′v′ ̸= ∅, which imply that (u, v) ∈ ρ and (u′, v′) ∈ ρ. It thus follows that x ∗ z ρ y ∗ z and z ∗ x ρ z ∗ y.
Therefore, ρ is a pseudoorder on S.

(2) By (1), ρ is a pseudoorder on S. Since Rρ = ρ ∩ ρ−1, by Proposition 3.3 Rρ is a strong order-congruence

on S. We claim that Rρ is the strong order-congruence generated by ρ on S. To prove our claim, let

(x, y) ∈ ρ. Since ρ is a strong congruence on S, we have (y, x) ∈ ρ. Consequently, (x, y) ∈ Rρ. Hence

ρ ⊆ Rρ. Furthermore, suppose that η is a strong order-congruence on S and ρ ⊆ η. Then Rρ ⊆ η. Indeed,

let (x, y) ∈ Rρ. Then (x, y) ∈ ρ and (y, x) ∈ ρ. By definition of ρ, there exist a1, a2, . . . , an, b1, b2, . . . , bn−1,

c1, c2, . . . , cm, d1, d2, . . . , dm−1 ∈ S such that

x ≤ a1ρb1 ≤ a2ρb2 ≤ · · · ≤ an−1ρbn−1 ≤ anρy,

y ≤ c1ρd1 ≤ c2ρd2 ≤ · · · ≤ cm−1ρdm−1 ≤ dmρx.

Thus, by ρ ⊆ η, we have x ≤ a1ηb1 ≤ a2ηb2 ≤ · · · ≤ an−1ηbn−1 ≤ anηy ≤ c1ηd1 ≤ c2ηd2 ≤ · · · ≤
cm−1ηdm−1 ≤ dmηx. Since η is a strong order-congruence on S, by Theorem 4.6 we can conclude that the

closed η -chain (x, a1, b1, a2, b2, . . . , an−1, bn−1, an, y, c1, d1, c2, d2, . . . , cm−1, dm−1, dm, x) is contained in a

single equivalence class of η. In particular, we have (x, y) ∈ η. Therefore, Rρ is the strong order-congruence

generated by ρ on S.

2

By Theorem 4.15, we immediately obtain the following corollary:

Corollary 4.15 Every strong congruence of an ordered semihypergroup S is contained in a strong order-

congruence of S.
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