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Abstract: The present paper is devoted to some results concerning the diagonal lift of tensor fields of type (1,1) from
manifold M to its semi-cotangent bundle t*M. In this context, cross-sections in the semi-cotangent (pull-back) bundle

t*M of cotangent bundle T*M by using projection (submersion) of the tangent bundle TM can be also defined.
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1. Introduction
Let M, be an n-dimensional differentiable manifold of class C” , and let (T'(M,,), 71, M,,) be a tangent bundle
over M,. We use the notation (z°) = (2%, ), where the indices i, j, ... run from 1 to 2n, the indices @, 3, ...

from 1 to n, and the indices «,f,... from n + 1 to 2n, while % are coordinates in M, and z% = y°

are fiber coordinates of the tangent bundle T'(M,) (for definition of the pull-back bundle, see, for example,
(11,3114, [5],[6]) -

Now let (T*(M,,), 7, M,) be a cotangent bundle with base space M,, and let T(M,,) be a tangent bundle
determined by a natural projection (submersion) m : T(M,) — M, . The semi-cotangent ([8],[9]) bundle
(induced or pull-back bundle) of the cotangent bundle (T*(M,,), 7, M,,) is the bundle (t*(M,,), 72, T(M,)) over
tangent bundle T'(M,,) with a total space

t"(M,) = {((.IH, xa),xg) e T(M,) x Ty (M,) : m (xa, xa) =7 (m“,xg) = (xa)}
C T(M,) xT;(M,)
and with the projection map m : t*(M,) — T(M,) defined by my(z®,z*, 2%)= (%, 2%), where T} (M,)
(:E =m (2),T = (.’L‘E, xa) € T(Mn)) is the cotangent space at a point x of M, , where 7o = pa (@, E, . =

—

2n+1,...,3n) are fiber coordinates of the cotangent bundle T*(M,,). If (z') = (™ ,z*, xi) is another system

of local adapted coordinates in the semi-cotangent bundle ¢t*(M,,), then we have

o _ 0z ,p
,  0zf T
v =z~ B(xﬁ) ) (1.1)
a _ Oz
& = gearPs:
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The Jacobian of (1.1) has components

Ag AgLyF 0
A=A =1 o AY o |, (1.2)
0 p.Aj A%, Al

o’

where

’
621,04

o o aZIa

b = Pone P T uFan

We denote by SP(T'(M,,)) and S5(M,) the modules over F' (T'(M,)) and F (M,) of all tensor fields
of type (p,q) on T(M,) and M, , respectively, where F'(T'(M,)) and F (M,,) denote the rings of real-valued
C™ -functions on T(M,,) and M,,, respectively.

Let 6 be a covector field on T'(M,). Then the transformation p — 6,, 6, being the value of 6 at
p € T(M,), determines a cross-section By of a semi-cotangent bundle. Thus, if ¢ : M,, — T*(M,) is a cross-
section of (T™(M,), 7, M,), such that 7 oo = Iy, an associated cross-section By : T'(M,) — t*(My,) of
semi-cotangent (pull-back) bundle (¢*(M,,), w2, T(M,,)) of cotangent bundle by using projection (submersion)
of the tangent bundle T'(M,,) defined by [[2], p. 217-218], [[7], p. 301]:

Be (xa,xo‘) = (ma, %, 00m (xa7 xo‘)) = (xa7 %, 0 (xO‘)) = (xa, %, 0, (m'ﬁ)) )

If the covector field 6 has the local components 6, (z”), the cross-section Sy (I'(M,)) of t*(M,) is
locally expressed by

xo‘:y“:Va(scﬁ), % = x%, l‘gzpa:ea(wﬁ’) (1.3)

with respect to the coordinates 2 = (2%, 2%, 2%) in t*(M,). 2® = y® are considered as parameters. Taking

the derivative of (1.3) with respect to % = y*, we have vector fields B(E) (8=1,...,n) with components

ozVe
Bz = —amA = 9z2t = (“)Exa
(B) ~ ggB P s

which are tangent to the cross-section Sy (T'(M,,)).
Thus, B(E) have components

with respect to the coordinates (z%,x%, xg) in t*(M,), where

po = o = 9%

p B P
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Let X € 3} (T(M,,)),ie. X = X*0,. We denote by BX the vector field with local components

3 5gXF A%XB X
BX : (Bé Xﬁ) S I = o (1.4)
(5) 0 0 0

with respect to the coordinates (z®,z®, 2%) in t*(M,), which is defined globally along B¢ (T(M,)). Then a
mapping
B So(T(Mn)) = Sp(Be (T(Mn)))
is defined by (1.4). The mapping B is the differential of 5y : T'(M,,) — t*(M,,) and so an isomorphism of
So(T(My)) onto G(B (T'(Mn)))-
Since a cross-section is locally expressed by 2% = y® = const., 2% = Po = const., x* = z%, x¢

being considered as parameters. Taking the derivative of (1.3) with respect to 2, we have vector fields Cg)

(B=n+1,...,2n) with components

oV
oz A
C(ﬂ) = 5= = 8ﬂl‘A = 855Ca y
0xB D50,

which are tangent to the cross-section Sy (T'(M,)).
Thus, C(g) have components
aﬂva
Cor: () = | 93
0pba

with respect to the coordinates (z%,x, xg) in t*(M,,), where
ox®
o __ [6 2
Let X € 3§ (T(M,,)). Then we denote by CX the vector field with local components
XPozve

. A _ «
OX (C(ﬁ)xﬂ) - | x (1.5)
X550,

with respect to the coordinates (2%, z%, xg) in t*(M,), which is defined globally along Sy (T'(M,,)). Then a
mapping
C': Sp(T(Mn)) = So(Bo (T(My)))
is defined by (1.5). The mapping C is the differential of 8y : T(M,) — t*(M,) and so an isomorphism of
So(T(My)) onto ¢(B (T'(Mn))).-
Now, considering w € 39(M,,) and vector field X € S§ (T(M,,)), then ~w (vertical lift), °“X (complete

lift), and ## X (horizontal lift) have, respectively, components on the semi-cotangent bundle t*(M,,) [8]:

0 yEO. X —Tg x5
Tw=10 , X =| Xx° , HHx — | xe (1.6)
Wa —De (8 X7) X5,
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Q|

with respect to the coordinates (z%,z%, z%), where

§=VT2s Tpa=0T54.

On the other hand, the fiber is locally represented by

% = y* = const., 1z =const., T =Py = Pa,

Po being considered as parameters. Thus, on differentiating with respect to p,, we easily see that the vector

fields E(E) =" (da”) (ﬁ =2n+1,...,3n) with components

o5v° 0
56 () =20 - o )\
are tangent to the fiber, where
58 = AP = gii.

Let w be a 1-form with local components w, on M, , so that w is a 1-form with local expression

w = wedz®. We denote by FEw the vector field with local components

Ew:(E‘aB)w5>: 8 , (1.7)

Wa
which is tangent to the fiber. Then a mapping
B 99(M,) = Sh(t (M)

is defined by (1.7) and so an isomorphism of SY(M,,) in to S§(t*(M,)).
From (1.4), (1.5), and (1.7), we obtain:

Theorem 1 Let X and Y be vector fields on T(M,). For the Lie product, we have
(1) [CX,CY]=C[X,Y],
(i) [BX,BY]=0,

(i4i) [Ev, Ew] =0,

for any ¥,w € IY(M,,).
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Proof
(cx,cv)’
(i) If X and Y are vector fields on T(M,,) and | [CX, C’Y}f are components of [CX,CY] with respect
[cx,cy)’

to the coordinates (27, 27, mg) in t*(M,), then we have
[CXx,cY]’ = (Cx) a;(CY) — (CY) o, (CX)’.
First, if J = /3, we have

cx,cy)’ (©X) 9;(CY)P — (CY) 9;(CX)P

= (CX)T02(CY)P + (CX)* 0,(CY)P + (CX)% 0=(CY)?

—(CY)T05(CX)? = (CY)*0a(CX)? — (CY)T0<(CX)?

XPsVe05Y 0, VP + X*9,Y70, VP
~YP0sV*0:X70, VP — Y0, X"0,VF
= (X90,Y7 —Y“0,X7) 0, V"
= [X,Y]9,V"
by virtue of (1.5). Second, if J = 3, we have
cx,cyl” = (cx) o/(CY)’ - (CY)oa(CX)’

(CX)T 0(CY)? + (CX)* 0.(CY)? + (CX)T 0=(CY)?

—(CY)T05(CX)P — (CY)*0,(CX)P — (CY)T0=(CX)?
= X99:YP + X0,Y" + X0930,05Y"

~Y%9:XP — Y0, X" —YP050,0-X"
= X99,YP -Y?9,X"
X, v

by virtue of (1.5). Third, if J = E, then we have

|

cx,cv]? = (©x) 8;CY)? - (CY) o (CX)P

|

= (OX)T02(CY)? + (CX)* 0.(CY)? + (CX)% 8=(CY)

|

~(CY)"0x(CX)7 = (CY)0a(CX)7 = (CY)70=(CX)
= X905Y70,05 + X*0,Y 0,05 + XP030,05Y7 0,05
~Y®0:X70,05 — Y0, X70,05 — Y’050,0=X70,05
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= X%0,Y70,05 — Y0, X 70,0,
= (X90,Y7 —Y®9,X7) 0,04
[X,Y]" 0,05

by virtue of (1.5). On the other hand, we know that C [X,Y] have components

X,Y]"0,V?
ClX,Y]= ( X, v’ )
(X, Y]A/ 0,03

with respect to the coordinates in t*(M,,). Thus, we have [CX,CY] = C [X,Y].
[BX, BY)®

(i) X,Y € (T (M,)) and | [BX, BY]? | are components of [BX, BY] with respect to the coordinates
[BX, BY]

|

(2P, 2P, xg) in t*(M,,), and then we have
[BX,BY]’ = (BX)' 8;(BY)’ — (BY) 0;(BX)”.
First, if J = 3, we have

BX,BY)” = (BX) 9;(BY)? — (BY)!9;(BX)?

ol

(BX)® 0=(BY)’ + (BX)" 0,(BY)’ + (BX)" 0=(BY)?

~(BY)®02(BX)? — (BY)*0(BX)® — (BY)"0=(BX)?
= X%9gYP —Y20:X"
=0
by virtue of (1.4). Second, if J = /3, we have
[BX,BY)? = (BX)'0,(BY)’ — (BY)'9;(BX)’

(BX)® 0x(BY)? + (BX)® 0,(BY)? + (BX)® 0=(BY)?

—(BY)"0(BX)” = (BY)*0a(BX)" — (BY )" 0(BX)°

I
o

by virtue of (1.4). Third, if J = E, then we have

|
|

[BX, BY] (BX) 9;(BY)? — (BY) 0;(BX)?

= (BX)"05(BY)’ + (BX)" 0a(BY ) + (BX)" 0~(BY )’

|

—(BY)®02(BX)? — (BY)*04(BX)? — (BY)%0=(BX)
= 0
by virtue of (1.4). Thus, we have [BX, BY] = 0.
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By, Bu]®
(iii) If ¥,w € IY(M,,) and [Ey, Ew]’ are components of [Evy, Ew] with respect to the coordinates
[EY), Ew]

|

(2,27, 2P) in t*(M,), then we have

(B¢, Bw]) = (By)'0;(Bw)’ - (Bw) 01(Ev)’
= (BY)"05(Bw)” + (BY)*0a(Bw)” + (Ey)"0=(Bw)’
—(Bw)"0s(E) — (Ew)®0u(Ey)” — (Bw)™0x(Ey)’
= Yadz(Bw)’ - wad(By)’.

First, if J = 3, we have

(B, Bw]’ = 0=(Bw)® — wa0=(Ep)P

by virtue of (1.7). Second, if J = 3, we have

(B, Ew]’ = a05(Bw)? — wa0=(EY)”
= 0

by virtue of (1.7). Third, if J = E, then we have

(B¢, Bwl’ = 10d=(Ew)? — wad=(Ey)?
= YaO5wp — walz9p
= 0

by virtue of (1.7). Thus, we have [Evy, Ew] = 0.

O
We consider in 771 (U) 3n local vector fields B(E)’ C(s), and E(E) along Sy (T'(M,)), which are

respectively represented by

0 0
= =C— = = Edz”
B(ﬁ) B xﬁ’ 0(5) C@xﬁ’ E(B) Edz”.

Theorem 2 Let X be a vector field on T(M,). We have along By (T(M,)) the formula
©X =X+ B(LyX)+E(-Lxb),

where Ly X denotes the Lie derivative of X with respect to V', and Lx0 denotes the Lie derivative of 0 with
respect to X.
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Proof Using (1.4), (1.5), and (1.7), we have

XBozve VBozXe — XBozVe
CX+B(LyX)+E(-Lx) = | X© +1 0

XP 040, 0

0
+1 0
—XP050, — 050, X"
VA X
= X = X.
—050, X"
Thus, we have Theorem 2. O

On the other hand, on putting C(E) = E@) , we write the adapted frame of 8y (T'(M,,)) as {B(ﬁ) ,Ca), C(E) } .

The adapted frame {B(B)’C(ﬂ)’ C(E) } of By (T'(M,,)) is given by the matrix

- 53 Ve 0
A= (Ag) —( o s o |. (1.8)
0 9pba oF

~ -1
Since the matrix A in (1.8) is nonsingular, it has the inverse. Denoting this inverse by (A) , we have

R 85 —8,VP 0
(A) - (Ag) (o & o |, (1.9)
0 —0p0s &
~ 7~ —1 ~ ~ —1 ~ _ _ = _ =
where A (A) = (Af) (Ag) =64 =T, where A= (a@,0,3), B = (5,5,5), C= (9,9,0) .
Proof From (1.8) and (1.9), we easily see that
58 9V 0 85—,V 0
~ /-1 - ~ -1 e B 0 0
A(A) = @ap(ag) = o s 0 0 & 0
0 030 68 0 —dsbs 0}
53 —0gVE 4+ 0V 0
= 0 58 0
0 by — sy  6°
5 0 0 B
= 0 08 0 |=08=1I
0o 0 &
O
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Then we see from Theorem 2 that the complete lift “°X of a vector field X € J{(T(M,)) has along
By (T'(M,,)) components of the form

Ly X«
X X©
—Lx0,
with respect to the adapted frame {B(ﬁ),C(B), C (E) }

BX, CX, and Fw also have components

X« 0 0
BX=1[0 , CX=| X* |, Ew=| 0 , (1.10)
0 0 Wa

respectively, with respect to the adapted frame {B(ﬁ) ,Cp),C (E) } of the cross-section By (T'(M,,)) determined

by a 1-form 6 on T(M,,).

2. Complete lift of tensor fields of type (1,1) on a cross-section in a semi-cotangent bundle
Suppose now that F € 37(T(M,)) and F has local components Fj§ in a neighborhood U of M,, F =

F§0a ® dz?. Then the semi-cotangent (pull-back) bundle t*(M,) of cotangent bundle T*(M,) by using
projection of the tangent bundle T(M,,) admits the complete lift ““F of F with components [8]

) Fg VO Fg 0
“F=("Fh=1 0 Fg 0o |, (2.1)
0 po(0sFS —0uFg) FP
with respect to the coordinates (2%, z*,2%) on ¢*(M,). Then °F has components F 4 given by
Fg LvFg 0
cc ¢ A
F=("Fh= 0o Fg o (2.2)

0 ¢pb FP

with respect to the adapted frame {B(ﬁ), Cs), C(?) } of the cross-section By (T'(M,,)) determined by a 1-form

0 in T(M,), where A = (@,a,@), B = (E,B,E). Also, the component CUFE of “F# is defined as the

Tachibana operator ¢gf of F', i.e.
“FS = ¢p0 = (05 FZ — 0aFF)05 — F0,00 + FJ030,,
and Ly F§ denotes the Lie derivative of Fg with respect to V', i.e.
LyFg =V70,F§ + F}0gV" — Fg&,V“.
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Proof Let F € 31(T(M,)). Then we have by (1.8), (1.9), and (2.1):

ce ~ -1 ce ~
Po= (aF) (FH(43)
85 —8.VP 0 EY Ve FY 0 5, 9yVT 0
= 0o 0 0 Y 0 0 4, O
0 —0.0s 0f 0 0,(0,F] — 0.F7) F) 0 9y, &Y
FP VEO.FP — FY0,VP 0 5, OV 0
= 0 Fy 0 0 &, 0
0  —F%0a0p + 0,0,F§ — 0,03F5 F} 0 yb, &Y
B B o
F FPOyVY + Ve F), — F9,VP 0
= 0 F) 0
0 —F$0a05 + 0,0,FF — 0,05F + FJ0y0, FJ
B B
Fj ngw 0 .
= o F, 0 | =(Fp),

0 opf FY

where A= (@,0,), B=(8.8.8). C = (7.7.7), D = ($.:,9).

Using (2.2), we have along S (T'(My)):

Theorem 3 If F' and X are affinor and vector fields on T(M,,), and w € SY(M,,), then:
(i) “F(BX +CX)=B(FX)+C(FX)+ B((LyF)X)+ E(Px),
(i) “°F(Bw)=FE(woF),

where P € SY(M,,) with local components

Pgo = ¢pl = (65F§ _aaF,g)oo _Fgawea + FJ 0305,

05 being local components of 0, and Px € I9(M,,) defined by Px (Y) = P(X,Y), for Y € S§(T(M,,)).
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Proof (i) If F and X are affinor and vector fields on T(M,), then by (1.10) and (2.2), we have

F§ LyFg 0 X7
“F(BX+CX) = 0 Fg 0 X7
0 opf FP 0

F§XP+ LyFgX?

= Fg‘Xﬂ

XPOsFI0, — XP0,Fg0, — FJX0,00 + F1X 040,
(FX)* + VVG.YFE‘XB + FﬁagVVXB _ Fg&YVO‘XB

= | Fx)°
XPOsFS0, — XP0uFg0, — FJXP0,00 + F1X 40,

(FX)* 0 (LyF) X 0
= 0 +1 FX)" |+ 0 +1 0
0 0 0 Px

= B(FX)+C(FX)+ B((LvF)X)+ E(Px).

Thus, we have “F (BX +CX)=B(FX)+C(FX)+B((LvF)X)+ E (Px).
(i) If w e SY(M,), F is an affinor field on T'(M,,),and then by (1.10) and (2.2), we have

Fg LvFg 0 0 0 0
“F(Ew)=| 0 F§ 0 o |=1{o = o —B(woF),
0 ¢r0 FJ wg w k] (woF),
which gives equation (i) of Theorem 3. O

When “F (BX + CX) is always tangent to (g (T'(M,,)) for any vector field X € S§(T(My,)), “F is
said to leave the cross-section By (T'(M,,)) invariant.

Thus, we have:

Theorem 4 The complete lift “°F of an element of F € $1(T(M,)) leaves the cross-section (B¢ (T(M,))

invariant if and only if:
(1) (Ol — 0§ )05 — Fgaﬂa + FJ0gb, =0 (i.e.ppf =0),
(1) VIO, Fg + FyogV? — Fg&yVQ‘ =0 (i.e.Ly F =0),

where Fg, 05, and V are local components of F', 8, and V', respectively.

3. Adapted frames and diagonal lifts of affinor fields

Let V be a symmetric affine connection in M,,. In each coordinate neighborhood {U,z*} of M,,, we put
X(a) = — 0("‘) = dxa.
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Then 3n local vector fields Y(4), HH x (a)> and vv9(@) have respectively components of the form

88 -T4 0
. HH . vvpla) .
Yay: | 0 ], Xyt | o2 , ) o (3.1)
0 Tsa 59

with respect to the induced coordinates (z%,z%,z%) in 7! (U), where we have used (1.6). We call the set

{Y(Q),HH X(a),"" 9(‘*)} the frame adapted to the symmetric affine connection V in 7=! (U). On putting

€ =Yy oy ="" X(@), &g ="0" (3:2)

we write the adapted frame as
e} = {Fm) e é@) ) - (3.3)

The adapted frame {é( B)} = {3(5), é\(a)f(g)} is given by the matrix

(55 —Fg 0
n TA (e
A= (AB) —[ o s o | (3.4)
0 Tpo 6
- -1
Since the matrix A in (3.4) is nonsingular, it has the inverse. Denoting this inverse by (A) , we have
I
(A) = (Ac) =l o & o], (3.5)
0 —Tos ©f

where /T(ﬁ)_l = (ﬁ’g) (/Tg)_l 66 = I, where A = (@, a,q), B = <B,B,E), C= (?,0,5) .

Proof From (3.4) and (3.5), we easily see that

1 R 5§ -I'g 0 s o
A(A) = @p(ag) = o0 s o0 0 & 0
0 Tpa 08 0 —Tos 6f

sy Tg-Tg 0 s 0 0

= 0 oy o |=[ 0 6 o0

0 Tgo—Toa 07 0 88

If we take account of (3.3), we see that the diagonal lift "PFof Fe SH(T(M,)) has components

—F¢ —T°F_TeF™ 0
5 etpg —Lpke

"F=(""F}) = 0 g 0 (3.6)
0  DpoFS+TaoFg —Ff

[e3
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with respect to the coordinates (z%,x, 3:5) on t*(M,), where

F? = y7F357 loo = p'yFZLU

Proof Let F € 31(T(M,)). Then we have by (3.4), (3.5), and (3.6):

- @)@

8 -18 0 —Fy —T2F:—T¢F® 0 &, Ty 0
= 0 4 0 0 F 0 0 4, 0
0 Tap 6f 0 T.,,F¢ N LooF7  —F] 0 —Ty, &
—F}  —IPF:-T¢F —TEFS 0 5, Iy 0
- 0 Fﬁ 0 0 6, O
0 FQBF;MFFWF + T3 Fy —F) 0 —Ty, oY

—F"? I, F —TEF; —T Ff —TLFy 0

= 0 Ffj 0
« [eg g w

0 Fang + PwaFﬁ + Fgng + Fwng _FB

B P _ 1P B

F TSF) —TOFS 0
= 0 Fy 0 ,
0 Ty, Fl+Tg,Ff —FY

which proves (3.6).

We now see, from (3.3), that the diagonal lift ~~ F of F € S}(T(M,)) has components of the form

DD DD A 7F’60)‘ O 0
F=( Ff) = 0 Fg 0
0 0 —FP

with respect to the adapted frame {€ )} in t*(M,).

Proof Let F € 33(T(M,)). Then we have by (3.4), (3.5), and (3.6):

(A) ("0 @A)

a « e £ o Y Y
A A —FY —Te¢F:—-T:F 0 &, —T7, 0
0 5§ 0 0 F 0 0 4, 0
0 —Tag 63 0 I,.Fg i LooF? —F) 0 Tyy &Y
—FP  —IPF: —TSFP +TLFS 0 &, —T3 0
FP 0 0 4, 0

0 —TapFS + T o F§ +Ts,F] —FJ 0 Ty, &
_ B YR8 _1TBRe _1Te B B o

F, I FS —TEF; —T9FP + THF] 0

0 Fy 0

[ed g 1/)
0 —TapFg +TyoFg +TsaFg — Ty F) —Fj
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B
-F, 0 0
= 0 E] 0
P
0 0 -F 3
This completes the proof. O

We now obtain from (3.6) that the diagonal lift ~~F of an affinor field F € S(T(M,)) has along
Beo (T'(M,,)) components of the form

—Fg —(VV*)F5— (VgVE)F2 0

DD

F: 0 Fg 0 , (3.7)
0 _(vﬂea) Fg— (vaeo) Fg _Fc[v.g
with respect to the adapted frame {B(ﬂ),c(ﬁ), C (E) }
Proof Let F € S1(T(M,)). Then we have by (1.8), (1.9), and (3.7):
DD -1/ pp ~
ro= (4 () ()
85 —8.VP 0 —Fy —T2F:—TeFX 0 5y VT 0
= 0o & 0 0 35 0 0 &, O
0 —0abs 0 0 TDyFJ+TueF —F) 0 Oyb, &Y
—FP  —TPF:—TiFP -0, VPEX 0 5, OuVT 0
= 0 £y 0 0 6, 0
0 —0a0sFS +TyoF§ + T, F7 —F] 0 9y, &Y
8 o
—F, =04V VFS —TPF5 —T5FF —0,VPFY 0
- 0 Fy 0
0 —0a0sFS +TyoFg + g, F — 0y0,F] —FY
—F] = (VaVO)F] = (VY 0
= 0 Fy 0
0 —(Vyb)F) —(Vsb,)F —FY
Thus, the proof is complete. O

Then we see from (1.6) that the horizontal lift ## X of a vector field X € 3¢ (T(M,,)) has along
Bo (T(M,)) components of the form

—XP(VV®)
HHx . [ X« (3.8)
- (V,B@a) X7

with respect to the adapted frame {B(ﬁ),C(ﬁ), C (E) }
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Proof Let X € 3} (T(M,)). Then we have by (1.6) and (1.9):

. 5§ —0gV* 0 —~Vers, xe
X = (4) ("Px)=| 0 63 0 X#
0 —030, OF X015
—VerBpX? — 9pvexh —XP(VsV)
= Xa = Xa 5
—0p0, X" + X%0.1%,, —(Vp0a) XP
which gives (3.8). O

Using (1.6), (3.7), and (3.8), we have along Sy (T'(M,)):

Theorem 5 If F and X are affinor and vector fields on T(M,,), and w € SV (M,,), then with respect to a

symetric affine connection V in M, , we have
(i) PPF (HHX) =HH (FX),
(ii) PPF ("Yw) = —""(wo F).

Proof

() If FeSHT(M,)) and X € I (T(M,)), then by (3.7) and (3.8), we have

—Fg —(V.VO)F5— (VgVE) Fe 0 X (V.VF)
DD (HHx) 0 Fg 0 XA
0 —(Vplo) FJ — (Vaby) F§  —F] —(Volp) X7

F§Xe (VVP) = (VV) F5XP — (VgVe) FeXP
= | Fx)°

— (Valbo) F§XP — (Vpls) FSXP + (Vol5) X FF )
—(V.V) (FX)®

= (FX)* =HH (FX).

—(Voba) (FX)°

Thus, we have PP F (HHX) =HH (FX).

(i) If we SY(M,,) and F € SH(T(M,,)), then by (1.6), (1.10), and (3.7), we have

—Fg —(V V) F5—(VgVe)F2 0 0
PPF ("w) = 0 Fg 0 0
0 - (vﬁeo) Fg —(Vab,) FE _Fg wg
0 0
— 0 — 0 =-—""(woF).
~wpFf —(woF),
Thus, we have (i) of Theorem 5. O
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