Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2018) 42: 1312 - 1327
(C) TÜBITAAK
doi:10.3906/mat-1706-39

Diagonal lift in the semi-cotangent bundle and its applications

Furkan YILDIRIM*
Department of Mathematics, Faculty of Science, Atatürk University, Narman Vocational Training School, Erzurum, Turkey

Received: 12.06.2017 • Accepted/Published Online: 19.11.2017 • Final Version: 08.05.2018

Abstract

The present paper is devoted to some results concerning the diagonal lift of tensor fields of type $(1,1)$ from manifold M to its semi-cotangent bundle $t^{*} \mathrm{M}$. In this context, cross-sections in the semi-cotangent (pull-back) bundle $\mathrm{t}^{*} \mathrm{M}$ of cotangent bundle $\mathrm{T}^{*} \mathrm{M}$ by using projection (submersion) of the tangent bundle TM can be also defined.

Key words: Vector field, complete lift, diagonal lift, pull-back bundle, cross-section, semi-cotangent bundle

1. Introduction

Let M_{n} be an n-dimensional differentiable manifold of class C^{∞}, and let ($T\left(M_{n}\right), \pi_{1}, M_{n}$) be a tangent bundle over M_{n}. We use the notation $\left(x^{i}\right)=\left(x^{\bar{\alpha}}, x^{\alpha}\right)$, where the indices i, j, \ldots run from 1 to $2 n$, the indices $\bar{\alpha}, \bar{\beta}, \ldots$ from 1 to n, and the indices α, β, \ldots from $n+1$ to $2 n$, while x^{α} are coordinates in M_{n} and $x^{\bar{\alpha}}=y^{\alpha}$ are fiber coordinates of the tangent bundle $T\left(M_{n}\right)$ (for definition of the pull-back bundle, see, for example, [1],[3],[4],[5],[6]).

Now let $\left(T^{*}\left(M_{n}\right), \widetilde{\pi}, M_{n}\right)$ be a cotangent bundle with base space M_{n} and let $T\left(M_{n}\right)$ be a tangent bundle determined by a natural projection (submersion) $\pi_{1}: T\left(M_{n}\right) \rightarrow M_{n}$. The semi-cotangent ([8],[9]) bundle (induced or pull-back bundle) of the cotangent bundle ($T^{*}\left(M_{n}\right), \widetilde{\pi}, M_{n}$) is the bundle ($t^{*}\left(M_{n}\right), \pi_{2}, T\left(M_{n}\right)$) over tangent bundle $T\left(M_{n}\right)$ with a total space

$$
\begin{aligned}
t^{*}\left(M_{n}\right) & =\left\{\left(\left(x^{\bar{\alpha}}, x^{\alpha}\right), x^{\overline{\bar{\alpha}}}\right) \in T\left(M_{n}\right) \times T_{x}^{*}\left(M_{n}\right): \pi_{1}\left(x^{\bar{\alpha}}, x^{\alpha}\right)=\widetilde{\pi}\left(x^{\alpha}, x^{\overline{\bar{\alpha}}}\right)=\left(x^{\alpha}\right)\right\} \\
& \subset T\left(M_{n}\right) \times T_{x}^{*}\left(M_{n}\right)
\end{aligned}
$$

and with the projection map $\pi_{2}: t^{*}\left(M_{n}\right) \rightarrow T\left(M_{n}\right)$ defined by $\pi_{2}\left(x^{\bar{\alpha}}, x^{\alpha}, x^{\bar{\alpha}}\right)=\left(x^{\bar{\alpha}}, x^{\alpha}\right)$, where $T_{x}^{*}\left(M_{n}\right)$ $\left(x=\pi_{1}(\widetilde{x}), \widetilde{x}=\left(x^{\bar{\alpha}}, x^{\alpha}\right) \in T\left(M_{n}\right)\right)$ is the cotangent space at a point x of M_{n}, where $x^{\overline{\bar{\alpha}}}=p_{\alpha}(\overline{\bar{\alpha}}, \overline{\bar{\beta}}, \ldots=$ $2 n+1, \ldots, 3 n)$ are fiber coordinates of the cotangent bundle $T^{*}\left(M_{n}\right)$. If $\left(x^{i^{\prime}}\right)=\left(x^{\bar{\alpha}^{\prime}}, x^{\alpha^{\prime}}, x^{\bar{\alpha}^{\prime}}\right)$ is another system of local adapted coordinates in the semi-cotangent bundle $t^{*}\left(M_{n}\right)$, then we have

$$
\left\{\begin{array}{l}
x^{\bar{\alpha}^{\prime}}=\frac{\partial x^{\alpha^{\prime}}}{\partial x^{\beta}} y^{\beta}, \tag{1.1}\\
x^{\alpha^{\prime}}=x^{\alpha^{\prime}} \\
x^{\bar{\alpha}^{\prime}}=\frac{\partial x^{\beta}}{\partial x^{\beta}} p_{\beta},
\end{array}\right.
$$

*Correspondence: furkan.yildirim@atauni.edu.tr
2010 AMS Mathematics Subject Classification: 53A45, 55R10, 57R25

The Jacobian of (1.1) has components

$$
\bar{A}=\left(A_{J}^{I^{\prime}}\right)=\left(\begin{array}{ccc}
A_{\beta}^{\alpha^{\prime}} & A_{\beta \varepsilon}^{\alpha^{\prime}} y^{\varepsilon} & 0 \tag{1.2}\\
0 & A_{\beta}^{\alpha^{\prime}} & 0 \\
0 & p_{\sigma} A_{\beta}^{\beta} A_{\beta^{\prime} \alpha^{\prime}}^{\sigma} & A_{\alpha^{\prime}}^{\beta}
\end{array}\right)
$$

where

$$
A_{\beta \varepsilon}^{\alpha^{\prime}}=\frac{\partial^{2} x^{\alpha^{\prime}}}{\partial x^{\beta} \partial x^{\varepsilon}}, \quad A_{\beta^{\prime} \alpha^{\prime}}^{\alpha}=\frac{\partial^{2} x^{\alpha}}{\partial x^{\beta^{\prime}} \partial x^{\alpha^{\prime}}} .
$$

We denote by $\Im_{q}^{p}\left(T\left(M_{n}\right)\right)$ and $\Im_{q}^{p}\left(M_{n}\right)$ the modules over $F\left(T\left(M_{n}\right)\right)$ and $F\left(M_{n}\right)$ of all tensor fields of type (p, q) on $T\left(M_{n}\right)$ and M_{n}, respectively, where $F\left(T\left(M_{n}\right)\right)$ and $F\left(M_{n}\right)$ denote the rings of real-valued C^{∞}-functions on $T\left(M_{n}\right)$ and M_{n}, respectively.

Let θ be a covector field on $T\left(M_{n}\right)$. Then the transformation $p \rightarrow \theta_{p}, \theta_{p}$ being the value of θ at $p \in T\left(M_{n}\right)$, determines a cross-section β_{θ} of a semi-cotangent bundle. Thus, if $\sigma: M_{n} \rightarrow T^{*}\left(M_{n}\right)$ is a crosssection of $\left(T^{*}\left(M_{n}\right), \widetilde{\pi}, M_{n}\right)$, such that $\widetilde{\pi} \circ \sigma=I_{\left(M_{n}\right)}$, an associated cross-section $\beta_{\theta}: T\left(M_{n}\right) \rightarrow t^{*}\left(M_{n}\right)$ of semi-cotangent (pull-back) bundle $\left(t^{*}\left(M_{n}\right), \pi_{2}, T\left(M_{n}\right)\right)$ of cotangent bundle by using projection (submersion) of the tangent bundle $T\left(M_{n}\right)$ defined by [[2], p. 217-218], [[7], p. 301]:

$$
\beta_{\theta}\left(x^{\bar{\alpha}}, x^{\alpha}\right)=\left(x^{\bar{\alpha}}, x^{\alpha}, \sigma \circ \pi_{1}\left(x^{\bar{\alpha}}, x^{\alpha}\right)\right)=\left(x^{\bar{\alpha}}, x^{\alpha}, \sigma\left(x^{\alpha}\right)\right)=\left(x^{\bar{\alpha}}, x^{\alpha}, \theta_{\alpha}\left(x^{\beta}\right)\right) .
$$

If the covector field θ has the local components $\theta_{\alpha}\left(x^{\beta}\right)$, the cross-section $\beta_{\theta}\left(T\left(M_{n}\right)\right)$ of $t^{*}\left(M_{n}\right)$ is locally expressed by

$$
\begin{equation*}
x^{\bar{\alpha}}=y^{\alpha}=V^{\alpha}\left(x^{\beta}\right), \quad x^{\alpha}=x^{\alpha}, \quad x^{\overline{\bar{\alpha}}}=p_{\alpha}=\theta_{\alpha}\left(x^{\beta}\right) \tag{1.3}
\end{equation*}
$$

with respect to the coordinates $x^{A}=\left(x^{\bar{\alpha}}, x^{\alpha}, x^{\overline{\bar{\alpha}}}\right)$ in $t^{*}\left(M_{n}\right) . x^{\bar{\alpha}}=y^{\alpha}$ are considered as parameters. Taking the derivative of (1.3) with respect to $x^{\bar{\alpha}}=y^{\alpha}$, we have vector fields $B_{(\bar{\beta})}(\bar{\beta}=1, \ldots, n)$ with components

$$
B_{(\bar{\beta})}=\frac{\partial x^{A}}{\partial x^{\bar{\beta}}}=\partial_{\bar{\beta}} x^{A}=\left(\begin{array}{c}
\partial_{\bar{\beta}} V^{\alpha} \\
\partial_{\bar{\beta}} x^{\alpha} \\
\partial_{\bar{\beta}} \theta_{\alpha}
\end{array}\right)
$$

which are tangent to the cross-section $\beta_{\theta}\left(T\left(M_{n}\right)\right)$.
Thus, $B_{(\bar{\beta})}$ have components

$$
B_{(\bar{\beta})}:\left(B_{(\bar{\beta})}^{A}\right)=\left(\begin{array}{l}
\delta_{\bar{\beta}}^{\alpha} \\
0 \\
0
\end{array}\right)
$$

with respect to the coordinates $\left(x^{\bar{\alpha}}, x^{\alpha}, x^{\overline{\bar{\alpha}}}\right)$ in $t^{*}\left(M_{n}\right)$, where

$$
\delta_{\bar{\beta}}^{\alpha}=A_{\bar{\beta}}^{\alpha}=\frac{\partial x^{\alpha}}{\partial x^{\bar{\beta}}} .
$$

YILDIRIM/Turk J Math

Let $X \in \Im_{0}^{1}\left(T\left(M_{n}\right)\right)$, i.e. $X=X^{\alpha} \partial_{\alpha}$. We denote by $B X$ the vector field with local components

$$
B X:\left(B_{(\bar{\beta})}^{A} X^{\bar{\beta}}\right)=\left(\begin{array}{l}
\delta_{\bar{\beta}}^{\alpha} X^{\bar{\beta}} \tag{1.4}\\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
A_{\bar{\beta}}^{\alpha} X^{\bar{\beta}} \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
X^{\alpha} \\
0 \\
0
\end{array}\right)
$$

with respect to the coordinates $\left(x^{\bar{\alpha}}, x^{\alpha}, x^{\bar{\alpha}}\right)$ in $t^{*}\left(M_{n}\right)$, which is defined globally along $\beta_{\theta}\left(T\left(M_{n}\right)\right)$. Then a mapping

$$
B: \Im_{0}^{1}\left(T\left(M_{n}\right)\right) \rightarrow \Im_{0}^{1}\left(\beta_{\theta}\left(T\left(M_{n}\right)\right)\right)
$$

is defined by (1.4). The mapping B is the differential of $\beta_{\theta}: T\left(M_{n}\right) \rightarrow t^{*}\left(M_{n}\right)$ and so an isomorphism of $\Im_{0}^{1}\left(T\left(M_{n}\right)\right)$ onto $\Im_{0}^{1}\left(\beta_{\theta}\left(T\left(M_{n}\right)\right)\right)$.

Since a cross-section is locally expressed by $x^{\bar{\alpha}}=y^{\alpha}=$ const., $x^{\overline{\bar{\alpha}}}=p_{\alpha}=$ const., $x^{\alpha}=x^{\alpha}, x^{\alpha}$ being considered as parameters. Taking the derivative of (1.3) with respect to x^{α}, we have vector fields $C_{(\beta)}$ ($\beta=n+1, \ldots, 2 n$) with components

$$
C_{(\beta)}=\frac{\partial x^{A}}{\partial x^{\beta}}=\partial_{\beta} x^{A}=\left(\begin{array}{c}
\partial_{\beta} V^{\alpha} \\
\partial_{\beta} x^{\alpha} \\
\partial_{\beta} \theta_{\alpha}
\end{array}\right)
$$

which are tangent to the cross-section $\beta_{\theta}\left(T\left(M_{n}\right)\right)$.
Thus, $C_{(\beta)}$ have components

$$
C_{(\beta)}:\left(C_{(\beta)}^{A}\right)=\left(\begin{array}{l}
\partial_{\beta} V^{\alpha} \\
\delta_{\beta}^{\alpha} \\
\partial_{\beta} \theta_{\alpha}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{\bar{\alpha}}, x^{\alpha}, x^{\bar{\alpha}}\right)$ in $t^{*}\left(M_{n}\right)$, where

$$
\delta_{\beta}^{\alpha}=A_{\beta}^{\alpha}=\frac{\partial x^{\alpha}}{\partial x^{\beta}}
$$

Let $X \in \Im_{0}^{1}\left(T\left(M_{n}\right)\right)$. Then we denote by $C X$ the vector field with local components

$$
C X:\left(C_{(\beta)}^{A} X^{\beta}\right)=\left(\begin{array}{l}
X^{\beta} \partial_{\beta} V^{\alpha} \tag{1.5}\\
X^{\alpha} \\
X^{\beta} \partial_{\beta} \theta_{\alpha}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{\bar{\alpha}}, x^{\alpha}, x^{\bar{\alpha}}\right)$ in $t^{*}\left(M_{n}\right)$, which is defined globally along $\beta_{\theta}\left(T\left(M_{n}\right)\right)$. Then a mapping

$$
C: \Im_{0}^{1}\left(T\left(M_{n}\right)\right) \rightarrow \Im_{0}^{1}\left(\beta_{\theta}\left(T\left(M_{n}\right)\right)\right)
$$

is defined by (1.5). The mapping C is the differential of $\beta_{\theta}: T\left(M_{n}\right) \rightarrow t^{*}\left(M_{n}\right)$ and so an isomorphism of $\Im_{0}^{1}\left(T\left(M_{n}\right)\right)$ onto $\Im_{0}^{1}\left(\beta_{\theta}\left(T\left(M_{n}\right)\right)\right)$.

Now, considering $\omega \in \Im_{1}^{0}\left(M_{n}\right)$ and vector field $X \in \Im_{0}^{1}\left(T\left(M_{n}\right)\right)$, then ${ }^{v v} \omega$ (vertical lift), ${ }^{c c} X$ (complete lift), and ${ }^{H H} X$ (horizontal lift) have, respectively, components on the semi-cotangent bundle $t^{*}\left(M_{n}\right)$ [8]:

$$
{ }^{v v} \omega=\left(\begin{array}{l}
0 \tag{1.6}\\
0 \\
\omega_{\alpha}
\end{array}\right), \quad{ }^{c c} X=\left(\begin{array}{l}
y^{\varepsilon} \partial_{\varepsilon} X^{\alpha} \\
X^{\alpha} \\
-p_{\sigma}\left(\partial_{\alpha} X^{\sigma}\right)
\end{array}\right), \quad{ }^{H H} X=\left(\begin{array}{l}
-\Gamma_{\beta}^{\alpha} X^{\beta} \\
X^{\alpha} \\
X^{\beta} \Gamma_{\beta \alpha}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{\bar{\alpha}}, x^{\alpha}, x^{\bar{\alpha}}\right)$, where

$$
\Gamma_{\beta}^{\alpha}=V^{\varepsilon} \Gamma_{\varepsilon \beta}^{\alpha}, \quad \Gamma_{\beta \alpha}=\theta_{\varepsilon} \Gamma_{\beta \alpha}^{\varepsilon} .
$$

On the other hand, the fiber is locally represented by

$$
x^{\bar{\alpha}}=y^{\alpha}=\text { const. }, \quad x^{\alpha}=\text { const. }, \quad x^{\bar{\alpha}}=p_{\alpha}=p_{\alpha},
$$

p_{α} being considered as parameters. Thus, on differentiating with respect to p_{α}, we easily see that the vector fields $E_{(\overline{\bar{\beta}})}={ }^{v v}\left(d x^{\beta}\right)(\overline{\bar{\beta}}=2 n+1, \ldots, 3 n)$ with components

$$
E_{(\overline{\bar{\beta}})}:\left(E_{(\overline{\bar{\beta}})}^{A}\right)=\partial_{(\overline{\bar{\beta}})} x^{A}=\left(\begin{array}{c}
\partial_{\overline{\bar{\beta}}} y^{\alpha} \\
\partial_{\overline{\bar{B}}} x^{\alpha} \\
\partial_{\overline{\bar{\beta}}} p_{\alpha}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\delta_{\alpha}^{\beta}
\end{array}\right)
$$

are tangent to the fiber, where

$$
\delta_{\alpha}^{\beta}=A_{\alpha}^{\beta}=\frac{\partial x^{\beta}}{\partial x^{\alpha}} .
$$

Let ω be a 1 -form with local components ω_{α} on M_{n}, so that ω is a 1 -form with local expression $\omega=\omega_{\alpha} d x^{\alpha}$. We denote by $E \omega$ the vector field with local components

$$
E \omega:\left(E_{(\bar{\beta})}^{A} \omega_{\beta}\right)=\left(\begin{array}{l}
0 \tag{1.7}\\
0 \\
\omega_{\alpha}
\end{array}\right)
$$

which is tangent to the fiber. Then a mapping

$$
E: \Im_{1}^{0}\left(M_{n}\right) \rightarrow \Im_{0}^{1}\left(t^{*}\left(M_{n}\right)\right)
$$

is defined by (1.7) and so an isomorphism of $\Im_{1}^{0}\left(M_{n}\right)$ in to $\Im_{0}^{1}\left(t^{*}\left(M_{n}\right)\right)$.
From (1.4), (1.5), and (1.7), we obtain:

Theorem 1 Let X and Y be vector fields on $T\left(M_{n}\right)$. For the Lie product, we have
(i) $[C X, C Y]=C[X, Y]$,
(ii) $[B X, B Y]=0$,
(iii) $[E \psi, E \omega]=0$,
for any $\psi, \omega \in \Im_{1}^{0}\left(M_{n}\right)$.

YILDIRIM/Turk J Math

Proof

(i) If X and Y are vector fields on $T\left(M_{n}\right)$ and $\left(\begin{array}{c}{[C X, C Y]^{\bar{\beta}}} \\ {[C X, C Y]^{\beta}} \\ {[C X, C Y]^{\bar{\beta}}}\end{array}\right)$ are components of $[C X, C Y]$ with respect to the coordinates $\left(x^{\bar{\beta}}, x^{\beta}, x^{\overline{\bar{\beta}}}\right)$ in $t^{*}\left(M_{n}\right)$, then we have

$$
[C X, C Y]^{J}=(C X)^{I} \partial_{I}(C Y)^{J}-(C Y)^{I} \partial_{I}(C X)^{J} .
$$

First, if $J=\bar{\beta}$, we have

$$
\begin{aligned}
{[C X, C Y]^{\bar{\beta}}=} & (C X)^{I} \partial_{I}(C Y)^{\bar{\beta}}-(C Y)^{I} \partial_{I}(C X)^{\bar{\beta}} \\
= & (C X)^{\bar{\alpha}} \partial_{\bar{\alpha}}(C Y)^{\bar{\beta}}+(C X)^{\alpha} \partial_{\alpha}(C Y)^{\bar{\beta}}+(C X)^{\bar{\alpha}} \partial_{\overline{\bar{\alpha}}}(C Y)^{\bar{\beta}} \\
& -(C Y)^{\bar{\alpha}} \partial_{\bar{\alpha}}(C X)^{\bar{\beta}}-(C Y)^{\alpha} \partial_{\alpha}(C X)^{\bar{\beta}}-(C Y)^{\bar{\alpha}} \partial_{\bar{\alpha}}(C X)^{\bar{\beta}} \\
= & X^{\beta} \partial_{\beta} V^{\alpha} \partial_{\bar{\alpha}} Y^{\gamma} \partial_{\gamma} V^{\beta}+X^{\alpha} \partial_{\alpha} Y^{\gamma} \partial_{\gamma} V^{\beta} \\
& -Y^{\beta} \partial_{\beta} V^{\alpha} \partial_{\bar{\alpha}} X^{\gamma} \partial_{\gamma} V^{\beta}-Y^{\alpha} \partial_{\alpha} X^{\gamma} \partial_{\gamma} V^{\beta} \\
= & \left(X^{\alpha} \partial_{\alpha} Y^{\gamma}-Y^{\alpha} \partial_{\alpha} X^{\gamma}\right) \partial_{\gamma} V^{\beta} \\
= & {[X, Y]^{\gamma} \partial_{\gamma} V^{\beta} }
\end{aligned}
$$

by virtue of (1.5). Second, if $J=\beta$, we have

$$
\begin{aligned}
{[C X, C Y]^{\beta}=} & (C X)^{I} \partial_{I}(C Y)^{\beta}-(C Y)^{I} \partial_{I}(C X)^{\beta} \\
= & (C X)^{\bar{\alpha}} \partial_{\bar{\alpha}}(C Y)^{\beta}+(C X)^{\alpha} \partial_{\alpha}(C Y)^{\beta}+(C X)^{\bar{\alpha}} \partial_{\overline{\bar{\alpha}}}(C Y)^{\beta} \\
& -(C Y)^{\alpha} \partial_{\bar{\alpha}}(C X)^{\beta}-(C Y)^{\alpha} \partial_{\alpha}(C X)^{\beta}-(C Y)^{\bar{\alpha}} \partial_{\overline{\bar{\alpha}}}(C X)^{\beta} \\
= & X^{\bar{\alpha}} \partial_{\bar{\alpha}} Y^{\beta}+X^{\alpha} \partial_{\alpha} Y^{\beta}+X^{\beta} \partial_{\beta} \theta_{\alpha} \partial_{\overline{\bar{\alpha}}} Y^{\beta} \\
& -Y^{\bar{\alpha}} \partial_{\bar{\alpha}} X^{\beta}-Y^{\alpha} \partial_{\alpha} X^{\beta}-Y^{\beta} \partial_{\beta} \theta_{\alpha} \partial_{\overline{\bar{\alpha}}} X^{\beta} \\
= & X^{\alpha} \partial_{\alpha} Y^{\beta}-Y^{\alpha} \partial_{\alpha} X^{\beta} \\
= & {[X, Y]^{\beta} }
\end{aligned}
$$

by virtue of (1.5). Third, if $J=\overline{\bar{\beta}}$, then we have

$$
\begin{aligned}
{[C X, C Y]^{\overline{\bar{\beta}}}=} & (C X)^{I} \partial_{I}(C Y)^{\overline{\bar{\beta}}}-(C Y)^{I} \partial_{I}(C X)^{\overline{\bar{\beta}}} \\
= & (C X)^{\bar{\alpha}} \partial_{\bar{\alpha}}(C Y)^{\bar{\beta}}+(C X)^{\alpha} \partial_{\alpha}(C Y)^{\overline{\bar{\beta}}}+(C X)^{\bar{\alpha}} \partial_{\overline{\bar{\alpha}}}(C Y)^{\bar{\beta}} \\
& -(C Y)^{\bar{\alpha}} \partial_{\bar{\alpha}}(C X)^{\overline{\bar{\beta}}}-(C Y)^{\alpha} \partial_{\alpha}(C X)^{\bar{\beta}}-(C Y)^{\bar{\alpha}} \partial_{\overline{\bar{\alpha}}}(C X)^{\overline{\bar{\beta}}} \\
= & X^{\bar{\alpha}} \partial_{\bar{\alpha}} Y^{\gamma} \partial_{\gamma} \theta_{\beta}+X^{\alpha} \partial_{\alpha} Y^{\gamma} \partial_{\gamma} \theta_{\beta}+X^{\beta} \partial_{\beta} \theta_{\alpha} \partial_{\overline{\bar{\alpha}}} Y^{\gamma} \partial_{\gamma} \theta_{\beta} \\
& -Y^{\bar{\alpha}} \partial_{\bar{\alpha}} X^{\gamma} \partial_{\gamma} \theta_{\beta}-Y^{\alpha} \partial_{\alpha} X^{\gamma} \partial_{\gamma} \theta_{\beta}-Y^{\beta} \partial_{\beta} \theta_{\alpha} \partial_{\overline{\bar{\alpha}}} X^{\gamma} \partial_{\gamma} \theta_{\beta}
\end{aligned}
$$

YILDIRIM/Turk J Math

$$
\begin{aligned}
& =X^{\alpha} \partial_{\alpha} Y^{\gamma} \partial_{\gamma} \theta_{\beta}-Y^{\alpha} \partial_{\alpha} X^{\gamma} \partial_{\gamma} \theta_{\beta} \\
& =\left(X^{\alpha} \partial_{\alpha} Y^{\gamma}-Y^{\alpha} \partial_{\alpha} X^{\gamma}\right) \partial_{\gamma} \theta_{\beta} \\
& =[X, Y]^{\gamma} \partial_{\gamma} \theta_{\beta}
\end{aligned}
$$

by virtue of (1.5). On the other hand, we know that $C[X, Y]$ have components

$$
C[X, Y]=\left(\begin{array}{l}
{[X, Y]^{\gamma} \partial_{\gamma} V^{\beta}} \\
{[X, Y]^{\beta}} \\
{[X, Y]^{\gamma} \partial_{\gamma} \theta_{\beta}}
\end{array}\right)
$$

with respect to the coordinates in $t^{*}\left(M_{n}\right)$. Thus, we have $[C X, C Y]=C[X, Y]$.
(ii) $X, Y \in \Im_{0}^{1}\left(T\left(M_{n}\right)\right)$ and $\left(\begin{array}{c}{[B X, B Y]^{\bar{\beta}}} \\ {[B X, B Y]^{\beta}} \\ {[B X, B Y]^{\bar{\beta}}}\end{array}\right)$ are components of $[B X, B Y]$ with respect to the coordinates $\left(x^{\bar{\beta}}, x^{\beta}, x^{\bar{\beta}}\right)$ in $t^{*}\left(M_{n}\right)$, and then we have

$$
[B X, B Y]^{J}=(B X)^{I} \partial_{I}(B Y)^{J}-(B Y)^{I} \partial_{I}(B X)^{J}
$$

First, if $J=\bar{\beta}$, we have

$$
\begin{aligned}
{[B X, B Y]^{\bar{\beta}}=} & (B X)^{I} \partial_{I}(B Y)^{\bar{\beta}}-(B Y)^{I} \partial_{I}(B X)^{\bar{\beta}} \\
= & (B X)^{\bar{\alpha}} \partial_{\bar{\alpha}}(B Y)^{\bar{\beta}}+(B X)^{\alpha} \partial_{\alpha}(B Y)^{\bar{\beta}}+(B X)^{\overline{\bar{\alpha}}} \partial_{\overline{\bar{\alpha}}}(B Y)^{\bar{\beta}} \\
& -(B Y)^{\bar{\alpha}} \partial_{\bar{\alpha}}(B X)^{\bar{\beta}}-(B Y)^{\alpha} \partial_{\alpha}(B X)^{\bar{\beta}}-(B Y)^{\bar{\alpha}} \partial_{\overline{\bar{\alpha}}}(B X)^{\bar{\beta}} \\
= & X^{\alpha} \partial_{\bar{\alpha}} Y^{\beta}-Y^{\alpha} \partial_{\bar{\alpha}} X^{\beta} \\
= & 0
\end{aligned}
$$

by virtue of (1.4). Second, if $J=\beta$, we have

$$
\begin{aligned}
{[B X, B Y]^{\beta}=} & (B X)^{I} \partial_{I}(B Y)^{\beta}-(B Y)^{I} \partial_{I}(B X)^{\beta} \\
= & (B X)^{\bar{\alpha}} \partial_{\bar{\alpha}}(B Y)^{\beta}+(B X)^{\alpha} \partial_{\alpha}(B Y)^{\beta}+(B X)^{\overline{\bar{\alpha}}} \partial_{\overline{\bar{\alpha}}}(B Y)^{\beta} \\
& -(B Y)^{\bar{\alpha}} \partial_{\bar{\alpha}}(B X)^{\beta}-(B Y)^{\alpha} \partial_{\alpha}(B X)^{\beta}-(B Y)^{\bar{\alpha}} \partial_{\overline{\bar{\alpha}}}(B X)^{\beta} \\
= & 0
\end{aligned}
$$

by virtue of (1.4). Third, if $J=\overline{\bar{\beta}}$, then we have

$$
\begin{aligned}
{[B X, B Y]^{\overline{\bar{\beta}}}=} & (B X)^{I} \partial_{I}(B Y)^{\bar{\beta}}-(B Y)^{I} \partial_{I}(B X)^{\overline{\bar{\beta}}} \\
= & (B X)^{\bar{\alpha}} \partial_{\bar{\alpha}}(B Y)^{\overline{\bar{\beta}}}+(B X)^{\alpha} \partial_{\alpha}(B Y)^{\overline{\bar{\beta}}}+(B X)^{\overline{\bar{\alpha}}} \partial_{\overline{\bar{\alpha}}}(B Y)^{\overline{\bar{\beta}}} \\
& -(B Y)^{\bar{\alpha}} \partial_{\bar{\alpha}}(B X)^{\overline{\bar{\beta}}}-(B Y)^{\alpha} \partial_{\alpha}(B X)^{\overline{\bar{\beta}}}-(B Y)^{\overline{\bar{\alpha}}} \partial_{\overline{\bar{\alpha}}}(B X)^{\overline{\bar{\beta}}} \\
= & 0
\end{aligned}
$$

by virtue of (1.4). Thus, we have $[B X, B Y]=0$.
(iii) If $\psi, \omega \in \Im_{1}^{0}\left(M_{n}\right)$ and $\left(\begin{array}{c}{[E \psi, E \omega]^{\bar{\beta}}} \\ {[E \psi, E \omega]^{\beta}} \\ {[E \psi, E \omega]^{\bar{\beta}}}\end{array}\right)$ are components of $[E \psi, E \omega]$ with respect to the coordinates $\left(x^{\bar{\beta}}, x^{\beta}, x^{\bar{\beta}}\right)$ in $t^{*}\left(M_{n}\right)$, then we have

$$
\begin{aligned}
{[E \psi, E \omega]^{J}=} & (E \psi)^{I} \partial_{I}(E \omega)^{J}-(E \omega)^{I} \partial_{I}(E \psi)^{J} \\
= & (E \psi)^{\bar{\alpha}} \partial_{\bar{\alpha}}(E \omega)^{J}+(E \psi)^{\alpha} \partial_{\alpha}(E \omega)^{J}+(E \psi)^{\overline{\bar{\alpha}}} \partial_{\overline{\bar{\alpha}}}(E \omega)^{J} \\
& -(E \omega)^{\bar{\alpha}} \partial_{\bar{\alpha}}(E \psi)^{J}-(E \omega)^{\alpha} \partial_{\alpha}(E \psi)^{J}-(E \omega)^{\bar{\alpha}} \partial_{\overline{\bar{\alpha}}}(E \psi)^{J} \\
= & \psi_{\alpha} \partial_{\overline{\bar{\alpha}}}(E \omega)^{J}-\omega_{\alpha} \partial_{\overline{\bar{\alpha}}}(E \psi)^{J}
\end{aligned}
$$

First, if $J=\bar{\beta}$, we have

$$
\begin{aligned}
{[E \psi, E \omega]^{\bar{\beta}} } & =\psi_{\alpha} \partial_{\overline{\bar{\alpha}}}(E \omega)^{\bar{\beta}}-\omega_{\alpha} \partial_{\overline{\bar{\alpha}}}(E \psi)^{\bar{\beta}} \\
& =0
\end{aligned}
$$

by virtue of (1.7). Second, if $J=\beta$, we have

$$
\begin{aligned}
{[E \psi, E \omega]^{\beta} } & =\psi_{\alpha} \partial_{\overline{\bar{\alpha}}}(E \omega)^{\beta}-\omega_{\alpha} \partial_{\overline{\bar{\alpha}}}(E \psi)^{\beta} \\
& =0
\end{aligned}
$$

by virtue of (1.7). Third, if $J=\overline{\bar{\beta}}$, then we have

$$
\begin{aligned}
{[E \psi, E \omega]^{\overline{\bar{\beta}}} } & =\psi_{\alpha} \partial_{\overline{\bar{\alpha}}}(E \omega)^{\overline{\bar{\beta}}}-\omega_{\alpha} \partial_{\overline{\bar{\alpha}}}(E \psi)^{\overline{\bar{\beta}}} \\
& =\psi_{\alpha} \partial_{\overline{\bar{\alpha}}} \omega_{\beta}-\omega_{\alpha} \partial_{\overline{\bar{\alpha}}} \psi_{\beta} \\
& =0
\end{aligned}
$$

by virtue of (1.7). Thus, we have $[E \psi, E \omega]=0$.

We consider in $\pi^{-1}(U) \quad 3 n$ local vector fields $B_{(\bar{\beta})}, C_{(\beta)}$, and $E_{(\overline{\bar{\beta}})}$ along $\beta_{\theta}\left(T\left(M_{n}\right)\right)$, which are respectively represented by

$$
B_{(\bar{\beta})}=B \frac{\partial}{\partial x^{\bar{\beta}}}, \quad C_{(\beta)}=C \frac{\partial}{\partial x^{\beta}}, \quad E_{(\overline{\bar{\beta}})}=E d x^{\beta}
$$

Theorem 2 Let X be a vector field on $T\left(M_{n}\right)$. We have along $\beta_{\theta}\left(T\left(M_{n}\right)\right.$) the formula

$$
{ }^{c c} X=C X+B\left(L_{V} X\right)+E\left(-L_{X} \theta\right),
$$

where $L_{V} X$ denotes the Lie derivative of X with respect to V, and $L_{X} \theta$ denotes the Lie derivative of θ with respect to X.

Proof Using (1.4), (1.5), and (1.7), we have

$$
\begin{aligned}
C X+B\left(L_{V} X\right)+E\left(-L_{X} \theta\right)= & \left(\begin{array}{l}
X^{\beta} \partial_{\beta} V^{\alpha} \\
X^{\alpha} \\
X^{\beta} \partial_{\beta} \theta_{\alpha}
\end{array}\right)+\left(\begin{array}{l}
V^{\beta} \partial_{\beta} X^{\alpha}-X^{\beta} \partial_{\beta} V^{\alpha} \\
0 \\
0
\end{array}\right) \\
& +\left(\begin{array}{l}
0 \\
0 \\
-X^{\beta} \partial_{\beta} \theta_{\alpha}-\theta_{\beta} \partial_{\alpha} X^{\beta}
\end{array}\right) \\
= & \left(\begin{array}{l}
V^{\beta} \partial_{\beta} X^{\alpha} \\
X^{\alpha} \\
-\theta_{\beta} \partial_{\alpha} X^{\beta}
\end{array}\right)={ }^{c c} X
\end{aligned}
$$

Thus, we have Theorem 2.
On the other hand, on putting $C_{(\overline{\bar{\beta}})}=E_{(\overline{\bar{\beta}})}$, we write the adapted frame of $\beta_{\theta}\left(T\left(M_{n}\right)\right)$ as $\left\{B_{(\bar{\beta})}, C_{(\beta)}, C_{(\overline{\bar{\beta}})}\right\}$. The adapted frame $\left\{B_{(\bar{\beta})}, C_{(\beta)}, C_{(\overline{\bar{\beta}})}\right\}$ of $\beta_{\theta}\left(T\left(M_{n}\right)\right)$ is given by the matrix

$$
\widetilde{A}=\left(\widetilde{A}_{B}^{A}\right)=\left(\begin{array}{ccc}
\delta_{\beta}^{\alpha} & \partial_{\beta} V^{\alpha} & 0 \tag{1.8}\\
0 & \delta_{\beta}^{\alpha} & 0 \\
0 & \partial_{\beta} \theta_{\alpha} & \delta_{\alpha}^{\beta}
\end{array}\right)
$$

Since the matrix \widetilde{A} in (1.8) is nonsingular, it has the inverse. Denoting this inverse by $(\widetilde{A})^{-1}$, we have

$$
(\widetilde{A})^{-1}=\left(\widetilde{A}_{C}^{B}\right)^{-1}=\left(\begin{array}{ccc}
\delta_{\theta}^{\beta} & -\partial_{\theta} V^{\beta} & 0 \tag{1.9}\\
0 & \delta_{\theta}^{\beta} & 0 \\
0 & -\partial_{\theta} \theta_{\beta} & \delta_{\beta}^{\theta}
\end{array}\right)
$$

where $\widetilde{A}(\widetilde{A})^{-1}=\left(\widetilde{A}_{B}^{A}\right)\left(\widetilde{A}_{C}^{B}\right)^{-1}=\delta_{C}^{A}=\widetilde{I}$, where $A=(\bar{\alpha}, \alpha, \overline{\bar{\alpha}}), B=(\bar{\beta}, \beta, \overline{\bar{\beta}}), C=(\bar{\theta}, \theta, \overline{\bar{\theta}})$.
Proof From (1.8) and (1.9), we easily see that

$$
\begin{aligned}
\widetilde{A}(\widetilde{A})^{-1} & =\left(\widetilde{A}_{B}^{A}\right)\left(\widetilde{A}_{C}^{B}\right)^{-1}=\left(\begin{array}{ccc}
\delta_{\beta}^{\alpha} & \partial_{\beta} V^{\alpha} & 0 \\
0 & \delta_{\beta}^{\alpha} & 0 \\
0 & \partial_{\beta} \theta_{\alpha} & \delta_{\alpha}^{\beta}
\end{array}\right)\left(\begin{array}{ccc}
\delta_{\theta}^{\beta} & -\partial_{\theta} V^{\beta} & 0 \\
0 & \delta_{\theta}^{\beta} & 0 \\
0 & -\partial_{\theta} \theta_{\beta} & \delta_{\beta}^{\theta}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\delta_{\theta}^{\alpha} & -\partial_{\theta} V^{\alpha}+\partial_{\theta} V^{\alpha} & 0 \\
0 & \delta_{\theta}^{\alpha} & 0 \\
0 & \partial_{\theta} \theta_{\alpha}-\partial_{\theta} \theta_{\alpha} & \delta_{\alpha}^{\theta}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\delta_{\theta}^{\alpha} & 0 & 0 \\
0 & \delta_{\theta}^{\alpha} & 0 \\
0 & 0 & \delta_{\alpha}^{\theta}
\end{array}\right)=\delta_{C}^{A}=\widetilde{I} .
\end{aligned}
$$

YILDIRIM/Turk J Math

Then we see from Theorem 2 that the complete lift ${ }^{c c} X$ of a vector field $X \in \Im_{0}^{1}\left(T\left(M_{n}\right)\right)$ has along $\beta_{\theta}\left(T\left(M_{n}\right)\right)$ components of the form

$$
{ }^{c c} X:\left(\begin{array}{l}
L_{V} X^{\alpha} \\
X^{\alpha} \\
-L_{X} \theta_{\alpha}
\end{array}\right)
$$

with respect to the adapted frame $\left\{B_{(\bar{\beta})}, C_{(\beta)}, C_{(\overline{\bar{\beta}})}\right\}$.
$B X, C X$, and $E \omega$ also have components

$$
B X=\left(\begin{array}{l}
X^{\alpha} \tag{1.10}\\
0 \\
0
\end{array}\right), \quad C X=\left(\begin{array}{l}
0 \\
X^{\alpha} \\
0
\end{array}\right), \quad E \omega=\left(\begin{array}{l}
0 \\
0 \\
\omega_{\alpha}
\end{array}\right)
$$

respectively, with respect to the adapted frame $\left\{B_{(\bar{\beta})}, C_{(\beta)}, C_{(\overline{\bar{\beta}})}\right\}$ of the cross-section $\beta_{\theta}\left(T\left(M_{n}\right)\right)$ determined by a 1 -form θ on $T\left(M_{n}\right)$.

2. Complete lift of tensor fields of type $(1,1)$ on a cross-section in a semi-cotangent bundle

Suppose now that $F \in \Im_{1}^{1}\left(T\left(M_{n}\right)\right)$ and F has local components F_{β}^{α} in a neighborhood U of $M_{n}, F=$ $F_{\beta}^{\alpha} \partial_{\alpha} \otimes d x^{\beta}$. Then the semi-cotangent (pull-back) bundle $t^{*}\left(M_{n}\right)$ of cotangent bundle $T^{*}\left(M_{n}\right)$ by using projection of the tangent bundle $T\left(M_{n}\right)$ admits the complete lift ${ }^{c c} F$ of F with components [8]

$$
{ }^{c c} F=\left({ }^{c c} F_{J}^{I}\right)=\left(\begin{array}{ccc}
F_{\beta}^{\alpha} & y^{\varepsilon} \partial_{\varepsilon} F_{\beta}^{\alpha} & 0 \tag{2.1}\\
0 & F_{\beta}^{\alpha} & 0 \\
0 & p_{\sigma}\left(\partial_{\beta} F_{\alpha}^{\sigma}-\partial_{\alpha} F_{\beta}^{\sigma}\right) & F_{\alpha}^{\beta}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{\bar{\alpha}}, x^{\alpha}, x^{\overline{\bar{\alpha}}}\right)$ on $t^{*}\left(M_{n}\right)$. Then ${ }^{c c} F$ has components F_{B}^{A} given by

$$
{ }^{c c} F=\left({ }^{c c} F_{B}^{A}\right)=\left(\begin{array}{ccc}
F_{\beta}^{\alpha} & L_{V} F_{\beta}^{\alpha} & 0 \tag{2.2}\\
0 & F_{\beta}^{\alpha} & 0 \\
0 & \phi_{F} \theta & F_{\alpha}^{\beta}
\end{array}\right)
$$

with respect to the adapted frame $\left\{B_{(\bar{\beta})}, C_{(\beta)}, C_{(\overline{\bar{\beta}})}\right\}$ of the cross-section $\beta_{\theta}\left(T\left(M_{n}\right)\right)$ determined by a 1-form θ in $T\left(M_{n}\right)$, where $A=(\bar{\alpha}, \alpha, \overline{\bar{\alpha}}), B=(\bar{\beta}, \beta, \overline{\bar{\beta}})$. Also, the component ${ }^{c c} F_{\beta}^{\overline{\bar{\alpha}}}{ }^{\text {of }}{ }^{c c} F_{B}^{A}$ is defined as the Tachibana operator $\phi_{F} \theta$ of F, i.e.

$$
{ }^{c c} F_{\beta}^{\overline{\bar{\alpha}}}=\phi_{F} \theta=\left(\partial_{\beta} F_{\alpha}^{\sigma}-\partial_{\alpha} F_{\beta}^{\sigma}\right) \theta_{\sigma}-F_{\beta}^{\gamma} \partial_{\gamma} \theta_{\alpha}+F_{\alpha}^{\gamma} \partial_{\beta} \theta_{\gamma}
$$

and $L_{V} F_{\beta}^{\alpha}$ denotes the Lie derivative of F_{β}^{α} with respect to V, i.e.

$$
L_{V} F_{\beta}^{\alpha}=V^{\gamma} \partial_{\gamma} F_{\beta}^{\alpha}+F_{\gamma}^{\alpha} \partial_{\beta} V^{\gamma}-F_{\beta}^{\gamma} \partial_{\gamma} V^{\alpha}
$$

YILDIRIM/Turk J Math

Proof Let $F \in \Im_{1}^{1}\left(T\left(M_{n}\right)\right)$. Then we have by (1.8), (1.9), and (2.1):

$$
\begin{aligned}
{ }^{c c} F & =\left(\widetilde{A}_{A}^{B}\right)^{-1}\left({ }^{c c} F_{C}^{A}\right)\left(\widetilde{A}_{D}^{C}\right) \\
& =\left(\begin{array}{ccc}
\delta_{\alpha}^{\beta} & -\partial_{\alpha} V^{\beta} & 0 \\
0 & \delta_{\alpha}^{\beta} & 0 \\
0 & -\partial_{\alpha} \theta_{\beta} & \delta_{\beta}^{\alpha}
\end{array}\right)\left(\begin{array}{cc}
F_{\gamma}^{\alpha} & V^{\varepsilon} \partial_{\varepsilon} F_{\gamma}^{\alpha} \\
0 & F_{\gamma}^{\alpha} \\
0 & \theta_{\sigma}\left(\partial_{\gamma} F_{\alpha}^{\sigma}-\partial_{\alpha} F_{\gamma}^{\sigma}\right) \\
F_{\alpha}^{\gamma}
\end{array}\right)\left(\begin{array}{cc}
\delta_{\psi}^{\gamma} & \partial_{\psi} V^{\gamma} \\
0 & \delta_{\psi}^{\gamma} \\
0 & \partial_{\psi} \theta_{\gamma} \\
\delta_{\gamma}^{\psi}
\end{array}\right) \\
& =\left(\begin{array}{cc}
F_{\gamma}^{\beta} & V^{\varepsilon} \partial_{\varepsilon} F_{\gamma}^{\beta}-F_{\gamma}^{\alpha} \partial_{\alpha} V^{\beta} \\
0 & F_{\gamma}^{\beta} \\
0 & -F_{\gamma}^{\alpha} \partial_{\alpha} \theta_{\beta}+\theta_{\sigma} \partial_{\gamma} F_{\beta}^{\sigma}-\theta_{\sigma} \partial_{\beta} F_{\gamma}^{\sigma} \\
\sigma_{\beta} & 0 \\
F_{\beta}^{\gamma}
\end{array}\right)\left(\begin{array}{ccc}
\delta_{\psi}^{\gamma} & \partial_{\psi} V^{\gamma} & 0 \\
0 & \delta_{\psi}^{\gamma} & 0 \\
0 & \partial_{\psi} \theta_{\gamma} & \delta_{\gamma}^{\psi}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
F_{\psi}^{\beta} & F_{\gamma}^{\beta} \partial_{\psi} V^{\gamma}+V^{\varepsilon} \partial_{\varepsilon} F_{\psi}^{\beta}-F_{\psi}^{\alpha} \partial_{\alpha} V^{\beta} & 0 \\
0 & F_{\psi}^{\beta} \\
0 & -F_{\psi}^{\alpha} \partial_{\alpha} \theta_{\beta}+\theta_{\sigma} \partial_{\psi} F_{\beta}^{\sigma}-\theta_{\sigma} \partial_{\beta} F_{\psi}^{\sigma}+F_{\beta}^{\gamma} \partial_{\psi} \theta_{\gamma} & F_{\beta}^{\psi}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
F_{\psi}^{\beta} & L_{V} F_{\psi}^{\beta} & 0 \\
0 & F_{\psi}^{\beta} & 0 \\
0 & \varphi_{F} \theta & F_{\beta}^{\psi}
\end{array}\right)=\left({ }^{c c} F_{D}^{B}\right),
\end{aligned}
$$

where $A=(\bar{\alpha}, \alpha, \overline{\bar{\alpha}}), B=(\bar{\beta}, \beta, \overline{\bar{\beta}}), C=(\bar{\gamma}, \gamma, \overline{\bar{\gamma}}), D=(\bar{\psi}, \psi, \overline{\bar{\psi}})$.
Using (2.2), we have along $\beta_{\theta}\left(T\left(M_{n}\right)\right)$:

Theorem 3 If F and X are affinor and vector fields on $T\left(M_{n}\right)$, and $\omega \in \Im_{1}^{0}\left(M_{n}\right)$, then:
(i) ${ }^{c c} F(B X+C X)=B(F X)+C(F X)+B\left(\left(L_{V} F\right) X\right)+E\left(P_{X}\right)$,
(ii) ${ }^{c c} F(E \omega)=E(\omega \circ F)$,
where $P \in \Im_{2}^{0}\left(M_{n}\right)$ with local components

$$
P_{\beta \alpha}=\phi_{F} \theta=\left(\partial_{\beta} F_{\alpha}^{\sigma}-\partial_{\alpha} F_{\beta}^{\sigma}\right) \theta_{\sigma}-F_{\beta}^{\gamma} \partial_{\gamma} \theta_{\alpha}+F_{\alpha}^{\gamma} \partial_{\beta} \theta_{\gamma},
$$

θ_{β} being local components of θ, and $P_{X} \in \Im_{1}^{0}\left(M_{n}\right)$ defined by $P_{X}(Y)=P(X, Y)$, for $Y \in \Im_{0}^{1}\left(T\left(M_{n}\right)\right)$.

YILDIRIM/Turk J Math

Proof (i) If F and X are affinor and vector fields on $T\left(M_{n}\right)$, then by (1.10) and (2.2), we have

$$
\begin{aligned}
{ }^{c c} F(B X+C X) & =\left(\begin{array}{ccc}
F_{\beta}^{\alpha} & L_{V} F_{\beta}^{\alpha} & 0 \\
0 & F_{\beta}^{\alpha} & 0 \\
0 & \varphi_{F} \theta & F_{\alpha}^{\beta}
\end{array}\right)\left(\begin{array}{l}
X^{\beta} \\
X^{\beta} \\
0
\end{array}\right) \\
& =\left(\begin{array}{l}
F_{\beta}^{\alpha} X^{\beta}+L_{V} F_{\beta}^{\alpha} X^{\beta} \\
F_{\beta}^{\alpha} X^{\beta} \\
X^{\beta} \partial_{\beta} F_{\alpha}^{\sigma} \theta_{\sigma}-X^{\beta} \partial_{\alpha} F_{\beta}^{\sigma} \theta_{\sigma}-F_{\beta}^{\gamma} X^{\beta} \partial_{\gamma} \theta_{\alpha}+F_{\alpha}^{\gamma} X^{\beta} \partial_{\beta} \theta_{\gamma}
\end{array}\right) \\
& =\left(\begin{array}{l}
(F X)^{\alpha}+V^{\gamma} \partial_{\gamma} F_{\beta}^{\alpha} X^{\beta}+F_{\gamma}^{\alpha} \partial_{\beta} V^{\gamma} X^{\beta}-F_{\beta}^{\gamma} \partial_{\gamma} V^{\alpha} X^{\beta} \\
(F X)^{\alpha} \\
X^{\beta} \partial_{\beta} F_{\alpha}^{\sigma} \theta_{\sigma}-X^{\beta} \partial_{\alpha} F_{\beta}^{\sigma} \theta_{\sigma}-F_{\beta}^{\gamma} X^{\beta} \partial_{\gamma} \theta_{\alpha}+F_{\alpha}^{\gamma} X^{\beta} \partial_{\beta} \theta_{\gamma}
\end{array}\right) \\
& =\left(\begin{array}{l}
(F X)^{\alpha} \\
0 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
(F X)^{\alpha} \\
0
\end{array}\right)+\left(\begin{array}{l}
\left(L_{V} F\right) X \\
0 \\
0
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
P_{X}
\end{array}\right) \\
& =B(F X)+C(F X)+B\left(\left(L_{V} F\right) X\right)+E\left(P_{X}\right) .
\end{aligned}
$$

Thus, we have ${ }^{c c} F(B X+C X)=B(F X)+C(F X)+B\left(\left(L_{V} F\right) X\right)+E\left(P_{X}\right)$.
(ii) If $\omega \in \Im_{1}^{0}\left(M_{n}\right), F$ is an affinor field on $T\left(M_{n}\right)$, and then by (1.10) and (2.2), we have

$$
{ }^{c c} F(E \omega)=\left(\begin{array}{ccc}
F_{\beta}^{\alpha} & L_{V} F_{\beta}^{\alpha} & 0 \\
0 & F_{\beta}^{\alpha} & 0 \\
0 & \varphi_{F} \theta & F_{\alpha}^{\beta}
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
\omega_{\beta}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
\omega_{\beta} F_{\alpha}^{\beta}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
(\omega \circ F)_{\alpha}
\end{array}\right)=E(\omega \circ F),
$$

which gives equation (ii) of Theorem 3.
When ${ }^{c c} F(B X+C X)$ is always tangent to $\beta_{\theta}\left(T\left(M_{n}\right)\right)$ for any vector field $X \in \Im_{0}^{1}\left(T\left(M_{n}\right)\right),{ }^{c c} F$ is said to leave the cross-section $\beta_{\theta}\left(T\left(M_{n}\right)\right)$ invariant.

Thus, we have:

Theorem 4 The complete lift ${ }^{c c} F$ of an element of $F \in \Im_{1}^{1}\left(T\left(M_{n}\right)\right)$ leaves the cross-section $\beta_{\theta}\left(T\left(M_{n}\right)\right)$ invariant if and only if:
(i) $\left(\partial_{\beta} F_{\alpha}^{\sigma}-\partial_{\alpha} F_{\beta}^{\sigma}\right) \theta_{\sigma}-F_{\beta}^{\gamma} \partial_{\gamma} \theta_{\alpha}+F_{\alpha}^{\gamma} \partial_{\beta} \theta_{\gamma}=0 \quad\left(i . e . \phi_{F} \theta=0\right)$,
(ii) $V^{\gamma} \partial_{\gamma} F_{\beta}^{\alpha}+F_{\gamma}^{\alpha} \partial_{\beta} V^{\gamma}-F_{\beta}^{\gamma} \partial_{\gamma} V^{\alpha}=0 \quad\left(\right.$ i.e. $\left.L_{V} F=0\right)$,
where $F_{\beta}^{\alpha}, \theta_{\beta}$, and V^{α} are local components of F, θ, and V, respectively.

3. Adapted frames and diagonal lifts of affinor fields

Let ∇ be a symmetric affine connection in M_{n}. In each coordinate neighborhood $\left\{U, x^{\alpha}\right\}$ of M_{n}, we put

$$
X_{(\alpha)}=\frac{\partial}{\partial x^{\alpha}}, \quad \theta^{(\alpha)}=d x^{\alpha}
$$

Then $3 n$ local vector fields $Y_{(\alpha)},{ }^{H H} X_{(\alpha)}$, and ${ }^{v v} \theta^{(\alpha)}$ have respectively components of the form

$$
Y_{(\alpha)}:\left(\begin{array}{l}
\delta_{\alpha}^{\beta} \tag{3.1}\\
0 \\
0
\end{array}\right), \quad{ }^{H H} X_{(\alpha)}:\left(\begin{array}{c}
-\Gamma_{\beta}^{\alpha} \\
\delta_{\alpha}^{\beta} \\
\Gamma_{\beta \alpha}
\end{array}\right), \quad{ }^{v v} \theta^{(\alpha)}:\left(\begin{array}{l}
0 \\
0 \\
\delta_{\beta}^{\alpha}
\end{array}\right)
$$

with respect to the induced coordinates $\left(x^{\bar{\alpha}}, x^{\alpha}, x^{\overline{\bar{\alpha}}}\right)$ in $\pi^{-1}(U)$, where we have used (1.6). We call the set $\left\{Y_{(\alpha)},{ }^{H H} X_{(\alpha)},{ }^{v v} \theta^{(\alpha)}\right\}$ the frame adapted to the symmetric affine connection ∇ in $\pi^{-1}(U)$. On putting

$$
\begin{equation*}
\widehat{e}_{(\bar{\alpha})}=Y_{(\alpha)}, \quad \widehat{e}_{(\alpha)}=^{H H} X_{(\alpha)}, \quad \widehat{e}_{(\overline{\bar{\alpha}})}={ }^{v v} \theta^{(\alpha)} \tag{3.2}
\end{equation*}
$$

we write the adapted frame as

$$
\begin{equation*}
\left\{\widehat{e}_{(B)}\right\}=\left\{\widehat{e}_{(\bar{\alpha})}, \widehat{e}_{(\alpha)}, \widehat{e}_{(\overline{\bar{\alpha}})}\right\} \tag{3.3}
\end{equation*}
$$

The adapted frame $\left\{\widehat{e}_{(B)}\right\}=\left\{\widehat{e}_{(\bar{\alpha})}, \widehat{e}_{(\alpha)}, \widehat{e}_{(\overline{\bar{\alpha}})}\right\}$ is given by the matrix

$$
\widehat{A}=\left(\widehat{A}_{B}^{A}\right)=\left(\begin{array}{ccc}
\delta_{\beta}^{\alpha} & -\Gamma_{\beta}^{\alpha} & 0 \tag{3.4}\\
0 & \delta_{\beta}^{\alpha} & 0 \\
0 & \Gamma_{\beta \alpha} & \delta_{\alpha}^{\beta}
\end{array}\right)
$$

Since the matrix \widehat{A} in (3.4) is nonsingular, it has the inverse. Denoting this inverse by $(\widehat{A})^{-1}$, we have

$$
(\widehat{A})^{-1}=\left(\widehat{A}_{C}^{B}\right)^{-1}=\left(\begin{array}{ccc}
\delta_{\theta}^{\beta} & \Gamma_{\theta}^{\beta} & 0 \tag{3.5}\\
0 & \delta_{\theta}^{\beta} & 0 \\
0 & -\Gamma_{\theta \beta} & \delta_{\beta}^{\theta}
\end{array}\right)
$$

where $\widehat{A}(\widehat{A})^{-1}=\left(\widehat{A}_{B}^{A}\right)\left(\widehat{A}_{C}^{B}\right)^{-1}=\delta_{C}^{A}=\widetilde{I}$, where $A=(\bar{\alpha}, \alpha, \overline{\bar{\alpha}}), B=(\bar{\beta}, \beta, \overline{\bar{\beta}}), C=(\bar{\theta}, \theta, \overline{\bar{\theta}})$.
Proof From (3.4) and (3.5), we easily see that

$$
\begin{aligned}
\widehat{A}(\widehat{A})^{-1} & =\left(\widehat{A}_{B}^{A}\right)\left(\widehat{A}_{C}^{B}\right)^{-1}=\left(\begin{array}{ccc}
\delta_{\beta}^{\alpha} & -\Gamma_{\beta}^{\alpha} & 0 \\
0 & \delta_{\beta}^{\alpha} & 0 \\
0 & \Gamma_{\beta \alpha} & \delta_{\alpha}^{\beta}
\end{array}\right)\left(\begin{array}{ccc}
\delta_{\theta}^{\beta} & \Gamma_{\theta}^{\beta} & 0 \\
0 & \delta_{\theta}^{\beta} & 0 \\
0 & -\Gamma_{\theta \beta} & \delta_{\beta}^{\theta}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\delta_{\theta}^{\alpha} & \Gamma_{\theta}^{\alpha}-\Gamma_{\theta}^{\alpha} & 0 \\
0 & \delta_{\theta}^{\alpha} & 0 \\
0 & \Gamma_{\theta \alpha}-\Gamma_{\theta \alpha} & \delta_{\alpha}^{\theta}
\end{array}\right)=\left(\begin{array}{ccc}
\delta_{\theta}^{\alpha} & 0 & 0 \\
0 & \delta_{\theta}^{\alpha} & 0 \\
0 & 0 & \delta_{\alpha}^{\theta}
\end{array}\right) \\
& =\delta_{C}^{A}=\widehat{I} .
\end{aligned}
$$

If we take account of (3.3), we see that the diagonal lift ${ }^{D D} F$ of $F \in \Im_{1}^{1}\left(T\left(M_{n}\right)\right)$ has components

$$
{ }^{D D} F=\left({ }^{D D} F_{J}^{I}\right)=\left(\begin{array}{ccc}
-F_{\beta}^{\alpha} & -\Gamma_{\varepsilon}^{\alpha} F_{\beta}^{\varepsilon}-\Gamma_{\beta}^{\varepsilon} F_{\varepsilon}^{\alpha} & 0 \tag{3.6}\\
0 & F_{\beta}^{\alpha} & 0 \\
0 & \Gamma_{\beta \sigma} F_{\alpha}^{\sigma}+\Gamma_{\alpha \sigma} F_{\beta}^{\sigma} & -F_{\alpha}^{\beta}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{\bar{\alpha}}, x^{\alpha}, x^{\bar{\alpha}}\right)$ on $t^{*}\left(M_{n}\right)$, where

$$
\Gamma_{\varepsilon}^{\alpha}=y^{\gamma} \Gamma_{\gamma \varepsilon}^{\alpha}, \quad \Gamma_{\alpha \sigma}=p_{\gamma} \Gamma_{\alpha \sigma}^{\gamma} .
$$

Proof Let $F \in \Im_{1}^{1}\left(T\left(M_{n}\right)\right)$. Then we have by (3.4), (3.5), and (3.6):

$$
\begin{aligned}
{ }^{D D} F & =(\widehat{A})\left({ }^{D D} F\right)(\widehat{A})^{-1} \\
& =\left(\begin{array}{ccc}
\delta_{\alpha}^{\beta} & -\Gamma_{\alpha}^{\beta} & 0 \\
0 & \delta_{\alpha}^{\beta} & 0 \\
0 & \Gamma_{\alpha \beta} & \delta_{\beta}^{\alpha}
\end{array}\right)\left(\begin{array}{ccc}
-F_{\gamma}^{\alpha} & -\Gamma_{\varepsilon}^{\alpha} F_{\gamma}^{\varepsilon}-\Gamma_{\gamma}^{\varepsilon} F_{\varepsilon}^{\alpha} & 0 \\
0 & F_{\gamma}^{\alpha} & 0 \\
0 & \Gamma_{\gamma \sigma} F_{\alpha}^{\sigma}+\Gamma_{\alpha \sigma} F_{\gamma}^{\sigma} & -F_{\alpha}^{\gamma}
\end{array}\right)\left(\begin{array}{ccc}
\delta_{\psi}^{\gamma} & \Gamma_{\psi}^{\gamma} & 0 \\
0 & \delta_{\psi}^{\gamma} & 0 \\
0 & -\Gamma_{\psi \gamma} & \delta_{\gamma}^{\psi}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
-F_{\gamma}^{\beta} & -\Gamma_{\varepsilon}^{\beta} F_{\gamma}^{\varepsilon}-\Gamma_{\gamma}^{\varepsilon} F_{\varepsilon}^{\beta}-\Gamma_{\alpha}^{\beta} F_{\gamma}^{\alpha} & 0 \\
0 & F_{\gamma}^{\beta} \\
0 & \Gamma_{\alpha \beta} F_{\gamma}^{\alpha}+\Gamma_{\gamma \sigma} F_{\beta}^{\sigma}+\Gamma_{\beta \sigma} F_{\gamma}^{\sigma} & -F_{\beta}^{\gamma}
\end{array}\right)\left(\begin{array}{ccc}
\delta_{\psi}^{\gamma} & \Gamma_{\psi}^{\gamma} & 0 \\
0 & \delta_{\psi}^{\gamma} & 0 \\
0 & -\Gamma_{\psi \gamma} & \delta_{\gamma}^{\psi}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
-F_{\psi}^{\beta} & -\Gamma_{\psi}^{\gamma} F_{\gamma}^{\beta}-\Gamma_{\varepsilon}^{\beta} F_{\psi}^{\varepsilon}-\Gamma_{\psi}^{\varepsilon} F_{\varepsilon}^{\beta}-\Gamma_{\alpha}^{\beta} F_{\psi}^{\alpha} & F_{\psi}^{\beta} \\
0 & 0 \\
0 & \Gamma_{\alpha \beta} F_{\psi}^{\alpha}+\Gamma_{\psi \sigma} F_{\beta}^{\sigma}+\Gamma_{\beta \sigma} F_{\psi}^{\sigma}+\Gamma_{\psi \gamma} F_{\beta}^{\gamma} & -F_{\beta}^{\psi}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
-F_{\psi}^{\beta} & -\Gamma_{\rho}^{\beta} F_{\psi}^{\rho}-\Gamma_{\psi}^{\rho} F_{\rho}^{\beta} & 0 \\
0 & F_{\psi}^{\beta} & 0 \\
0 & \Gamma_{\psi \mu} F_{\beta}^{\mu}+\Gamma_{\beta \mu} F_{\psi}^{\mu} & -F_{\beta}^{\psi}
\end{array}\right),
\end{aligned}
$$

which proves (3.6).
We now see, from (3.3), that the diagonal lift ${ }^{D D} F$ of $F \in \Im_{1}^{1}\left(T\left(M_{n}\right)\right)$ has components of the form

$$
{ }^{D D} F=\left({ }^{D D} F_{B}^{A}\right)=\left(\begin{array}{ccc}
-F_{\beta}^{\alpha} & 0 & 0 \\
0 & F_{\beta}^{\alpha} & 0 \\
0 & 0 & -F_{\alpha}^{\beta}
\end{array}\right)
$$

with respect to the adapted frame $\left\{\widehat{e}_{(B)}\right\}$ in $t^{*}\left(M_{n}\right)$.
Proof Let $F \in \Im_{1}^{1}\left(T\left(M_{n}\right)\right)$. Then we have by (3.4), (3.5), and (3.6):

$$
\begin{aligned}
{ }^{D D} F & =(\widehat{A})^{-1}\left({ }^{D D} F\right)(\widehat{A}) \\
& =\left(\begin{array}{ccc}
\delta_{\alpha}^{\beta} & \Gamma_{\alpha}^{\beta} & 0 \\
0 & \delta_{\alpha}^{\alpha} & 0 \\
0 & -\Gamma_{\alpha \beta} & \delta_{\beta}^{\alpha}
\end{array}\right)\left(\begin{array}{ccc}
-F_{\gamma}^{\alpha} & -\Gamma_{\varepsilon}^{\alpha} F_{\gamma}^{\varepsilon}-\Gamma_{\gamma}^{\varepsilon} F_{\varepsilon}^{\alpha} & 0 \\
0 & F_{\gamma}^{\alpha} & 0 \\
0 & \Gamma_{\gamma \sigma} F_{\alpha}^{\sigma}+\Gamma_{\alpha \sigma} F_{\gamma}^{\sigma} & -F_{\alpha}^{\gamma}
\end{array}\right)\left(\begin{array}{ccc}
\delta_{\psi}^{\gamma} & -\Gamma_{\gamma}^{\gamma} & 0 \\
0 & \delta_{\psi}^{\psi} & 0 \\
0 & \Gamma_{\psi \gamma} & \delta_{\gamma}^{\psi}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
-F_{\gamma}^{\beta} & -\Gamma_{\varepsilon}^{\beta} F_{\gamma}^{\varepsilon}-\Gamma_{\gamma}^{\varepsilon} F_{\varepsilon}^{\beta}+\Gamma_{\alpha}^{\beta} F_{\gamma}^{\alpha} & 0 \\
0 & F_{\gamma}^{\beta} & 0 \\
0 & -\Gamma_{\alpha \beta} F_{\gamma}^{\alpha}+\Gamma_{\gamma \sigma} F_{\beta}^{\sigma}+\Gamma_{\beta \sigma} F_{\gamma}^{\sigma} & -F_{\beta}^{\gamma}
\end{array}\right)\left(\begin{array}{ccc}
\delta_{\psi}^{\gamma} & -\Gamma_{\psi}^{\gamma} & 0 \\
0 & \delta_{\psi}^{\gamma} & 0 \\
0 & \Gamma_{\psi \gamma} & \delta_{\gamma}^{\psi}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
-F_{\psi}^{\beta} & \Gamma_{\psi}^{\gamma} F_{\gamma}^{\beta}-\Gamma_{\varepsilon}^{\beta} F_{\psi}^{\varepsilon}-\Gamma_{\psi}^{\varepsilon} F_{\varepsilon}^{\beta}+\Gamma_{\alpha}^{\beta} F_{\psi}^{\alpha} & 0 \\
0 & F_{\psi}^{\beta} \\
0 & -\Gamma_{\alpha \beta} F_{\psi}^{\alpha}+\Gamma_{\psi \sigma} F_{\beta}^{\sigma}+\Gamma_{\beta \sigma} F_{\psi}^{\sigma}-\Gamma_{\psi \gamma} F_{\beta}^{\gamma} & -F_{\beta}^{\psi}
\end{array}\right)
\end{aligned}
$$

YILDIRIM/Turk J Math

$$
=\left(\begin{array}{ccc}
-F_{\psi}^{\beta} & 0 & 0 \\
0 & F_{\psi}^{\beta} & 0 \\
0 & 0 & -F_{\beta}^{\psi}
\end{array}\right) .
$$

This completes the proof.
We now obtain from (3.6) that the diagonal lift ${ }^{D D} F$ of an affinor field $F \in \Im_{1}^{1}\left(T\left(M_{n}\right)\right)$ has along $\beta_{\theta}\left(T\left(M_{n}\right)\right)$ components of the form

$$
{ }^{D D} F:\left(\begin{array}{ccc}
-F_{\beta}^{\alpha} & -\left(\nabla_{\varepsilon} V^{\alpha}\right) F_{\beta}^{\varepsilon}-\left(\nabla_{\beta} V^{\varepsilon}\right) F_{\varepsilon}^{\alpha} & 0 \tag{3.7}\\
0 & F_{\beta}^{\alpha} & 0 \\
0 & -\left(\nabla_{\beta} \theta_{\sigma}\right) F_{\alpha}^{\sigma}-\left(\nabla_{\alpha} \theta_{\sigma}\right) F_{\beta}^{\sigma} & -F_{\alpha}^{\beta}
\end{array}\right)
$$

with respect to the adapted frame $\left\{B_{(\bar{\beta})}, C_{(\beta)}, C_{(\overline{\bar{\beta}})}\right\}$.
Proof Let $F \in \Im_{1}^{1}\left(T\left(M_{n}\right)\right)$. Then we have by (1.8), (1.9), and (3.7):

$$
\begin{aligned}
& { }^{D D} F=(\widetilde{A})^{-1}\left({ }^{D D} F\right)(\widetilde{A}) \\
& =\left(\begin{array}{ccc}
\delta_{\alpha}^{\beta} & -\partial_{\alpha} V^{\beta} & 0 \\
0 & \delta_{\alpha}^{\beta} & 0 \\
0 & -\partial_{\alpha} \theta_{\beta} & \delta_{\beta}^{\alpha}
\end{array}\right)\left(\begin{array}{ccc}
-F_{\gamma}^{\alpha} & -\Gamma_{\varepsilon}^{\alpha} F_{\gamma}^{\varepsilon}-\Gamma_{\gamma}^{\varepsilon} F_{\varepsilon}^{\alpha} & 0 \\
0 & F_{\gamma}^{\alpha} & 0 \\
0 & \Gamma_{\gamma \sigma} F_{\alpha}^{\sigma}+\Gamma_{\alpha \sigma} F_{\gamma}^{\sigma} & -F_{\alpha}^{\gamma}
\end{array}\right)\left(\begin{array}{ccc}
\delta_{\psi}^{\gamma} & \partial_{\psi} V^{\gamma} & 0 \\
0 & \delta_{\psi}^{\gamma} & 0 \\
0 & \partial_{\psi} \theta_{\gamma} & \delta_{\gamma}^{\psi}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
-F_{\gamma}^{\beta} & -\Gamma_{\varepsilon}^{\beta} F_{\gamma}^{\varepsilon}-\Gamma_{\gamma}^{\varepsilon} F_{\varepsilon}^{\beta}-\partial_{\alpha} V^{\beta} F_{\gamma}^{\alpha} & 0 \\
0 & F_{\gamma}^{\beta} & 0 \\
0 & -\partial_{\alpha} \theta_{\beta} F_{\gamma}^{\alpha}+\Gamma_{\gamma \sigma} F_{\beta}^{\sigma}+\Gamma_{\beta \sigma} F_{\gamma}^{\sigma} & -F_{\beta}^{\gamma}
\end{array}\right)\left(\begin{array}{ccc}
\delta_{\psi}^{\gamma} & \partial_{\psi} V^{\gamma} & 0 \\
0 & \delta_{\psi}^{\gamma} & 0 \\
0 & \partial_{\psi} \theta_{\gamma} & \delta_{\gamma}^{\psi}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
-F_{\psi}^{\beta} & -\partial_{\psi} V^{\gamma} F_{\gamma}^{\beta}-\Gamma_{\varepsilon}^{\beta} F_{\psi}^{\varepsilon}-\Gamma_{\psi}^{\varepsilon} F_{\varepsilon}^{\beta}-\partial_{\alpha} V^{\beta} F_{\psi}^{\alpha} & 0 \\
0 & F_{\psi}^{\beta} & 0 \\
0 & -\partial_{\alpha} \theta_{\beta} F_{\psi}^{\alpha}+\Gamma_{\psi \sigma} F_{\beta}^{\sigma}+\Gamma_{\beta \sigma} F_{\psi}^{\sigma}-\partial_{\psi} \theta_{\gamma} F_{\beta}^{\gamma} & -F_{\beta}^{\psi}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
-F_{\psi}^{\beta} & -\left(\nabla_{\gamma} V^{\beta}\right) F_{\psi}^{\gamma}-\left(\nabla_{\psi} V^{\gamma}\right) F_{\gamma}^{\beta} & 0 \\
0 & F_{\psi}^{\beta} & 0 \\
0 & -\left(\nabla_{\psi} \theta_{\gamma}\right) F_{\beta}^{\gamma}-\left(\nabla_{\beta} \theta_{\sigma}\right) F_{\psi}^{\sigma} & -F_{\beta}^{\psi}
\end{array}\right) .
\end{aligned}
$$

Thus, the proof is complete.
Then we see from (1.6) that the horizontal lift ${ }^{H H} X$ of a vector field $X \in \Im_{0}^{1}\left(T\left(M_{n}\right)\right)$ has along $\beta_{\theta}\left(T\left(M_{n}\right)\right)$ components of the form

$$
{ }^{H H} X:\left(\begin{array}{l}
-X^{\beta}\left(\nabla_{\beta} V^{\alpha}\right) \tag{3.8}\\
X^{\alpha} \\
-\left(\nabla_{\beta} \theta_{\alpha}\right) X^{\beta}
\end{array}\right)
$$

with respect to the adapted frame $\left\{B_{(\bar{\beta})}, C_{(\beta)}, C_{(\overline{\bar{\beta}})}\right\}$.

YILDIRIM/Turk J Math

Proof Let $X \in \Im_{0}^{1}\left(T\left(M_{n}\right)\right)$. Then we have by (1.6) and (1.9):

$$
\begin{aligned}
{ }^{H H} X & =(\widetilde{A})^{-1}\left({ }^{H H} X\right)=\left(\begin{array}{ccc}
\delta_{\beta}^{\alpha} & -\partial_{\beta} V^{\alpha} & 0 \\
0 & \delta_{\beta}^{\alpha} & 0 \\
0 & -\partial_{\beta} \theta_{\alpha} & \delta_{\alpha}^{\beta}
\end{array}\right)\left(\begin{array}{l}
-V^{\varepsilon} \Gamma_{\varepsilon}^{\beta} X^{\alpha} \\
X^{\beta} \\
X^{\alpha} \theta_{\varepsilon} \Gamma_{\alpha \beta}^{\varepsilon}
\end{array}\right) \\
& =\left(\begin{array}{c}
-V^{\varepsilon} \Gamma_{\varepsilon}^{\beta} X^{\theta}-\partial_{\beta} V^{\alpha} X^{\beta} \\
X^{\alpha} \\
-\partial_{\beta} \theta_{\alpha} X^{\beta}+X^{\theta} \theta_{\varepsilon} \Gamma_{\theta \alpha}^{\varepsilon}
\end{array}\right)=\left(\begin{array}{l}
-X^{\beta}\left(\nabla_{\beta} V^{\alpha}\right) \\
X^{\alpha} \\
-\left(\nabla_{\beta} \theta_{\alpha}\right) X^{\beta}
\end{array}\right),
\end{aligned}
$$

which gives (3.8).
Using (1.6), (3.7), and (3.8), we have along $\beta_{\theta}\left(T\left(M_{n}\right)\right)$:
Theorem 5 If F and X are affinor and vector fields on $T\left(M_{n}\right)$, and $\omega \in \Im_{1}^{0}\left(M_{n}\right)$, then with respect to a symetric affine connection ∇ in M_{n}, we have
(i) ${ }^{D D} F\left({ }^{H H} X\right)={ }^{H H}(F X)$,
(ii) ${ }^{D D} F\left({ }^{v v} \omega\right)=-{ }^{v v}(\omega \circ F)$.

Proof

(i) If $F \in \Im_{1}^{1}\left(T\left(M_{n}\right)\right)$ and $X \in \Im_{0}^{1}\left(T\left(M_{n}\right)\right)$, then by (3.7) and (3.8), we have

$$
\begin{aligned}
{ }^{D D} F\left({ }^{H H} X\right) & =\left(\begin{array}{cc}
-F_{\beta}^{\alpha} & -\left(\nabla_{\varepsilon} V^{\alpha}\right) F_{\beta}^{\varepsilon}-\left(\nabla_{\beta} V^{\varepsilon}\right) F_{\varepsilon}^{\alpha} \\
0 & F^{\alpha} \\
0 & -\left(\nabla_{\beta} \theta_{\sigma}\right) F_{\alpha}^{\sigma}-\left(\nabla_{\alpha} \theta_{\sigma}\right) F_{\beta}^{\sigma} \\
0 & -F_{\alpha}^{\beta}
\end{array}\right)\left(\begin{array}{c}
-X^{\varepsilon}\left(\nabla_{\varepsilon} V^{\beta}\right) \\
X^{\beta} \\
-\left(\nabla_{\sigma} \theta_{\beta}\right) X^{\sigma}
\end{array}\right) \\
& =\left(\begin{array}{c}
F_{\beta}^{\alpha} X^{\varepsilon}\left(\nabla_{\varepsilon} V^{\beta}\right)-\left(\nabla_{\varepsilon} V^{\alpha}\right) F_{\beta}^{\varepsilon} X^{\beta}-\left(\nabla_{\beta} V^{\varepsilon}\right) F_{\varepsilon}^{\alpha} X^{\beta} \\
(F X)^{\alpha} \\
-\left(\nabla_{\alpha} \theta_{\sigma}\right) F_{\beta}^{\sigma} X^{\beta}-\left(\nabla_{\beta} \theta_{\sigma}\right) F_{\alpha}^{\sigma} X^{\beta}+\left(\nabla_{\sigma} \theta_{\beta}\right) X^{\sigma} F_{\alpha}^{\beta}
\end{array}\right) \\
& =\binom{-\left(\nabla_{\varepsilon} V^{\alpha}\right)(F X)^{\varepsilon}}{\left.(F X)^{\alpha}\right)\left(\nabla_{\sigma} \theta_{\alpha}\right)(F X)^{\sigma}}={ }^{H H}(F X) .
\end{aligned}
$$

Thus, we have ${ }^{D D} F\left({ }^{H H} X\right)={ }^{H H}(F X)$.
(ii) If $\omega \in \Im_{1}^{0}\left(M_{n}\right)$ and $F \in \Im_{1}^{1}\left(T\left(M_{n}\right)\right)$, then by (1.6), (1.10), and (3.7), we have

$$
\begin{aligned}
{ }^{D D} F\left({ }^{v v} \omega\right) & =\left(\begin{array}{ccc}
-F_{\beta}^{\alpha} & -\left(\nabla_{\varepsilon} V^{\alpha}\right) F_{\beta}^{\varepsilon}-\left(\nabla_{\beta} V^{\varepsilon}\right) F_{\varepsilon}^{\alpha} & 0 \\
0 & F_{\beta}^{\alpha} & 0 \\
0 & -\left(\nabla_{\beta} \theta_{\sigma}\right) F_{\alpha}^{\sigma}-\left(\nabla_{\alpha} \theta_{\sigma}\right) F_{\beta}^{\sigma} & -F_{\alpha}^{\beta}
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
\omega_{\beta}
\end{array}\right) \\
& =\left(\begin{array}{l}
0 \\
0 \\
-\omega_{\beta} F_{\alpha}^{\beta}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
-(\omega \circ F)_{\alpha}
\end{array}\right)=-^{v v}(\omega \circ F) .
\end{aligned}
$$

Thus, we have (ii) of Theorem 5 .

References

[1] Husemöller D. Fibre Bundles. New York, NY, USA: Springer, 1994.
[2] Isham CJ. Modern Differential Geometry for Physicists. Singapore: World Scientific, 1999.
[3] Lawson HB, Michelsohn ML. Spin Geometry. Princeton, NJ, USA: Princeton University Press, 1989.
[4] Pontryagin LS. Characteristic classes of differentiable manifolds. T Am Math Soc 1950; 32: 72.
[5] Steenrod N. The Topology of Fibre Bundles. Princeton, NJ, USA: Princeton University Press, 1951.
[6] Vishnevskii VV. Integrable affinor structures and their plural interpretations. J Math Sci (New York) 2002; 108: 151-187.
[7] Yano K, Ishihara S. Tangent and Cotangent Bundles. New York, NY, USA: Marcel Dekker, 1973.
[8] Yıldırım F. On a special class of semi-cotangent bundle. Proc Inst Math Mech 2015; 41: 25-38.
[9] Yıldırım F, Salimov A. Semi-cotangent bundle and problems of lifts. Turk J Math 2014; 38: 325-339.

