

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Diagonal lift in the semi-cotangent bundle and its applications

Furkan YILDIRIM*

Department of Mathematics, Faculty of Science, Atatürk University, Narman Vocational Training School, Erzurum, Turkey

Received: 12.06.2017	•	Accepted/Published Online: 19.11.2017	•	Final Version: 08.05.2018
----------------------	---	---------------------------------------	---	---------------------------

Abstract: The present paper is devoted to some results concerning the diagonal lift of tensor fields of type (1,1) from manifold M to its semi-cotangent bundle t*M. In this context, cross-sections in the semi-cotangent (pull-back) bundle t*M of cotangent bundle T*M by using projection (submersion) of the tangent bundle TM can be also defined.

Key words: Vector field, complete lift, diagonal lift, pull-back bundle, cross-section, semi-cotangent bundle

1. Introduction

Let M_n be an *n*-dimensional differentiable manifold of class C^{∞} , and let $(T(M_n), \pi_1, M_n)$ be a tangent bundle over M_n . We use the notation $(x^i) = (x^{\overline{\alpha}}, x^{\alpha})$, where the indices i, j, ... run from 1 to 2n, the indices $\overline{\alpha}, \overline{\beta}, ...$ from 1 to n, and the indices $\alpha, \beta, ...$ from n + 1 to 2n, while x^{α} are coordinates in M_n and $x^{\overline{\alpha}} = y^{\alpha}$ are fiber coordinates of the tangent bundle $T(M_n)$ (for definition of the pull-back bundle, see, for example, [1], [3], [4], [5], [6]).

Now let $(T^*(M_n), \tilde{\pi}, M_n)$ be a cotangent bundle with base space M_n and let $T(M_n)$ be a tangent bundle determined by a natural projection (submersion) $\pi_1 : T(M_n) \to M_n$. The semi-cotangent ([8],[9]) bundle (induced or pull-back bundle) of the cotangent bundle $(T^*(M_n), \tilde{\pi}, M_n)$ is the bundle $(t^*(M_n), \pi_2, T(M_n))$ over tangent bundle $T(M_n)$ with a total space

$$t^{*}(M_{n}) = \left\{ ((x^{\overline{\alpha}}, x^{\alpha}), x^{\overline{\overline{\alpha}}}) \in T(M_{n}) \times T^{*}_{x}(M_{n}) : \pi_{1} \left(x^{\overline{\alpha}}, x^{\alpha} \right) = \widetilde{\pi} \left(x^{\alpha}, x^{\overline{\overline{\alpha}}} \right) = (x^{\alpha}) \right\}$$
$$\subset T(M_{n}) \times T^{*}_{x}(M_{n})$$

and with the projection map $\pi_2 : t^*(M_n) \to T(M_n)$ defined by $\pi_2(x^{\overline{\alpha}}, x^{\alpha}, x^{\overline{\alpha}}) = (x^{\overline{\alpha}}, x^{\alpha})$, where $T^*_x(M_n)$ $(x = \pi_1(\widetilde{x}), \widetilde{x} = (x^{\overline{\alpha}}, x^{\alpha}) \in T(M_n))$ is the cotangent space at a point x of M_n , where $x^{\overline{\alpha}} = p_{\alpha}$ $(\overline{\alpha}, \overline{\beta}, ... = 2n+1, ..., 3n)$ are fiber coordinates of the cotangent bundle $T^*(M_n)$. If $(x^{i'}) = (x^{\overline{\alpha'}}, x^{\alpha'}, x^{\overline{\alpha'}})$ is another system of local adapted coordinates in the semi-cotangent bundle $t^*(M_n)$, then we have

$$\begin{cases}
x^{\overline{\alpha}'} = \frac{\partial x^{\alpha'}}{\partial x^{\beta}} y^{\beta}, \\
x^{\alpha'} = x^{\alpha'} (x^{\beta}), \\
x^{\overline{\alpha}'} = \frac{\partial x^{\beta}}{\partial x^{\alpha'}} p_{\beta}.
\end{cases}$$
(1.1)

^{*}Correspondence: furkan.yildirim@atauni.edu.tr

²⁰¹⁰ AMS Mathematics Subject Classification: 53A45, 55R10, 57R25

The Jacobian of (1.1) has components

$$\overline{A} = (A_J^{I'}) = \begin{pmatrix} A_{\beta}^{\alpha'} & A_{\beta\varepsilon}^{\alpha'} y^{\varepsilon} & 0\\ 0 & A_{\beta}^{\alpha'} & 0\\ 0 & p_{\sigma} A_{\beta}^{\beta'} A_{\beta'\alpha'}^{\sigma} & A_{\alpha'}^{\beta} \end{pmatrix},$$
(1.2)

where

$$A^{\alpha'}_{\beta\varepsilon} = \frac{\partial^2 x^{\alpha'}}{\partial x^{\beta} \partial x^{\varepsilon}}, \quad A^{\alpha}_{\beta'\alpha'} = \frac{\partial^2 x^{\alpha}}{\partial x^{\beta'} \partial x^{\alpha'}}.$$

We denote by $\Im_q^p(T(M_n))$ and $\Im_q^p(M_n)$ the modules over $F(T(M_n))$ and $F(M_n)$ of all tensor fields of type (p,q) on $T(M_n)$ and M_n , respectively, where $F(T(M_n))$ and $F(M_n)$ denote the rings of real-valued C^{∞} -functions on $T(M_n)$ and M_n , respectively.

Let θ be a covector field on $T(M_n)$. Then the transformation $p \to \theta_p$, θ_p being the value of θ at $p \in T(M_n)$, determines a cross-section β_{θ} of a semi-cotangent bundle. Thus, if $\sigma : M_n \to T^*(M_n)$ is a cross-section of $(T^*(M_n), \tilde{\pi}, M_n)$, such that $\tilde{\pi} \circ \sigma = I_{(M_n)}$, an associated cross-section $\beta_{\theta} : T(M_n) \to t^*(M_n)$ of semi-cotangent (pull-back) bundle $(t^*(M_n), \pi_2, T(M_n))$ of cotangent bundle by using projection (submersion) of the tangent bundle $T(M_n)$ defined by [[2], p. 217–218], [[7], p. 301]:

$$\beta_{\theta}\left(x^{\overline{\alpha}}, x^{\alpha}\right) = \left(x^{\overline{\alpha}}, x^{\alpha}, \sigma \circ \pi_{1}\left(x^{\overline{\alpha}}, x^{\alpha}\right)\right) = \left(x^{\overline{\alpha}}, x^{\alpha}, \sigma\left(x^{\alpha}\right)\right) = \left(x^{\overline{\alpha}}, x^{\alpha}, \theta_{\alpha}\left(x^{\beta}\right)\right).$$

If the covector field θ has the local components $\theta_{\alpha}(x^{\beta})$, the cross-section $\beta_{\theta}(T(M_n))$ of $t^*(M_n)$ is locally expressed by

$$x^{\overline{\alpha}} = y^{\alpha} = V^{\alpha} \left(x^{\beta} \right), \quad x^{\alpha} = x^{\alpha}, \quad x^{\overline{\overline{\alpha}}} = p_{\alpha} = \theta_{\alpha} \left(x^{\beta} \right)$$
 (1.3)

with respect to the coordinates $x^A = (x^{\overline{\alpha}}, x^{\alpha}, x^{\overline{\overline{\alpha}}})$ in $t^*(M_n)$. $x^{\overline{\alpha}} = y^{\alpha}$ are considered as parameters. Taking the derivative of (1.3) with respect to $x^{\overline{\alpha}} = y^{\alpha}$, we have vector fields $B_{(\overline{\beta})}$ $(\overline{\beta} = 1, ..., n)$ with components

$$B_{\left(\overline{\beta}\right)} = \frac{\partial x^{A}}{\partial x^{\overline{\beta}}} = \partial_{\overline{\beta}} x^{A} = \begin{pmatrix} \partial_{\overline{\beta}} V^{\alpha} \\ \partial_{\overline{\beta}} x^{\alpha} \\ \partial_{\overline{\beta}} \theta_{\alpha} \end{pmatrix},$$

which are tangent to the cross-section $\beta_{\theta}(T(M_n))$.

Thus, $B_{(\overline{\beta})}$ have components

$$B_{\left(\overline{\beta}\right)}:\left(B_{\left(\overline{\beta}\right)}^{A}\right)=\left(\begin{array}{c}\delta_{\overline{\beta}}^{\alpha}\\0\\0\end{array}\right)$$

with respect to the coordinates $(x^{\overline{\alpha}}, x^{\alpha}, x^{\overline{\overline{\alpha}}})$ in $t^*(M_n)$, where

$$\delta^{\alpha}_{\overline{\beta}} = A^{\alpha}_{\overline{\beta}} = \frac{\partial x^{\alpha}}{\partial x^{\overline{\beta}}}$$

Let $X \in \mathfrak{S}_0^1(T(M_n))$, i.e. $X = X^{\alpha} \partial_{\alpha}$. We denote by BX the vector field with local components

$$BX: \left(B^{A}_{\left(\overline{\beta}\right)}X^{\overline{\beta}}\right) = \left(\begin{array}{c} \delta^{\underline{\alpha}}_{\overline{\beta}}X^{\overline{\beta}}\\ 0\\ 0\end{array}\right) = \left(\begin{array}{c} A^{\underline{\alpha}}_{\overline{\beta}}X^{\overline{\beta}}\\ 0\\ 0\end{array}\right) = \left(\begin{array}{c} X^{\alpha}\\ 0\\ 0\end{array}\right)$$
(1.4)

with respect to the coordinates $(x^{\overline{\alpha}}, x^{\alpha}, x^{\overline{\overline{\alpha}}})$ in $t^*(M_n)$, which is defined globally along $\beta_{\theta}(T(M_n))$. Then a mapping

$$B: \mathfrak{S}^1_0(T(M_n)) \to \mathfrak{S}^1_0(\beta_\theta \left(T(M_n) \right))$$

is defined by (1.4). The mapping B is the differential of $\beta_{\theta} : T(M_n) \to t^*(M_n)$ and so an isomorphism of $\mathfrak{S}_0^1(T(M_n))$ onto $\mathfrak{S}_0^1(\beta_{\theta}(T(M_n)))$.

Since a cross-section is locally expressed by $x^{\overline{\alpha}} = y^{\alpha} = const.$, $x^{\overline{\alpha}} = p_{\alpha} = const.$, $x^{\alpha} = x^{\alpha}$, x^{α} being considered as parameters. Taking the derivative of (1.3) with respect to x^{α} , we have vector fields $C_{(\beta)}$ $(\beta = n + 1, ..., 2n)$ with components

$$C_{(\beta)} = \frac{\partial x^A}{\partial x^\beta} = \partial_\beta x^A = \begin{pmatrix} \partial_\beta V^\alpha \\ \partial_\beta x^\alpha \\ \partial_\beta \theta_\alpha \end{pmatrix},$$

which are tangent to the cross-section $\beta_{\theta}(T(M_n))$.

Thus, $C_{(\beta)}$ have components

$$C_{(\beta)}: \left(C^{A}_{(\beta)}\right) = \left(\begin{array}{c} \partial_{\beta}V^{\alpha} \\ \delta^{\alpha}_{\beta} \\ \partial_{\beta}\theta_{\alpha} \end{array}\right)$$

with respect to the coordinates $(x^{\overline{\alpha}}, x^{\alpha}, x^{\overline{\overline{\alpha}}})$ in $t^*(M_n)$, where

$$\delta^{\alpha}_{\beta} = A^{\alpha}_{\beta} = \frac{\partial x^{\alpha}}{\partial x^{\beta}}.$$

Let $X \in \mathfrak{S}_0^1(T(M_n))$. Then we denote by CX the vector field with local components

$$CX: \left(C^{A}_{(\beta)}X^{\beta}\right) = \left(\begin{array}{c}X^{\beta}\partial_{\beta}V^{\alpha}\\X^{\alpha}\\X^{\beta}\partial_{\beta}\theta_{\alpha}\end{array}\right)$$
(1.5)

with respect to the coordinates $(x^{\overline{\alpha}}, x^{\alpha}, x^{\overline{\alpha}})$ in $t^*(M_n)$, which is defined globally along $\beta_{\theta}(T(M_n))$. Then a mapping

$$C: \mathfrak{S}^1_0(T(M_n)) \to \mathfrak{S}^1_0(\beta_\theta(T(M_n)))$$

is defined by (1.5). The mapping C is the differential of $\beta_{\theta} : T(M_n) \to t^*(M_n)$ and so an isomorphism of $\mathfrak{S}^1_0(T(M_n))$ onto $\mathfrak{S}^1_0(\beta_{\theta}(T(M_n)))$.

Now, considering $\omega \in \mathfrak{S}_1^0(M_n)$ and vector field $X \in \mathfrak{S}_0^1(T(M_n))$, then ^{vv} ω (vertical lift), ^{cc}X (complete lift), and ^{HH}X (horizontal lift) have, respectively, components on the semi-cotangent bundle $t^*(M_n)$ [8]:

$${}^{vv}\omega = \begin{pmatrix} 0\\0\\\omega_{\alpha} \end{pmatrix}, \quad {}^{cc}X = \begin{pmatrix} y^{\varepsilon}\partial_{\varepsilon}X^{\alpha}\\X^{\alpha}\\-p_{\sigma}(\partial_{\alpha}X^{\sigma}) \end{pmatrix}, \quad {}^{HH}X = \begin{pmatrix} -\Gamma^{\alpha}_{\beta}X^{\beta}\\X^{\alpha}\\X^{\beta}\Gamma_{\beta\alpha} \end{pmatrix}$$
(1.6)

with respect to the coordinates $(x^{\overline{\alpha}}, x^{\alpha}, x^{\overline{\overline{\alpha}}})$, where

$$\Gamma^{\alpha}_{\beta} = V^{\varepsilon} \Gamma^{\alpha}_{\varepsilon \beta}, \quad \Gamma_{\beta \alpha} = \theta_{\varepsilon} \Gamma^{\varepsilon}_{\beta \alpha}$$

On the other hand, the fiber is locally represented by

$$x^{\overline{\alpha}} = y^{\alpha} = const., \quad x^{\alpha} = const., \quad x^{\overline{\alpha}} = p_{\alpha} = p_{\alpha},$$

 p_{α} being considered as parameters. Thus, on differentiating with respect to p_{α} , we easily see that the vector fields $E_{(\overline{\beta})} = vv (dx^{\beta}) (\overline{\overline{\beta}} = 2n + 1, ..., 3n)$ with components

$$E_{\left(\overline{\beta}\right)}: \left(E^{A}_{\left(\overline{\beta}\right)}\right) = \partial_{\left(\overline{\beta}\right)} x^{A} = \left(\begin{array}{c}\partial_{\overline{\beta}} y^{\alpha}\\\partial_{\overline{\beta}} x^{\alpha}\\\partial_{\overline{\beta}} p_{\alpha}\end{array}\right) = \left(\begin{array}{c}0\\0\\\delta^{\beta}_{\alpha}\end{array}\right)$$

are tangent to the fiber, where

$$\delta^{\beta}_{\alpha} = A^{\beta}_{\alpha} = \frac{\partial x^{\beta}}{\partial x^{\alpha}}.$$

Let ω be a 1-form with local components ω_{α} on M_n , so that ω is a 1-form with local expression $\omega = \omega_{\alpha} dx^{\alpha}$. We denote by $E\omega$ the vector field with local components

$$E\omega: \left(E^{A}_{\left(\overline{\beta}\right)}\omega_{\beta}\right) = \left(\begin{array}{c}0\\0\\\omega_{\alpha}\end{array}\right),\tag{1.7}$$

which is tangent to the fiber. Then a mapping

$$E:\mathfrak{S}^0_1(M_n)\to\mathfrak{S}^1_0(t^*(M_n))$$

is defined by (1.7) and so an isomorphism of $\mathfrak{S}_1^0(M_n)$ in to $\mathfrak{S}_0^1(t^*(M_n))$. From (1.4), (1.5), and (1.7), we obtain:

Theorem 1 Let X and Y be vector fields on $T(M_n)$. For the Lie product, we have

- $(i) \quad [CX, CY] = C[X, Y],$
- $(ii) \quad [BX, BY] = 0,$
- $(iii) \ [E\psi, E\omega] = 0\,,$

for any $\psi, \omega \in \mathfrak{S}^0_1(M_n)$.

Proof

(i) If X and Y are vector fields on $T(M_n)$ and $\begin{pmatrix} [CX, CY]^{\overline{\beta}} \\ [CX, CY]^{\beta} \\ [CX, CY]^{\overline{\beta}} \end{pmatrix}$ are components of [CX, CY] with respect

to the coordinates $(x^{\overline{\beta}}, x^{\beta}, x^{\overline{\overline{\beta}}})$ in $t^*(M_n)$, then we have

$$[CX, CY]^J = (CX)^I \partial_I (CY)^J - (CY)^I \partial_I (CX)^J$$

First, if $J = \overline{\beta}$, we have

$$\begin{split} [CX, CY]^{\overline{\beta}} &= (CX)^{I} \partial_{I} (CY)^{\overline{\beta}} - (CY)^{I} \partial_{I} (CX)^{\overline{\beta}} \\ &= (CX)^{\overline{\alpha}} \partial_{\overline{\alpha}} (CY)^{\overline{\beta}} + (CX)^{\alpha} \partial_{\alpha} (CY)^{\overline{\beta}} + (CX)^{\overline{\alpha}} \partial_{\overline{\alpha}} (CY)^{\overline{\beta}} \\ &- (CY)^{\overline{\alpha}} \partial_{\overline{\alpha}} (CX)^{\overline{\beta}} - (CY)^{\alpha} \partial_{\alpha} (CX)^{\overline{\beta}} - (CY)^{\overline{\alpha}} \partial_{\overline{\alpha}} (CX)^{\overline{\beta}} \\ &= X^{\beta} \partial_{\beta} V^{\alpha} \partial_{\overline{\alpha}} Y^{\gamma} \partial_{\gamma} V^{\beta} + X^{\alpha} \partial_{\alpha} Y^{\gamma} \partial_{\gamma} V^{\beta} \\ &- Y^{\beta} \partial_{\beta} V^{\alpha} \partial_{\overline{\alpha}} X^{\gamma} \partial_{\gamma} V^{\beta} - Y^{\alpha} \partial_{\alpha} X^{\gamma} \partial_{\gamma} V^{\beta} \\ &= (X^{\alpha} \partial_{\alpha} Y^{\gamma} - Y^{\alpha} \partial_{\alpha} X^{\gamma}) \partial_{\gamma} V^{\beta} \\ &= [X, Y]^{\gamma} \partial_{\gamma} V^{\beta} \end{split}$$

by virtue of (1.5). Second, if $J = \beta$, we have

$$\begin{split} [CX, CY]^{\beta} &= (CX)^{I} \partial_{I} (CY)^{\beta} - (CY)^{I} \partial_{I} (CX)^{\beta} \\ &= (CX)^{\overline{\alpha}} \partial_{\overline{\alpha}} (CY)^{\beta} + (CX)^{\alpha} \partial_{\alpha} (CY)^{\beta} + (CX)^{\overline{\overline{\alpha}}} \partial_{\overline{\overline{\alpha}}} (CY)^{\beta} \\ &- (CY)^{\overline{\alpha}} \partial_{\overline{\alpha}} (CX)^{\beta} - (CY)^{\alpha} \partial_{\alpha} (CX)^{\beta} - (CY)^{\overline{\overline{\alpha}}} \partial_{\overline{\overline{\alpha}}} (CX)^{\beta} \\ &= X^{\overline{\alpha}} \partial_{\overline{\alpha}} Y^{\beta} + X^{\alpha} \partial_{\alpha} Y^{\beta} + X^{\beta} \partial_{\beta} \theta_{\alpha} \partial_{\overline{\overline{\alpha}}} Y^{\beta} \\ &- Y^{\overline{\alpha}} \partial_{\overline{\alpha}} X^{\beta} - Y^{\alpha} \partial_{\alpha} X^{\beta} - Y^{\beta} \partial_{\beta} \theta_{\alpha} \partial_{\overline{\overline{\alpha}}} X^{\beta} \\ &= X^{\alpha} \partial_{\alpha} Y^{\beta} - Y^{\alpha} \partial_{\alpha} X^{\beta} \\ &= [X, Y]^{\beta} \end{split}$$

by virtue of (1.5). Third, if $J = \overline{\overline{\beta}}$, then we have

$$\begin{split} [CX, CY]^{\overline{\beta}} &= (CX)^{I} \partial_{I} (CY)^{\overline{\beta}} - (CY)^{I} \partial_{I} (CX)^{\overline{\beta}} \\ &= (CX)^{\overline{\alpha}} \partial_{\overline{\alpha}} (CY)^{\overline{\beta}} + (CX)^{\alpha} \partial_{\alpha} (CY)^{\overline{\beta}} + (CX)^{\overline{\alpha}} \partial_{\overline{\overline{\alpha}}} (CY)^{\overline{\beta}} \\ &- (CY)^{\overline{\alpha}} \partial_{\overline{\alpha}} (CX)^{\overline{\beta}} - (CY)^{\alpha} \partial_{\alpha} (CX)^{\overline{\beta}} - (CY)^{\overline{\alpha}} \partial_{\overline{\overline{\alpha}}} (CX)^{\overline{\beta}} \\ &= X^{\overline{\alpha}} \partial_{\overline{\alpha}} Y^{\gamma} \partial_{\gamma} \theta_{\beta} + X^{\alpha} \partial_{\alpha} Y^{\gamma} \partial_{\gamma} \theta_{\beta} + X^{\beta} \partial_{\beta} \theta_{\alpha} \partial_{\overline{\overline{\alpha}}} Y^{\gamma} \partial_{\gamma} \theta_{\beta} \\ &- Y^{\overline{\alpha}} \partial_{\overline{\alpha}} X^{\gamma} \partial_{\gamma} \theta_{\beta} - Y^{\alpha} \partial_{\alpha} X^{\gamma} \partial_{\gamma} \theta_{\beta} - Y^{\beta} \partial_{\beta} \theta_{\alpha} \partial_{\overline{\overline{\alpha}}} X^{\gamma} \partial_{\gamma} \theta_{\beta} \end{split}$$

$$= X^{\alpha}\partial_{\alpha}Y^{\gamma}\partial_{\gamma}\theta_{\beta} - Y^{\alpha}\partial_{\alpha}X^{\gamma}\partial_{\gamma}\theta_{\beta}$$
$$= (X^{\alpha}\partial_{\alpha}Y^{\gamma} - Y^{\alpha}\partial_{\alpha}X^{\gamma})\partial_{\gamma}\theta_{\beta}$$
$$= [X, Y]^{\gamma}\partial_{\gamma}\theta_{\beta}$$

by virtue of (1.5). On the other hand, we know that C[X, Y] have components

$$C[X,Y] = \begin{pmatrix} [X,Y]^{\gamma} \partial_{\gamma} V^{\beta} \\ [X,Y]^{\beta} \\ [X,Y]^{\gamma} \partial_{\gamma} \theta_{\beta} \end{pmatrix}$$

with respect to the coordinates in $t^*(M_n)$. Thus, we have [CX, CY] = C[X, Y].

(ii)
$$X, Y \in \mathfrak{S}_0^1(T(M_n))$$
 and $\begin{pmatrix} [BX, BY]^{\overline{\beta}} \\ [BX, BY]^{\beta} \\ [BX, BY]^{\overline{\overline{\beta}}} \end{pmatrix}$ are components of $[BX, BY]$ with respect to the coordinates

 $(x^{\overline{\beta}}, x^{\beta}, x^{\overline{\overline{\beta}}})$ in $t^*(M_n)$, and then we have

$$[BX, BY]^J = (BX)^I \partial_I (BY)^J - (BY)^I \partial_I (BX)^J.$$

First, if $J = \overline{\beta}$, we have

$$\begin{split} \left[BX, BY\right]^{\overline{\beta}} &= (BX)^{I} \partial_{I} (BY)^{\overline{\beta}} - (BY)^{I} \partial_{I} (BX)^{\overline{\beta}} \\ &= (BX)^{\overline{\alpha}} \partial_{\overline{\alpha}} (BY)^{\overline{\beta}} + (BX)^{\alpha} \partial_{\alpha} (BY)^{\overline{\beta}} + (BX)^{\overline{\overline{\alpha}}} \partial_{\overline{\overline{\alpha}}} (BY)^{\overline{\beta}} \\ &- (BY)^{\overline{\alpha}} \partial_{\overline{\alpha}} (BX)^{\overline{\beta}} - (BY)^{\alpha} \partial_{\alpha} (BX)^{\overline{\beta}} - (BY)^{\overline{\overline{\alpha}}} \partial_{\overline{\overline{\alpha}}} (BX)^{\overline{\beta}} \\ &= X^{\alpha} \partial_{\overline{\alpha}} Y^{\beta} - Y^{\alpha} \partial_{\overline{\alpha}} X^{\beta} \\ &= 0 \end{split}$$

by virtue of (1.4). Second, if $J = \beta$, we have

$$[BX, BY]^{\beta} = (BX)^{I} \partial_{I} (BY)^{\beta} - (BY)^{I} \partial_{I} (BX)^{\beta}$$

$$= (BX)^{\overline{\alpha}} \partial_{\overline{\alpha}} (BY)^{\beta} + (BX)^{\alpha} \partial_{\alpha} (BY)^{\beta} + (BX)^{\overline{\overline{\alpha}}} \partial_{\overline{\overline{\alpha}}} (BY)^{\beta}$$

$$- (BY)^{\overline{\alpha}} \partial_{\overline{\alpha}} (BX)^{\beta} - (BY)^{\alpha} \partial_{\alpha} (BX)^{\beta} - (BY)^{\overline{\overline{\alpha}}} \partial_{\overline{\overline{\alpha}}} (BX)^{\beta}$$

$$= 0$$

by virtue of (1.4). Third, if $J = \overline{\overline{\beta}}$, then we have

$$\begin{split} [BX, BY]^{\overline{\overline{\beta}}} &= (BX)^{I} \partial_{I} (BY)^{\overline{\beta}} - (BY)^{I} \partial_{I} (BX)^{\overline{\beta}} \\ &= (BX)^{\overline{\alpha}} \partial_{\overline{\alpha}} (BY)^{\overline{\beta}} + (BX)^{\alpha} \partial_{\alpha} (BY)^{\overline{\beta}} + (BX)^{\overline{\alpha}} \partial_{\overline{\overline{\alpha}}} (BY)^{\overline{\beta}} \\ &- (BY)^{\overline{\alpha}} \partial_{\overline{\alpha}} (BX)^{\overline{\beta}} - (BY)^{\alpha} \partial_{\alpha} (BX)^{\overline{\beta}} - (BY)^{\overline{\alpha}} \partial_{\overline{\overline{\alpha}}} (BX)^{\overline{\beta}} \\ &= 0 \end{split}$$

by virtue of (1.4). Thus, we have [BX, BY] = 0.

(iii) If $\psi, \omega \in \mathfrak{S}_1^0(M_n)$ and $\begin{pmatrix} [E\psi, E\omega]^{\overline{\beta}} \\ [E\psi, E\omega]^{\beta} \\ [E\psi, E\omega]^{\overline{\beta}} \end{pmatrix}$ are components of $[E\psi, E\omega]$ with respect to the coordinates

 $(x^{\overline{\beta}}, x^{\beta}, x^{\overline{\overline{\beta}}})$ in $t^*(M_n)$, then we have

$$\begin{split} [E\psi, E\omega]^J &= (E\psi)^I \partial_I (E\omega)^J - (E\omega)^I \partial_I (E\psi)^J \\ &= (E\psi)^{\overline{\alpha}} \partial_{\overline{\alpha}} (E\omega)^J + (E\psi)^{\alpha} \partial_{\alpha} (E\omega)^J + (E\psi)^{\overline{\overline{\alpha}}} \partial_{\overline{\overline{\alpha}}} (E\omega)^J \\ &- (E\omega)^{\overline{\alpha}} \partial_{\overline{\alpha}} (E\psi)^J - (E\omega)^{\alpha} \partial_{\alpha} (E\psi)^J - (E\omega)^{\overline{\overline{\alpha}}} \partial_{\overline{\overline{\alpha}}} (E\psi)^J \\ &= \psi_{\alpha} \partial_{\overline{\overline{\alpha}}} (E\omega)^J - \omega_{\alpha} \partial_{\overline{\overline{\alpha}}} (E\psi)^J. \end{split}$$

First, if $J = \overline{\beta}$, we have

$$[E\psi, E\omega]^{\overline{\beta}} = \psi_{\alpha}\partial_{\overline{\alpha}}(E\omega)^{\overline{\beta}} - \omega_{\alpha}\partial_{\overline{\alpha}}(E\psi)^{\overline{\beta}}$$
$$= 0$$

by virtue of (1.7). Second, if $J = \beta$, we have

$$[E\psi, E\omega]^{\beta} = \psi_{\alpha} \partial_{\overline{\alpha}} (E\omega)^{\beta} - \omega_{\alpha} \partial_{\overline{\alpha}} (E\psi)^{\beta}$$
$$= 0$$

by virtue of (1.7). Third, if $J = \overline{\overline{\beta}}$, then we have

$$\begin{split} [E\psi, E\omega]^{\overline{\beta}} &= \psi_{\alpha} \partial_{\overline{\alpha}} (E\omega)^{\overline{\beta}} - \omega_{\alpha} \partial_{\overline{\alpha}} (E\psi)^{\overline{\beta}} \\ &= \psi_{\alpha} \partial_{\overline{\alpha}} \omega_{\beta} - \omega_{\alpha} \partial_{\overline{\alpha}} \psi_{\beta} \\ &= 0 \end{split}$$

by virtue of (1.7). Thus, we have $[E\psi, E\omega] = 0$.

We consider in $\pi^{-1}(U)$ 3*n* local vector fields $B_{(\overline{\beta})}$, $C_{(\beta)}$, and $E_{(\overline{\beta})}$ along $\beta_{\theta}(T(M_n))$, which are respectively represented by

$$B_{\left(\overline{\beta}\right)} = B \frac{\partial}{\partial x^{\overline{\beta}}}, \quad C_{\left(\beta\right)} = C \frac{\partial}{\partial x^{\beta}}, \quad E_{\left(\overline{\beta}\right)} = E dx^{\beta}.$$

Theorem 2 Let X be a vector field on $T(M_n)$. We have along $\beta_{\theta}(T(M_n))$ the formula

$$^{cc}X = CX + B\left(L_VX\right) + E\left(-L_X\theta\right),$$

where $L_V X$ denotes the Lie derivative of X with respect to V, and $L_X \theta$ denotes the Lie derivative of θ with respect to X.

Proof Using (1.4), (1.5), and (1.7), we have

$$CX + B(L_V X) + E(-L_X \theta) = \begin{pmatrix} X^{\beta} \partial_{\beta} V^{\alpha} \\ X^{\alpha} \\ X^{\beta} \partial_{\beta} \theta_{\alpha} \end{pmatrix} + \begin{pmatrix} V^{\beta} \partial_{\beta} X^{\alpha} - X^{\beta} \partial_{\beta} V^{\alpha} \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ -X^{\beta} \partial_{\beta} \theta_{\alpha} - \theta_{\beta} \partial_{\alpha} X^{\beta} \end{pmatrix}$$
$$= \begin{pmatrix} V^{\beta} \partial_{\beta} X^{\alpha} \\ X^{\alpha} \\ -\theta_{\beta} \partial_{\alpha} X^{\beta} \end{pmatrix} = {}^{cc} X.$$

Thus, we have Theorem 2.

On the other hand, on putting $C_{(\overline{\beta})} = E_{(\overline{\beta})}$, we write the adapted frame of $\beta_{\theta}(T(M_n))$ as $\left\{B_{(\overline{\beta})}, C_{(\beta)}, C_{(\overline{\beta})}\right\}$. The adapted frame $\left\{B_{(\overline{\beta})}, C_{(\beta)}, C_{(\overline{\beta})}\right\}$ of $\beta_{\theta}(T(M_n))$ is given by the matrix

$$\widetilde{A} = \left(\widetilde{A}_B^A\right) = \left(\begin{array}{ccc} \delta_\beta^\alpha & \partial_\beta V^\alpha & 0\\ 0 & \delta_\beta^\alpha & 0\\ 0 & \partial_\beta \theta_\alpha & \delta_\alpha^\beta \end{array}\right).$$
(1.8)

Since the matrix \widetilde{A} in (1.8) is nonsingular, it has the inverse. Denoting this inverse by $\left(\widetilde{A}\right)^{-1}$, we have

$$\left(\widetilde{A}\right)^{-1} = \left(\widetilde{A}_C^B\right)^{-1} = \begin{pmatrix} \delta_\theta^\beta & -\partial_\theta V^\beta & 0\\ 0 & \delta_\theta^\beta & 0\\ 0 & -\partial_\theta \theta_\beta & \delta_\beta^\theta \end{pmatrix},$$
(1.9)

where $\widetilde{A}\left(\widetilde{A}\right)^{-1} = \left(\widetilde{A}_{B}^{A}\right)\left(\widetilde{A}_{C}^{B}\right)^{-1} = \delta_{C}^{A} = \widetilde{I}$, where $A = \left(\overline{\alpha}, \alpha, \overline{\overline{\alpha}}\right)$, $B = \left(\overline{\beta}, \beta, \overline{\overline{\beta}}\right)$, $C = \left(\overline{\theta}, \theta, \overline{\overline{\theta}}\right)$.

Proof From (1.8) and (1.9), we easily see that

$$\begin{split} \widetilde{A}\left(\widetilde{A}\right)^{-1} &= (\widetilde{A}^{A}_{B})\left(\widetilde{A}^{B}_{C}\right)^{-1} = \begin{pmatrix} \delta^{\alpha}_{\beta} & \partial_{\beta}V^{\alpha} & 0\\ 0 & \delta^{\alpha}_{\beta} & 0\\ 0 & \partial_{\beta}\theta_{\alpha} & \delta^{\beta}_{\alpha} \end{pmatrix} \begin{pmatrix} \delta^{\beta}_{\theta} & -\partial_{\theta}V^{\beta} & 0\\ 0 & \delta^{\beta}_{\theta} & 0\\ 0 & -\partial_{\theta}\theta_{\beta} & \delta^{\theta}_{\beta} \end{pmatrix} \\ &= \begin{pmatrix} \delta^{\alpha}_{\theta} & -\partial_{\theta}V^{\alpha} + \partial_{\theta}V^{\alpha} & 0\\ 0 & \delta^{\alpha}_{\theta} & 0\\ 0 & \partial_{\theta}\theta_{\alpha} - \partial_{\theta}\theta_{\alpha} & \delta^{\theta}_{\alpha} \end{pmatrix} \\ &= \begin{pmatrix} \delta^{\alpha}_{\theta} & 0 & 0\\ 0 & \delta^{\alpha}_{\theta} & 0\\ 0 & 0 & \delta^{\theta}_{\alpha} \end{pmatrix} = \delta^{A}_{C} = \widetilde{I}. \end{split}$$

Then we see from Theorem 2 that the complete lift ${}^{cc}X$ of a vector field $X \in \mathfrak{S}_0^1(T(M_n))$ has along $\beta_\theta(T(M_n))$ components of the form

$${}^{cc}X:\left(\begin{array}{c}L_VX^\alpha\\X^\alpha\\-L_X\theta_\alpha\end{array}\right)$$

with respect to the adapted frame $\left\{B_{\left(\overline{\beta}\right)}, C_{\left(\beta\right)}, C_{\left(\overline{\beta}\right)}\right\}$.

 $BX,\ CX,$ and $E\omega$ also have components

$$BX = \begin{pmatrix} X^{\alpha} \\ 0 \\ 0 \end{pmatrix}, \quad CX = \begin{pmatrix} 0 \\ X^{\alpha} \\ 0 \end{pmatrix}, \quad E\omega = \begin{pmatrix} 0 \\ 0 \\ \omega_{\alpha} \end{pmatrix}, \quad (1.10)$$

respectively, with respect to the adapted frame $\left\{B_{(\overline{\beta})}, C_{(\beta)}, C_{(\overline{\beta})}\right\}$ of the cross-section $\beta_{\theta}(T(M_n))$ determined by a 1-form θ on $T(M_n)$.

2. Complete lift of tensor fields of type (1,1) on a cross-section in a semi-cotangent bundle

Suppose now that $F \in \mathfrak{S}_1^1(T(M_n))$ and F has local components F_{β}^{α} in a neighborhood U of M_n , $F = F_{\beta}^{\alpha}\partial_{\alpha} \otimes dx^{\beta}$. Then the semi-cotangent (pull-back) bundle $t^*(M_n)$ of cotangent bundle $T^*(M_n)$ by using projection of the tangent bundle $T(M_n)$ admits the complete lift ${}^{cc}F$ of F with components [8]

$${}^{cc}F = \left({}^{cc}F_J^I \right) = \left(\begin{array}{cc} F_{\beta}^{\alpha} & y^{\varepsilon}\partial_{\varepsilon}F_{\beta}^{\alpha} & 0\\ 0 & F_{\beta}^{\alpha} & 0\\ 0 & p_{\sigma}(\partial_{\beta}F_{\alpha}^{\sigma} - \partial_{\alpha}F_{\beta}^{\sigma}) & F_{\alpha}^{\beta} \end{array} \right),$$
(2.1)

with respect to the coordinates $(x^{\overline{\alpha}}, x^{\alpha}, x^{\overline{\overline{\alpha}}})$ on $t^*(M_n)$. Then $c^c F$ has components F_B^A given by

$${}^{cc}F = ({}^{cc}F_B^A) = \begin{pmatrix} F_\beta^\alpha & L_V F_\beta^\alpha & 0\\ 0 & F_\beta^\alpha & 0\\ 0 & \phi_F \theta & F_\alpha^\beta \end{pmatrix}$$
(2.2)

with respect to the adapted frame $\left\{B_{(\overline{\beta})}, C_{(\beta)}, C_{(\overline{\beta})}\right\}$ of the cross-section $\beta_{\theta}(T(M_n))$ determined by a 1-form θ in $T(M_n)$, where $A = (\overline{\alpha}, \alpha, \overline{\alpha})$, $B = (\overline{\beta}, \beta, \overline{\beta})$. Also, the component ${}^{cc}F_{\beta}^{\overline{\alpha}}$ of ${}^{cc}F_{B}^{A}$ is defined as the Tachibana operator $\phi_F \theta$ of F, i.e.

$${}^{cc}F^{\overline{\alpha}}_{\beta} = \phi_F \theta = (\partial_{\beta}F^{\sigma}_{\alpha} - \partial_{\alpha}F^{\sigma}_{\beta})\theta_{\sigma} - F^{\gamma}_{\beta}\partial_{\gamma}\theta_{\alpha} + F^{\gamma}_{\alpha}\partial_{\beta}\theta_{\gamma},$$

and $L_V F^{\alpha}_{\beta}$ denotes the Lie derivative of F^{α}_{β} with respect to V, i.e.

$$L_V F^{\alpha}_{\beta} = V^{\gamma} \partial_{\gamma} F^{\alpha}_{\beta} + F^{\alpha}_{\gamma} \partial_{\beta} V^{\gamma} - F^{\gamma}_{\beta} \partial_{\gamma} V^{\alpha}.$$

Proof Let $F \in \mathfrak{S}_1^1(T(M_n))$. Then we have by (1.8), (1.9), and (2.1):

$$\begin{split} ^{cc}F &= \left(\widetilde{A}^B_A\right)^{-1} \begin{pmatrix} ^{cc}F^A_C \end{pmatrix} \left(\widetilde{A}^C_D \right) \\ &= \left(\begin{array}{cc} \delta^\beta_\alpha & -\partial_\alpha V^\beta & 0\\ 0 & \delta^\beta_\alpha & 0\\ 0 & -\partial_\alpha \theta_\beta & \delta^\alpha_\beta \end{pmatrix} \begin{pmatrix} F^\alpha_\gamma & V^\varepsilon \partial_\varepsilon F^\alpha_\gamma & 0\\ 0 & F^\alpha_\gamma & 0\\ 0 & \theta_\sigma (\partial_\gamma F^\sigma_\alpha - \partial_\alpha F^\sigma_\gamma) & F^\alpha_\alpha \end{pmatrix} \begin{pmatrix} \delta^\gamma_\psi & \partial_\psi V^\gamma & 0\\ 0 & \partial_\psi \theta_\gamma & \delta^\psi_\gamma \end{pmatrix} \\ &= \left(\begin{array}{cc} F^\beta_\gamma & V^\varepsilon \partial_\varepsilon F^\beta_\gamma - F^\alpha_\gamma \partial_\alpha V^\beta & 0\\ 0 & -F^\alpha_\gamma \partial_\alpha \theta_\beta + \theta_\sigma \partial_\gamma F^\sigma_\beta - \theta_\sigma \partial_\beta F^\sigma_\gamma & F^\alpha_\beta \end{pmatrix} \begin{pmatrix} \delta^\gamma_\psi & \partial_\psi V^\gamma & 0\\ 0 & \delta^\psi_\psi & 0\\ 0 & \partial_\psi \theta_\gamma & \delta^\psi_\gamma \end{pmatrix} \\ &= \left(\begin{array}{cc} F^\beta_\psi & F^\beta_\gamma \partial_\psi V^\gamma + V^\varepsilon \partial_\varepsilon F^\beta_\psi - F^\alpha_\psi \partial_\alpha V^\beta & 0\\ 0 & F^\beta_\psi & 0\\ 0 & -F^\alpha_\psi \partial_\alpha \theta_\beta + \theta_\sigma \partial_\psi F^\sigma_\beta - \theta_\sigma \partial_\beta F^\sigma_\psi + F^\gamma_\beta \partial_\psi \theta_\gamma & F^\psi_\beta \end{pmatrix} \\ &= \left(\begin{array}{cc} F^\beta_\psi & L_V F^\beta_\psi & 0\\ 0 & F^\beta_\psi & 0\\ 0 & \varphi_F \theta & F^\psi_\beta \end{pmatrix} \right) = ({}^{cc} F^B_D), \end{split}$$

where $A = \left(\overline{\alpha}, \alpha, \overline{\overline{\alpha}}\right), \ B = \left(\overline{\beta}, \beta, \overline{\overline{\beta}}\right), \ C = \left(\overline{\gamma}, \gamma, \overline{\overline{\gamma}}\right), \ D = \left(\overline{\psi}, \psi, \overline{\overline{\psi}}\right).$

Using (2.2), we have along $\beta_{\theta}(T(M_n))$:

Theorem 3 If F and X are affinor and vector fields on $T(M_n)$, and $\omega \in \mathfrak{S}_1^0(M_n)$, then:

(i)
$${}^{cc}F(BX + CX) = B(FX) + C(FX) + B((L_VF)X) + E(P_X),$$

 $(ii) \quad ^{cc}F(E\omega) = E(\omega \circ F),$

where $P \in \mathfrak{S}_2^0(M_n)$ with local components

$$P_{\beta\alpha} = \phi_F \theta = (\partial_\beta F^\sigma_\alpha - \partial_\alpha F^\sigma_\beta) \theta_\sigma - F^\gamma_\beta \partial_\gamma \theta_\alpha + F^\gamma_\alpha \partial_\beta \theta_\gamma,$$

 θ_{β} being local components of θ , and $P_X \in \mathfrak{S}^0_1(M_n)$ defined by $P_X(Y) = P(X,Y)$, for $Y \in \mathfrak{S}^0_0(T(M_n))$.

Proof (i) If F and X are affinor and vector fields on $T(M_n)$, then by (1.10) and (2.2), we have

Thus, we have ${}^{cc}F(BX + CX) = B(FX) + C(FX) + B((L_VF)X) + E(P_X)$. (*ii*) If $\omega \in \mathfrak{S}_1^0(M_n)$, F is an affinor field on $T(M_n)$, and then by (1.10) and (2.2), we have

$${}^{cc}F(E\omega) = \begin{pmatrix} F^{\alpha}_{\beta} & L_{V}F^{\alpha}_{\beta} & 0\\ 0 & F^{\alpha}_{\beta} & 0\\ 0 & \varphi_{F}\theta & F^{\beta}_{\alpha} \end{pmatrix} \begin{pmatrix} 0\\ 0\\ \omega_{\beta} \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ \omega_{\beta}F^{\beta}_{\alpha} \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ (\omega \circ F)_{\alpha} \end{pmatrix} = E(\omega \circ F),$$

which gives equation (ii) of Theorem 3.

When ${}^{cc}F(BX + CX)$ is always tangent to $\beta_{\theta}(T(M_n))$ for any vector field $X \in \mathfrak{S}_0^1(T(M_n))$, ${}^{cc}F$ is said to leave the cross-section $\beta_{\theta}(T(M_n))$ invariant.

Thus, we have:

Theorem 4 The complete lift ${}^{cc}F$ of an element of $F \in \mathfrak{S}_1^1(T(M_n))$ leaves the cross-section $\beta_\theta(T(M_n))$ invariant if and only if:

(i)
$$(\partial_{\beta}F^{\sigma}_{\alpha} - \partial_{\alpha}F^{\sigma}_{\beta})\theta_{\sigma} - F^{\gamma}_{\beta}\partial_{\gamma}\theta_{\alpha} + F^{\gamma}_{\alpha}\partial_{\beta}\theta_{\gamma} = 0$$
 (*i.e.* $\phi_{F}\theta = 0$),

(*ii*)
$$V^{\gamma}\partial_{\gamma}F^{\alpha}_{\beta} + F^{\alpha}_{\gamma}\partial_{\beta}V^{\gamma} - F^{\gamma}_{\beta}\partial_{\gamma}V^{\alpha} = 0$$
 (*i.e.* $L_{V}F = 0$),

where F^{α}_{β} , θ_{β} , and V^{α} are local components of F, θ , and V, respectively.

3. Adapted frames and diagonal lifts of affinor fields

Let ∇ be a symmetric affine connection in M_n . In each coordinate neighborhood $\{U, x^{\alpha}\}$ of M_n , we put

$$X_{(\alpha)} = \frac{\partial}{\partial x^{\alpha}}, \quad \theta^{(\alpha)} = dx^{\alpha}.$$

Then 3n local vector fields $Y_{(\alpha)}$, ${}^{HH}X_{(\alpha)}$, and ${}^{vv}\theta^{(\alpha)}$ have respectively components of the form

$$Y_{(\alpha)}: \begin{pmatrix} \delta_{\alpha}^{\beta} \\ 0 \\ 0 \end{pmatrix}, \quad {}^{HH}X_{(\alpha)}: \begin{pmatrix} -\Gamma_{\beta}^{\alpha} \\ \delta_{\alpha}^{\beta} \\ \Gamma_{\beta\alpha} \end{pmatrix}, \quad {}^{vv}\theta^{(\alpha)}: \begin{pmatrix} 0 \\ 0 \\ \delta_{\beta}^{\alpha} \end{pmatrix}$$
(3.1)

with respect to the induced coordinates $(x^{\overline{\alpha}}, x^{\alpha}, x^{\overline{\overline{\alpha}}})$ in $\pi^{-1}(U)$, where we have used (1.6). We call the set $\{Y_{(\alpha)}, {}^{HH}X_{(\alpha)}, {}^{vv}\theta^{(\alpha)}\}$ the frame adapted to the symmetric affine connection ∇ in $\pi^{-1}(U)$. On putting

$$\widehat{e}_{(\overline{\alpha})} = Y_{(\alpha)}, \quad \widehat{e}_{(\alpha)} = {}^{HH} X_{(\alpha)}, \quad \widehat{e}_{(\overline{\alpha})} = {}^{vv} \theta^{(\alpha)}$$
(3.2)

we write the adapted frame as

$$\left\{\widehat{e}_{(B)}\right\} = \left\{\widehat{e}_{(\overline{\alpha})}, \widehat{e}_{(\alpha)}, \widehat{e}_{(\overline{\overline{\alpha}})}\right\}.$$
(3.3)

The adapted frame $\{\widehat{e}_{(B)}\} = \{\widehat{e}_{(\overline{\alpha})}, \widehat{e}_{(\alpha)}, \widehat{e}_{(\overline{\alpha})}\}\$ is given by the matrix

$$\widehat{A} = \left(\widehat{A}_B^A\right) = \begin{pmatrix} \delta_\beta^\alpha & -\Gamma_\beta^\alpha & 0\\ 0 & \delta_\beta^\alpha & 0\\ 0 & \Gamma_{\beta\alpha} & \delta_\alpha^\beta \end{pmatrix}.$$
(3.4)

Since the matrix \widehat{A} in (3.4) is nonsingular, it has the inverse. Denoting this inverse by $(\widehat{A})^{-1}$, we have

$$\left(\widehat{A}\right)^{-1} = \left(\widehat{A}_C^B\right)^{-1} = \begin{pmatrix} \delta_\theta^\beta & \Gamma_\theta^\beta & 0\\ 0 & \delta_\theta^\beta & 0\\ 0 & -\Gamma_{\theta\beta} & \delta_\beta^\theta \end{pmatrix},$$
(3.5)

where $\widehat{A}\left(\widehat{A}\right)^{-1} = \left(\widehat{A}_{B}^{A}\right)\left(\widehat{A}_{C}^{B}\right)^{-1} = \delta_{C}^{A} = \widetilde{I}$, where $A = \left(\overline{\alpha}, \alpha, \overline{\overline{\alpha}}\right), B = \left(\overline{\beta}, \beta, \overline{\overline{\beta}}\right), C = \left(\overline{\theta}, \theta, \overline{\overline{\theta}}\right).$

Proof From (3.4) and (3.5), we easily see that

$$\begin{aligned} \widehat{A}\left(\widehat{A}\right)^{-1} &= \left(\widehat{A}_{B}^{A}\right)\left(\widehat{A}_{C}^{B}\right)^{-1} = \begin{pmatrix} \delta_{\beta}^{\alpha} & -\Gamma_{\beta}^{\alpha} & 0\\ 0 & \delta_{\beta}^{\alpha} & 0\\ 0 & \Gamma_{\beta\alpha} & \delta_{\alpha}^{\beta} \end{pmatrix} \begin{pmatrix} \delta_{\theta}^{\beta} & \Gamma_{\theta}^{\beta} & 0\\ 0 & \delta_{\theta}^{\beta} & 0\\ 0 & -\Gamma_{\theta\beta} & \delta_{\beta}^{\theta} \end{pmatrix} \\ &= \begin{pmatrix} \delta_{\theta}^{\alpha} & \Gamma_{\theta}^{\alpha} - \Gamma_{\theta}^{\alpha} & 0\\ 0 & \delta_{\theta}^{\alpha} & 0\\ 0 & \Gamma_{\theta\alpha} - \Gamma_{\theta\alpha} & \delta_{\alpha}^{\theta} \end{pmatrix} = \begin{pmatrix} \delta_{\theta}^{\alpha} & 0 & 0\\ 0 & \delta_{\theta}^{\alpha} & 0\\ 0 & 0 & \delta_{\alpha}^{\theta} \end{pmatrix} \\ &= \delta_{C}^{A} = \widehat{I}. \end{aligned}$$

If we take account of (3.3), we see that the diagonal lift ${}^{DD}F$ of $F \in \mathfrak{S}_1^1(T(M_n))$ has components

$$^{DD}F = \begin{pmatrix} ^{DD}F_J^I \end{pmatrix} = \begin{pmatrix} -F_{\beta}^{\alpha} & -\Gamma_{\varepsilon}^{\alpha}F_{\beta}^{\varepsilon} - \Gamma_{\beta}^{\varepsilon}F_{\varepsilon}^{\alpha} & 0\\ 0 & F_{\beta}^{\alpha} & 0\\ 0 & \Gamma_{\beta\sigma}F_{\alpha}^{\sigma} + \Gamma_{\alpha\sigma}F_{\beta}^{\sigma} & -F_{\alpha}^{\beta} \end{pmatrix},$$
(3.6)

with respect to the coordinates $(x^{\overline{\alpha}}, x^{\alpha}, x^{\overline{\overline{\alpha}}})$ on $t^*(M_n)$, where

$$\Gamma^{\alpha}_{\varepsilon} = y^{\gamma} \Gamma^{\alpha}_{\gamma \, \varepsilon}, \quad \Gamma_{\alpha \sigma} = p_{\gamma} \Gamma^{\gamma}_{\alpha \sigma}$$

Proof Let $F \in \mathfrak{S}_1^1(T(M_n))$. Then we have by (3.4), (3.5), and (3.6):

$$\begin{split} {}^{\scriptscriptstyle DD}F &= \left(\widehat{A}\right) \left({}^{\scriptscriptstyle DD}F \right) \left(\widehat{A} \right)^{-1} \\ &= \left({}^{\scriptscriptstyle \delta \alpha}_{\alpha} - \Gamma^{\beta}_{\alpha} 0 \\ 0 & \delta^{\beta}_{\alpha} 0 \\ 0 & \Gamma_{\alpha\beta} & \delta^{\alpha}_{\beta} \right) \left({}^{\scriptscriptstyle -F\gamma}_{\gamma} - \Gamma^{\varepsilon}_{\varepsilon}F^{\varepsilon}_{\gamma} - \Gamma^{\varepsilon}_{\gamma}F^{\varepsilon}_{\varepsilon} 0 \\ 0 & \Gamma_{\gamma\sigma}F^{\sigma}_{\gamma} + \Gamma_{\alpha\sigma}F^{\sigma}_{\gamma} - F^{\gamma}_{\alpha} \right) \left({}^{\scriptscriptstyle \delta \psi}_{\psi} \Gamma^{\gamma}_{\psi} 0 \\ 0 & \delta^{\psi}_{\psi} 0 \\ 0 & -\Gamma_{\psi\gamma} \delta^{\psi}_{\gamma} \right) \\ &= \left({}^{\scriptscriptstyle -F\gamma}_{\gamma} - \Gamma^{\varepsilon}_{\varepsilon}F^{\varepsilon}_{\gamma} - \Gamma^{\varepsilon}_{\gamma}F^{\varepsilon}_{\varepsilon} - \Gamma^{\beta}_{\alpha}F^{\alpha}_{\gamma} 0 \\ 0 & \Gamma^{\gamma}_{\gamma}F^{\sigma}_{\beta} + \Gamma_{\gamma\sigma}F^{\sigma}_{\beta} + \Gamma_{\beta\sigma}F^{\sigma}_{\gamma} - F^{\gamma}_{\beta} \right) \left({}^{\scriptscriptstyle \delta \psi}_{\psi} \Gamma^{\gamma}_{\psi} 0 \\ 0 & \delta^{\psi}_{\psi} 0 \\ 0 & -\Gamma_{\psi\gamma} \delta^{\psi}_{\gamma} \right) \\ &= \left({}^{\scriptscriptstyle -F\psi}_{\psi} - \Gamma^{\gamma}_{\psi}F^{\beta}_{\gamma} - \Gamma^{\beta}_{\varepsilon}F^{\varepsilon}_{\varepsilon} - \Gamma^{\varepsilon}_{\psi}F^{\beta}_{\varepsilon} - \Gamma^{\beta}_{\alpha}F^{\alpha}_{\psi} 0 \\ 0 & F^{\beta}_{\psi} 0 \\ 0 & \Gamma_{\alpha\beta}F^{\alpha}_{\psi} + \Gamma_{\psi\sigma}F^{\sigma}_{\beta} + \Gamma_{\beta\sigma}F^{\sigma}_{\psi} + \Gamma^{\psi}_{\psi\gamma}F^{\gamma}_{\beta} - F^{\psi}_{\beta} \right) \\ &= \left({}^{\scriptscriptstyle -F\psi}_{\psi} - \Gamma^{\rho}_{\rho}F^{\rho}_{\psi} - \Gamma^{\rho}_{\psi}F^{\beta}_{\rho} 0 \\ 0 & \Gamma_{\psi\mu}F^{\mu}_{\beta} + \Gamma_{\beta\mu}F^{\mu}_{\psi} - F^{\psi}_{\beta} \right), \end{split}$$

which proves (3.6).

We now see, from (3.3), that the diagonal lift ${}^{DD}F$ of $F \in \mathfrak{S}^1_1(T(M_n))$ has components of the form

$${}^{^{DD}}F = \left({}^{^{DD}}F_B^A\right) = \left(\begin{array}{cc} -F_\beta^\alpha & 0 & 0\\ 0 & F_\beta^\alpha & 0\\ 0 & 0 & -F_\alpha^\beta \end{array}\right)$$

with respect to the adapted frame $\{\hat{e}_{(B)}\}\$ in $t^*(M_n)$.

Proof Let $F \in \mathfrak{S}_1^1(T(M_n))$. Then we have by (3.4), (3.5), and (3.6):

$$\begin{split} {}^{DD}F &= \left(\widehat{A}\right)^{-1} \begin{pmatrix} {}^{DD}F \end{pmatrix} \left(\widehat{A}\right) \\ &= \left(\begin{pmatrix} \delta^{\beta}_{\alpha} & \Gamma^{\beta}_{\alpha} & 0 \\ 0 & \delta^{\beta}_{\alpha} & 0 \\ 0 & -\Gamma_{\alpha\beta} & \delta^{\alpha}_{\beta} \end{pmatrix} \begin{pmatrix} -F^{\alpha}_{\gamma} & -\Gamma^{\varphi}_{\varepsilon}F^{\varphi}_{\varepsilon} - \Gamma^{\varepsilon}_{\gamma}F^{\alpha}_{\varepsilon} & 0 \\ 0 & F^{\alpha}_{\gamma} & 0 \\ 0 & \Gamma_{\gamma\sigma}F^{\sigma}_{\alpha} + \Gamma_{\alpha\sigma}F^{\sigma}_{\gamma} & -F^{\gamma}_{\alpha} \end{pmatrix} \begin{pmatrix} \delta^{\gamma}_{\psi} & -\Gamma^{\gamma}_{\psi} & 0 \\ 0 & \delta^{\gamma}_{\psi} & 0 \\ 0 & \Gamma_{\psi\gamma} & \delta^{\psi}_{\gamma} \end{pmatrix} \\ &= \left(\begin{pmatrix} -F^{\beta}_{\gamma} & -\Gamma^{\beta}_{\varepsilon}F^{\varepsilon}_{\gamma} - \Gamma^{\varepsilon}_{\gamma}F^{\beta}_{\varepsilon} + \Gamma^{\beta}_{\alpha}F^{\alpha}_{\gamma} & 0 \\ 0 & F^{\beta}_{\gamma} & 0 \\ 0 & -\Gamma_{\alpha\beta}F^{\alpha}_{\gamma} + \Gamma_{\gamma\sigma}F^{\sigma}_{\beta} + \Gamma_{\beta\sigma}F^{\sigma}_{\gamma} & -F^{\gamma}_{\beta} \end{pmatrix} \left(\begin{pmatrix} \delta^{\gamma}_{\psi} & -\Gamma^{\gamma}_{\psi} & 0 \\ 0 & \delta^{\psi}_{\psi} & 0 \\ 0 & \Gamma_{\psi\gamma} & \delta^{\psi}_{\gamma} \end{pmatrix} \right) \\ &= \left(\begin{pmatrix} -F^{\beta}_{\psi} & \Gamma^{\gamma}_{\psi}F^{\beta}_{\gamma} - \Gamma^{\beta}_{\varepsilon}F^{\varepsilon}_{\psi} - \Gamma^{\varepsilon}_{\psi}F^{\beta}_{\varepsilon} + \Gamma^{\beta}_{\alpha}F^{\alpha}_{\psi} & 0 \\ 0 & F^{\beta}_{\psi} & 0 \\ 0 & -\Gamma_{\alpha\beta}F^{\alpha}_{\psi} + \Gamma_{\psi\sigma}F^{\sigma}_{\beta} + \Gamma_{\beta\sigma}F^{\sigma}_{\psi} - \Gamma_{\psi\gamma}F^{\gamma}_{\beta} & -F^{\psi}_{\beta} \end{pmatrix} \end{split} \right) \end{split}$$

$$= \left(\begin{array}{ccc} -F_{\psi}^{\beta} & 0 & 0 \\ 0 & F_{\psi}^{\beta} & 0 \\ 0 & 0 & -F_{\beta}^{\psi} \end{array} \right).$$

This completes the proof.

We now obtain from (3.6) that the diagonal lift ${}^{DD}F$ of an affinor field $F \in \mathfrak{S}_1^1(T(M_n))$ has along $\beta_\theta(T(M_n))$ components of the form

$${}^{^{DD}}F: \begin{pmatrix} -F^{\alpha}_{\beta} & -(\nabla_{\varepsilon}V^{\alpha})F^{\varepsilon}_{\beta} - (\nabla_{\beta}V^{\varepsilon})F^{\alpha}_{\varepsilon} & 0\\ 0 & F^{\alpha}_{\beta} & 0\\ 0 & -(\nabla_{\beta}\theta_{\sigma})F^{\sigma}_{\alpha} - (\nabla_{\alpha}\theta_{\sigma})F^{\sigma}_{\beta} & -F^{\beta}_{\alpha} \end{pmatrix},$$
(3.7)

with respect to the adapted frame $\left\{B_{\left(\overline{\beta}\right)}, C_{\left(\beta\right)}, C_{\left(\overline{\beta}\right)}\right\}$.

Proof Let $F \in \mathfrak{S}_1^1(T(M_n))$. Then we have by (1.8), (1.9), and (3.7):

$$\begin{split} {}^{DD}F &= \left(\widetilde{A}\right)^{-1} \left({}^{DD}F \right) \left(\widetilde{A} \right) \\ &= \left({}^{\delta_{\alpha}^{\beta}} - \partial_{\alpha}V^{\beta} & 0 \\ 0 & \delta_{\alpha}^{\beta} & 0 \\ 0 & -\partial_{\alpha}\theta_{\beta} & \delta_{\beta}^{\alpha} \right) \left({}^{-F_{\gamma}^{\alpha}} - \Gamma_{\varepsilon}^{\alpha}F_{\gamma}^{\varepsilon} - \Gamma_{\gamma}^{\varepsilon}F_{\varepsilon}^{\alpha} & 0 \\ 0 & F_{\gamma}^{\alpha} + \Gamma_{\alpha\sigma}F_{\gamma}^{\sigma} & -F_{\alpha}^{\gamma} \right) \left({}^{\delta_{\psi}^{\gamma}} & \partial_{\psi}V^{\gamma} & 0 \\ 0 & 0 & \Gamma_{\gamma\sigma}F_{\alpha}^{\sigma} + \Gamma_{\alpha\sigma}F_{\gamma}^{\sigma} & -F_{\alpha}^{\gamma} \right) \\ &= \left({}^{-F_{\gamma}^{\beta}} & -\Gamma_{\varepsilon}^{\beta}F_{\gamma}^{\varepsilon} - \Gamma_{\gamma}^{\varepsilon}F_{\varepsilon}^{\beta} - \partial_{\alpha}V^{\beta}F_{\gamma}^{\alpha} & 0 \\ 0 & F_{\gamma}^{\beta} & 0 \\ 0 & -\partial_{\alpha}\theta_{\beta}F_{\gamma}^{\alpha} + \Gamma_{\gamma\sigma}F_{\beta}^{\sigma} + \Gamma_{\beta\sigma}F_{\gamma}^{\sigma} & -F_{\beta}^{\gamma} \right) \left({}^{\delta_{\psi}^{\gamma}} & \partial_{\psi}V^{\gamma} & 0 \\ 0 & \delta_{\psi}^{\gamma} & 0 \\ 0 & \partial_{\psi}\theta_{\gamma} & \delta_{\gamma}^{\psi} \right) \\ &= \left({}^{-F_{\psi}^{\beta}} & -\partial_{\psi}V^{\gamma}F_{\gamma}^{\beta} - \Gamma_{\varepsilon}^{\beta}F_{\psi}^{\varepsilon} - \Gamma_{\psi}^{\varepsilon}F_{\varepsilon}^{\beta} - \partial_{\alpha}V^{\beta}F_{\psi}^{\alpha} & 0 \\ 0 & F_{\psi}^{\beta} & 0 \\ 0 & -\partial_{\alpha}\theta_{\beta}F_{\psi}^{\alpha} + \Gamma_{\psi\sigma}F_{\beta}^{\sigma} + \Gamma_{\beta\sigma}F_{\psi}^{\sigma} - \partial_{\psi}\theta_{\gamma}F_{\beta}^{\gamma} & -F_{\beta}^{\psi} \right) \\ &= \left({}^{-F_{\psi}^{\beta}} & -(\nabla_{\gamma}V^{\beta})F_{\psi}^{\gamma} - (\nabla_{\psi}V^{\gamma})F_{\gamma}^{\beta} & 0 \\ 0 & F_{\psi}^{\beta} & 0 \\ 0 & -(\nabla_{\psi}\theta_{\gamma})F_{\beta}^{\gamma} - (\nabla_{\beta}\theta_{\sigma})F_{\psi}^{\sigma} & -F_{\beta}^{\psi} \right). \end{split}$$

Thus, the proof is complete.

Then we see from (1.6) that the horizontal lift ${}^{HH}X$ of a vector field $X \in \mathfrak{F}_0^1(T(M_n))$ has along $\beta_\theta(T(M_n))$ components of the form

$${}^{HH}X:\left(\begin{array}{c} -X^{\beta}\left(\nabla_{\beta}V^{\alpha}\right)\\ X^{\alpha}\\ -\left(\nabla_{\beta}\theta_{\alpha}\right)X^{\beta}\end{array}\right)$$
(3.8)

with respect to the adapted frame $\left\{B_{\left(\overline{\beta}\right)}, C_{\left(\beta\right)}, C_{\left(\overline{\beta}\right)}\right\}$.

1325

Proof Let $X \in \mathfrak{S}_0^1(T(M_n))$. Then we have by (1.6) and (1.9):

$${}^{HH}X = \left(\widetilde{A}\right)^{-1} \left({}^{HH}X\right) = \left(\begin{array}{cc} \delta^{\alpha}_{\beta} & -\partial_{\beta}V^{\alpha} & 0\\ 0 & \delta^{\alpha}_{\beta} & 0\\ 0 & -\partial_{\beta}\theta_{\alpha} & \delta^{\beta}_{\alpha} \end{array}\right) \left(\begin{array}{c} -V^{\varepsilon}\Gamma^{\beta}_{\varepsilon\,\alpha}X^{\alpha}\\ X^{\alpha}\\ X^{\alpha}\theta_{\varepsilon}\Gamma^{\varepsilon}_{\alpha\beta} \end{array}\right)$$
$$= \left(\begin{array}{c} -V^{\varepsilon}\Gamma^{\beta}_{\varepsilon\,\theta}X^{\theta} - \partial_{\beta}V^{\alpha}X^{\beta}\\ X^{\alpha}\\ -\partial_{\beta}\theta_{\alpha}X^{\beta} + X^{\theta}\theta_{\varepsilon}\Gamma^{\varepsilon}_{\theta\alpha} \end{array}\right) = \left(\begin{array}{c} -X^{\beta}\left(\nabla_{\beta}V^{\alpha}\right)\\ X^{\alpha}\\ -\left(\nabla_{\beta}\theta_{\alpha}\right)X^{\beta} \end{array}\right),$$

which gives (3.8).

Using (1.6), (3.7), and (3.8), we have along $\beta_{\theta}(T(M_n))$:

Theorem 5 If F and X are affinor and vector fields on $T(M_n)$, and $\omega \in \mathfrak{S}^0_1(M_n)$, then with respect to a symetric affine connection ∇ in M_n , we have

- $(i) \quad ^{DD}F\left(^{HH}X\right) = ^{HH}\left(FX\right) ,$
- (*ii*) $^{DD}F(^{vv}\omega) = -^{vv}(\omega \circ F).$

Proof

(i) If $F \in \mathfrak{S}_1^1(T(M_n))$ and $X \in \mathfrak{S}_0^1(T(M_n))$, then by (3.7) and (3.8), we have

Thus, we have ${}^{DD}F\left({}^{HH}X\right) = {}^{HH}(FX)$.

(ii) If $\omega \in \mathfrak{S}_1^0(M_n)$ and $F \in \mathfrak{S}_1^1(T(M_n))$, then by (1.6), (1.10), and (3.7), we have

Thus, we have (ii) of Theorem 5.

1326

_		
ſ		
۲		-

References

- [1] Husemöller D. Fibre Bundles. New York, NY, USA: Springer, 1994.
- [2] Isham CJ. Modern Differential Geometry for Physicists. Singapore: World Scientific, 1999.
- [3] Lawson HB, Michelsohn ML. Spin Geometry. Princeton, NJ, USA: Princeton University Press, 1989.
- [4] Pontryagin LS. Characteristic classes of differentiable manifolds. T Am Math Soc 1950; 32: 72.
- [5] Steenrod N. The Topology of Fibre Bundles. Princeton, NJ, USA: Princeton University Press, 1951.
- [6] Vishnevskii VV. Integrable affinor structures and their plural interpretations. J Math Sci (New York) 2002; 108: 151-187.
- [7] Yano K, Ishihara S. Tangent and Cotangent Bundles. New York, NY, USA: Marcel Dekker, 1973.
- [8] Yıldırım F. On a special class of semi-cotangent bundle. Proc Inst Math Mech 2015; 41: 25-38.
- [9] Yıldırım F, Salimov A. Semi-cotangent bundle and problems of lifts. Turk J Math 2014; 38: 325-339.