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Abstract: In this study, we analyze a conformable fractional (CF) Sturm–Liouville (SL) equation with boundary

conditions on an arbitrary time scale T . Then we extend the basic spectral properties of the classical SL equation

to the CF case. Finally, some sufficient conditions are established to guarantee the existence of a solution for this CF-SL

problem on T by using certain fixed point theorems. For explaining these existence theorems, we give an example with

appropriate choices.
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1. Introduction

Fractional calculus means differentiation and integration of a noninteger order. This branch was introduced and

developed by Leibniz, Liouville, Riemann, Letnikov, and Grünwald [29]. It is one of the most rapidly developing

branches of mathematical physics. Fractional calculus has many applications in science and engineering, such

as memory of a variety of materials, signal identification, temperature field problems in oil strata, or diffusion

problems (see [8, 14, 24, 27, 31]).

Many researchers have started to deal with discrete versions of fractional calculus using the theory of

time scales (see [1, 5, 17, 28, 32, 34]). For example, Benkhettou and his coworkers introduced the concept of

the conformable fractional (CF) derivative on T and explained all properties of CF derivative on T . The CF

derivative of a function order α ∈ (0, 1] defined on T reduces to the Hilger derivative when α = 1. Before

expressing a CF derivative on T , we should give historical development of time scale calculus.

Time scale calculus was first initiated by Stefan Hilger [20] in his doctoral dissertation under the

supervision of Bernard Aulbach (see [6, 21]) to unify difference and differential equations. However, similar

ideas had been used before Hilger and its history goes back at least to the introduction of the Riemann–Stieltjes

integral, which unifies sums and integrals. More specifically, T is an arbitrary, nonempty, closed subset of R.
Various results related to differential equations easily transfer to the related results for difference equations, while

other results seem to be totally different in nature. Time scale calculus can be applied to any fields in which

dynamic processes are described by discrete or continuous time models. Thus, time scale calculus has various

applications including noncontinuous domains like the modeling of certain bug populations, chemical reactions,

phytoremediation of metals, wound healing, maximization problems in economics, and traffic problems. In recent
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years, several authors have obtained important results about different subjects on time scales (see [3, 12, 13]).

Although there are many studies on time scales in the literature, very few studies have been conducted about

BVPs (see [2, 7, 11, 15, 16, 18, 19, 22, 30, 33, 35]).

In this study, we consider the following CF Sturm–Liouville (SL) dynamic equation:

Lαy(t) = −Tα (Tα(y(t))) = λϕ(t)f(t, y(t)), 0 < α ≤ 1, t ∈ [ρ(a), b] = J ⊂ T, (1.1)

with boundary conditions

Tα(y(ρ(a))) = 0, (1.2)

δy(b) + βTα(y(b)) = 0, (1.3)

where λ > 0 is a spectral parameter and ϕ : J → J and f : J × T → R are continuous functions. Here,

Tα(y(t)) indicates the CF derivative of the function y order α and
(
δ2 + β2

)
̸= 0. Moreover, y(t, λ) ∈ C (J,R)

denotes the eigenfunction of the problem (1.1)–(1.3) where C (J,R) is the space of all continuous functions on

J . We look at the classical SL theory from a different perspective. Therefore, spectral properties and results

on the existence of a solution for the problem (1.1)–(1.3) will be discussed for the first time in this study. By

setting α = 1 in (1.1)–(1.3), the problem is reduced to the SL boundary value problem, which includes the

Hilger derivative.

The remaining part of this study is organized as follows: In Section 2, we express some fundamental

notations and definitions about CF calculus on T . Using some methods, we get asymptotic estimates of the

eigenfunction for the problem (1.1)–(1.3) in Section 3. In Section 4, we prove some existence theorems. Finally,

the conclusions are given in Section 5.

2. Preliminaries

In this section, we express notations, lemmas, and theorems about CF calculus on T . To give basic results for

(1.1)–(1.3), we need to recall some fundamental notions on time scales. Forward and backward jump operators

at t ∈ T for t < supT are defined as

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t},

where inf ϕ = supT , supϕ = inf T , and ϕ indicates the empty set. Thus, t is left dense, left scattered, right

dense, and right scattered provided that ρ(t) = t, ρ(t) < t, σ(t) = t, σ(t) > t , respectively. The distance from

an arbitrary element t ∈ T to the closest element on the right is called the graininess of T and is determined

by

µ(t) = σ(t)− t.

A closed interval on T is denoted by [a, b]T = {t ∈ T : a ≤ t ≤ b}, where a and b are fixed points of T with

a < b . In addition, we need to explain Tκ along with the set T to define the ∆-derivative of a function. If

T has left scattered maximum m , then Tκ = T− {m}. Otherwise, we put Tκ = T [13]. Let h : T → R be a

function and t ∈ Tκ . Then one can define h∆(t) to be the number (provided it exists) with the property that

given any ε > 0, there is a neighborhood U = (t− δ, t+ δ) ∩ T of t for some δ > 0 such that

∣∣[h(σ(t))− h(s)]− h∆(t) [σ(t)− s]
∣∣ ≤ ε |σ(t)− s| , (2.1)
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for all s ∈ U. h∆(t) is called ∆ or the Hilger derivative of h at t. h is regulated if its right sided limits exist

(finite) at all right dense points on T and its left sided limits exist (finite) at all left dense points on T . Let h

be a regulated function on T . The indefinite ∆-integral of h is denoted by∫
h(t)∆t = H(t) + C,

where C is an arbitrary constant and H is the pre-antiderivative of h. Finally, the definite ∆-integral of h is

defined by ∫ s

r

h(t)∆t = H(s)−H(r),

for all r, s ∈ T . For standard definitions and notations related to time scales theory, we refer to [13].

In 2016, Benkhettou et al. [10] defined the CF derivative and its properties on T to generalize the Hilger

derivative as follows: Let h : T → R , t ∈ Tκ and α ∈ (0, 1]. For t > 0, one can define Tα(h)(t) to be the

number provided it exists with the property that, given any ε > 0, there is a δ -neighborhood Vt ⊂ T of t such

that ∣∣[h(σ(t))− h(s)] tα−1 − Tα(h)(t) [σ(t)− s]
∣∣ ≤ ε |σ(t)− s| , (2.2)

for all s ∈ Vt. Tα(h)(t) is the CF derivative of h of order α at t. If α = 1 in (2.2), we obtain the Hilger

derivative on T , which is defined by (2.1). Benkhettou et al. [10] introduced the main properties of the CF

derivative with the following lemmas:

Lemma 2.1 [10] Let α ∈ (0, 1], t ∈ Tκ , and h : T → R be a function. The following features hold:

(i) If h is CF differentiable of order α at t > 0 , then h is continuous at t.

(ii) If h is continuous at t , which is right scattered, then h is CF differentiable of order α at t with

Tα(h)(t) =
h(σ(t))− h(t)

µ(t)
t1−α.

(iii) If t is right dense, then h is CF differentiable of order α at t if and only if lim
s→t

h(t)−h(s)
t−s t1−α exists as a

finite number. In this instance,

Tα(h)(t) = lim
s→t

h(t)− h(s)

t− s
t1−α.

(iv) If h is CF differentiable of order α at t, then h(σ(t)) = h(t) + µ(t)t1−αTα(h)(t).

Lemma 2.2 [10] Let h, g : T → R be CF differentiable functions of order α at t ∈ Tκ. Then:

(i) Tα(h+ g)(t) = Tα(h)(t) + Tα(g)(t),

(ii) Tα(λh)(t) = λTα(h)(t) where λ ∈ R,

(iii) Tα(hg)(t) = Tα(h)(t)g(t) + (hoσ) (t)Tα(g)(t) = Tα(h)(t)(goσ)(t) + h(t)Tα(g)(t),
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GÜLŞEN et al./Turk J Math

(iv) Tα

(
h
g

)
(t) =

Tα(h)(t)g(t)− h(t)Tα(g)(t)

g(t)(goσ)(t)
, where g(t)(goσ)(t) ̸= 0.

Lemma 2.3 [10] Let α ∈ (0, 1] and g : T → R be a continuous and CF differentiable function of order α at

t ∈ Tκ where h : R → R is continuously differentiable. Then there exists a c ∈ J such that

Tα(hog)(t) = h′(g(c))Tα(g)(t).

Now let us recall the definition of the α -CF integral. Let h : T → R be a regulated function. Then the

α -CF integral of h , 0 < α ≤ 1, is defined by

∫
h(t)∆αt =

∫
h(t)tα−1∆t. (2.3)

The α -CF integral of h reduces to the classical CF integral, which is given by Khalil et al. [23] for T = R and

α = 1. Furthermore, we get the definition of the indefinite integral on T for α = 1 [13] . If indefinite α -CF

integral of h order α is denoted by

Hα(t) =

∫
h(t)∆αt,

then the Cauchy α -CF integral of h is defined by

b∫
a

h(t)∆αt = Hα(b)−Hα(a),

for all a, b ∈ T .

3. Some spectral properties of the CF-SL equation on time scales

It is well known that (1.1)–(1.3) have only simple eigenvalues and the eigenfunctions are orthogonal when T = R
and α = 1 [25]. The following results generalize these basic consequences for the problem (1.1)–(1.3) to the CF

case by using the inner product on Lα
2 J =

{
f :

b∫
ρ(a)

f2(t)∆αt < ∞

}
. Let us first give some lemmas to be used

in the proof of the main theorems.

Lemma 3.1 Let h, g : T → R be continuous functions, a, b ∈ T and α ∈ (0, 1] . Then:

(i)
b∫
a

Tα(h)(t)g(t)∆
αt = h(b)g(b)− h(a)g(a)−

b∫
a

hσ(t)Tα(g)(t)∆
αt;

(ii)
b∫
a

h(t)Tα(g)(t)∆
αt = h(b)g(b)− h(a)g(a)−

b∫
a

Tα(h)(t)g
σ(t)∆αt.

Proof The proof can be easily obtained using a similar procedure as in [13]. 2
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Lemma 3.2 [10] If h : Tκ→ R is continuous and t ∈ Tκ, then

σ(t)∫
t

h(s)∆αs = h(t)µ(t)tα−1.

Proposition 3.3 Supposing that a, b ∈ T , a < b, α ∈ (0, 1] , and h is continuous at t ∈ [a, b], then we have

b∫
a

h(t)∆αt = [σ(a)− a] aα−1h(a) +

b∫
σ(a)

h(t)∆αt.

Proof It can be easily proved by following a similar procedure as in [4]. 2

Proposition 3.4 [4] Let [a, b] ⊂ T and h be an increasing continuous function on [a, b]. If the extension of h

is given in the below form:

H(s) =

{
h(s), s ∈ T
h(t), s ∈ (t, σ(t)) /∈ T ,

then we have

b∫
a

h(t)∆t ≤
b∫

a

H(t)dt.

Through a similar procedure, we can rewrite the above inequality for the double case as follows:

b∫
a

d∫
c

h(t)∆t∆s ≤
b∫

a

d∫
c

H(t)dtds,

where [a, b]× [c, d] ⊂ T× T .

Theorem 3.5 The CF-SL operator is self-adjoint on Lα
2 J.

Proof Let x = x(t, λ) and y = y(t, λ) be the solutions of (1.1)–(1.3), where t ∈ J is right dense. Using the

inner product on Lα
2 J and integration by parts yields
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< Lαx, y > =

b∫
ρ(a)

(Lαx(t)) y(t)∆
αt = −

b∫
ρ(a)

Tα [Tα(x(t))] y(t)∆
αt

= −Tα(x(t))y(t) |bρ(a) +
b∫

ρ(a)

Tα(x(t))Tα (y(t))∆αt

= −Tα(x(b))y(b) + Tα(x(ρ(a)))y(ρ(a)) + Tα(y(t))x(t) |bρ(a) −
b∫

ρ(a)

Tα [Tα(y(t))]x(t)∆
αt

=

b∫
ρ(a)

(Lαy(t))x(t)∆
αt

=< x,Lαy > .

It yields the self-adjointness of the CF-SL operator on Lα
2 J . 2

Theorem 3.6 All eigenvalues of the problem (1.1)–(1.3) are real.

Proof Let λ be a complex eigenvalue and y(t) be an eigenfunction of the problem (1.1)–(1.3) related to λ .

Consider the below operators:

Lαy = −Tα (Tα(y(t))) = λϕ(t)f(t, y(t)), (3.1)

Lαy = −Tα (Tα(y(t))) = λϕ(t)f(t, y(t)). (3.2)

Multiplying (3.1) and (3.2) by yσ and yσ, respectively, and then subtracting the resulting equality yields:

yσTα (Tα(y(t)))− yσTα (Tα(y(t))) = ϕ(t)
[
λf(t, y(t))yσ − λϕ(t)f(t, y(t))yσ

]
. (3.3)

On the other hand, by using the multiplication rule for the CF derivative, we get:

Tα [yTα (y)− yTα (y)] = ϕ(t)
[
λf(t, y(t))yσ − λf(t, y(t))yσ

]
. (3.4)

Finally, if we take the α -CF integral of the last equality from ρ(a) to b , we get

[yTα (y)− yTα (y)] |bρ(a)=
b∫

ρ(a)

ϕ(t)
[
λf(t, y(t))yσ − λf(t, y(t))yσ

]
∆αt,

and by using the conditions (1.2)–(1.3),

b∫
ρ(a)

ϕ(t)
[
λf(t, y(t))yσ − λf(t, y(t))yσ

]
∆αt = 0, (3.5)

which holds if and only if λ = λ where ϕ(t) ̸= 0 for all t ∈ J . Hence, eigenvalues of the problem (1.1)–(1.3)

are purely real. 2
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Theorem 3.7 Let x, y ∈ Cα(J,R) be the eigenfunctions of the problem (1.1)–(1.3). Then we have:

a) (Lαx) y
σ − (Lαy)x

σ = Tα (W (x, y)) on J ∩ T .

b) < Lαx, y
σ > − < Lαy, x

σ >= W (x, y)(b) − W (x, y)(ρ(a)), where W (x, y) = xTα (y) − yTα (x) is the

Wronskian of x and y.

Proof Here, Cα(J,R) is the set of all functions whose α -derivatives are all continuous on J .

a) By definition of the Wronskian and the CF derivative, we get

Tα (W (x, y)) = Tα [xTα (y)− yTα (x)]

= xσTα (Tα(y))− yσTα (Tα(x))

= (Lαx) y
σ − (Lαy)x

σ.

b) Using the definition of the Wronskian and the inner product on Lα
2 J , we have

< Lαx, y
σ > − < Lαy, x

σ >=

b∫
ρ(a)

[(Lαx) y
σ − (Lαy)x

σ]∆αt

=

b∫
ρ(a)

{−Tα (Tα(x))y
σ + Tα (Tα(y))x

σ}∆αt

=

b∫
ρ(a)

Tα (W (x, y))∆αt

= W (x, y)(b)−W (x, y)(ρ(a)).

Hence, the proof is complete.

2

Theorem 3.8 The eigenfunctions x(t, λ1) and y(t, λ2) of the problem (1.1)–(1.3) corresponding to distinct

eigenvalues λ1 and λ2 are orthogonal on Lα
2 J , i.e.

b∫
ρ(a)

ϕ(t) [λ2f(t, y(t, λ2))x
σ(t, λ1)− λ1f(t, x(t, λ1))y

σ(t, λ2)]∆
αt = 0.

Proof Let us use the below equality:

Tα [Tα (x(t, λ1))y(t, λ2)− Tα (y(t, λ2))x(t, λ1)] = ϕ(t) [λ2f(t, y(t, λ2))x
σ(t, λ1)− λ1f(t, x(t, λ1))y

σ(t, λ2)] .

Taking the α -CF integral of the last equality from ρ(a) to b , we get

b∫
ρ(a)

ϕ(t) [λ2f(t, y(t, λ2))x
σ(t, λ1)− λ1f(t, x(t, λ1))y

σ(t, λ2)]∆
αt = 0,

for λ1 ̸= λ2 . It shows that the eigenfunctions x(t, λ1) and y(t, λ2) are always orthogonal on Lα
2 J . 2

1354
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4. Existence of the solution for the CF-SL equation on time scales

In this section, we get the asymptotic estimates of the eigenfunction of the problem (1.1)–(1.3) on T . Then

sufficient conditions are presented for the existence of the solution of the CF-SL problem (1.1)–(1.3) on T where

y(ρ(a), λ) = γ ∈ R and t ∈ J is right dense.

Theorem 4.1 The eigenfunction y(t, λ) is a solution of the problem (1.1)–(1.3) if and only if it satisfies the

below equation:

y(t, λ) = γ − λ

t∫
ρ(a)

t0∫
ρ(a)

ϕ(s)f(s, y(s))∆αs∆αt0.

Proof Let us consider the equation

Tα (Tα(y(t))) = −λϕ(t)f(t, y(t)).

After taking the α -CF integral of this equation from ρ(a) to t0, we get

t0∫
ρ(a)

Tα (Tα(y(s)))∆
αs = −λ

t0∫
ρ(a)

ϕ(s)f(s, y(s))∆αs.

Boundary condition (1.2) yields

Tα(y(t0)) = −λ

t0∫
ρ(a)

ϕ(s)f(s, y(s))∆αs. (4.1)

By taking the α -CF integral of (4.1) from ρ(a) to t, we obtain

t∫
ρ(a)

Tα(y(t0))∆
αt0 = −λ

t∫
ρ(a)

t0∫
ρ(a)

ϕ(s)f(s, y(s))∆αs∆αt0,

and with boundary condition (1.3),

y(t, λ) = γ − λ

t∫
ρ(a)

t0∫
ρ(a)

ϕ(s)f(s, y(s))∆αs∆αt0.

Thus, the proof is completed. Now we can give some existence results for the problem (1.1)–(1.3) using a similar

way as in [4, 9, 26]. 2

Theorem 4.2 Let f(t, y(t)) be a continuous function such that |f(t, y(t))| < M for M > 0 , and the Lipschitz

condition,

∃L > 0; ∀t ∈ J and x, y ∈ R, ∥f(t, x)− f(t, y)∥ ≤ L ∥x− y∥ ,
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holds. The problem (1.1)–(1.3) has a unique solution on J when λ ∈ [c, d) if there exists R > N > 0 such that

0 <
N

min
t∈J

f(t,Nϖ(t))
= c <

R

∥ϖ(t)∥ max
t∈J

Nϖ(t)≤y(t)≤R

f(t, y(t))
= d,

and ϕ(t) is bounded on J , for K > 0, |ϕ(t)| ≤ K.

Proof Let us consider (1.1)–(1.3) and S ⊂ C(J,R) on J . For y ∈ S, define

∥y(t)∥ = sup
t∈J

|y(t)| .

Here it can be easily seen that S is a Banach space with this norm. Define the subset S(µ) and operator A as

below:

S(µ) = {x ∈ S : ∥x∥ ≤ µ} ,

and

A(y(t)) = γ − λ

t∫
ρ(a)

t0∫
ρ(a)

ϕ(s)f(s, y(s))∆αs∆αt0, (4.2)

respectively. By using Proposition 3.3, we get

|A(y(t))| ≤ γ + λ

t∫
ρ(a)

t0∫
ρ(a)

|ϕ(s)| |f(s, y(s))|∆αs∆αt0

= γ + λ

t∫
ρ(a)

t0∫
ρ(a)

|ϕ(s)| |f(s, y(s))| sα−1tα−1
0 ∆s∆t0

≤ γ + dKM

t∫
ρ(a)

t0∫
ρ(a)

sα−1tα−1
0 ∆s∆t0.

By Proposition 3.4, we have

|A(y(t))| ≤ γ + dKM

t∫
ρ(a)

t0∫
ρ(a)

sα−1tα−1
0 dsdt0

≤ γ + dKM
b2α

α2
.
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With the equality γ + dKM b2α

α2 = µ, we conclude that A is an operator from S(µ) to S(µ). In addition, for

x, y ∈ S(µ), we obtain

∥A(x)−A(y)∥ =

∥∥∥∥∥∥∥γ − λ

t∫
ρ(a)

t0∫
ρ(a)

ϕ(s)f(s, x(s))∆αs∆αt0 − γ + λ

t∫
ρ(a)

t0∫
ρ(a)

ϕ(s)f(s, y(s))∆αs∆αt0

∥∥∥∥∥∥∥
≤ λ

t∫
ρ(a)

t0∫
ρ(a)

|ϕ(s)| |f(s, x(s))− f(s, y(s))| sα−1tα−1
0 ∆s∆t0

≤ dK

t∫
ρ(a)

t0∫
ρ(a)

|f(s, x(s))− f(s, y(s))| sα−1tα−1
0 dsdt0

≤ dKL ∥x− y∥ b2α

α2
.

Here, if dKL b2α

α2 < 1, this will be a contraction map. It implies that (1.1)–(1.3) has a unique solution by the

Banach fixed point theorem. 2

Theorem 4.3 Let f : J × R → R be continuous and bounded such that |f(t, y(t))| ≤ M, M > 0 for all t ∈ J
and y ∈ R . Then (1.1)–(1.3) has a solution on J.

Proof The proof is given step by step using Schauder’s fixed point theorem to prove that A , which is defined

in (4.2), has a fixed point.

Step1: A is continuous. Let yn be a sequence such that yn → y in C(J,R). Then, for each t ∈ J,

|A(yn(t))−A(y(t))| ≤ λ

t∫
ρ(a)

t0∫
ρ(a)

|ϕ(s)| |f(s, yn(s))− f(s, y(s))|∆αs∆αt0

≤ λ

t∫
ρ(a)

t0∫
ρ(a)

|ϕ(s)| sup
ρ(a)≤t≤b

|f(s, yn(s))− f(s, y(s))| sα−1tα−1
0 ∆s∆t0

≤ dK
b2α

α2
∥f(s, yn(s))− f(s, y(s))∥ .

Since f is continuous function, we have

∥A(yn(t))−A(y(t))∥ ≤ dK
b2α

α2
∥f(s, yn(s))− f(s, y(s))∥ → 0, as n → ∞.
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Step2: The map A sends bounded sets into bounded sets in C(J,R). It is sufficient to denote that there

exists a positive constant l , such that y ∈ Bµ = {y ∈ C(J,R) : ∥y∥ ≤ µ} , and we have ∥A(y)∥ ≤ l for any µ.

|A(y(t))| ≤ γ + λ

t∫
ρ(a)

t0∫
ρ(a)

|ϕ(s)| |f(s, yn(s))|∆αs∆αt0

= γ + λ

t∫
ρ(a)

t0∫
ρ(a)

|ϕ(s)| |f(s, yn(s))| sα−1tα−1
0 dsdt0

≤ γ + dKM
b2α

α2
= l.

Step3: The map A sends bounded sets into equicontinuous sets of C(J,R). Let t1, t2 ∈ J, t1 < t2 and

Bµ be a bounded subset of C(J,R) as in step 2, and let y ∈ Bµ. Then

|A(y(t2))−A(y(t1))| ≤ λKM

 t1∫
ρ(a)

t0∫
ρ(a)

sα−1tα−1
0 dsdt0 −

t2∫
ρ(a)

t0∫
ρ(a)

sα−1tα−1
0 dsdt0


≤ dKM

α2

[(
t2α1 − t2α2

)
2

− (ρ(a))
α
(tα1 − tα2 )

]
→ 0, as t1 → t2.

By step 1, step 2, and the Arzela–Ascoli theorem, we see that A : C(J,R) → C(J,R) is continuous and

completely continuous.

Step 4: Now it remains to show that the set Ω = {y ∈ C(J,R) : y(t) = ηA(y(t)), 0 < η < 1} is bounded.

Let y ∈ Ω. Thus, for each t ∈ J , we have

|y(t)| ≤ η

∣∣∣∣∣∣∣γ − λ

t∫
ρ(a)

t0∫
ρ(a)

ϕ(s)f(s, y(s))∆αs∆αt0

∣∣∣∣∣∣∣
≤ ηγ + ηλKM

b2α

α2

< γ + dKM
b2α

α2
.

By Schauder’s fixed point theorem, we can conclude that A has a fixed point, which represents a solution for

the problem (1.1)–(1.3). As an explanation for these theorems, we give an example below. 2

Example 4.4 Consider the following CF-SL boundary value problem:

−T0.5 (T0.5(y(t))) =
t

18

y

y + 3
, t ∈ [0, 1] , (4.3)

T0.5(y(0)) = 0, (4.4)

δy(1) + βT0.5(y(1)) = 0,
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where λ = 1, f(t, y(t)) =
t

18

y

y + 3
, ϕ(t) = 1 , and d = 1,K = 1. Because of these choices, f(t, y(t)) is

continuous on [0, 1] and |f(t, y(t))| < 1

18
= M . Let x, y ∈ T . Then we obtain

|f(t, x)− f(t, y)| ≤ 1

6
|x− y| ,

and L =
1

6
. Therefore, the Lipschitz condition holds and A : S( 119 ) → S( 119 ) is an operator mentioned in

Theorem 4.2 for γ + dKM b2α

α2 = 11
9 = µ. Furthermore, it is easy to prove that

dKL
b2α

α2
=

2

3
< 1,

where γ = 1. As a result, all conditions of Theorem 4.2 are satisfied and the problem (4.3)–(4.4) has a unique

solution.

5. Conclusion

Fractional SL problems attract the attention of many authors. In this study, we have considered the CF-SL

dynamic equation with boundary conditions on T in order to obtain the results of the eigenfunctions for this

problem. Then we have examined the existence of the solution. Finally, we have tried to explain these existence

theorems with an example.
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