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Abstract: The aim of this paper is to study special graphs of BCI/BCK -algebras. In this paper, we introduce one

kind of graph of BCI -algebras based on branches of X and two kinds of graphs of BCK -algebras based on ideal I .

Then we study some of the essential properties of graph theory on the basis of those structures. In particular, we study

the planar, outerplanar, toroidal, K -connected, chordal, K -partite, and Eulerian properties of graph theory.
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1. Introduction

In recent years, the study of the zero-divisor graphs of algebraic structures and ordered structures has received

a lot of attention from researchers. The idea of the zero-divisor graph of a commutative ring with unity was

introduced by Beck [8], who was particularly interested in the coloring of commutative rings with unity. He

introduced the associated graph G to a ring R so that the vertex set of G contains elements of R and two vertices

x and y of R are connected to each other if and only if xy = 0. Many mathematicians, such as Anderson and

Naseer [5], Anderson and Livingston [6], Maimani and Pournaki [4, 18], Yassemi and Khashyarmanesh [2, 3, 21],

and Torkzadeh and Ahadpanah [22], investigated the interplay between properties of the algebraic structure

and graph theoretic properties. Motivated by these works, in this paper we study the associated graphs of

BCI/BCK -algebras as two classes of abstract algebras, as introduced by Imai and Iseki [13, 14] in 1996. The

associated graph G(X) to BCI/BCK -algebras was well studied by Jun and Lee in [17] and Borzooei and Zahiri

in [25]. We also introduce the zero-divisor graphs ΓI(X) and ΓI(X) associated with BCK -algebra regarding

an ideal I , where the vertex set of graphs ΓI(X) and ΓI(X) are the set of elements of X and two distinct

vertices x and y are adjacent in graph ΓI(X) if and only if x ∗ y ∈ I and y ∗x ∈ I , and two distinct vertices x

and y are adjacent in graph ΓI(X) if and only if x∗y ∈ I or y∗x ∈ I . In this article, we introduce the concepts

of diameter and girth of graphs. We show that ΓI(X) and ΓI(X) must be connected with a diameter less than

or equal 2, gr(ΓI(X)) := 3. We also study properties of graphs ΓI(X),ΓI(X) such as planar, outerplanar,

K -connected, chordal, K -partite, and Eulerian.

2. Preliminaries of graph theory

Definition 2.1 [10, 12, 15, 16] A graph G = (V,E) is connected if any of vertices x, y of G are connected

by a path in G ; otherwise, the graph is disconnected. A graph G is called a complete graph on n vertices if
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| V (G) |= n , xy ∈ E(G) , for any distinct element x, y ∈ V (G) , denoted by Kn . For any T ⊆ V (G) , the graph

with vertex set V (G)−T and edge set E(G)−T ′ is denoted by G−T , where T ′ = {xy ∈ E(G);x ∈ T, y ∈ G} .
A graph H is called a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G) . A graph G is called a star graph if

there exists a vertex x in G in such a way that every vertex in G connected to x and other vertices in G do not

connect to each other. In graph G with vertex set V (G) , the distance between two distinct vertices x and y ,

denoted by d(x, y) , is the length of the shortest path connecting x and y , if such a path exists; otherwise, we set

d(x, y) := ∞ . The diameter of graph G is diam(G) := sup{d(x, y), and x, y are distinct vertices of G} . Also,

the girth of a graph G , denoted by gr(G) , is the length of the shortest cycle in G if G has a cycle; otherwise, we

get gr(G) := ∞ . For a vertex x in graph G , the neighborhood of x is the set of vertices adjacent to x , denoted

by NG(x) , NG[x] = NG(x)∪{x} , deg(x) =| NG(x) | . A graph G is called regular of degree k when every vertex

has precisely K neighbors. A cubic graph is a graph in which all vertices have degree three. In other words, a

cubic graph is a 3-regular graph. A graph G is chordal if every cycle of length at least 4 has a chord, which is not

part of the cycle but connects two vertices of the cycle. The greatest induced complete subgraph denotes a clique.

A graph G is called K -partite when its vertex set can be partitioned into K -disjoint parts X1, X2, . . . , Xk , so

that for x, y ∈ Xi, i = 1, . . . k , we have xy /∈ E(G) , and for x ∈ Xi, y ∈ Xj , i ̸= j, i, j = 1, . . . k , we have

xy ∈ E(G) . The complete bipartite graph (2-partite graph) with part sizes m and n is denoted by Km,n .

Moreover, for distinct vertices x and y , we use the notation x− y to show that x is connected to y . A subset

A of the vertices is called an independent set if the induced subgraph on A has no edges. The maximum size of

an independent set in a graph G is called the independence number of G and is denoted by α(G) . Let G be a

graph and let P = {V1, . . . , Vk} be a partition of the vertex set of G into nonempty classes. The quotient G
P

of G is the graph whose vertices are the sets V1, . . . , Vk and whose edges are the pairs [Vi, Vj ] , i ̸= j , so that

there are ui ∈ Vi , uj ∈ Vj with [ui, uj ] ∈ E(G) . Let P = (V,≤) be a poset. If x ≤ y but x ̸= y , then we write

x < y . If x and y are in V , then y covers x in P if x < y and there is no z in V with x < z < y . Two

vertices of G are orthogonal, denoted by x ⊥ y , if x and y are adjacent to G and there is no vertex z ∈ G ,

which can be adjacent to both x and y . A graph G is called complemented if for each vertex x of G there is a

vertex y of G , in such a way that x ⊥ y . A set S is a dominating set if every vertex in V (G)− S is adjacent

to at least one vertex in S . The dominating number γ(G) is the minimum cardinality of a dominating set in

G . An isomorphism of graphs G and H is a bijection between vertex sets of G and H , f : V (G) → V (H) so

that any two vertices x and y of G are adjacent to G if and only if f(x) and f(y) are adjacent to H . If an

isomorphism exists between two graphs, then the graphs are called isomorphic and we write G ≃ H .

Definition 2.2 [7] We say that a graph G is K -colorable if we can assign the colors {1, . . . , k} to the vertices

in V (G) , in such a way that every vertex gets exactly one color and no edge in E(G) has both its endpoints

colored in the same color. We call this proper coloring, though sometimes we will just call it “coloring.” If K

is the smallest number so that G admits K -coloring, we say that the chromatic number of G is K and write

χ(G) = K . If graph G contains a clique with n elements, and every clique has at most n elements, we say

that the clique number of G is n and write ω(G) = n . Moreover, we have χ(G) ≥ ω(G) .

Definition 2.3 [2] A walk or path graph has vertices v1, v2, . . . , vn and edges e1, e2, . . . , en−1 in such a way

that edge ek joins vertices vk and vk+1 , denoted by Pn . A subdivision of a graph is any graph that can be

obtained from the original graph by replacing edges by paths. Graph G is planar if it can be drawn on the plane

without edges having to cross. Proving that a graph is planar amounts to redrawing the edges in such a way
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that no edges will cross. The vertices may have to be moved around and the edges drawn in an indirect manner.

Kuratowski’s theorem says that a finite graph is planar if and only if it does not contain a subdivision of k5 or

k3,3 . The chromatic number of any planar graph is less than or equal to 4.

Example 2.4 [2] Figure 1 shows that the 3-cube and complete graph K4 are planar.

Figure 1.

Definition 2.5 [10] Let G be a plane graph. The connected pieces of the plane that remain when the vertices

and edges of G are removed are called the region of G . A “face” marks a region bounded by edges. An undirect

graph is an outerplanar graph if it can be drawn in the plane without crossing in such a way that all of the

vertices belong to the unbounded face of the drawing. There is a characterization for outerplanar graphs that

says a graph is outerplanar if and only if it does not contain a subdivision of K4 or K2,3 .

Example 2.6 In Figure 2, graph G has 3 regions, as follows:

Figure 2.

Definition 2.7 [1] Number g is called the genus of the surface if it is homeomorphic to a sphere with g handles,

or equivalently holes. Besides, genus g of a graph G is meant to be the smallest genus of all surfaces so that

graph G can be drawn on it without edge-crossing. The graphs of genus 0 are precisely the planar graphs since

the genus of plane is zero. The graphs that can be drawn on a torus without edge-crossing are called toroidal.

They have genus 1 since the genus of a torus is 1. The notation γ(G) stands for the genus of a graph G . The

complete graphs K7,K5,K6 and complete bipartite graph K3,3 are examples of toroidal graphs. A cubic graph

with 14 vertices embedded on a torus is toroidal.

Theorem 2.8 [20] For positive integers m and n , we have:

(i) γ(Kn) = ⌈ 1
12 (n− 3)(n− 4)⌉ if n ≥ 3 ,

(ii) γ(Km,n) = ⌈ 1
4 (m− 2)(n− 2)⌉ if m,n ≥ 2 .

Definition 2.9 [9] The adjacency matrix A is an n × n matrix where n =| G | depicts which vertices are

connected by an edge. If vertices i and j are adjacent, then aij = 1 . If vertices i and j are not connected,
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then aij = 0 . If G is a simple graph, then aii = 0 for all i , because there are no loops. It is also because

simple implies undirected, aij = aji for all i, j ∈ V . We also denote the characteristic polynomial of matrix

G by χ(G,λ) , which is det(λI − G) . An eigenvalue is a root of the characteristic polynomial associated with

a matrix. The (ordinary) spectrum of a finite graph G is a set of eigenvalues together with their multiplicities.

This set of all n eigenvalues of the n × n adjacency matrix is denoted as {λ1, λ2, . . . , λn} , where λi ≥ λj ,

∀i < j .

Theorem 2.10 [9] Let G be the complete graph Kn on n vertices and χ(G,λ) be the characteristic polynomial

of matrix G . Then the following statements hold:

(i) χ(G,λ) = (λ− n+ 1)(λ+ 1)n

(ii) The spectrum of G is {(n− 1)
1
, (−1)

n−1} .

Definition 2.11 [10] A closed walk in a graph G containing all the edges of G is called an Euler line in G .

A graph containing an Euler line is called an Euler graph. We know that a walk is always connected. Since

the Euler line (which is a walk) contains all the edges of the graph, an Euler graph is connected. The following

problem, often referred to as the bridges of Konigsberg problem, was first solved by Euler in the 18th century. The

problem was rather simple. The town of Konigsberg consists of four islands and seven bridges. Is it possible,

by beginning anywhere and ending anywhere, to walk through the town by crossing all seven bridges but not

crossing any bridge twice? Euler modeled the problem representing the four land areas by four vertices and the

seven bridges by seven edges joining these vertices. This is illustrated in Figure 3. We see from graph G of the

Konigsberg bridges that not all its vertices are of even degrees. Thus, G is not an Euler graph, implying that

there is no closed walk in G containing all the edges of G . Thus, it is not possible to walk over each of the

seven bridges exactly once and return to the starting point. Euler’s theorem says that a connected graph G is

Euler if and only if all vertices of G are of even degrees.

Figure 3.

Example 2.12 Consider the graph shown in Figure 4. Clearly, v1e1v2e2v3e3v4e4v5e5v3e6v6e7v1 on the left is

an Euler line, whereas the graph shown on the right is non-Eulerian.

Figure 4.

Example 2.13 Figure 5 has an Euler walk. On the other hand, the following pictures can be drawn on paper

without ever lifting the pencil.
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Figure 5.

Definition 2.14 [23] A lattice is an algebra L = (L,∧,∨) that satisfies the following conditions for all

a, b, c ∈ L :

(i) a ∧ a = a, a ∨ a = a ,

(ii) a ∧ b = b ∧ a, a ∨ b = b ∨ a ,

(iii) (a ∧ b) ∧ c = a ∧ (b ∧ c), a ∨ (b ∨ c) = (a ∨ b) ∨ c ,

(iv) a ∨ (a ∧ b) = a ∧ (a ∨ b) .

An equivalent definition of a lattice is as follows:

Definition 2.15 [23] A lattice is a poset any two of whose elements have a greatest lower bound (g.l.b) , denoted

by x ∧ y , and a least upper bound (l.u.b) , denoted by x ∨ y .

Definition 2.16 [11] Let P = (X,≤p) be a poset. Then a comparability graph (com-graph) of P = (X,≤P ) is

the graph com(P ) = (X,Ecom(P )) , where xy ∈ Ecom(P ) if and only if x is comparable with y in P .

Definition 2.17 [11] An element b in a lattice L is left modular if for all a, c ∈ L so that a ≤ c we have

a∨ (b∧ c) = (a∨ b)∧ c . L is modular if every element is left modular. A poset or lattice is (upper) semimodular

if, whenever two elements have a common lower cover, they have a common upper cover; (lower) semimodularity

is defined dually.

Let G = (V,E) be a graph with vertex set V and edge set E ⊆ V ×V . It is n-connected (where n ∈ N0 )

if the restriction of G to the vertices V −C is connected whenever C ⊆ V has fewer than n elements. A chain

C has rank d if its cardinality of C is d + 1 , in which case we write | C |= d + 1 . A poset is ranked at d if

every maximal chain has rank d .

Example 2.18 Figure 6 shows a semimodular poset with no simplicial element.

Figure 6.
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Theorem 2.19 [11] Let L be a (finite or infinite) semimodular lattice of rank d that is not a chain. Following

this, the comparability graph of L is (d+ 1)-connected if and only if L has no simplicial element, where z ∈ L

is simplicial if the elements comparable to z form a chain.

3. Introduction to BCI/BCK-algebras

Definition 3.1 [19, 24] A BCI -algebra (X, ∗, 0) is an algebra of type (2, 0) satisfying the following conditions:

(BCI1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0 ,

(BCI2) x ∗ 0 = x ,

(BCI3) x ∗ y = 0 , y ∗ x = 0 imply y = x .

If X satisfies the following identity:

(∀x ∈ X)(0 ∗ x = 0),

then X is called a BCK -algebra. Any BCI/BCK -algebra X satisfies the following conditions:

(i) (x ∗ (x ∗ y)) ∗ y = 0 ,

(ii) x ∗ x = 0 ,

(iii) (x ∗ y) ∗ z = (x ∗ z) ∗ y ,

(iv) x ≤ y implies x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x , for any z ∈ X .

Moreover, the relation ≤ was defined by x ≤ y ↔ x ∗ y = 0 , for any x, y ∈ X , which is a partial-order on X .

Set P = {x ∈ X; 0 ∗ (0 ∗ x) = x} is called the P -semisimple part of X . It is the set of all minimal elements of

X with respect to the BCI -ordering of X . For any a ∈, P denotes V (a) = {x ∈ X; a ∗ x = 0} , which is called

the branch of X with respect to a . Also, {V (a); a ∈ P} forms a partition for X . The element x ∈ V (a) is

called an a-atom if x ̸= a and y ∗ x = 0 implies y = a or y = x for all y ∈ X . Briefly, 0-atom is called an

atom. (X, ∗, 0) is said to be commutative if it satisfies, for all x, y in X ,

x ∗ (x ∗ y) = y ∗ (y ∗ x).

Besides, X is called associative if (x ∗ y) ∗ z = x ∗ (y ∗ z) for any x, y, z ∈ X . In any associative BCI -algebra,

x ∗ y = y ∗ x and 0 ∗ x = x , for any x, y ∈ X . A subset Y of X is called a subalgebra of X if the constant 0

of X is in Y , and (Y, ∗, 0) itself forms a BCI -algebra.

Example 3.2 [19, 24] Assume that (X,≤) is a partially ordered set with the least element 0. Define operation

* on X by

x ∗ y =

{
0 if x ≤ y,
x if x ≰ y.

Therefore, (X, ∗, 0) is a BCK -algebra.
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Proposition 3.3 [19, 24] Let (X, ∗1, 0) and (Y, ∗2, 0) be two BCK -algebras so that X
∩
Y = {0} and * be

the binary operation on X
∪
Y as follows: for any x, y ∈ X

∪
Y

x ∗ y =

 x ∗1 y if x, y ∈ X,
x ∗2 y if x, y ∈ Y ,
x otherwise.

Therefore, (X, ∗, 0) is a BCK -algebra.

Definition 3.4 [19, 24] A subset I is called an ideal of X if it satisfies the following conditions:

(i) 0 ∈ I ,

(ii) (∀x, y ∈ X) (x ∗ y ∈ I, y ∈ I → x ∈ I) .

An ideal P of X is prime if x ∗ (x ∗ y) ∈ P implies x ∈ P or y ∈ P .

An ideal I of X is implicative if:

(i) 0 ∈ I ,

(ii) (x ∗ (y ∗ x)) ∗ z ∈ I and z ∈ I imply x ∈ I , for all x, y, z ∈ X .

An ideal I is maximal if it is a proper ideal of X and not a proper subset of any proper ideal of X .

An ideal I of X is called closed if it is closed under the * multiplication on X . (i.e. I is a subalgebra

of X ). Moreover, an ideal I of X is closed if and only if 0 ∗ x ∈ I for all x ∈ I .

Theorem 3.5 [19, 24] Let X1, X2 be two BCK -algebras, X1

∩
X2 = {0}, X = X1

∪
X2 . Then I1, I2 are two

ideals of X1, X2 , respectively, if and only if I = I1
∪
I2 is an ideal of X .

Theorem 3.6 [19, 24] Let I be an ideal of X . Then the following are equivalent:

(i) I is maximal and implicative.

(ii) I is maximal and positive implicative.

(iii) If x, y /∈ I then x ∗ y ∈ I and y ∗ x ∈ I for all x, y ∈ X .

Theorem 3.7 [19, 24] Let I be an ideal of X . If x ∗ y ∈ I, y ∗ z ∈ I then x ∗ z ∈ I .

Definition 3.8 [19, 24] Let I be an ideal of BCK -algebra X and define relation ≡I on X as follows:

x ≡I y ↔ x ∗ y ∈ I, y ∗ x ∈ I for all x, y ∈ X.

It is easily verified that ≡I is a congruence relation. Let X/I be a set of congruence classes of ≡I , i.e.

X/I := {[x]I | x ∈ x} , where [x]I := {y ∈ X | x ≡I y} . Therefore, (X/I, ∗, [0]I) is a BCK -algebra,

[x]I ∗ [y]I = [x ∗ y]I .

Note: A BCK -algebra X is said to be bounded if there exists e ∈ X in such a way that x ≤ e for any

x ∈ X , and the element e is said to be the unit of X . In a bounded BCK -algebra, we denote e ∗ x by N(x).
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4. Graph of BCI-algebras based on branches of BCI-algebras

In this section, we associate a new graph with BCI -algebras X , which is denoted by G(X). This definition

is based on branches of X . We also explain some properties of this graph. From now on, we let X be a

BCI -algebra, unless otherwise stated.

Definition 4.1 [17, 25] Let G(X) be the associated graph to X . For every x, y ∈ X , we denote

L({x, y}) = {z ∈ X; z ≤ x, z ≤ y}.

Therefore, for graph G(X) , whose vertices are just the element of X , and for distinct x, y ∈ X , there is an

edge connecting x and y if and only if there is a ∈ P in so that L({x, y}) = {a} , where P is the semisimple

part of X .

Note: G(V (a)) is a graph that gains G(X) when vertex set G(X) is restricted to V (a). In this section, we

characterize the zero-divisor graph G(X).

Theorem 4.2 G(V (a)) can contain a subgraph isomorphic to C3, C4 , but it cannot contain a subgraph iso-

morphic to Cn, n ≥ 5 .

Proof Let V (a) contain subposet Q1 , shown in Figure 7. Therefore, G(V (a)) contains subgraph C3 on

vertices {a, u, v} and subgraph C4 on vertices {x1, x2, x3, x4} . Therefore, G(V (a)) has a subgraph isomorphic

to C3, C4 . Let G(V (a)) be isomorphic to Cn, n ≥ 5. Consider a n -cycle a1−a2−a3− . . .−an−a1 with n ≥ 5.

Supposing that L({a2, a4}) = {x} , then x ≤ a2, x ≤ a4 gives L({x, a3}) = {a}, L({x, a5}) = {a} . Therefore,

x is a common neighbor of a3 and a5 . We note that if x = a4 , then a4 ≤ a2 , and hence L({a4, a1}) = {a} ,
which is a contradiction. This shows that L({a2, a4}) does not exist. Hence, G(V (a)) cannot be an n-cycle

for any n ≥ 5. 2

Theorem 4.3 Let G(X) be an associated graph to X . Then gr(G(X)) ≤ 4 .

Proof Straightforward by Theorem 4.2. 2

Theorem 4.4 G(V (a)) is chordal if and only if V (a) does not contain Q1, Q2, Q3,

Q4 as a subposet, where Q1, Q2, Q3, Q4 are given in Figure 7.

Figure 7.
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Proof Let V (a) contain Q1 as a subposet. Then L({x3, x4}) = {v, a},
L({x1, x2}) = {u, a}, L({x3, x1} = {a}, L({x4, x1}) = {a}, L({x2, x4}) = {a},
L({x2, x3} = {a} . Then x3x1, x4x1, x2x4, x2x3 ∈ E(G(Q1)). Therefore, G(Q1) is not chordal, and similarly

G(Q2), G(Q3), G(Q4) is not chordal. Conversely, we know by Theorem 4.2 that G(V (a)) cannot be isomorphic

to Cn, n ≥ 5. Therefore, we should study chordality G(V (a)) in the case n = 4. Also, we have G(V (a)), which

is chordal only in the case that V (a) does not contain Q1, Q2, Q3, Q4 as a subposet. 2

Example 4.5 Let X = {0, 1, a, u, v, x1, x2, x3, x4} . Define binary operation ∗ on X based on Table 1:

∗ 0 1 a u v x1 x2 x3 x4

0 0 0 a a a a a a a
1 1 0 a a a a a a a
a a a 0 0 0 0 0 0 0
u u a 1 0 1 1 1 0 0
v v a 1 1 0 0 0 1 1
x1 x1 a 1 1 1 0 1 1 1
x2 x2 a 1 1 1 1 0 1 1
x3 x3 a 1 1 1 1 1 0 1
x4 x4 a 1 1 1 1 1 1 0

Table 1.

Therefore, subposet (X, ∗, 0) , shown in Figure 8, is a BCI -algebra, P = {0, a} , V (0) = {0, 1} , V (a) =

{a, u, v, x1, x2, x3, x4} . Moreover, L({x1, x3}) = {a}, L({x3, x2}) = {a}, L({x2, x4}) = {a}, L({x3, x4}) =

{v, a} , L({x1, x2}) = {u, a} and so E(G(V (a))) = {x1x3, x3x2, x2x4, x1x4} . Therefore, graph G(V (a)) is not

chordal.

Example 4.6 Let X = {0, 1, a, b, c} . Define binary operation * based on Table 2:

* 0 1 a b c
0 0 0 a a a
1 1 0 a a a
a a a 0 0 0
b b a 1 0 1
c c a 1 1 0

Table 2.

Then (X, ∗, 0) is a BCI -algebra, P = {0, a}, V (0) = {0, 1}, V (a) = {a, b, c} . Moreover, L({0, 1}) =

{0}, L({a, b}) = L({a, c}) = L({b, c}) = {a} and so E(G(X)) = {10, ac, bc, ab} . Therefore, graph G(X) shown

in Figure 9 is chordal.

Theorem 4.7 Let A = {a1, . . . , an | ai be a-atom, i = 1 . . . n} and Ai = {x | x ≥ ai} , | Ai |= ci . Then

G(V (a)) has an induced subgraph isomorphic to graph n-partite Kc1,c2,...,cn .

Proof If B = {A1, A2, . . . , An} , then every element Ai adjacent to any element Aj for all i ̸= j, i, j = 1, . . . , n

because if xi ∈ Ai, xj ∈ Aj , then L({xi, xj}) = {a} , and also because elements of Ai are not adjacent to all
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Figure 8. Figure 9.

i = 1, . . . , n . If a, b ∈ Ai , then L({a, b}) = {ai} ̸= {a} . The resulting graph G(V (a)) is an n -partite graph

Kc1,c2,...,cn with partitions B = {A1, A2, . . . , An} . 2

Notation: Denote by Atom(X) the set of all atoms of a BCK -algebra X .

Theorem 4.8 If X1, X2 are BCK -algebra, | Atom(X1) |=| Atom(X2) |= 1, | X1 |= m+ 1, | X2 |= n+ 1 and

X ∼= X1 ×X2 . Then G(X) is the complete bipartite graph Km,n .

Proof If X1 = {0, x1, . . . , xm}, X2 = {0, y1, y2, . . . , yn} , then the pairs of the form (xi, 0) and (0, yj) are all

adjacent. Moreover, no pairs of the form (xi, 0), (xk, 0) are adjacent because L({xi, xk}) ̸= {0} . The resulting

graph is a complete bipartite graph with partitions A = {(x1, 0), . . . , (xm, 0)} and B = {(0, y1), . . . , (0, yn)} .
2

Theorem 4.9 If X1, X2 are BCK -algebras, | Atom(X1) |=| Atom(X2) |= 1, | X1 |= m+1, | X2 |= n+1 and

X ∼= X1 ×X2 , then diam(G(X)) ≤ 2 .

Proof Based on Theorem 4.8, G(X) is a complete bipartite graph, so diam(G(X)) ≤ 2. 2

Theorem 4.10 Let A = {z | z be a-atom } , | A |= n . Define equivalence classes on V (a)− {a} as follows:

[x] = {y | y ≥ x or y ≤ x, y ̸= a} .

Denote P = {[x] | x ∈ V (a)− {a}} . Thus, G(V (a)−{a})
P is isomorphic to Kn .

Proof Let x, y ̸= a , u ∈ [x] . Then there is an element a1 so that a1 is a-atom and x ≥ a1 . Therefore, u ≥ a1 .

In the same way that v ∈ [y] follows there exists a2 such that a2 is a-atom, v ≥ a2 . Therefore, L({u, v}) = {a}
since there is not an ordered relation between a1 , a2 . Then uv ∈ E(G(V (a)− {a}). Therefore, by Definition

2.1 of quotient graph [x][y] ∈ E(G(V (a)−{a})
P ), since L({a, y}) = {a} we have [a][y] ∈ E(G(V (a)−{a})

P ). Then

G(V (a)−{a})
P is isomorphic to Kn . 2

Theorem 4.11 Let A = {x; x be a-atom } , | A |= n . Then G(V (a)) contains a clique such that the vertices

of the clique are set A , element a . Therefore, clique number of G(V (a)) ≥ n+ 1 and χ(G(V (a))) ≥ n+ 1 .

Proof Based on Definition 2.2 of the chromatic number and the clique number of the graph, inequality

χ(G) ≥ ω(G) completes the proof. 2

Theorem 4.12 Let A = {x ∈ X | x be a-atom } , | A |≥ 4 . Then G(V (a)) is not planar.
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Proof G(V (a)) contains an induced subgraph isomorphic to K5 by Theorem 4.11. Therefore, according to

Kuratowski’s theorem, G(V (a)) is not planar. 2

Theorem 4.13 Let b and b′ be vertices of G(V (a)) . If b ≤ b′ , then deg(b′) ≤ deg(b) .

Proof We know if b ≤ b′ then L({x, b}) ⊆ L({x, b′}). Thus, L({x, b′}) = {a} implies L({x, b}) = {a} . On

the other hand, xb′ ∈ E(G(V (a))) implies xb ∈ E(G(V (a))) and then deg(b′) ≤ deg(b). 2

5. Graphs of BCI/BCK-algebras based on ideal

In this section, we apply a notion of BCK -algebras that uses the concept of graph and equivalence relation ≡I

for BCK -algebras. Conditions for the associated graphs of BCK -algebras being planar, outerplanar, toroidal,

chordal, and Eulerian are also provided and several examples are displayed.

Henceforth, we let X be a bounded BCK -algebra.

Definition 5.1 Let I be an ideal of X . Therefore, we have:

(i) ΓI(X) = (X,EI) is a graph with vertices X and edges EI , where xy ∈ EI if and only if x ∗ y ∈ I and

y ∗ x ∈ I , for any x, y ∈ X .

(ii) ΓI(X) = (X,EI) is a graph with vertices X and edges EI , where xy ∈ EI if and only if x ∗ y ∈ I or

y ∗ x ∈ I , for any x, y ∈ X .

Example 5.2 Let X = {0, 1, 2, 3} and the operation * be defined by Table 3:

* 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 1 0 1
3 3 3 3 0

Table 3.

Therefore, (X, ∗, 0) is a BCK -algebra. It is easy to verify that {0, 1, 2} is an ideal of X . In Figure 10, we can

see the graphs ΓI(X),ΓI(X).

Figure 10.

Theorem 5.3 Let I be an ideal of X . Then:

(i) ΓI(X) is regular if and only if it is complete.

(ii) If ΓI(X) is regular, then it is a complete graph on I .
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Proof

(i) (=⇒) Let ΓI(X) be a regular graph. Since 0 ∗ x = 0 ∈ I , for any x ∈ X , then deg(0) =| X | −1. Now,

since ΓI(X) is regular, then for any x ∈ X , deg(x) = deg(0), and so for any x ∈ X , deg(x) =| X | −1.

This means that ΓI(X) is a complete graph.

(⇐=) It is clear that any complete graph is regular.

(ii) Let ΓI(X) be a regular graph. Since 0∗x = 0 ∈ I and x∗0 = x ∈ I for any x ∈ I , then deg(0) =| I | −1.

Now, since ΓI(X) is regular, then for any x ∈ I , deg(x) = deg(0) =| I | −1. Thus, ΓI(X) is complete on

ideal I .

2

Theorem 5.4 Let I be an ideal of X . Then:

(i) If X is a chain, then ΓI(X) is complete.

(ii) If I is closed, then ΓI(X) and ΓI(X) are complete on I .

Proof

(i) If X is a chain, then for any x, y ∈ X , x ≤ y , or y ≤ x and so x ∗ y = 0 ∈ I or y ∗ x = 0 ∈ I . Therefore,

deg(x) =| X | −1, for any x ∈ X and so ΓI(X) is complete.

(ii) Let I be a closed ideal. Then for any x, y ∈ I , x ∗ y ∈ I and y ∗ x ∈ I , and so for any x, y ∈ I , in graph

ΓI(X), we have deg(x) =| I | −1. Hence, ΓI(X) is complete on I . It is clear that ΓI(X) is complete on

I , too.

2

Example 5.5 Let N be set of nonnegative integers and m ∗ n = {m − n, 0} , for any m,n ∈ N . Therefore,

(N, ∗, 0) is a BCK -algebra. For all m,n ∈ N , we have m < n or m ≥ n . Then m ∗ n = 0 or n ∗ m = 0 .

Thus, nm ∈ E(Γ{0}(N)) . Therefore, Γ{0}(N) is a complete graph.

Example 5.6 Let X = {0, a, b, c, d} . Define the binary operation * on X by Table 4:

* 0 a b c d
0 0 0 0 0 0
a a 0 a 0 a
b b b 0 0 0
c c c c 0 c
d d d b b 0

Table 4.

Therefore, (X, ∗, 0) is a BCK -algebra that is not a chain and Γ{0}(X) , given by Figure 11, is not

complete.

Remark 5.7 Let I be an ideal of X . If ΓI(X) is a complete graph, then I = X .
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* 0 a b 1
0 0 0 0 0
a a 0 0 0
b b b 0 0
1 1 b a 0

Table 5.

Example 5.8 Let X = {0, a, b, 1} . Define the binary operation * on X by Table 5:

Therefore, (X, ∗, 0) is a BCK -algebra and I = {0} ̸= X , and Γ{0}(X) , given by Figure 12, is complete.

Figure 11. Figure 12.

Theorem 5.9 Let I be an ideal of X . Then there is not m,n ∈ N in such a way that ΓI(X) is isomorphic

to Km,n .

Proof Let there be m,n ∈ N so that ΓI(X) is isomorphic to Km,n . Then there are the sets A =

{x1, . . . , xm}, B = {y1, . . . , yn} in such a way that xi ∗ yj ∈ I, yj ∗ xi ∈ I , for all i = 1, . . . ,m, j = 1, . . . , n .

Then by transitive property ∗ , we have xi ∗ xk ∈ I, yj ∗ yl ∈ I , for all i, k ∈ {1, . . . ,m}, j, l ∈ {1, . . . , n} , which
is a contradiction to Km,n being a complete bipartite graph, completing the proof. 2

Theorem 5.10 Let I be an ideal of X . Then ΓI(X) is connected, gr(ΓI(X)) := 3 , diam(ΓI(X)) ≤ 2 .

Proof We know 0 ∗ x = 0 ∈ I, x ∗ 1 = 0 ∈ I for all x ∈ X . Thus, by Definition 5.1 of graph ΓI(X) 0,1,

connected to every element x ∈ X , ΓI(X) is connected, gr(ΓI(X)) := 3, diam(ΓI(X)) ≤ 2. 2

Theorem 5.11 Let I be an ideal of X . Then 0, 1 are not orthogonal in the graph ΓI(X) and ΓI(X) is not

complemented.

Proof According to Theorem 5.10, every vertex in the graph ΓI(X) is connected to both 0 and 1. Thus,

0,1 are not orthogonal. Moreover, there are no vertices v, w in ΓI(X) in such a way that v, w are orthogonal.

Therefore, ΓI(X) is not complemented 2

Theorem 5.12 Let I be an ideal of X . Then S1 = {0} and S2 = {1} are two dominating sets in graph

ΓI(X) . Therefore, γ(ΓI(X)) = 1 .
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Proof Straightforward by Definition 2.1 of the dominating set and by Theorem 5.10. 2

Theorem 5.13 Let X be a chain and I an ideal of X . Then the following statements hold:

(i) ΓI(X) is a planar graph if and only if | X |≤ 4 .

(ii) ΓI(X) is an outerplanar graph if and only if | X |≤ 3 .

(iii) ΓI(X) is a toroidal graph if and only if | X |≤ 7 .

Proof

(i) According to Theorem 5.4(i), ΓI(X) is a complete graph. If | X |≥ 5, then ΓI(X) has a subgraph

isomorphic to K5 , and by Kuratowski’s theorem ΓI(X) is not planar. Conversely, we know that K5 has

five vertices. Thus, if ΓI(X) is not planar, then ΓI(X) has at least five vertices, which is contrary to

| X |≤ 4, completing the proof.

(ii) According to Theorem 5.4(i), ΓI(X) is a complete graph if | X |≥ 4, and then ΓI(X) has a subgraph

isomorphic to K4 , and by Definition 2.5, ΓI(X) is not outerplanar. Conversely, we know that K4 has

four vertices; hence, if ΓI(X) is not outerplanar, then ΓI(X) has at least four vertices, which is contrary

to | X |≤ 3, completing the proof.

(iii) According to Theorem 5.4(i), ΓI(X) is a complete graph, if | X |≥ 8, and then ΓI(X) has a subgraph

isomorphic to K8 , and by Theorem 2.8, ΓI(X) is not toroidal. Conversely, we know that K8 has eight

vertices; hence, if ΓI(X) is not toroidal, then ΓI(X) has at least eight vertices, which is contrary to

| X |≤ 7, completing the proof.

2

Example 5.14 Let Y = {0, 1, 2, 3, 4}, X = {0, a, b, 1} . Define the binary operations ′′∗′′1 and ′′∗′′2 on Y and

X , respectively, by Tables 6 and 7:

*1 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 0
2 2 1 0 1 0
3 3 3 3 0 0
4 4 4 4 4 0

Table 6.

*2 0 a b 1
0 0 0 0 0
a a 0 a 0
b b b 0 0
1 1 1 1 0

Table 7.
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(i) It is easy to see that (Y, ∗1, 0) is a BCK -algebra. Moreover, Y is not a chain, | Y |≤ 5 , Γ{0}(Y ) is

planar.

(ii) It is easy to see that (X, ∗2, 0) is a BCK -algebra. Moreover, X is not a chain, | X |≤ 4 , Γ{0}(X) is

outerplanar.

Proposition 5.15 Let I be an ideal of X . Then ω(ΓI(X)) ≥ max{| A |; A is a chain in X} .

Proof Let A be a chain in X . Then for all x, y ∈ A , we have x ≤ y or y ≤ x . In other words, x ∗ y = 0 ∈ I

or y ∗ x = 0 ∈ I . Thus, xy ∈ E(ΓI(X)) by Definition 5.1 of graph ΓI(X), since ω(ΓI(X)) is the length of

greatest induced complete subgraph in the graph ΓI(X). Therefore, we have ω(ΓI(X)) ≥ max{| A |; A is a

chain in X} . 2

Proposition 5.16 Let I = {0, a} be an ideal of X , where a ∈ Atom(X), A = {y ∈ X; y covers a} . Then the

following statements hold:

(i) If | A |≥ 3 , then ΓI(X) is not planar.

(ii) If | A |≥ 2 , then ΓI(X) is not outerplanar.

(iii) If | A |≥ 7 , then ΓI(X) is not toroidal.

Proof

(i) Since | A |≥ 3, we can choose the subset A′ = {x1, x2, x3} of the set A . It is clear that for all

i = 1, 2, 3, a ∗ xi = 0, 0 ∗ xi = 0, xi ∗ 1 = 0. Thus, the graph of ΓI(X) on A′ ∪{0, a, 1} has a subgraph

isomorphic to K3,3 and thus by Kuratowski’s theorem ΓI(X) is not planar.

(ii) Since | A |≥ 2, we can choose the subset A′ = {x1, x2} of the set A . It is clear that for all i = 1, 2, a∗xi =

0, 0 ∗ xi = 0, xi ∗ 1 = 0. Thus, the graph ΓI(X) on A′ ∪{0, a, 1} has a subgraph isomorphic to K2,3 and

thus by Definition 2.5, ΓI(X) is not outerplanar.

(iii) Since | A |≥ 7, we can choose the subset A′ = {x1, . . . , x7} of the set A . It is clear that for all

i = 1, . . . , 7, a ∗ xi = 0, 0 ∗ xi = 0, xi ∗ 1 = 0. Thus, the graph ΓI(X) on A′ ∪{0, a, 1} has a subgraph

isomorphic to K3,7 and thus by Theorem 2.8, ΓI(X) is not toroidal.

2

Proposition 5.17 Let I be a closed ideal of X . Then ω(ΓI(X)) ≥| I | .

Proof We have for all x, y ∈ I , x ∗ y ∈ I, y ∗ x ∈ I , since I is a closed ideal. Thus, by Definition 5.1 of

graph ΓI(X), xy ∈ E(ΓI(X)). Thus, ΓI(X) contains a clique in such a way that the vertex set of the clique

is elements of I . Thus, ω(ΓI(X)) ≥| I | . 2

Theorem 5.18 Let I = {0} be an ideal of X . Then Com(X) = Γ{0}(X) , where Com(X) is a comparability

graph of X .
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Proof Let x, y ∈ X,xy ∈ E(Γ{0}(X)). Therefore, by Definition 5.1 of graph ΓI(X), x ∗ y = 0 or y ∗ x = 0.

Thus, x ≤ y or y ≤ x . Thus, xy ∈ E(Com(X)). The converse is clear. 2

Theorem 5.19 Let X be semimodular of rank d that is not a chain. Then Γ{0}(X) is (d + 1)-connected if

and only if X has no simplicial element, where z ∈ X is simplicial if the elements comparable to z form a

chain.

Proof Straightforward by Theorems 2.17 and 5.18. 2

Theorem 5.20 Let I be an ideal of X . Then I = {0} if and only if simple graph ΓI(X) is empty; that is,

EI = ∅ .

Proof Let xy ∈ E(ΓI(X)), x, y ∈ X . Then x ∗ y ∈ I = {0}, y ∗ x ∈ I = {0} , so x = y . Therefore, ΓI(X)

is an empty graph. Conversely, let ΓI(X) be an empty graph. Therefore, if for all x, y ∈ X,xy ∈ E(ΓI(X)),

then x = y . In other words, if for all x, y ∈ X,x ∗ y ∈ I, y ∗ x ∈ I , then x = y . Thus, x ∗ y = x ∗ x = 0 ∈ I .

Thus, I = {0} , completing the proof. 2

Proposition 5.21 Let I be an ideal of X . If 1 ∈ I , then the following statements hold:

(i) ΓI(X) is planar if and only if | X |≤ 4 .

(ii) ΓI(X) is outerplanar if and only if | X |≤ 3 .

(iii) ΓI(X) is toroidal if and only if | X |≤ 7 .

Proof

(i) If 1 ∈ I , then I = X . Hence, ΓI(X) is a complete graph, if | X |> 4, and then ΓI(X) has induced

subgraph isomorphic to K5 , so by Kuratowski’s theorem ΓI(X) is not planar. Conversely, we know that

K5 has five vertices; hence, if ΓI(X) is not planar, then ΓI(X) has at least five vertices, which is contrary

to | X |≤ 4, completing the proof.

(ii) If 1 ∈ I , then I = X . Therefore, ΓI(X) is a complete graph, if | X |> 3, and then ΓI(X) has induced

subgraph isomorphic to K4 , so by Definition 2.5, ΓI(X) is not outerplanar. Conversely, we know that

K4 has four vertices; hence, if ΓI(X) is not outerplanar, then ΓI(X) has at least four vertices, which is

contrary to | X |≤ 3, completing the proof.

(iii) If 1 ∈ I , then I = X . Therefore, ΓI(X) is a complete graph, if | X |> 7, and then ΓI(X) has induced

subgraph isomorphic to K8 , so by Theorem 2.8, ΓI(X) is not toroidal. Conversely, we know that K8 has

eight vertices; hence, if ΓI(X) is not toroidal, then ΓI(X) has at least eight vertices, which is contrary

to | X |≤ 8, completing the proof.

2
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Theorem 5.22 Let I be an ideal of X . Then the following statements hold:

(i) If | I |= 3 , ΓI(X) is planar, then | X |≤ 5 .

(ii) If | I |= 2 , ΓI(X) is outerplanar, then | X |≤ 4 .

(iii) If | I |= 7 , ΓI(X) is toroidal, then | X |≤ 9 .

Proof

(i) Suppose that ΓI(X) is planar. Assume on the contrary that | X |≥ 6. Now put V1 := I and

V2 := {x1, x2, x3} ⊆ X − I . Since for all a ∈ I, i = 1, 2, 3, a ∗ xi ≤ a , I is an ideal, then a ∗ xi ∈ I . Thus,

one can find a copy of k{3,3} in ΓI(X). Therefore, by Kuratowski’s theorem, ΓI(X) is not planar, which

is impossible. Hence, | X |≤ 5.

(ii) Suppose that ΓI(X) is outerplanar. Assume on the contrary that | X |≥ 5. Now put V1 := I and

V2 := {x1, x2} ⊆ X − I . Since for all a ∈ I, i = 1, 2, a ∗ xi ≤ a , I is ideal, then a ∗ xi ∈ I . Thus,

one can find a copy of K{2,3} in ΓI(X). Therefore, by Definition 2.5, ΓI(X) is not outerplanar, which is

impossible. Therefore, | X |≤ 4.

(iii) Suppose that ΓI(X) is toroidal. Assume on the contrary that | X |≥ 10. Now put V1 := I and

V2 := {x1, x2, x3} ⊆ X − I . Since for all a ∈ I, i = 1, 2, 3, a ∗ xi ≤ a , I is ideal, then a ∗ xi ∈ I . Thus,

one can find a copy of K{3,7} in ΓI(X). Therefore, by Theorem 2.8, ΓI(X) is not toroidal, which is

impossible. Therefore, | X |≤ 9.

2

Theorem 5.23 Let ideal I satisfy in the conditions of Theorem 3.6. Then the following statements hold:

(i) ΓI(X) is a complete graph on X − I .

(ii) ΓI(X) is an empty graph on I .

(iii) α(ΓI(X)) =| I | .

(iv) ΓI(X) is a planar graph if and only if | X − I |≤ 4 .

(v) ΓI(X) is an outerplanar graph if and only if | X − I |≤ 3 .

(vi) ΓI(X) is a toroidal graph if and only if | X − I |≤ 7 .

Proof Straightforward by Definition 5.1 of graph ΓI(X), Theorems 2.8 and 3.6. 2

Theorem 5.24 Let I be an ideal of X . Then ΓI(X) is chordal.

Proof Let x0, x1, . . . , xn be a cycle of length n ≥ 4. Therefore, we have xi ∗ xi+1 ∈ I, xi+1 ∗ xi+2 ∈ I for all

i = 0, . . . , n− 2. By the transitive property of * in Theorem 3.7, xi ∗ xi+2 ∈ I for all i = 0, . . . , n− 2. Hence,

ΓI(X) is chordal, completing the proof. 2

Note that the following example says that ΓI(X) is not chordal, whereas Theorem 5.24 shows that ΓI(X) is

chordal.
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Example 5.25 Let X be a BCK -algebra defined in Example 3.2, and let I = {0} be an ideal of X . Consider

x1, x2, x3, x4 ∈ X in such a way that x1 ≤ x2, x1 ≤ x3, x4 ≤ x2, x4 ≤ x3 . Therefore, ΓI(X) has a

cycle isomorphic to C4 on vertex set {x1, x2, x3, x4} . Since x1 ≤ x2, x1 ≤ x3, x4 ≤ x2, x4 ≤ x3 , we have

x1 ∗ x2 = x1 ∗ x3 = x4 ∗ x2 = x4 ∗ x3 = 0 ∈ I by the definition of operation *. Thus, by Definition 5.1 of graph

ΓI(X) , x1x2, x1x3, x4x2, x4x3 ∈ E(ΓI(X)) . On the other hand, x2 ∗ x3 = x2 /∈ I, x3 ∗ x2 = x3 /∈ I, x4 ∗ x1 =

x4 /∈ I, x1 ∗ x4 = x1 /∈ I since x2 to x3 , x1 to x4 are not comparable. Therefore, x1x4, x2x3 /∈ E(ΓI(X)) , and

thus graph ΓI(X) is not chordal, completing the proof.

Remark 5.26 Let I be an ideal of X , A = {x, y ∈ X;x ∗ y /∈ I, y ∗ x /∈ I} . Then we have the following

statements:

(i) ΓI(X −A) is planar if and only if ΓI(X) is planar.

(ii) ΓI(X −A) is outerplanar if and only if ΓI(X) is outerplanar.

The following theorem gives us a characterization of graph ΓI(X).

Theorem 5.27 Let I be an ideal of X . Then the following statements hold:

(i) ΓI([x]I) is a complete graph, for any x ∈ X ,

(ii) ΓI(X) =
∪

x∈X ΓI([x]I) ,

(iii) ΓI(X) is a graph with | X/I | components,

(iv) ΓI(X) is a planar graph if and only if | [x]I |≤ 4 , for all x ∈ X ,

(v) ΓI(X) is an outerplanar graph if and only if | [x]I |≤ 3 , for all x ∈ X ,

(vi) ΓI(X) is a toroidal graph if and only if | [x]I |≤ 7 , for all x ∈ X ,

(vii) ω(ΓI(X)) = max{| [x]I |;x ∈ X} .

Proof

(i) Letting u, v ∈ [x]I , then by Definition 3.8 of ≡I , u∗x ∈ I, x∗u ∈ I, v∗x ∈ I, x∗v ∈ I so u∗v ∈ I, v∗u ∈ I

since Theorem 3.7 says that operation * has a transitive property. Thus, by Definition 5.1 of graph

ΓI(X), uv ∈ E(ΓI([x]I), and then ΓI([x]I) is a complete graph.

(ii) Since X =
∪

x∈X [x]I , then V (ΓI(X)) = V (
∪

x∈X ΓI([x]I)). Clearly,

E(
∪

x∈X ΓI([x]I)) ⊆ E(ΓI(X)). Now let xy ∈ E(ΓI(X)). Then x ∗ y ∈ I, y ∗x ∈ I , and so xy ∈ ΓI([x]I).

Hence, E(
∪

x∈X ΓI([x]I)) = E(ΓI(X)).

(iii) We want to show that there is not any path between elements of [x]I and [y]I for all distinct elements

x, y ∈ X . Let x, y be distinct elements of X , a ∈ [x]I and b ∈ [y]I . If there is a path a, a1, a2, . . . , an, b

that links a to b , then a ∗ a1 ∈ I, a1 ∗ a ∈ I and so by Definition 3.8 of ≡I we have a1 ∈ [a]I = [x]I . In

a similar way, we have a2, . . . , an, b ∈ [x]I so b ∈ [x]I
∩
[y]I , which is contrary to [x]I

∩
[y]I = ∅ .
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(iv) We know that ΓI([x]I) is a complete graph by (i), if | [x]I |> 4, and then ΓI(X) has induced

subgraph isomorphic to K5 , so by Kuratowski’s theorem ΓI([x]I) is not planar.

(v) We know that ΓI([x]I) is a complete graph by (i), if | [x]I |> 3, and then ΓI(X) has induced

subgraph isomorphic to K4 , so by Definition 2.5 ΓI([x]I) is not outerplanar.

(vi) We know that ΓI([x]I) is a complete graph by (i), if | [x]I |> 7, and then ΓI(X) has induced

subgraph isomorphic to K8 , so by Theorem 2.8 ΓI([x]I) is not toroidal.

(vii) We know by (i) and (ii) that ΓI([x]I) is a complete graph, ΓI(X) =
∪
ΓI([x]I), since ω(ΓI(X)) is

length of the greatest induced complete subgraph in ΓI(X), and we have ω(ΓI(X)) = max{| [x]I |;x ∈ X} .

2

Theorem 5.28 Let I be an ideal of X . If t =| X/I |, X =
∪

i=1,...,t[xi]I . Then α(ΓI(X)) ≥ t .

Proof Let z1 ∈ [xi]I , z2 ∈ [xj ]I , i, j = 1, . . . , t . By proof of Theorem 5.27, we have z1z2 /∈ E(ΓI(X)). Then

by Definition 2.1 of an independent set that is the maximum size of the vertex set in such a way that they do

not connect to each other, Theorem 5.27 omit (i), we have α(ΓI(X)) ≥ t . 2

Theorem 5.29 Let I be an ideal of X . Then ΓI([x]I) is an Euler graph if and only if | [x]I | is odd.

Proof According to Theorem 5.27(i), we know that ΓI([x]I) is a complete graph. If | [x]I | is odd, then the

degree of every vertex of ΓI([x]I) is even, so based on Euler’s theorem, which says that a connected graph is

an Euler graph if and only if the degree of every vertex is even, we gain that ΓI([x]I) is an Eulerian graph. 2

Proposition 5.30 Let (X1, ∗1, 0) , (X2, ∗2, 0) be two BCK -algebras in such a way that X1

∩
X2 = {0} ,

I1 �X1, I2 �X2 , I = I1
∪
I2 , and S = {xy | (x ∈ X1, x ∈ I1) or (y ∈ X2, y ∈ I2)} . Then E(ΓI(X1

∪
X2)) =

E(ΓI1(X1)
∪

ΓI2(X2))
∪
S .

Proof Let x, y ∈ X1

∪
X2, xy ∈ E(ΓI(X1

∪
X2)). Therefore, we have the following cases:

(i) If x, y ∈ X1 , we have x ∗ y = x ∗1 y . Therefore, x ∗ y ∈ I implies x ∗1 y ∈ I1 , by Proposition 3.3, since

X1

∩
X2 = {0} . Then xy ∈ E(ΓI1(X1)).

(ii) If x, y ∈ X2 , in a similar way, we can prove that xy ∈ E(ΓI2(X2)).

(iii) If x ∈ X1, y ∈ X2 , by Proposition 3.3, we have x ∗ y = x . Hence, x ∗ y ∈ I implies x ∗ y ∈ I1 , since

X1

∩
X2 = {0} . Therefore, xy ∈ E(ΓI1(X1)).

(iv) If x ∈ X2, y ∈ X1 . Similarly, we can prove that xy ∈ E(ΓI2(X2)).

Clearly, E(ΓI1(X1)
∪
ΓI2(X2))

∪
S ⊆ E(ΓI(X1

∪
X2)), completing the proof. 2

Corollary 5.31 Let (X1, ∗1, 0), (X2, ∗2, 0) be two BCK -algebras, such that X1∩
X2 = {0} , and let 0 = I1 �X1, 0 = I2 �X2 . Then ΓI(X1

∪
X2) = ΓI1(X1)

∪
ΓI2(X2) .
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*1 0 a b c
0 0 0 0 0
a a 0 0 0
b b a 0 a
c c c c 0

Table 8.

*2 0 1 2
0 0 0 0
1 1 0 0
2 2 1 0

Table 9.

Example 5.32 Let X1 = {0, a, b, c} and X2 = {0, 1, 2} . Define the binary operations ∗1 and ∗2 on X1 and

X2 , respectively, by Tables 8 and 9:

Therefore, (X1, ∗1, 0) and (X2, ∗2, 0) are BCK -algebras and I1 = {0, a, b}, I2 = {0} are two ideals of

X1, X2 , respectively. Also, ΓI1(X1),ΓI2(X2) and ΓI1(X1)
∪

ΓI2(X2) are given by Figures 13, 14, and 15.

Let X = X1

∪
X2, I = I1

∪
I2 . If S is the set that was defined in Proposition 5.30, then S =

{0a, 0b, 0c, 01, 02, , a1, a2, b1, b2} . Therefore, E(ΓI(X)) = E(ΓI1(X1)
∪
ΓI2(X2))

∪
S and so ΓI(X) is given

in Figure 16.

Figure 13. Figure 14.

Figure 15. Figure 16.

Theorem 5.33 Let X be finite and I be an ideal of X . Then we have:

χ(ΓI(X), λ) =
∏

at∈X χ(ΓI([at]I), λ) =
∏

t=1,...,m(λ− rt + 1)(λ+ 1)rt , where rt =| [at]I |I
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Proof Let m ∈ N,X/I = {[a1]I , . . . , [am]I}, [at]I = {x1t, . . . , xrtt} , and At = [bi,j ] be the adjacency matrix of

ΓI([at]I), for all t ∈ {1, 2, . . . ,m} . Then X = {x1,1, x2,1, . . . , xr1,1, x1,2, x2,2, . . . , xr2,2, . . . , x1,m, x2,m, . . . , xrm,m} .
Since [ai]I

∩
[aj ]I = ∅ , for all distinct i, j ∈ {1, 2, . . . ,m} , then by Theorem 5.27 (ii), the adjacent matrix of

ΓI(X) is of the form 
A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . Am


where At is isomorphic to the adjacent matrix of a complete graph Krt on rt vertices, for all t ∈ {1, 2, . . . ,m} .
By the properties of the determinate, we have,

χ(ΓI(X), λ) = det(λI −A) = det(λI1 −A1)× det(λI2 −A2)× . . .× det(λIm −Am) =
∏

χ(ΓI([at]I), λ),

where It is an rt× rt identity matrix, for all t ∈ {1, 2, . . . ,m} . On the other hand, by Theorems 2.10 and 5.27,

part (i), we have χ(ΓI(X), λ) =
∏

t=1,...,m(λ− rt + 1)(λ+ 1)rt . 2

Corollary 5.34 Let X be finite and t be the number of elements a ∈ X such that | [a]I |= 1 .

(i) χ(ΓI(X), λ) = λt × f(λ) , for some polynomial f(λ) .

(ii) I = {0} if and only if χ(ΓI(X), λ) = λn , for some n ∈ N .

Proof

(i) Let | X |= n and {a1, . . . , at} be the set of all elements of X such that | [ai]I |= 1, for all i ∈ {1, 2, . . . , t} .
Therefore, by using the proof of Theorem 5.27 (iii), the adjacent matrix of ΓI(X) is of the form[

B 0
0 0

]
n×n

where B is an (n − t × n − t) matrix. Hence, by properties of the determinant, we have χ(ΓI(X), λ) =

det(λIt) × det(λIn−t − B) = λt × det(λIn−t − B). Let f(λ) = det(λIn−t − B), and then χ(ΓI(X), λ) =

λt × f(λ).

(ii) Since I = {0} , then | [a]I |= 1, for all a ∈ X . Therefore, by (i), χ(ΓI(X), λ) = λn , where | X |= n .

Conversely, let χ(ΓI(X), λ) = λn , for some n ∈ N . Then ΓI(X) is an empty graph. Therefore, by

Theorem 5.20, I = {0} .

2
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