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Abstract: Let R be a ring with involution ∗ . Rm×n denotes the set of all m× n matrices over R . In this paper, we

give a characterization of the pseudo core inverse of A ∈ Rn×n in the form of A = GDH , Nr(G) = 0, Nl(H) = 0,

D2 = D = D∗ , where Nl(A) = {x ∈ R1×m|xA = 0} and Nr(A) = {x ∈ Rn×1 | Ax = 0}. Then we obtain necessary and

sufficient conditions for A ∈ Rn×n , in the form of A = GDH , Nr(G) = 0, Nl(H) = 0, D2 = D = D∗ , to be *-DMP. If

R is a principal ideal domain (resp. semisimple Artinian ring), then matrices expressed as that form include all n × n

matrices over R .
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1. Introduction

Let R be a ring with involution ∗ . Rm×n denotes the set of all m× n matrices over R . Suppose A = (aij) ∈
Rm×n . Put A∗ = (a∗ji). We consider the following equations:

(1) AXA = A,

(1k) AkXA = Ak for some positive integer k,

(2) XAX = X,

(3) (AX)∗ = AX,

(4) (XA)∗ = XA,

(5) AX = XA.

The Moore–Penrose inverse of A , denoted by A† , is the unique matrix X satisfying the above (1), (2), (3), and

(4); the {1,3}-inverse (resp. {1,4}-inverse) of A , denoted by A(1,3) (resp. A(1,4) ), is the matrix X satisfying

the above (1) and (3) (resp. (1) and (4)). Let A ∈ Rn×n , the group inverse of A , denoted by A# , be the

unique matrix X satisfying the above (1), (2), and (5); the Drazin inverse of A , denoted by AD , is the unique

matrix X satisfying the above (1k ), (2), and (5); the smallest positive integer k satisfying the above (1k ), (2),

and (5) is called the Drazin index of A , denoted by i(A).
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The core inverse of A ∈ Rn×n , denoted by A#⃝ , is the unique solution to equations

XA2 = A, AX2 = X, and (AX)∗ = AX (see [23]).

We refer readers to [1] and [18] for a deep study of core inverses.

In [9], the authors introduced the notion of the pseudo core inverse, which extends the notion of core

inverse to matrices of an arbitrary index. The pseudo core inverse of A ∈ Rn×n , denoted by AD⃝ , is the unique

solution to equations

XAm+1 = Am for some positive integer m, AX2 = X and (AX)∗ = AX.

The smallest positive integer m satisfying the above equations is called the pseudo core index of A . If A is

pseudo core invertible, then it must be Drazin invertible, and the pseudo core index coincides with the Drazin

index (see [9]). Thus, here and subsequently, we denote the pseudo core index of A by i(A). It is clear that if

i(A) = 1, then the pseudo core inverse of A is the core inverse of A . Also, the pseudo core inverse extended the

core-EP inverse [13] from complex matrices to matrices over rings in terms of equations (see [9]). For consistency

and convenience, we use the terminology ‘pseudo core inverse’ throughout this paper.

Dually, the dual pseudo core inverse of A ∈ Rn×n , denoted by AD⃝ , is the unique solution to equations

Am+1X = Am for some positive integer m, X2A = X and (XA)∗ = XA [9]. The smallest positive integer m

satisfying the above equations is called the dual pseudo core index of A , denoted by i(A) as well.

Let A ∈ Cn×n , A be EP if and only if N(A) = N(A∗) if and only if A† and A# exist with A† = A#

(see [2, 20]), where N(A) denotes the null space of A and A∗ denotes the conjugate transpose of A .

Meanwhile, suppose that A ∈ Rn×n , N(A) = N(A∗) may not imply that A† and A# exist with

A† = A# . Hartwig [10] defined that an element a in a *-regular ring (a regular ring with involution such that

a∗a = 0 implies a = 0) is EP if and only if aR = a∗R , and he also proved its equivalence with the existence of

a# together with a# = a† . Patricio and Puystjens [15] introduced the notions of *-EP and *-gMP in rings with

involution. They said that a is *-EP if aR = a∗R ; a is *-gMP if a† and a# exist with a† = a# . As a matter

of convenience, we denote a *-gMP element (resp. matrix) as an EP element (resp. matrix) in this paper. A

is *-DMP if there exists a positive integer m such that Am is EP [15]; A is *-DMP with index m if m is the

smallest positive integer such that Am is EP [15]. We refer readers to [10, 12, 14, 16, 18, 19] for a deep study of

EP. In [8], the authors gave several characterizations of the *-DMP elements, utilizing the pseudo core inverse

and dual pseudo core inverse, in semigroups with involution. Those results are also true for matrices over rings.

Letting A ∈ Rm×n , we will use the following notations:

Nl(A) = {x ∈ R1×m | xA = 0} and Nr(A) = {x ∈ Rn×1 | Ax = 0}.

From [17] and [11], we find:

(1) if R is a principal ideal domain, then for arbitrary A ∈ Rm×n , it follows that A = GH , Nr(G) = 0,

Nl(H) = 0 for some matrices G ∈ Rm×r, H ∈ Rr×n ;

(2) if R is a semisimple Artinian ring, then for arbitrary A ∈ Rm×n , it follows that A = GDH ,

Nr(G) = 0, Nl(H) = 0, D2 = D = D∗ for some matrices G ∈ Rm×r, D ∈ Rr×r, H ∈ Rr×n .

In [2, 21, 22], the authors pointed out respectively that a factorization of a matrix A leads to explicit

formulae for its Moore–Penrose inverse, Drazin inverse, and generalized inverse A
(2)
T,S . In [3, 4, 7, 16], the
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authors gave some characterizations of real or complex EP matrices, EP Hilbert operators, EP Banach algebra

elements, and weighted EP Banach space operators through factorizations respectively.

Chen [5] gave the existence criteria and formulae for the {1,3}-inverse and Moore–Penrose inverse of A

in the form of A = GDH , Nr(G) = 0, Nl(H) = 0, D2 = D = D∗ . Chen [6] gave the equivalent conditions for

A in the form of Ak = GDH , Nr(G) = 0, Nl(H) = 0, D2 = D to have a Drazin inverse.

Motivated by the above papers, in Section 2 we give the necessary and sufficient conditions for A in the

form of Ak = GDH , Nr(G) = 0, Nl(H) = 0, D2 = D = D∗ to have a pseudo core inverse. Namely, we give

necessary and sufficient conditions for matrices over principal ideal domains (resp. semisimple Artinian rings)

to have pseudo core inverses. As applications, in Section 3, we give several characterizations of *-DMP matrices

in the form of A = GDH , Nr(G) = 0, Nl(H) = 0, D2 = D = D∗ .

2. Characterizations of pseudo core invertible matrices

In this section, we characterize pseudo core invertibility of A in the form of Ak = GDH , Nr(G) = 0, Nl(H) = 0,

D2 = D = D∗ . We begin with some useful lemmas.

Lemma 2.1 [5] Let A,G,D,H be matrices over R such that A = GDH , Nr(G) = 0 , Nl(H) = 0 , D2 = D =

D∗ . Then we have the following facts:

(1) if A{1, 3} ̸= ∅ , then DG∗GD + I −D is invertible;

(2) if A{1, 4} ̸= ∅ , then DHH∗D + I −D is invertible;

(3) A† exists if and only if both DG∗GD + I −D and DHH∗D + I −D are invertible.

In this case, A† = (DH)∗(DHH∗D + I −D)−1(DG∗GD + I −D)−1(GD)∗ .

Lemma 2.2 [6] Let A,G,D,H be matrices over R such that Ak = GDH , Nr(G) = 0 , Nl(H) = 0 , D2 = D

for some positive integer k . Then the following are equivalent:

(1) AD exists with i(A) ≤ k ;

(2) DHAGD + I −D is invertible.

In this case, AD = GD(DHAGD + I −D)−1DH .

Lemma 2.3 [9] Let A ∈ Rn×n . Then we have the following facts:

(1) AD⃝ exists if and only if AD and (Ak)(1,3) exist, where k ≥ i(A) .

In this case, AD⃝ = ADAk(Ak)(1,3) .

(2) AD⃝ exists if and only if AD and (Ak)(1,4) exist, where k ≥ i(A) .

In this case, AD⃝ = (Ak)(1,4)AkAD .

(3) AD⃝ and AD⃝ exist if and only if AD and (Ak)† exist, where k ≥ i(A) .

In this case, AD⃝ = ADAk(Ak)† and AD⃝ = (Ak)†AkAD .

Applying Lemmas 2.1–2.3, we derive the following result, which is a characterization of the pseudo core

inverse of A , in the form of Ak = GDH , Nr(G) = 0, Nl(H) = 0, D2 = D = D∗ .

Theorem 2.4 Let A,G,D,H be matrices over R such that Ak = GDH , Nr(G) = 0 , Nl(H) = 0 , D2 = D =

D∗ for some positive integer k . Then the following are equivalent:
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(1) AD⃝ exists with i(A) ≤ k if and only if both DG∗GD + I −D and DHAGD + I −D are invertible.

In this case, AD⃝ = GD(DHAGD + I −D)−1DHGD(DG∗GD + I −D)−1(GD)∗ .

(2) AD⃝ exists with i(A) ≤ k if and only if both DHH∗D + I −D and DHAGD + I −D are invertible.

In this case, AD⃝ = (DH)∗(DHH∗D + I −D)−1DHGD(DHAGD + I −D)−1DH .

Proof (1). From Lemma 2.3, AD⃝ exists if and only if AD and (Ak)(1,3) exist, where k ≥ i(A). Moreover,

AD⃝ = ADAk(Ak)(1,3) . Thus, the necessity of (1) is clear by Lemmas 2.1 and 2.2.

Conversely, since DHAGD + I −D is invertible, according to Lemma 2.2, AD exists with i(A) ≤ k and

(AD)k = [GD(DHAGD + I −D)−1DH]k = GD(DHGD + I −D)k−1(DHAGD + I −D)−kDH.

Then GDH[GD(DHGD + I −D)k−1(DHAGD + I −D)−kDH]GDH = Ak(AD)kAk = Ak

= GDH .

Since Nr(G) = 0 and Nl(H) = 0, we have DHGD(DHGD + I −D)k−1(DHAGD + I −D)−kDHGD = D .

From (DHAGD + I −D)(DHGD + I −D) = DHAGDHGD + I −D = DHGDHAGD + I −D

= (DHGD + I −D)(DHAGD + I −D),

it follows that (DHAGD + I −D)−1(DHGD + I −D) = (DHGD + I −D)(DHAGD + I −D)−1 . Thus,

D = DHGD(DHGD + I −D)k−1(DHAGD + I −D)−kDHGD

= D(DHGD + 1−D)(DHGD + I −D)k−1(DHAGD + I −D)−k(DHGD + I −D)D

= D(DHGD + I −D)k+1(DHAGD + I −D)−kD

= (DHGD + I −D)k+1D(DHAGD + I −D)−k.

Then (DHAGD)k = D(DHAGD + I −D)k = (DHGD + I −D)k+1D = (DHGD)k+1 .

Therefore, (DHAGD + I −D)k = (DHAGD)k + I −D = (DHGD)k+1 + I −D

= (DHGD + I −D)k+1 .

Since DHAGD + I −D is invertible, we conclude that DHGD + I −D is invertible.

Observe that GD(DHGD + I −D)−1(DG∗GD + I −D)−1(GD)∗ is a {1,3}-inverse of Ak ,

and then Ak(Ak)(1,3) = GD(DG∗GD + I −D)−1(GD)∗ .

Hence, AD⃝ = GD(DHAGD + I −D)−1DHGD(DG∗GD + I −D)−1(GD)∗ .

(2). It is analogous. 2

Let D be the identity matrix in Theorem 2.4; then we have the following result.

Corollary 2.5 Let A,G,H be matrices over R such that Ak = GH , Nr(G) = 0 , Nl(H) = 0 for some positive

integer k . Then the following are equivalent:

(1) AD⃝ exists with i(A) ≤ k if and only if both G∗G and HAG are invertible.

In this case, AD⃝ = G(HAG)−1HG(G∗G)−1G∗ .

(2) AD⃝ exists with i(A) ≤ k if and only if both HH∗ and HAG are invertible.

In this case, AD⃝ = H∗(HH∗)−1HG(HAG)−1H .

Letting D be the identity matrix and k = 1 in Theorem 2.4, then we get the following result, which

characterizes the core invertibility of A .
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Corollary 2.6 Let A,G,H be matrices over R such that A = GH , Nr(G) = 0 , Nl(H) = 0 . Then the

following are equivalent:

(1) A#⃝ exists if and only if both G∗G and HG are invertible.

In this case, A#⃝ = G(HG)−1(G∗G)−1G∗ .

(2) A#⃝ exists if and only if both HH∗ and HG are invertible.

In this case, A#⃝ = H∗(HH∗)−1(HG)−1H .

3. Characterizations of *-DMP matrices

Pearl [16] pointed out that if A, G, H are complex matrices with A = GH , Nr(G) = 0, Nl(H) = 0, then A is

EP if and only if G(G∗G)−1G∗ = H∗(HH∗)−1H . Drivaliaris et al. [7] obtained several characterizations of EP

operators in Hilbert spaces through operator factorizations. Boasso [3] gave necessary and sufficient conditions

for an operator T to be EP in Banach spaces under the assumptions that T † exists and T is of a operator

factorization.

Recall that A is symmetric if A = A∗ . In what follows, we show several equivalent conditions for

A ∈ Rn×n , in the form of Ak = GDH , Nr(G) = 0, Nl(H) = 0, D2 = D = D∗ , to be *-DMP. We begin with

an auxiliary lemma.

Lemma 3.1 [8, 12, 15] Let A ∈ Rn×n . Then the following conditions are equivalent:

(1) A is *-DMP with index k ;

(2) AD exists with i(A) = k and AAD is symmetric;

(3) k is the smallest positive integer such that (Ak)† exists with Ak(Ak)† = (Ak)†Ak ;

(4) AD⃝ exists with i(A) = k and AD⃝ = AD ;

(5) AD⃝ exists with i(A) = k and AD⃝ = AD ;

(6) AD exists with i(A) = k , (Ak)† exist and (AD)k = (Ak)† ;

(7) AD⃝ and AD⃝ exist with i(A) = k and AD⃝ = AD⃝ .

Applying Lemma 3.1, we obtain several characterizations of *-DMP matrices sequentially. First, we have

the following result.

Theorem 3.2 Let A,G,D,H be matrices over R such that Ak = GDH , Nr(G) = 0 , Nl(H) = 0 , D2 = D

for some positive integer k . Then A is *-DMP with index ≤ k if and only if DHAGD + I −D is invertible

and one of the following equivalent conditions holds:

(1) GD(DHGD + I −D)−1DH is symmetric;

(2) DH = DH[GD(DHGD + I −D)−1DH]∗ ;

(3) GD = [GD(DHGD + I −D)−1DH]∗GD .

Proof From Lemma 3.1, A is *-DMP with index ≤ k if and only if AD exists with i(A) ≤ k and AAD is

symmetric. AD exists with i(A) ≤ k if and only if DHAGD + I −D is invertible by Lemma 2.2. According

to the proof of Theorem 2.4, we have

(AD)k = [GD(DHAGD + I −D)−1DH]k = GD(DHGD + I −D)k−1(DHAGD + I −D)−kDH,

and DHGD + I −D is invertible with (DHAGD + I −D)−k = (DHGD + I −D)−(k+1) .

790



GAO and CHEN/Turk J Math

Thus,

(AD)k = GD(DHGD + I −D)−2DH.

Then AAD = Ak(AD)k = GDHGD(DHGD + I − D)−2DH = GD(DHGD + I − D)−1DH . Applying

Lemma 3.1, A is *-DMP if and only if (1) holds.

(1) ⇒ (2). Since [GD(DHGD + I −D)−1DH]∗ = GD(DHGD + I −D)−1DH , then

DH = (DHGD + I −D)(DHGD + I −D)−1DH = DHGD(DHGD + I −D)−1DH

= DH[GD(DHGD + I −D)−1DH]∗.

(2) ⇒ (1). Equality DH = DH[GD(DHGD + I −D)−1DH]∗ yields that

GD(DHGD+I−D)−1DH = GD(DHGD+I−D)−1DH[GD(DHGD+I−D)−1DH]∗ . Hence GD(DHGD+

I −D)−1DH is symmetric.

(1) ⇔ (3). It is analogous. 2

Let D be the identity matrix in Theorem 3.2, and then we have the following result.

Corollary 3.3 Let A,G,H be matrices over R such that Ak = GH , Nr(G) = 0 , Nl(H) = 0 for some

positive integer k . Then A is *-DMP with index ≤ k if and only if HAG is invertible and one of the following

equivalent conditions holds:

(1) G(HG)−1H is symmetric;

(2) H = H[G(HG)−1H]∗ ;

(3) G = [G(HG)−1H]∗G .

Letting D be the identity matrix and k = 1 in Theorem 3.2, then we get the following result, which

gives a characterization for A to be EP.

Corollary 3.4 Let A,G,H be matrices over R such that A = GH , Nr(G) = 0 , Nl(H) = 0 . Then A is EP

if and only if HG is invertible and one of the following equivalent conditions holds:

(1) G(HG)−1H is symmetric;

(2) H = H[G(HG)−1H]∗ ;

(3) G = [G(HG)−1H]∗G .

The following result gives the second characterization for A , in the form of Ak = GDH , Nr(G) = 0,

Nl(H) = 0, D2 = D = D∗ , to be *-DMP.

Theorem 3.5 Let A,G,D,H be matrices over R such that Ak = GDH , Nr(G) = 0 , Nl(H) = 0 , D2 =

D = D∗ for some positive integer k . Then A is *-DMP with index ≤ k if and only if DG∗GD + I −D and

DHH∗D + I −D are invertible with

GD(DG∗GD + I −D)−1(GD)∗ = (DH)∗(DHH∗D + I −D)−1DH.

Proof According to Lemma 3.1, A is *-DMP with index ≤ k if and only if there exists a positive integer

k such that (Ak)† exists with Ak(Ak)† = (Ak)†Ak , by Lemma 2.1, which is equivalent to DG∗GD + I − D
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and DHH∗D + I −D being invertible with GDH(DH)∗(DHH∗D + I −D)−1(DG∗GD + I −D)−1(GD)∗ =

(DH)∗(DHH∗D + I −D)−1(DG∗GD + I −D)−1(GD)∗GDH .

Note that

GDH(DH)∗(DHH∗D + I −D)−1(DG∗GD + I −D)−1(GD)∗ = GD(DG∗GD + I −D)−1(GD)∗

and

(DH)∗(DHH∗D + I −D)−1(DG∗GD + I −D)−1(GD)∗GDH = (DH)∗(DHH∗D + I −D)−1DH,

and then we complete the proof. 2

Let D be the identity matrix in Theorem 3.5, and then we get the following result.

Corollary 3.6 Let A,G,H be matrices over R such that Ak = GH , Nr(G) = 0 , Nl(H) = 0 for some

positive integer k . Then A is *-DMP with index ≤ k if and only if G∗G and HH∗ are invertible with

G(G∗G)−1G∗ = H∗(HH∗)−1H .

Let D be the identity matrix and k = 1 in Theorem 3.5, and then we get the following result, which

gives the second characterization for A to be EP.

Corollary 3.7 Let A,G,H be matrices over R such that A = GH , Nr(G) = 0 , Nl(H) = 0 . Then A is EP

if and only if G∗G and HH∗ are invertible with G(G∗G)−1G∗ = H∗(HH∗)−1H .

The following result gives the third characterization for A , in the form of Ak = GDH , Nr(G) = 0,

Nl(H) = 0, D2 = D = D∗ , to be *-DMP.

Theorem 3.8 Let A,G,D,H be matrices over R such that Ak = GDH , Nr(G) = 0 , Nl(H) = 0 , D2 =

D = D∗ for some positive integer k . Then A is *-DMP with index ≤ k if and only if DG∗GD + I −D and

DHAGD + I −D are invertible with

(DG∗GD + I −D)−1(GD)∗ = (DHGD + I −D)−1DH.

Proof According to Theorem 2.4, DG∗GD + I −D and DHAGD + I −D are invertible if and only if AD⃝

exists with i(A) ≤ k , in which case,

AD⃝ = GD(DHAGD + I −D)−1DHGD(DG∗GD + I −D)−1(GD)∗.

Notice that AD⃝ existing implies that AD exists by Lemma 2.3 and AD = GD(DHAGD + I −D)−1DH by

Lemma 2.2. Applying Lemma 3.1, A is *-DMP with i(A) ≤ k if and only if

G(DHAGD + I −D)−1(DHGD + I −D)(DG∗GD + I −D)−1(GD)∗

= GD(DHAGD + I −D)−1DHGD(DG∗GD + I −D)−1(GD)∗ = AD⃝ = AD

= GD(DHAGD + I −D)−1DH = G(DHAGD + I −D)−1DH.

(3.1)
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Since Nr(G) = 0, by calculation, equality (3.1) is equivalent to

DG∗GD + I −D)−1DG∗ = (DHGD + I −D)−1DH.

2

Let D be the identity matrix in Theorem 3.8, and then we get the following result.

Corollary 3.9 Let A,G,H be matrices over R such that Ak = GH , Nr(G) = 0 , Nl(H) = 0 for some

positive integer k . Then A is *-DMP with index ≤ k if and only if G∗G and HAG are invertible with

(G∗G)−1G∗ = (HG)−1H .

Let D be the identity matrix and k = 1 in Theorem 3.8, and then we get the following result, which

gives the third characterization for A to be EP.

Corollary 3.10 Let A,G,H be matrices over R such that A = GH , Nr(G) = 0 , Nl(H) = 0 . Then A is

EP if and only if G∗G and HG are invertible with (G∗G)−1G∗ = (HG)−1H .

The following result gives the fourth characterization for A , in the form of Ak = GDH , Nr(G) = 0,

Nl(H) = 0, D2 = D = D∗ , to be *-DMP.

Theorem 3.11 Let A,G,D,H be matrices over R such that Ak = GDH , Nr(G) = 0 , Nl(H) = 0 ,

D2 = D = D∗ for some positive integer k . Then A is *-DMP with index ≤ k if and only if DHH∗D+ I −D

and DGAGD + I −D are invertible with

(DH)∗(DHH∗D + I −D)−1 = GD(DHGD + I −D)−1.

Proof According to Theorem 2.4, DHH∗D + I −D and DHAGD + I −D are invertible if and only if AD⃝

exists with i(A) ≤ k , in which case,

AD⃝ = (DH)∗(DHH∗D + I −D)−1DHGD(DHAGD + I −D)−1DH.

Notice that AD⃝ existing implies that AD exists by Lemma 2.3 and AD = GD(DHAGD + I −D)−1DH by

Lemma 2.2. Applying Lemma 3.1, A is *-DMP if and only if

(DH)∗(DHH∗D + I −D)−1(DHGD + I −D)(DHAGD + I −D)−1H

= (DH)∗(DHH∗D + I −D)−1(DHGD + I −D)D(DHAGD + I −D)−1H

= (DH)∗(DHH∗D + I −D)−1DHGD(DHAGD + I −D)−1DH = AD⃝ = AD

= GD(DHAGD + I −D)−1DH = GD(DHAGD + I −D)−1H.

(3.2)

Since Nl(H) = 0, by calculation, equality (3.2) is equivalent to

(DH)∗(DHH∗D + I −D)−1 = GD(DHGD + I −D)−1.

2

Let D be the identity matrix in Theorem 3.11, and then we get the following result.
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Corollary 3.12 Let A,G,H be matrices over R such that Ak = GH , Nr(G) = 0 , Nl(H) = 0 for some

positive integer k . Then A is *-DMP with index ≤ k if and only if G∗G and HAG are invertible with

H∗(HH∗)−1 = G(HG)−1 .

Let D be the identity matrix and k = 1 in Theorem 3.11, and then we get the following result, which

gives the fourth characterization for A to be EP.

Corollary 3.13 Let A,G,H be matrices over R such that A = GH , Nr(G) = 0 , Nl(H) = 0 . Then A is

EP if and only if G∗G and HG are invertible with H∗(HH∗)−1 = G(HG)−1 .

The following result gives the fifth characterization for A , in the form of Ak = GDH , Nr(G) = 0,

Nl(H) = 0, D2 = D = D∗ , to be *-DMP.

Theorem 3.14 Let A,G,D,H be matrices over R such that Ak = GDH , Nr(G) = 0 , Nl(H) = 0 ,

D2 = D = D∗ for some positive integer k . Then A is *-DMP with index ≤ k if and only if DG∗GD+ I −D ,

DHH∗D + I −D , and DHAGD + I −D are invertible and one of the following equivalent conditions holds:

(1) (DH)∗(DHH∗D + I −D)−1(DG∗GD + I −D)−1(GD)∗ = GD(DHGD + I −D)−2DH ;

(2) G(DHAGD + I −D)−1DHGD(DG∗GD + I −D)−1G∗ = H∗(DHH∗D + I −D)−1DHGD(D

HAGD + I −D)−1H .

Proof DG∗GD + I − D , DHH∗D + I − D , and DHAGD + I − D are invertible if and only if (Ak)†

and AD exist with i(A) ≤ k by Lemmas 2.1 and 2.2, which is equivalent to AD⃝ and AD⃝ existing with

i(A) ≤ k by Lemma 2.3. Observe that (AD)k = GD(DHGD + I − D)−2DH by the proof of Theorem 3.2;

(Ak)† = (DH)∗(DHH∗D + I −D)−1(DG∗GD + I −D)−1(GD)∗ by Lemma 2.1; and, by Theorem 2.4,

AD⃝ = GD(DHAGD + I −D)−1DHGD(DG∗GD + I −D)−1(GD)∗,

AD⃝ = (DH)∗(DHH∗D + I −D)−1DHGD(DHAGD + I −D)−1DH.

From Lemma 3.1, A is *-DMP with index ≤ k if and only if

(DH)∗(DHH∗D + I −D)−1(DG∗GD + I −D)−1(GD)∗

= (Ak)† = (AD)k = GD(DHGD + I −D)−2DH,

if and only if

G(DHAGD + I −D)−1DHGD(DG∗GD + I −D)−1G∗

= AD⃝ = AD⃝

= H∗(DHH∗D + I −D)−1DHGD(DHAGD + I −D)−1H.

2

Let D be the identity matrix in Theorem 3.14, and then we get the following result.

Corollary 3.15 Let A,G,H be matrices over R such that Ak = GH , Nr(G) = 0 , Nl(H) = 0 for some

positive integer k . Then A is *-DMP with index ≤ k if and only if G∗G , HH∗ and HAG are invertible and

one of the following equivalent conditions holds:
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(1) H∗(HH∗)−1(G∗G)−1G∗ = G(HG)−2H ;

(2) G(HAG)−1HG(G∗G)−1G∗ = H∗(HH∗)−1HG(HAG)−1H .

Let D be the identity matrix and k = 1 in Theorem 3.14, and then we get the following result, which

gives the fifth characterization for A to be EP.

Corollary 3.16 Let A,G,H be matrices over R such that Ak = GH , Nr(G) = 0 , Nl(H) = 0 . Then A is

EP if and only if G∗G , HH∗ , and HG are invertible and one of the following equivalent conditions holds:

(1) H∗(HH∗)−1(G∗G)−1G∗ = G(HG)−2H ;

(2) G(HAG)−1HG(G∗G)−1G∗ = H∗(HH∗)−1HG(HAG)−1H .
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