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Abstract: The present paper is devoted to some results concerning the diagonal lift of tensor fields of type (1,1) from

manifold M to its semi-cotangent bundle t*M. In this context, cross-sections in the semi-cotangent (pull-back) bundle

t*M of cotangent bundle T*M by using projection (submersion) of the tangent bundle TM can be also defined.
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1. Introduction

Let Mn be an n -dimensional differentiable manifold of class C
∞
, and let (T (Mn), π1,Mn) be a tangent bundle

over Mn. We use the notation (xi) = (xα, xα), where the indices i, j, ... run from 1 to 2n , the indices α, β, ...

from 1 to n , and the indices α, β, ... from n + 1 to 2n , while xα are coordinates in Mn and xα = yα

are fiber coordinates of the tangent bundle T (Mn) (for definition of the pull-back bundle, see, for example,

[1],[3],[4],[5],[6]) .

Now let (T ∗(Mn), π̃,Mn) be a cotangent bundle with base space Mn and let T (Mn) be a tangent bundle

determined by a natural projection (submersion) π1 : T (Mn) → Mn . The semi-cotangent ([8],[9]) bundle

(induced or pull-back bundle) of the cotangent bundle (T ∗(Mn), π̃,Mn) is the bundle (t∗(Mn), π2, T (Mn)) over

tangent bundle T (Mn) with a total space

t∗(Mn) =
{
((xα, xα), xα) ∈ T (Mn)× T ∗

x (Mn) : π1
(
xα, xα

)
= π̃

(
xα, xα

)
= (xα)

}
⊂ T (Mn)× T ∗

x (Mn)

and with the projection map π2 : t∗(Mn) → T (Mn) defined by π2(x
α, xα, xα)=

(
xα, xα

)
, where T ∗

x (Mn)(
x = π1 (x̃) , x̃ =

(
xα, xα

)
∈ T (Mn)

)
is the cotangent space at a point x of Mn , where xα = pα (α, β, ... =

2n+1, ..., 3n) are fiber coordinates of the cotangent bundle T ∗(Mn). If (x
i′) = (xα

′
, xα

′
, xα

′
) is another system

of local adapted coordinates in the semi-cotangent bundle t∗(Mn), then we have
xα

′
= ∂xα′

∂xβ y
β ,

xα
′
= xα

′ (
xβ

)
,

xα
′
= ∂xβ

∂xα′ pβ .

(1.1)
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The Jacobian of (1.1) has components

A = (AI
′

J ) =

 Aα
′

β Aα
′

βεy
ε 0

0 Aα
′

β 0

0 pσA
β′

β A
σ
β′α′ Aβα′

 , (1.2)

where

Aα
′

βε =
∂2xα

′

∂xβ∂xε
, Aαβ′α′ =

∂2xα

∂xβ′∂xα′ .

We denote by ℑpq(T (Mn)) and ℑpq(Mn) the modules over F (T (Mn)) and F (Mn) of all tensor fields

of type (p, q) on T (Mn) and Mn , respectively, where F (T (Mn)) and F (Mn) denote the rings of real-valued

C
∞
-functions on T (Mn) and Mn , respectively.

Let θ be a covector field on T (Mn). Then the transformation p → θp , θp being the value of θ at

p ∈ T (Mn), determines a cross-section βθ of a semi-cotangent bundle. Thus, if σ : Mn → T ∗(Mn) is a cross-

section of (T ∗(Mn), π̃,Mn), such that π̃ ◦ σ = I(Mn) , an associated cross-section βθ : T (Mn) → t∗(Mn) of

semi-cotangent (pull-back) bundle (t∗(Mn), π2, T (Mn)) of cotangent bundle by using projection (submersion)

of the tangent bundle T (Mn) defined by [[2], p. 217–218], [[7], p. 301]:

βθ
(
xα, xα

)
=

(
xα, xα, σ ◦ π1

(
xα, xα

))
=

(
xα, xα, σ (xα)

)
=

(
xα, xα, θα

(
xβ

))
.

If the covector field θ has the local components θα
(
xβ

)
, the cross-section βθ (T (Mn)) of t∗(Mn) is

locally expressed by

xα = yα = V α
(
xβ

)
, xα = xα, xα = pα = θα

(
xβ

)
(1.3)

with respect to the coordinates xA = (xα, xα, xα) in t∗(Mn). x
α = yα are considered as parameters. Taking

the derivative of (1.3) with respect to xα = yα , we have vector fields B(β) (β = 1, ..., n) with components

B(β) =
∂xA

∂xβ
= ∂βx

A =

 ∂βV
α

∂βx
α

∂βθα

 ,

which are tangent to the cross-section βθ (T (Mn)).

Thus, B(β) have components

B(β) :
(
BA(β)

)
=

 δα
β

0
0


with respect to the coordinates (xα, xα, xα) in t∗(Mn), where

δα
β
= Aα

β
=
∂xα

∂xβ
.
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Let X ∈ ℑ1
0 (T (Mn)), i.e. X = Xα∂α . We denote by BX the vector field with local components

BX :
(
BA(β)X

β
)
=

 δα
β
Xβ

0
0

 =

 Aα
β
Xβ

0
0

 =

 Xα

0
0

 (1.4)

with respect to the coordinates (xα, xα, xα) in t∗(Mn), which is defined globally along βθ (T (Mn)). Then a

mapping

B : ℑ1
0(T (Mn)) → ℑ1

0(βθ (T (Mn)))

is defined by (1.4). The mapping B is the differential of βθ : T (Mn) → t∗(Mn) and so an isomorphism of

ℑ1
0(T (Mn)) onto ℑ1

0(βθ (T (Mn))).

Since a cross-section is locally expressed by xα = yα = const. , xα = pα = const. , xα = xα , xα

being considered as parameters. Taking the derivative of (1.3) with respect to xα , we have vector fields C(β)

(β = n+ 1, ..., 2n) with components

C(β) =
∂xA

∂xβ
= ∂βx

A =

 ∂βV
α

∂βx
α

∂βθα

 ,

which are tangent to the cross-section βθ (T (Mn)).

Thus, C(β) have components

C(β) :
(
CA(β)

)
=

 ∂βV
α

δαβ
∂βθα


with respect to the coordinates (xα, xα, xα) in t∗(Mn), where

δαβ = Aαβ =
∂xα

∂xβ
.

Let X ∈ ℑ1
0 (T (Mn)). Then we denote by CX the vector field with local components

CX :
(
CA(β)X

β
)
=

 Xβ∂βV
α

Xα

Xβ∂βθα

 (1.5)

with respect to the coordinates (xα, xα, xα) in t∗(Mn), which is defined globally along βθ (T (Mn)). Then a

mapping

C : ℑ1
0(T (Mn)) → ℑ1

0(βθ (T (Mn)))

is defined by (1.5). The mapping C is the differential of βθ : T (Mn) → t∗(Mn) and so an isomorphism of

ℑ1
0(T (Mn)) onto ℑ1

0(βθ (T (Mn))).

Now, considering ω ∈ ℑ0
1(Mn) and vector field X ∈ ℑ1

0 (T (Mn)), then
vv

ω (vertical lift), ccX (complete

lift), and HHX (horizontal lift) have, respectively, components on the semi-cotangent bundle t∗(Mn) [8]:

vv

ω =

 0
0
ωα

 , ccX =

 yε∂εX
α

Xα

−pσ(∂αXσ)

 , HHX =

 −ΓαβX
β

Xα

XβΓβα

 (1.6)
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with respect to the coordinates (xα, xα, xα), where

Γαβ = V εΓαε β , Γβα = θεΓ
ε
βα.

On the other hand, the fiber is locally represented by

xα = yα = const., xα = const., xα = pα = pα,

pα being considered as parameters. Thus, on differentiating with respect to pα , we easily see that the vector

fields E(
β
) =vv

(
dxβ

)
(β = 2n+ 1, ..., 3n) with components

E(
β
) :

(
EA(

β
)) = ∂(

β
)xA =

 ∂
β
yα

∂
β
xα

∂
β
pα

 =

 0
0
δβα



are tangent to the fiber, where

δβα = Aβα =
∂xβ

∂xα
.

Let ω be a 1-form with local components ωα on Mn , so that ω is a 1-form with local expression

ω = ωαdx
α . We denote by Eω the vector field with local components

Eω :

(
EA(

β
)ωβ

)
=

 0
0
ωα

 , (1.7)

which is tangent to the fiber. Then a mapping

E : ℑ0
1(Mn) → ℑ1

0(t
∗(Mn))

is defined by (1.7) and so an isomorphism of ℑ0
1(Mn) in to ℑ1

0(t
∗(Mn)).

From (1.4), (1.5), and (1.7), we obtain:

Theorem 1 Let X and Y be vector fields on T (Mn) . For the Lie product, we have

(i) [CX,CY ] = C [X,Y ] ,

(ii) [BX,BY ] = 0,

(iii) [Eψ,Eω] = 0 ,

for any ψ, ω ∈ ℑ0
1(Mn).
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Proof

(i) If X and Y are vector fields on T (Mn) and

 [CX,CY ]
β

[CX,CY ]
β

[CX,CY ]
β

 are components of [CX,CY ] with respect

to the coordinates (xβ , xβ , xβ) in t∗(Mn), then we have

[CX,CY ]
J
= (CX)

I
∂I(CY )J − (CY )I∂I(CX)J .

First, if J = β , we have

[CX,CY ]
β

= (CX)
I
∂I(CY )β − (CY )I∂I(CX)β

= (CX)
α
∂α(CY )β + (CX)

α
∂α(CY )β + (CX)

α
∂α(CY )β

−(CY )α∂α(CX)β − (CY )α∂α(CX)β − (CY )α∂α(CX)β

= Xβ∂βV
α∂αY

γ∂γV
β +Xα∂αY

γ∂γV
β

−Y β∂βV α∂αXγ∂γV
β − Y α∂αX

γ∂γV
β

= (Xα∂αY
γ − Y α∂αX

γ) ∂γV
β

= [X,Y ]
γ
∂γV

β

by virtue of (1.5). Second, if J = β , we have

[CX,CY ]
β

= (CX)
I
∂I(CY )β − (CY )I∂I(CX)β

= (CX)
α
∂α(CY )β + (CX)

α
∂α(CY )β + (CX)

α
∂α(CY )β

−(CY )α∂α(CX)β − (CY )α∂α(CX)β − (CY )α∂α(CX)β

= Xα∂αY
β +Xα∂αY

β +Xβ∂βθα∂αY
β

−Y α∂αXβ − Y α∂αX
β − Y β∂βθα∂αX

β

= Xα∂αY
β − Y α∂αX

β

= [X,Y ]
β

by virtue of (1.5). Third, if J = β , then we have

[CX,CY ]
β

= (CX)
I
∂I(CY )β − (CY )I∂I(CX)β

= (CX)
α
∂α(CY )β + (CX)

α
∂α(CY )β + (CX)

α
∂α(CY )β

−(CY )α∂α(CX)β − (CY )α∂α(CX)β − (CY )α∂α(CX)β

= Xα∂αY
γ∂γθβ +Xα∂αY

γ∂γθβ +Xβ∂βθα∂αY
γ∂γθβ

−Y α∂αXγ∂γθβ − Y α∂αX
γ∂γθβ − Y β∂βθα∂αX

γ∂γθβ
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= Xα∂αY
γ∂γθβ − Y α∂αX

γ∂γθβ

= (Xα∂αY
γ − Y α∂αX

γ) ∂γθβ

= [X,Y ]
γ
∂γθβ

by virtue of (1.5). On the other hand, we know that C [X,Y ] have components

C [X,Y ] =

 [X,Y ]
γ
∂γV

β

[X,Y ]
β

[X,Y ]
γ
∂γθβ


with respect to the coordinates in t∗(Mn). Thus, we have [CX,CY ] = C [X,Y ] .

(ii) X,Y ∈ ℑ1
0(T (Mn)) and

 [BX,BY ]
β

[BX,BY ]
β

[BX,BY ]
β

 are components of [BX,BY ] with respect to the coordinates

(xβ , xβ , xβ) in t∗(Mn), and then we have

[BX,BY ]
J
= (BX)

I
∂I(BY )J − (BY )I∂I(BX)J .

First, if J = β , we have

[BX,BY ]
β

= (BX)
I
∂I(BY )β − (BY )I∂I(BX)β

= (BX)
α
∂α(BY )β + (BX)

α
∂α(BY )β + (BX)

α
∂α(BY )β

−(BY )α∂α(BX)β − (BY )α∂α(BX)β − (BY )α∂α(BX)β

= Xα∂αY
β − Y α∂αX

β

= 0

by virtue of (1.4). Second, if J = β , we have

[BX,BY ]
β

= (BX)
I
∂I(BY )β − (BY )I∂I(BX)β

= (BX)
α
∂α(BY )β + (BX)

α
∂α(BY )β + (BX)

α
∂α(BY )β

−(BY )α∂α(BX)β − (BY )α∂α(BX)β − (BY )α∂α(BX)β

= 0

by virtue of (1.4). Third, if J = β , then we have

[BX,BY ]
β

= (BX)
I
∂I(BY )β − (BY )I∂I(BX)β

= (BX)
α
∂α(BY )β + (BX)

α
∂α(BY )β + (BX)

α
∂α(BY )β

−(BY )α∂α(BX)β − (BY )α∂α(BX)β − (BY )α∂α(BX)β

= 0

by virtue of (1.4). Thus, we have [BX,BY ] = 0.
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(iii) If ψ, ω ∈ ℑ0
1(Mn) and

 [Eψ,Eω]
β

[Eψ,Eω]
β

[Eψ,Eω]
β

 are components of [Eψ,Eω] with respect to the coordinates

(xβ , xβ , xβ) in t∗(Mn), then we have

[Eψ,Eω]J = (Eψ)I∂I(Eω)
J − (Eω)I∂I(Eψ)

J

= (Eψ)α∂α(Eω)
J + (Eψ)α∂α(Eω)

J + (Eψ)α∂α(Eω)
J

−(Eω)α∂α(Eψ)
J − (Eω)α∂α(Eψ)

J − (Eω)α∂α(Eψ)
J

= ψα∂α(Eω)
J − ωα∂α(Eψ)

J .

First, if J = β , we have

[Eψ,Eω]β = ψα∂α(Eω)
β − ωα∂α(Eψ)

β

= 0

by virtue of (1.7). Second, if J = β , we have

[Eψ,Eω]β = ψα∂α(Eω)
β − ωα∂α(Eψ)

β

= 0

by virtue of (1.7). Third, if J = β , then we have

[Eψ,Eω]β = ψα∂α(Eω)
β − ωα∂α(Eψ)

β

= ψα∂αωβ − ωα∂αψβ

= 0

by virtue of (1.7). Thus, we have [Eψ,Eω] = 0.

2

We consider in π−1 (U) 3n local vector fields B(β), C(β) , and E(
β
) along βθ (T (Mn)), which are

respectively represented by

B(β) = B
∂

∂xβ
, C(β) = C

∂

∂xβ
, E(

β
) = Edxβ .

Theorem 2 Let X be a vector field on T (Mn) . We have along βθ (T (Mn)) the formula

ccX = CX +B (LVX) + E ( −LXθ) ,

where LVX denotes the Lie derivative of X with respect to V , and LXθ denotes the Lie derivative of θ with

respect to X.
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Proof Using (1.4), (1.5), and (1.7), we have

CX +B (LVX) + E (−LXθ) =

 Xβ∂βV
α

Xα

Xβ∂βθα

+

 V β∂βX
α −Xβ∂βV

α

0
0



+

 0
0
−Xβ∂βθα − θβ∂αX

β



=

 V β∂βX
α

Xα

−θβ∂αXβ

 =cc X.

Thus, we have Theorem 2. 2

On the other hand, on putting C(
β
) = E(

β
) , we write the adapted frame of βθ (T (Mn)) as

{
B(β), C(β), C(

β
)} .

The adapted frame

{
B(β), C(β), C(

β
)} of βθ (T (Mn)) is given by the matrix

Ã =
(
ÃAB

)
=

 δαβ ∂βV
α 0

0 δαβ 0

0 ∂βθα δβα

 . (1.8)

Since the matrix Ã in (1.8) is nonsingular, it has the inverse. Denoting this inverse by
(
Ã
)−1

, we have

(
Ã
)−1

=
(
ÃBC

)−1

=

 δβθ −∂θV β 0

0 δβθ 0
0 −∂θθβ δθβ

 , (1.9)

where Ã
(
Ã
)−1

= (ÃAB)
(
ÃBC

)−1

= δAC = Ĩ , where A =
(
α, α, α

)
, B =

(
β, β, β

)
, C =

(
θ, θ, θ

)
.

Proof From (1.8) and (1.9), we easily see that

Ã
(
Ã
)−1

= (ÃAB)
(
ÃBC

)−1

=

 δαβ ∂βV
α 0

0 δαβ 0

0 ∂βθα δβα

 δβθ −∂θV β 0

0 δβθ 0
0 −∂θθβ δθβ



=

 δαθ −∂θV α + ∂θV
α 0

0 δαθ 0
0 ∂θθα − ∂θθα δθα



=

 δαθ 0 0
0 δαθ 0
0 0 δθα

 = δAC = Ĩ .

2
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Then we see from Theorem 2 that the complete lift ccX of a vector field X ∈ ℑ1
0(T (Mn)) has along

βθ (T (Mn)) components of the form

ccX :

 LVX
α

Xα

−LXθα


with respect to the adapted frame

{
B(β), C(β), C(

β
)} .

BX, CX , and Eω also have components

BX =

 Xα

0
0

 , CX =

 0
Xα

0

 , Eω =

 0
0
ωα

 , (1.10)

respectively, with respect to the adapted frame

{
B(β), C(β), C(

β
)} of the cross-section βθ (T (Mn)) determined

by a 1-form θ on T (Mn).

2. Complete lift of tensor fields of type (1,1) on a cross-section in a semi-cotangent bundle

Suppose now that F ∈ ℑ1
1(T (Mn)) and F has local components Fαβ in a neighborhood U of Mn , F =

Fαβ ∂α ⊗ dxβ . Then the semi-cotangent (pull-back) bundle t∗(Mn) of cotangent bundle T ∗(Mn) by using

projection of the tangent bundle T (Mn) admits the complete lift ccF of F with components [8]

ccF = (
cc

F IJ ) =

 Fαβ yε∂εF
α
β 0

0 Fαβ 0

0 pσ(∂βF
σ
α − ∂αF

σ
β ) F βα

 , (2.1)

with respect to the coordinates (xα, xα, xα) on t∗(Mn). Then
ccF has components FAB given by

ccF = (
cc

FAB ) =

 Fαβ LV F
α
β 0

0 Fαβ 0

0 ϕF θ F βα

 (2.2)

with respect to the adapted frame

{
B(β), C(β), C(

β
)} of the cross-section βθ (T (Mn)) determined by a 1-form

θ in T (Mn), where A =
(
α, α, α

)
, B =

(
β, β, β

)
. Also, the component

cc

Fαβ of
cc

FAB is defined as the

Tachibana operator ϕF θ of F , i.e.

cc

Fαβ = ϕF θ = (∂βF
σ
α − ∂αF

σ
β )θσ − F γβ ∂γθα + F γα∂βθγ ,

and LV F
α
β denotes the Lie derivative of Fαβ with respect to V , i.e.

LV F
α
β = V γ∂γF

α
β + Fαγ ∂βV

γ − F γβ ∂γV
α.
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Proof Let F ∈ ℑ1
1(T (Mn)). Then we have by (1.8), (1.9), and (2.1):

cc

F =
(
ÃBA

)−1

(
cc

FAC )
(
ÃCD

)

=

 δβα −∂αV β 0
0 δβα 0
0 −∂αθβ δαβ

 Fαγ V ε∂εF
α
γ 0

0 Fαγ 0
0 θσ(∂γF

σ
α − ∂αF

σ
γ ) F γα

 δγψ ∂ψV
γ 0

0 δγψ 0

0 ∂ψθγ δψγ



=

 F βγ V ε∂εF
β
γ − Fαγ ∂αV

β 0
0 F βγ 0
0 −Fαγ ∂αθβ + θσ∂γF

σ
β − θσ∂βF

σ
γ F γβ

 δγψ ∂ψV
γ 0

0 δγψ 0

0 ∂ψθγ δψγ



=

 F βψ F βγ ∂ψV
γ + V ε∂εF

β
ψ − Fαψ ∂αV

β 0

0 F βψ 0

0 −Fαψ ∂αθβ + θσ∂ψF
σ
β − θσ∂βF

σ
ψ + F γβ ∂ψθγ Fψβ



=

 F βψ LV F
β
ψ 0

0 F βψ 0

0 φF θ Fψβ

 = (
cc

FBD ),

where A =
(
α, α, α

)
, B =

(
β, β, β

)
, C =

(
γ, γ, γ

)
, D =

(
ψ,ψ, ψ

)
. 2

Using (2.2), we have along βθ (T (Mn)):

Theorem 3 If F and X are affinor and vector fields on T (Mn) , and ω ∈ ℑ0
1(Mn) , then:

(i) ccF (BX + CX) = B (FX) + C (FX) +B ((LV F )X) + E (PX) ,

(ii) ccF (Eω) = E (ω ◦ F ) ,

where P ∈ ℑ0
2(Mn) with local components

Pβα = ϕF θ = (∂βF
σ
α − ∂αF

σ
β )θσ − F γβ ∂γθα + F γα∂βθγ ,

θβ being local components of θ , and PX ∈ ℑ0
1(Mn) defined by PX (Y ) = P (X,Y ) , for Y ∈ ℑ1

0(T (Mn)).
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Proof (i) If F and X are affinor and vector fields on T (Mn), then by (1.10) and (2.2), we have

ccF (BX + CX) =

 Fαβ LV F
α
β 0

0 Fαβ 0

0 φF θ F βα

 Xβ

Xβ

0



=

 Fαβ X
β + LV F

α
β X

β

Fαβ X
β

Xβ∂βF
σ
α θσ −Xβ∂αF

σ
β θσ − F γβX

β∂γθα + F γαX
β∂βθγ



=

 (FX)
α
+ V γ∂γF

α
β X

β + Fαγ ∂βV
γXβ − F γβ ∂γV

αXβ

(FX)
α

Xβ∂βF
σ
α θσ −Xβ∂αF

σ
β θσ − F γβX

β∂γθα + F γαX
β∂βθγ



=

 (FX)
α

0
0

+

 0
(FX)

α

0

+

 (LV F )X
0
0

+

 0
0
PX


= B (FX) + C (FX) +B ((LV F )X) + E (PX) .

Thus, we have ccF (BX + CX) = B (FX) + C (FX) +B ((LV F )X) + E (PX) .

(ii) If ω ∈ ℑ0
1(Mn), F is an affinor field on T (Mn),and then by (1.10) and (2.2), we have

ccF (Eω) =

 Fαβ LV F
α
β 0

0 Fαβ 0

0 φF θ F βα

 0
0
ωβ

 =

 0
0
ωβF

β
α

 =

 0
0
(ω ◦ F )α

 = E (ω ◦ F ) ,

which gives equation (ii) of Theorem 3. 2

When ccF (BX + CX) is always tangent to βθ (T (Mn)) for any vector field X ∈ ℑ1
0 (T (Mn)),

ccF is

said to leave the cross-section βθ (T (Mn)) invariant.

Thus, we have:

Theorem 4 The complete lift ccF of an element of F ∈ ℑ1
1(T (Mn)) leaves the cross-section βθ (T (Mn))

invariant if and only if:

(i) (∂βF
σ
α − ∂αF

σ
β )θσ − F γβ ∂γθα + F γα∂βθγ = 0 (i.e.ϕF θ = 0),

(ii) V γ∂γF
α
β + Fαγ ∂βV

γ − F γβ ∂γV
α = 0 (i.e.LV F = 0),

where Fαβ , θβ , and V α are local components of F , θ , and V , respectively.

3. Adapted frames and diagonal lifts of affinor fields

Let ∇ be a symmetric affine connection in Mn . In each coordinate neighborhood {U, xα} of Mn , we put

X(α) =
∂

∂xα
, θ(α) = dxα.
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Then 3n local vector fields Y(α) ,
HHX(α) , and

vvθ(α) have respectively components of the form

Y(α) :

 δβα
0
0

 , HHX(α) :

 −Γαβ
δβα
Γβα

 , vvθ(α) :

 0
0
δαβ

 (3.1)

with respect to the induced coordinates (xα, xα, xα) in π−1 (U), where we have used (1.6). We call the set{
Y(α),

HH X(α),
vv θ(α)

}
the frame adapted to the symmetric affine connection ∇ in π−1 (U). On putting

ê(α) = Y(α), ê(α) =
HH X(α), ê(α) =

vv θ(α) (3.2)

we write the adapted frame as {
ê(B)

}
=

{
ê(α), ê(α), ê(α)

}
. (3.3)

The adapted frame
{
ê(B)

}
=

{
ê(α), ê(α), ê(α)

}
is given by the matrix

Â =
(
ÂAB

)
=

 δαβ −Γαβ 0

0 δαβ 0

0 Γβα δβα

 . (3.4)

Since the matrix Â in (3.4) is nonsingular, it has the inverse. Denoting this inverse by
(
Â
)−1

, we have

(
Â
)−1

=
(
ÂBC

)−1

=

 δβθ Γβθ 0

0 δβθ 0
0 −Γθβ δθβ

 , (3.5)

where Â
(
Â
)−1

= (ÂAB)
(
ÂBC

)−1

= δAC = Ĩ , where A =
(
α, α, α

)
, B =

(
β, β, β

)
, C =

(
θ, θ, θ

)
.

Proof From (3.4) and (3.5), we easily see that

Â
(
Â
)−1

= (ÂAB)
(
ÂBC

)−1

=

 δαβ −Γαβ 0

0 δαβ 0

0 Γβα δβα

 δβθ Γβθ 0

0 δβθ 0
0 −Γθβ δθβ



=

 δαθ Γαθ − Γαθ 0
0 δαθ 0
0 Γθα − Γθα δθα

 =

 δαθ 0 0
0 δαθ 0
0 0 δθα


= δAC = Î .

2

If we take account of (3.3), we see that the diagonal lift
DD

F of F ∈ ℑ1
1(T (Mn)) has components

DD

F = (
DD

F IJ ) =

 −Fαβ −ΓαεF
ε
β − ΓεβF

α
ε 0

0 Fαβ 0

0 ΓβσF
σ
α + ΓασF

σ
β −F βα

 , (3.6)
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with respect to the coordinates (xα, xα, xα) on t∗(Mn), where

Γαε = yγΓαγ ε, Γασ = pγΓ
γ
ασ.

Proof Let F ∈ ℑ1
1(T (Mn)). Then we have by (3.4), (3.5), and (3.6):

DD

F =
(
Â
)(

DD

F
)(

Â
)−1

=

 δβα −Γβα 0
0 δβα 0
0 Γαβ δαβ

 −Fαγ −ΓαεF
ε
γ − ΓεγF

α
ε 0

0 Fαγ 0
0 ΓγσF

σ
α + ΓασF

σ
γ −F γα

 δγψ Γγψ 0

0 δγψ 0

0 −Γψγ δψγ



=

 −F βγ −ΓβεF
ε
γ − ΓεγF

β
ε − ΓβαF

α
γ 0

0 F βγ 0
0 ΓαβF

α
γ + ΓγσF

σ
β + ΓβσF

σ
γ −F γβ

 δγψ Γγψ 0

0 δγψ 0

0 −Γψγ δψγ



=

 −F βψ −ΓγψF
β
γ − ΓβεF

ε
ψ − ΓεψF

β
ε − ΓβαF

α
ψ 0

0 F βψ 0

0 ΓαβF
α
ψ + ΓψσF

σ
β + ΓβσF

σ
ψ + ΓψγF

γ
β −Fψβ



=

 −F βψ −ΓβρF
ρ
ψ − ΓρψF

β
ρ 0

0 F βψ 0

0 ΓψµF
µ
β + ΓβµF

µ
ψ −Fψβ

 ,

which proves (3.6). 2

We now see, from (3.3), that the diagonal lift
DD

F of F ∈ ℑ1
1(T (Mn)) has components of the form

DD

F = (
DD

FAB ) =

 −Fαβ 0 0

0 Fαβ 0

0 0 −F βα


with respect to the adapted frame

{
ê(B)

}
in t∗(Mn).

Proof Let F ∈ ℑ1
1(T (Mn)). Then we have by (3.4), (3.5), and (3.6):

DD

F =
(
Â
)−1 (DD

F
)(

Â
)

=

 δβα Γβα 0
0 δβα 0
0 −Γαβ δαβ

 −Fαγ −ΓαεF
ε
γ − ΓεγF

α
ε 0

0 Fαγ 0
0 ΓγσF

σ
α + ΓασF

σ
γ −F γα

 δγψ −Γγψ 0

0 δγψ 0

0 Γψγ δψγ



=

 −F βγ −ΓβεF
ε
γ − ΓεγF

β
ε + ΓβαF

α
γ 0

0 F βγ 0
0 −ΓαβF

α
γ + ΓγσF

σ
β + ΓβσF

σ
γ −F γβ

 δγψ −Γγψ 0

0 δγψ 0

0 Γψγ δψγ



=

 −F βψ ΓγψF
β
γ − ΓβεF

ε
ψ − ΓεψF

β
ε + ΓβαF

α
ψ 0

0 F βψ 0

0 −ΓαβF
α
ψ + ΓψσF

σ
β + ΓβσF

σ
ψ − ΓψγF

γ
β −Fψβ
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=

 −F βψ 0 0

0 F βψ 0

0 0 −Fψβ

 .

This completes the proof. 2

We now obtain from (3.6) that the diagonal lift
DD

F of an affinor field F ∈ ℑ1
1(T (Mn)) has along

βθ (T (Mn)) components of the form

DD

F :

 −Fαβ − (∇εV
α)F εβ − (∇βV

ε)Fαε 0

0 Fαβ 0

0 − (∇βθσ)F
σ
α − (∇αθσ)F

σ
β −F βα

 , (3.7)

with respect to the adapted frame

{
B(β), C(β), C(

β
)} .

Proof Let F ∈ ℑ1
1(T (Mn)). Then we have by (1.8), (1.9), and (3.7):

DD

F =
(
Ã
)−1 ( DD

F
)(

Ã
)

=

 δβα −∂αV β 0
0 δβα 0
0 −∂αθβ δαβ

 −Fαγ −ΓαεF
ε
γ − ΓεγF

α
ε 0

0 Fαγ 0
0 ΓγσF

σ
α + ΓασF

σ
γ −F γα

 δγψ ∂ψV
γ 0

0 δγψ 0

0 ∂ψθγ δψγ



=

 −F βγ −ΓβεF
ε
γ − ΓεγF

β
ε − ∂αV

βFαγ 0
0 F βγ 0
0 −∂αθβFαγ + ΓγσF

σ
β + ΓβσF

σ
γ −F γβ

 δγψ ∂ψV
γ 0

0 δγψ 0

0 ∂ψθγ δψγ



=

 −F βψ −∂ψV γF βγ − ΓβεF
ε
ψ − ΓεψF

β
ε − ∂αV

βFαψ 0

0 F βψ 0

0 −∂αθβFαψ + ΓψσF
σ
β + ΓβσF

σ
ψ − ∂ψθγF

γ
β −Fψβ



=

 −F βψ −
(
∇γV

β
)
F γψ − (∇ψV

γ)F βγ 0

0 F βψ 0

0 − (∇ψθγ)F
γ
β − (∇βθσ)F

σ
ψ −Fψβ

 .

Thus, the proof is complete. 2

Then we see from (1.6) that the horizontal lift HHX of a vector field X ∈ ℑ1
0 (T (Mn)) has along

βθ (T (Mn)) components of the form

HHX :

 −Xβ (∇βV
α)

Xα

− (∇βθα)X
β

 (3.8)

with respect to the adapted frame

{
B(β), C(β), C(

β
)} .
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Proof Let X ∈ ℑ1
0 (T (Mn)). Then we have by (1.6) and (1.9):

HHX =
(
Ã
)−1 (

HHX
)
=

 δαβ −∂βV α 0

0 δαβ 0

0 −∂βθα δβα

 −V εΓβε αXα

Xβ

XαθεΓ
ε
αβ



=

 −V εΓβε θXθ − ∂βV
αXβ

Xα

−∂βθαXβ +XθθεΓ
ε
θα

 =

 −Xβ (∇βV
α)

Xα

− (∇βθα)X
β

 ,

which gives (3.8). 2

Using (1.6), (3.7), and (3.8), we have along βθ (T (Mn)):

Theorem 5 If F and X are affinor and vector fields on T (Mn) , and ω ∈ ℑ0
1(Mn) , then with respect to a

symetric affine connection ∇ in Mn , we have

(i) DDF
(
HHX

)
=HH (FX) ,

(ii) DDF (vvω) = −vv (ω ◦ F ) .

Proof

(i) If F ∈ ℑ1
1(T (Mn)) and X ∈ ℑ1

0 (T (Mn)) , then by (3.7) and (3.8), we have

DDF
(
HHX

)
=

 −Fαβ − (∇εV
α)F εβ − (∇βV

ε)Fαε 0

0 Fαβ 0

0 − (∇βθσ)F
σ
α − (∇αθσ)F

σ
β −F βα

 −Xε
(
∇εV

β
)

Xβ

− (∇σθβ)X
σ



=

 Fαβ X
ε
(
∇εV

β
)
− (∇εV

α)F εβX
β − (∇βV

ε)Fαε X
β

(FX)
α

− (∇αθσ)F
σ
βX

β − (∇βθσ)F
σ
αX

β + (∇σθβ)X
σF βα



=

 − (∇εV
α) (FX)

ε

(FX)
α

− (∇σθα) (FX)
σ

 =HH (FX) .

Thus, we have DDF
(
HHX

)
=HH (FX) .

(ii) If ω ∈ ℑ0
1(Mn) and F ∈ ℑ1

1(T (Mn)), then by (1.6), (1.10), and (3.7), we have

DDF (vvω) =

 −Fαβ − (∇εV
α)F εβ − (∇βV

ε)Fαε 0

0 Fαβ 0

0 − (∇βθσ)F
σ
α − (∇αθσ)F

σ
β −F βα

 0
0
ωβ



=

 0
0
−ωβF βα

 =

 0
0
− (ω ◦ F )α

 = −vv (ω ◦ F ) .

Thus, we have (ii) of Theorem 5. 2
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