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Abstract: We obtain several inclusions between the class of functions with positive real part and the class of starlike

univalent functions associated with the Booth lemniscate. These results are proved by applying the well-known theory of

differential subordination developed by Miller and Mocanu and these inclusions give sufficient conditions for normalized

analytic functions to belong to some subclasses of Ma–Minda starlike functions. In addition, by proving an associated

technical lemma, we compute various radii constants such as the radius of starlikeness, radius of convexity, radius of

starlikeness associated with the lemniscate of Bernoulli, and other radius estimates for functions in the class of functions

associated with the Booth lemniscate. The results obtained are sharp.
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1. Introduction

Let An denote the general class of the normalized analytic functions defined on the unit disk D := {z ∈
C : |z| < 1} and having the Taylor series expansion given by f(z) = z + an+1z

n+1 + an+2z
n+2 + · · · .

In particular, let A := A1 . The subclass of A containing univalent functions is denoted by S . For the

analytic functions f and g defined on D , we say that f is subordinate to g , written as f ≺ g , if there is an

analytic function w defined on D with w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)) for all z ∈ D .

In particular, if the function g is univalent, then f ≺ g if and only if f(0) = g(0) and f(D) ⊆ g(D). Among

the several subclasses of S , the classes of starlike and convex functions are most studied. Various classes of

starlike and convex functions are characterized by the quantities zf ′(z)/f(z) and 1+zf ′′(z)/f ′(z), respectively,

by using the concept of subordination and the Hadamard product. The class S∗
g (φ) of all f ∈ A satisfying

z(f(z) ∗ g(z))′/(f(z) ∗ g(z)) ≺ φ(z), where φ(z) is a convex function and g(z) is a fixed function in A , was

studied by Shanmugam [31]. For the special case g(z) = z/(1−z)α , the class S∗
g (φ) was studied in [23]. For the

choice of function g(z) = z/(1 − z), z/(1 − z)2 and analytic function φ with the positive real part mapping D
onto a domain symmetric with respect to real axis and starlike with respect to φ(0) = 1 and φ′(0) > 0, the class

S∗
g (φ) reduces to classes S∗(φ) and K(φ), respectively, studied by Ma and Minda [17]. They proved distortion,

covering, and growth theorems. For special choices of the function φ , the classes S∗(φ) and K(φ) reduce to

many well-known classes. For φ(z) = (1 + Az)/(1 + Bz) (−1 ≤ B < A ≤ 1), these classes reduce respectively
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to the classes S∗[A,B] and K[A,B] of Janowski starlike and convex functions [9]. The classes S∗[1,−1] := S∗

and K[1,−1] =: K are respectively the well-known classes of starlike and convex functions. In recent years,

several authors have defined many interesting subclasses of S∗ by restricting the value of ζ(z) := zf ′(z)/f(z)

to lie in a certain precise domain in the right-half plane.

The class S∗
L := S∗(

√
1 + z) is related to the right-half of the lemniscate of Bernoulli and was considered

by Sokó l and Stankiewicz [35]. In 2015, Mendiratta et al. [18, 19] introduced and studied the classes of starlike

functions

S∗
e = S∗(ez) and S∗

RL = S∗

(
√

2 − (
√

2 − 1)

√
1 − z

1 + 2(
√

2 − 1)z

)
.

Geometrically, f ∈ S∗
RL if ζ(z) lies in the interior of the left half of the displaced lemniscate of Bernoulli

given by |(ζ −
√

2)2 − 1| < 1. Similarly, Sharma et al. [32] studied various geometric properties of the class

S∗
c := S∗(φc(z)), where φc(z) := 1 + (4z/3) + (2z2/3). In 2015, Raina and Sokó l [25] introduced an interesting

class S∗
q := S∗(φq(z)), where φq(z) := z +

√
1 + z2 , and proved that the class S∗

q is a subclass of the class

consisting of functions f ∈ A such that ∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < 2

∣∣∣∣zf ′(z)f(z)

∣∣∣∣
and discussed several other properties of the class S∗

q . In 2016, Kumar and Ravichandran [13] considered the

class S∗
R := S∗(φ0(z)), where φ0(z) := 1 + (z/k)((k + z)/(k − z)), k =

√
2 + 1. In a similar fashion, Cho et

al. [“Radius problems for starlike functions associated with the sine function”, preprint] defined and studied

radius problems for the class S∗
s := S∗(φs(z)), where φs(z) = 1 + sin z .

Recently, Kargar et al. [10] introduced and studied a class of functions related to the Booth lemniscate.

For 0 ≤ α < 1, they defined BS∗(α) := S∗(Gα(z)), where Gα(z) := 1 + z/(1 − αz2). They also obtained

the bound for the initial coefficients and derived some subordination results. In [11], various radius problems

and subordination results were also discussed for some subclasses of analytic functions. For more details, see

[24]. The Booth lemniscate is a special case of the Persian curve [29] and it was named after Booth, an Irish

mathematician, who studied it in 1873. In geometry, the Booth lemniscate is a plane algebraic curve of order 4.

If f ∈ BS∗(α), then [28, Theorem 6, p. 195] yields |f(z)| ≤ |z|K(α), where

K(α) = exp

(
1

2
√
α

log
1 +

√
α

1 −
√
α

)

for all |z| < 1. Therefore, there is a function f that belongs to the class BS∗(1/2) for which supz∈D |f(z)| =

K(1/2) ≈ 3.478.

The first two important results related to first-order differential subordination were introduced by Goluzin

and Robinson in 1935 and 1947, respectively. These first-order differential subordinations have many applica-

tions in the theory of univalent functions. Later, Miller and Mocanu [20, 21] developed and discussed the general

theory of differential subordination.

Using the theory of differential subordination, Tuneski [36] and Tuneski et al. [37] gave interesting

criteria for normalized analytic functions to be Janowski starlike. They also studied certain properties of linear
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combinations of starlike functions. For analytic function p : D → C with p(0) = 1, in 1989, Nunokawa

et al. [22] proved that p(z) ≺ 1 + z , whenever the subordination 1 + zp′(z) ≺ 1 + z holds. Later, Ali

et al. [4] generalized this subordination implication and computed a bound on β in each case for which

1+βzp′(z)/pj(z) ≺ (1+Dz)/(1+Ez) (j = 0, 1, 2) implies p(z) ≺ (1+Az)/(1+Bz), where A,B,D,E ∈ [−1, 1].

Further, Ali et al. [2] determined the estimates on β so that p(z) ≺
√

1 + z , whenever 1 + βzp′(z)/pj(z) ≺
√

1 + z (j = 0, 1, 2). In 2013, Kumar et al. [15] obtained the bound on β with −1 < E < 1 and |D| ≤ 1 such

that 1+βzp′(z)/pj(z) ≺ (1+Dz)/(1+Ez) (j = 0, 1, 2) implies p(z) ≺
√

1 + z . These nonsharp results provide

sufficient conditions for normalized analytic functions to be in the class of the Janowski starlike functions and

in the class of functions associated with the lemniscate of Bernoulli. For more details, see [3, 5, 6, 21, 27, 33].

Recently, Kumar and Ravichandran [14] determined sharp estimates on β so that p(z) ≺ ez whenever

subordinations 1 + βzp′(z)/pj(z) ≺ φ0(z) (j = 0, 1, 2), 1 + βzp′(z)/pj(z) ≺ (1 + Az)/(1 + Bz) (j = 0, 2),

1 + βzp′(z)/pj(z) ≺
√

1 + z (j = 0, 2), and 1 + βzp′(z)/pj(z) ≺ φs(z) (j = 0, 1, 2) hold. Ahuja et al. [1] found

sharp estimates on β so that p is subordinate to some well-known starlike functions (for example, ez ,
√

1 + z ,

φs(z), φc(z), φq(z), and many more) whenever 1 + βzp′(z)/pk(z) (k = 0, 1, 2) is subordinate to
√

1 + z .

It is well known that every convex function is starlike but not conversely. However, each starlike function

is convex in the disk of radius 2 −
√

3. For two subfamilies T1 and T2 of A , the T1 radius of T2 is the largest

number ρ ∈ (0, 1) such that r−1f(rz) ∈ T1, 0 < r ≤ ρ for all f ∈ T2 . Grunsky [8] proved that the radius of

starlikeness for functions in the class S is tanhπ/4 ≈ 0.6558. The radius of α -convexity and the α -starlikeness

for S∗
L were recently obtained by Sokó l [34]. In 2012, Ali et al. [3] obtained the S∗

L -radius for certain well-known

classes. Later, Mendiratta et al. [18, 19] computed the S∗
e and S∗

RL -radii for certain classes. Subsequently,

in [13], S∗
R -radii were obtained for various well-known classes of starlike functions. For more results on radius

problems, see [7, 12, 16, 38, 39].

Motivated by all these works, in Section 2, we consider the subordination inclusions, in which we compute

the sharp bound on the parameter β so that a given differential subordination implication holds. We determine

the sharp bound on β so that p(z) ≺ P(z), where P(z) is a function with positive real part such as
√

1 + z ,

(1 + Az)/(1 + Bz), ez , φs(z), φq(z), φ0(z), and φc(z), whenever 1 + βzp′(z)/pj(z) ≺ Gα(z) (j = 0, 1, 2).

In addition, we find the best possible bound on β so that p is subordinate to Gα , whenever 1 + βzp′(z) is

subordinate to (1 +Az)/(1 +Bz) or some other well-known Carathéodory functions. As applications to these

results, several sufficient conditions for normalized analytic functions to belong to certain well-known classes of

starlike functions are obtained. In Section 3, we determine the radius of starlikeness and radius of convexity

for the functions in the class BS∗(α). We also determine the BS∗
n(α) := BS∗(α) ∩An -radius for the functions

belonging to several interesting classes. Furthermore, we compute S∗
L,S∗

RL,S∗
e ,S∗

c , and S∗
q -radii for functions

in the class BS∗(α). The results obtained are sharp.

2. Differential subordination implications

The first result of this section gives a bound on β so that 1 + βzp′(z) ≺ Gα(z) implies that p is subordinate

to some well-known starlike functions.
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Theorem 2.1 Let the function p be analytic in D , p(0) = 1 , and 1 + βzp′(z) ≺ Gα(z) . For 0 < α < 1 , let

l(α) =
1

2
√
α

log
1 +

√
α

1 −
√
α
.

Then the following subordination results hold:

(a) p(z) ≺ ez for β ≥ l(α)e/(e− 1) .

(b) p(z) ≺
√

1 + z for β ≥ l(α)/(
√

2 − 1) .

(c) p(z) ≺ (1 +Az)/(1 +Bz) for β ≥ (1 + |B|)l(α)/(A−B) , (−1 < B < A < 1) .

(d) p(z) ≺ φ0(z) for β ≥ (3 + 2
√

2)l(α) .

(e) p(z) ≺ φq(z) for β ≥ (2 +
√

2)l(α)/2 .

(f) p(z) ≺ φc(z) for β ≥ 3l(α)/2 .

(g) p(z) ≺ φs(z) for β ≥ l(α)/ sin(1) .

The bounds on β are sharp.

In proving our results, the following lemma will be needed:

Lemma 2.2 [21, Theorem 3.4h, p. 132] Let q be analytic in D and let ψ and ν be analytic in a domain U

containing q(D) with ψ(w) ̸= 0 when w ∈ q(D) . Set Q(z) := zq′(z)ψ(q(z)) and h(z) := ν(q(z)) + Q(z) .

Suppose that (i) either h is convex or Q is starlike univalent in D , and (ii) Re (zh′(z)/Q(z)) > 0 for z ∈ D .

If p is analytic in D , with p(0) = q(0) , p(D) ⊆ U and

ν(p(z)) + zp′(z)ψ(p(z)) ≺ ν(q(z)) + zq′(z)ψ(q(z)),

then p(z) ≺ q(z) , and q is best dominant.

Proof of Theorem 2.1 The analytic function qβ : D → C defined by

qβ(z) = 1 +
1

2
√
αβ

log
1 +

√
αz

1 −
√
αz

is a solution of the differential equation 1 +βzq′β(z) = Gα(z). Consider the functions ν(w) = 1 and ψ(w) = β .

The function Q : D → C is defined by

Q(z) = zq′β(z)ψ(qβ(z)) = βzq′β(z) =
z

1 − αz2
.

Since

Re

(
zQ′(z)

Q(z)

)
= Re

(
1 + αz2

1 − αz2

)
> 0
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in D , it follows that function Q is starlike. Note that the function h(z) = ν(qβ(z)) + Q(z) satisfies

Re(zh′(z)/Q(z)) > 0 for z ∈ D . Therefore, by Lemma 2.2, it follows that 1 + βzp′(z) ≺ 1 + βzq′β(z) im-

plies p(z) ≺ qβ(z). Each of the conclusions in all parts of this theorem is p(z) ≺ P(z) for appropriate choice of

P and this holds if the subordination qβ(z) ≺ P(z) holds. If qβ(z) ≺ P(z), then

P(−1) < qβ(−1) < qβ(1) < P(1).

This gives a necessary condition for p ≺ P to hold. This necessary condition is also sufficient by looking at the

graph of the respective functions.

(a) Let P(z) = ez . Then the inequalities qβ(−1) ≥ e−1 and qβ(1) ≤ e yield β ≥ β1 and β ≥ β2 , respectively,

where

β1 =
e

2(e− 1)
√
α

log
1 +

√
α

1 −
√
α

and β2 =
1

2(e− 1)
√
α

log
1 +

√
α

1 −
√
α
.

A simple calculation gives

β1 − β2 =
1

2
√
α

log
1 +

√
α

1 −
√
α
> 0.

Therefore, the subordination qβ(z) ≺ ez holds only if β ≥ max {β1, β2} = β1 .

(b) Let P(z) =
√

1 + z . Then the inequalities qβ(−1) ≥ 0 and qβ(1) ≤
√

2 reduce to β ≥ β1 and β ≥ β2 ,

respectively, where

β1 =
1

2
√
α

log
1 +

√
α

1 −
√
α

and β2 =
1

2(
√

2 − 1)
√
α

log
1 +

√
α

1 −
√
α
.

We also note that β1 − β2 < 0. Therefore, the subordination qβ(z) ≺
√

1 + z holds only if β ≥
max {β1, β2} = β2 .

(c) Let P(z) = (1 + Az)/(1 + Bz) (−1 < B < A < 1). Then the inequalities qβ(−1) ≥ (1 −A)/(1 −B) and

qβ(1) ≤ (1 +A)/(1 +B) reduce to β ≥ β1 and β ≥ β2 , respectively, where

β1 =
1 −B

2(A−B)
√
α

log
1 +

√
α

1 −
√
α

and β2 =
1 +B

2(A−B)
√
α

log
1 +

√
α

1 −
√
α
.

Therefore, the desired subordination qβ(z) ≺ (1 +Az)/(1 +Bz) holds if β ≥ max{β1, β2} .

(d) Let P(z) = φ0(z) = 1+(z/k)((k+z)/(k−z)), where k =
√

2+1. Then the inequalities qβ(−1) ≥ 2
(√

2 − 1
)

and qβ(1) ≤ 2 become β ≥ β1 and β ≥ β2 , respectively, where

β1 =
1

2(3 − 2
√

2)
√
α

log
1 +

√
α

1 −
√
α

and β2 =
1

2
√
α

log
1 +

√
α

1 −
√
α
.

We also note that β1 > β2 . Therefore, if β ≥ β1 , then qβ(z) ≺ φ0 .
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(e) Let P(z) = φq(z) = z+
√

1 + z2 . Then, on simplifying the inequalities qβ(−1) ≥
√

2−1 and qβ(1) ≤
√

2+1,

we get β ≥ β1 and β ≥ β2 , respectively, where

β1 =
1

2(2 −
√

2)
√
α

log
1 +

√
α

1 −
√
α

and β2 =
1

2
√

2α
log

1 +
√
α

1 −
√
α
.

Thus, the subordination qβ(z) ≺ φq(z) holds if β ≥ max{β1, β2} = β1 .

(f) Let P(z) = φc(z) = 1 + 4z/3 + 2z2/3. Then the inequalities φc(−1) ≤ qβ(−1) and qβ(1) ≤ φc(1) reduce

to β ≥ β1 and β ≥ β2 , respectively, where

β1 =
3

4
√
α

log
1 +

√
α

1 −
√
α

and β2 =
1

4
√

2α
log

1 +
√
α

1 −
√
α
.

Note that β2/β1 = 1/3
√

2 < 1. Therefore, the subordination qβ(z) ≺ φc(z) holds if β ≥ β1 .

(g) Let P(z) = φs(z) = 1 + sin z . Then the inequalities qβ(−1) ≥ φs(−1) and qβ(1) ≤ φs(1) yield β ≥ β1 and

β ≥ β2 , respectively, where

β1 = β2 =
1

2 sin(1)
√
α

log
1 +

√
α

1 −
√
α
.

Therefore, if β ≥ β1 , then qβ(z) ≺ φs(z).

2

Let the function f ∈ A satisfy the following subordination:

β
zf ′(z)

f(z)

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
≺ 2z

2 − z2
.

Then the following sufficient conditions are immediate consequences of Theorem 2.1:

(a) f ∈ S∗
e for β ≥ e log (3 + 2

√
2)/

√
2(e− 1).

(b) f ∈ S∗
L for β ≥ log (3 + 2

√
2)/(2 −

√
2).

(c) f ∈ S∗[A,B] for β ≥ (1 + |B|) log (3 + 2
√

2)/
√

2(A−B) (−1 < B < A < 1).

(d) f ∈ S∗
RL for β ≥ (3 + 2

√
2) log (3 + 2

√
2)/

√
2.

(e) f ∈ S∗
q for β ≥ log (3 + 2

√
2)/2(

√
2 − 1).

(f) f ∈ S∗
c for β ≥ 3 log (3 + 2

√
2)/2

√
2.

(g) f ∈ S∗
s for β ≥ log (3 + 2

√
2)/

√
2 sin(1).

The next result gives a sharp bound on β so that 1+βzp′(z)/p(z) ≺ Gα(z) implies that p is subordinate

to some well-known starlike functions.
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Theorem 2.3 Let p be an analytic function in D , p(0) = 1 and satisfying the subordination

1 + β
zp′(z)

p(z)
≺ Gα(z).

For 0 < α < 1 , let

l(α) =
1

2
√
α

log
1 −

√
α

1 −
√
α
.

Then the following subordination results hold:

(a) p(z) ≺ ez for β ≥ l(α) .

(b) If −1 < B < A < 1 , then p(z) ≺ (1 +Az)/(1 +Bz) for β ≥ max{β1, β2} , where

β1 =
l(α)

log(1 −B) − log(1 −A)
and β2 =

l(α)

log(1 +A) − log(1 +B)
.

(c) p(z) ≺ φ0(z) for β ≥ l(α)/log(2
√

2 − 2) .

(d) p(z) ≺ φq(z) for β ≥ l(α)/log(
√

2 + 1) .

(e) p(z) ≺ φc(z) for β ≥ l(α)/log(3) .

(f) p(z) ≺ φs(z) for β ≥ l(α)/log(1 + sin(1)) .

The bound on β in each case is the best possible.

Proof Define the function qβ : D → C by

qβ(z) = exp

(
1

2
√
αβ

log
1 +

√
αz

1 −
√
αz

)
.

Then the function qβ is analytic and a solution of the differential equation 1+βzq′β(z)/qβ(z) = Gα(z). Consider

the functions ν(w) = 1 and ψ(w) = β/w . Define the function

Q(z) := zq′β(z)ψ(qβ(z)) =
βzq′β(z)

qβ(z)
=

z

1 − αz2
.

A simple calculation shows that the function Q is starlike in D . Note that the function h(z) := ν(qβ(z))+Q(z) =

1 + Q(z) satisfies an inequality Re(zh′(z)/Q(z)) > 0 for z ∈ D . Therefore, by Lemma 2.2, we see that the

subordination p(z) ≺ qβ(z) holds if

1 + β
zp′(z)

p(z)
≺ 1 + β

zq′β(z)

qβ(z)
.

On similar lines to those of the proof of Theorem 2.1, the proofs of parts (a)–(e) are completed. 2

For the best possible value of β , let the function f ∈ A satisfy the following subordination:

1 + β

(
1 − zf ′(z)

f(z)
+
zf ′′(z)

f ′(z)

)
≺ G1/2(z).

Then the following sufficient conditions are immediate consequences of Theorem 2.3:
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(a) f ∈ S∗
e for β ≥ log (3 + 2

√
2)/

√
2.

(b) Let −1 < B < A < 1. f ∈ S∗[A,B] , for β ≥ max{β1, β2} , where

β1 =
log (3 + 2

√
2)√

2 log((1 −B)/(1 −A))
and β2 =

log (3 + 2
√

2)√
2 log((1 +A)/(1 +B))

.

(c) f ∈ S∗
RL for β ≥ log (3 + 2

√
2)/

√
2 log((

√
2 + 1)/2).

(d) f ∈ S∗
q for β ≥ log (3 + 2

√
2)/

√
2 log(

√
2 + 1).

(e) f ∈ S∗
c for β ≥ log (3 + 2

√
2)/

√
2 log 3.

(f) f ∈ S∗
s for β ≥ log (3 + 2

√
2)/

√
2 log(1 + sin(1)).

Next, the best possible bound on β is determined so that p is subordinate to several well-known starlike

functions, whenever 1 + βzp′(z)/p2(z) ≺ Gα(z).

Theorem 2.4 Let the function p be analytic in D with condition p(0) = 1 and satisfying the subordination

1 + β
zp′(z)

p2(z)
≺ Gα(z).

For 0 < α < 1 , let

l(α) =
1

2
√
α

log
1 −

√
α

1 −
√
α
.

Then the following subordination results hold:

(a) p(z) ≺ ez for β ≥ el(α)/(e− 1) .

(b) p(z) ≺ (1 +Az)/(1 +Bz) for β ≥ (1 + |A|)l(α)/(A−B) (−1 < B < A < 1) .

(c) p(z) ≺ φ0(z) for β ≥ 2(2 +
√

2)l(α) .

(d) p(z) ≺ φq(z) for β ≥ (
√

2 + 1)l(α)/
√

2 .

(e) p(z) ≺ φc(z) for β ≥ 2l(α) .

(f) p(z) ≺ φs(z) for β ≥ (1 + sin(1))l(α)/sin(1) .

The results are sharp.

Proof The function qβ : D → C defined by

qβ(z) =

(
1 − 1

2
√
αβ

log
1 +

√
αz

1 −
√
αz

)−1

1387



CHO et al./Turk J Math

is clearly analytic and a solution of differential equation 1 + βzq′β(z)/q2β(z) = Gα(z). Define ν(w) = 1,

ψ(w) = β/w2 and the function Q defined by

Q(z) = zq′β(z)ψ(qβ(z)) =
βzq′β(z)

q2β(z)
=

z

1 − αz2
.

A calculation reveals that the function Q is starlike in D . We note that the function h(z) := ν(qβ(z)) +Q(z) =

ν(qβ(z)) +Q(z) satisfies the inequality Re(zh′(z)/Q(z)) > 0 for all z ∈ D . Therefore, by using Lemma 2.2, we

see that the subordination

1 + β
zp′(z)

p2(z)
≺ 1 + β

zq′β(z)

q2β(z)
implies p(z) ≺ qβ(z).

The proofs of parts (a)–(f) are obtained by following lines similar to those of the proof of Theorem 2.1. This

completes the proof. 2

Let the function f ∈ A satisfy the following subordination for the best possible value of β :

(
zf ′(z)

f(z)

)−1(
1 − zf ′(z)

f(z)
+
zf ′′(z)

f ′(z)

)
≺
G1/2(z) − 1

β
.

Then, from Theorem 2.3, we have the following results:

(a) f ∈ S∗
e for β ≥ e log (3 + 2

√
2)/

√
2(e− 1).

(b) f ∈ S∗[A,B] for β ≥ (1 + |A|) log (3 + 2
√

2)/
√

2(A−B), (−1 < B < A < 1).

(c) f ∈ S∗
R for β ≥ (2 +

√
2) log (3 + 2

√
2).

(d) f ∈ S∗
q for β ≥ (

√
2 + 1) log (3 + 2

√
2)/2.

(e) f ∈ S∗
c for β ≥

√
2 log (3 + 2

√
2).

(f) f ∈ S∗
s for β ≥ (1 + sin(1)) log (3 + 2

√
2)/

√
2 sin(1).

Next, Theorem 2.5 provides the best possible bound on β so that p is subordinate to Gα , whenever

1 + βzp′(z) is subordinate to (1 +Az)/(1 +Bz).

Theorem 2.5 Let −1 < B < A < 1 , B ̸= 0 and p(z) be the analytic function with p(0) = 1 satisfying the

subordination 1 + βzp′(z) ≺ (1 +Az)/(1 +Bz) for β ≥ max{β1, β2} , where

β1 =
(1 − α)(A−B) log(1 −B)−1

B
and β2 =

(1 − α)(A−B) log(1 +B)

B
.

Then p(z) ≺ Gα(z) . The bound on β is sharp.

Proof Let the function qβ be defined by

qβ(z) = 1 +
(A−B) log(1 +Bz)

Bβ
.
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The function qβ(z) is analytic and a solution of the differential equation 1 + βzq
′

β(z) = (1 + Az)/(1 + Bz).

Consider the functions ν and ψ as defined in the proof of Theorem 2.1. Consider the function Q defined by

Q(z) = zq′β(z)ψ(qβ(z)) =
(A−B)z

1 +Bz
.

Then a computation shows that

Re

(
zQ′(z)

Q(z)

)
= Re

(
1

1 +Bz

)
> 0 for all z ∈ D.

This inequality shows that Q is starlike in D . We also note that the function h : D → C defined by

h(z) := ν(qβ(z)) + Q(z) = 1 + Q(z) satisfies Re(zh′(z)/Q(z)) > 0 in D . By Lemma 2.2, it is easy to see

that the subordination

1 + βzp′(z) ≺ 1 + βzq′β(z) implies p(z) ≺ qβ(z).

The desired subordination p(z) ≺ Gα(z) holds if qβ(z) ≺ Gα(z) and this subordination holds provided

Gα(−1) ≤ qβ(−1) and qβ(1) ≤ Gα(1).

Therefore, the subordination p(z) ≺ Gα(z) holds if β ≥ max{β1, β2} as in Theorem 2.1. A simple calculation

gives that if B < 0, then max{β1, β2} = β2 , and if B > 0, then max{β1, β2} = β1 . This completes the proof.
2

A simple calculation,

|(A−B)eiθ|
|1 +Beiθ|

≥ A−B

1 + |B|
,

yields that the inequality |w(z)| ≤ (A−B)/(1+ |B|) implies w(z) ≺ (A−B)z/(1+Bz). By using this reasoning

in the hypothesis of Theorem 2.5, we get the following sufficient condition for a function f ∈ A to be in the

class BS∗(α): ∣∣∣∣(zf ′(z)f(z)

)(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)∣∣∣∣ ≤ (A−B)

max(β1, β2)(1 + |B|)
.

The next result provides the estimates on β so that the subordination p(z) ≺ Gα(z) holds whenever

1 + βzp′(z) is subordinate to the functions φ0(z), φs(z), ez , q(z), φc(z), and Gα(z). Proof of this theorem

is omitted as it is similar to that of Theorem 2.5.

Theorem 2.6 Let p be an analytic function defined in D with p(0) = 1 . The subordination p(z) ≺ Gα(z)

holds if any one of the following differential subordinations holds:

(a) 1 + βzp′(z) ≺ φ0(z) for β ≥ (1 − α)(1 −
√

2 − 2 log(2 −
√

2)) ≈ 0.655386(1 − α) .

(b) 1 + βzp′(z) ≺ φs(z) for β ≥ (1 − α)
∑∞

n=0
(−1)n

(2n+1)!(2n+1) ≈ 0.946083(1 − α) .

(c) 1 + βzp′(z) ≺ ez for β ≥ (1 − α)
∑∞

n=1
1

n!n ≈ 1.3179(1 − α) .

(d) 1 + βzp′(z) ≺ φq(z) for β ≥ (1 − α)(
√

2 + log(2) − log(
√

2 − 1)) ≈ 1.22599(1 − α) .
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(e) 1 + βzp′(z) ≺ φc(z) for β ≥ 5(1 − α)/3 .

(f) 1 + βzp′(z) ≺ Gα(z) for β ≥ 1−α
2
√
α

log 1+
√
α

1−
√
α
.

Theorem 2.6, in special cases, also provides several sufficient conditions for a normalized analytic function f to

be in the class BS∗(α).

3. Radius estimates

In 2015, Piejko and Sokó l [24] proved that the function z/(1−αz2) is convex univalent for 0 ≤ α < 3−2
√

2 and

also discussed some convolution properties related to the functions in the class BS∗(α). Using the representation

formula, we see that the function

F (z) = z exp

(∫ z

0

1

1 − αt2
dt

)
=

{
ze

tanh−1(
√

αz)√
α , 0 < α < 1;

zez, α = 0
(3.1)

belongs to the class BS∗(α) and is not necessarily univalent in D . In particular, the functions in the class

BS∗(α) are not necessarily starlike univalent. The following theorems give the radius of starlikeness and

convexity, respectively.

Theorem 3.1 The functions in the class BS∗(α) are starlike univalent in the disk |z| < rα, where rα :=

2/(
√

4α+ 1 + 1) .

Proof Since f ∈ BS∗(α), it follows that zf ′(z)/f(z) ≺ 1 + z/(1 − αz2). If α = 0, then the result is obvious.

Now if α ̸= 0, then for |z| = r , we have

ℜ
(
zf ′(z)

f(z)

)
≥ 1 − r

1 − αr2

> 0, for r ≤
√

4α+ 1 − 1

2α
.

The result is sharp as the equality holds in the case of the function F defined by (3.1). 2

Theorem 3.2 The functions in the class BS∗(α) are convex univalent in the disk |z| < ρ, with ρ =

min {r∗, rα} , where rα is as defined in Theorem 3.1 and r∗ is the smallest positive root of the equation

1 − r

1 − αr2
−
(

2αr

1 − αr2
+

2αr + 1

1 − αr2 − r

)
r

1 − r2
= 0.

Proof Since f ∈ BS∗(α), it follows that there exists a Schwarz function w such that

zf ′(z)

f(z)
= 1 +

w(z)

1 − αw2(z)
. (3.2)

Note that the Schwarz function w satisfies w(0) = 0, |w(z)| ≤ |z| and

|w′(z)| ≤ 1 − |w(z)|2

(1 − |z|2)
.
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Now a logarithmic differentiation of (3.2) gives

1 +
zf ′′(z)

f ′(z)
= 1 +

w(z)

1 − αw2(z)
+

(
1 − 2αw(z)

1 − αw2(z) + w(z)
− 2αw(z)

1 − αw2(z)

)
zw′(z).

Using the properties of the Schwarz function, we have

Re

(
1 +

zf ′′(z)

f ′(z)

)
≥ 1 − |w(z)|

1 − α|w2(z)|
−
(

1 + 2α|w(z)|
1 − α|w2(z)| − |w(z)|

+
2α|w(z)|

1 − α|w2(z)|

)
|zw′(z)|

≥ 1 − r

1 − αr2
−
(

2αr

1 − αr2
+

2αr + 1

1 − αr2 − r

)
r

1 − r2
=: H(r, α). (3.3)

It is easy to verify that 1 − αr2 − r > 0 for r < rα, where rα is as defined in Theorem 3.1. Therefore, from

(3.3), we have H(r, α) > 0, whenever r = ρ < min {r∗, rα} , where r∗ is the smallest positive root of

1 − r

1 − αr2
−
(

2αr

1 − αr2
+

2αr + 1

1 − αr2 − r

)
r

1 − r2
= 0.

For α = 0, the result is sharp, as the equality holds in the case of the function defined by (3.1):

1 +
zf ′′(z)

f ′(z)
= 1 − z − z

1 − z
= 0, for z = ρ =

1

2

(
3 −

√
5
)
.

2

Conjecture 3.3 Let rα be as defined in Theorem 3.1, and r′ be the smallest positive root of

1 − r

1 − αr2
−
(

2αr

1 − αr2
+

2αr + 1

1 − αr2 − r

)
r = 0.

Then sharp radius convexity for function f ∈ BS∗(α) is ρ = min {r′, rα} .

Consider the function w = Gα(z) = 1 + z/(1 − αz2), 0 ≤ α < 1. Then we have

|w − 1| =
|z|

|1 − αz2|
.

It can be easily seen that

min
|z|=1

|z|
|1 − αz2|

=
1

1 + α
and max

|z|=1

|z|
|1 − αz2|

=
1

1 − α
.

Thus, the smallest disk centered at (1, 0) that contains Gα(D) and the largest disk centered at (1, 0) contained

in Gα(D) are, respectively, given by:

|w − 1| < 1

1 + α
and |w − 1| < 1

1 − α
.

On the basis of the above analysis, we have the following lemma:
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Lemma 3.4 Let Gα(z) = 1 + z/(1 − αz2) . The inclusion relation is as follows:{
w ∈ C : |w − 1| < 1

1 + α

}
⊂ Gα(D) ⊂

{
w ∈ C : |w − 1| < 1

1 − α

}
.

For further development in this section, we shall recall a few definitions and results. Let P be the

class of analytic functions p : D → C with p(0) = 1 and mapping D into the right half plane. The function

p0(z) = (1 + z)/(1− z), which maps D onto the right half plane conformally, is a leading example of a function

with positive real part. Let

Pn[A,B] :=

{
p(z) = 1 + cnz

n + cn+1z
n+1 + · · · : p(z) ≺ 1 +Az

1 +Bz
,−1 ≤ B < A ≤ 1

}
.

Let us denote Pn(α) := Pn[1− 2α,−1], Pn := Pn(0), and P1 =: P . For f ∈ An , if we set p(z) = zf ′(z)/f(z),

then the class Pn[A,B] is denoted by S∗
n[A,B] and S∗

n(α) := S∗
n[1− 2α,−1]. Let BS∗

n(α) := An ∩BS∗(α). Ali

et al. [3] considered the following classes:

Sn := {f ∈ An : f(z)/z ∈ Pn} , CSn(α) := {f ∈ An : f(z)/g(z) ∈ Pn, g ∈ S∗
n(α)} , S∗

n[A,B].

They obtained the S∗
L,n -radii for these classes.

The following lemmas will be used to establish our results related to radius estimates:

Lemma 3.5 [30] If p ∈ Pn(α) , then, for |z| = r ,∣∣∣∣zp′(z)p(z)

∣∣∣∣ ≤ 2(1 − α)nrn

(1 − rn)(1 + (1 − 2α)rn)
.

Lemma 3.6 [26] If p ∈ Pn[A,B] , then, for |z| = r ,∣∣∣∣p(z) − 1 −ABr2n

1 −B2r2n

∣∣∣∣ ≤ (A−B)rn

1 −B2r2n
.

In particular, if p ∈ Pn(α), then, for |z| = r ,∣∣∣∣p(z) − (1 + (1 − 2α))r2n

1 − r2n

∣∣∣∣ ≤ 2(1 − α)rn

1 − r2n
.

Now we shall discuss the radius problem for the following classes. For brevity we shall denote them by

F1 :=
{
f ∈ An : Re f(z)

g(z) > 0 and Re g(z)
z > 0, g ∈ An

}
,

F2 :=
{
f ∈ An : Re f(z)

g(z) > 0 and Re g(z)
z > 1/2, g ∈ An

}
,

F3 :=
{
f ∈ An :

∣∣∣ f(z)g(z) − 1
∣∣∣ < 1 and Re g(z)

z > 0, g ∈ An

}
.

Since in the case when α = 0 the situation becomes simple, hereafter in this section we restrict α as

0 < α < 1, unless stated specifically.
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Theorem 3.7 Sharp BS∗
n(α)-radii for functions in the classes F1,F2 , and F3 , respectively, are:

1. RBS∗
n(α)

(F1) = 2−1/n

(
2√

4(α+1)2n2+1+2n(α+1)

)1/n

.

2. RBS∗
n(α)

(F2) = 2−1/n

(
4√

9(α+1)2n2+4(αn+n+1)+3n(α+1)

)1/n

= RBS∗
n(α)

(F3).

Proof (1) Let us suppose f ∈ F1 and g ∈ An . Let the functions p, h : D → C be defined by p(z) = g(z)/z

and h(z) = f(z)/g(z). Then p, h ∈ Pn. Since f(z) = zp(z)h(z), it follows that

zf ′(z)

f(z)
− 1 =

zh′(z)

h(z)
+
zp′(z)

p(z)
.

Now from Lemma 3.8, we have ∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ ≤
∣∣∣∣zh′(z)h(z)

∣∣∣∣+

∣∣∣∣zp′(z)p(z)

∣∣∣∣
≤ 4nrn

1 − r2n
≤ 1

1 + α
,

for r ≤ 2−1/n
(√

(4α+ 4)2n2 + 4 − 4αn− 4n
)1/n

= RBS∗
n(α)

(F1).

Consider the functions f0 and g0 defined by

f0(z) = z

(
1 + zn

1 − zn

)2

and g0(z) = z

(
1 + zn

1 − zn

)
.

It is obvious that Re(f0(z)/g0(z)) > 0 and Re(g0(z)/z) > 0, and therefore f ∈ F1. Now a computation shows

that, for z = RBS∗
n(α)

(F1),

zf ′0(z)

f0(z)
− 1 =

4nzn

1 − z2n
=

1

1 + α
.

Hence, the result is sharp.

(2) Let f ∈ F2 and g ∈ An . Define the functions p, h : D → C by p(z) = g(z)/z and h(z) = f(z)/g(z). Then

p ∈ Pn and h ∈ Pn(1/2), and since f(z) = zp(z)h(z), it follows that

zf ′(z)

f(z)
− 1 =

zh′(z)

h(z)
+
zp′(z)

p(z)
,

and from Lemma 3.8, we have ∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ ≤
∣∣∣∣zh′(z)h(z)

∣∣∣∣+

∣∣∣∣zp′(z)p(z)

∣∣∣∣
≤ 4nrn

1 − r2n
+

nrn

1 − r2

=
3nrn + nr2n

1 − r2n
≤ 1

1 + α
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provided

r ≤ 2−1/n

(√
9(α+ 1)2n2 + 4(αn+ n+ 1) − 3n(α+ 1)

αn+ n+ 1

)1/n

.

Thus, f ∈ BS∗
n(α) for r ≤ RBS∗

n(α)
(F2).

To see the sharpness of the result, consider the functions

f0(z) =
z(1 + zn)

(1 − zn)2
and g0(z) =

z

1 − zn
.

Then Re(f0(z)/g0(z)) > 0 and Re(g0(z)/z) > 1/2, and hence f ∈ F2. Now from the definition of f0 , we see

that at z = RBS∗
n(α)

(F2),

zf ′0(z)

f0(z)
− 1 =

3nzn + nz2n

1 − z2n
=

1

α+ 1
.

(3) Now suppose f ∈ F3 and g ∈ An . Further, define the functions p, h : D → C by p(z) = g(z)/z and

h(z) = g(z)/f(z). Then p ∈ Pn and h ∈ Pn(1/2). Since f(z) = zp(z)/h(z), in view of Lemma 3.8, we have∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ ≤
∣∣∣∣zp′(z)p(z)

∣∣∣∣+

∣∣∣∣zh′(z)

h(z)

∣∣∣∣
≤ 3nrn + nr2n

1 − r2n
≤ 1

α+ 1
,

which holds for

r ≤ 2−1/n

(√
9(α+ 1)2n2 + 4(αn+ n+ 1) − 3n(α+ 1)

αn+ n+ 1

)1/n

.

The result is sharp, since the equality in the result holds for the functions f and g defined by

f0(z) =
z(1 + zn)2

(1 − zn)
with g0(z) =

z(1 + zn)

1 − zn
,

since at z = RBS∗
n(α)

(F3), we have

zf ′0(z)

f0(z)
− 1 =

1

α+ 1
.

This completes the proof. 2

We now discuss radius estimates for the classes of starlike functions associated with lemniscate, reverse

lemniscate, Booth lemniscate, exponential, and sine functions. To discuss these problems the prerequisite results
are:

Lemma 3.8 [3] Let Q1(z) =
√

1 + z and ΩL := Q1(D) . Assume that 0 < a <
√

2 and

ra =

{
((1 − (a)2)1/2 − (1 − (a)2))1/2, 0 < a ≤ 2

√
2/3;√

2 − a, 2
√

2/3 ≤ a <
√

2.

Then {w ∈ C : |w − a| < ra} ⊂ ΩL.
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Lemma 3.9 [18] Let Q2(z) =
√

2 −
(√

2 − 1
)√

1−z

2(
√
2−1)z+1

and ΩR := Q2(D) . Assume that 0 < a <
√

2 and

ra =

{
a, 0 < a ≤

√
2/3;

((1 − (
√

2 − a)2)1/2 − (1 − (
√

2 − a)2))1/2,
√

2/3 ≤ a <
√

2.

Then {w ∈ C : |w − a| < ra} ⊂ ΩR.

Lemma 3.10 [19] Let Q3(z) = ez and Ωe := Q3(D) . Assume that e−1 ≤ a ≤ e and

ra =

{
a− e−1, e−1 < a ≤ (e−1 + e)/2;
e− a, (e−1 + e)/2 ≤ a < e.

Then {w ∈ C : |w − a| < ra} ⊂ Ωe.

Lemma 3.11 [32] Let Q4(z) = 1 + 4z/3 + 2z2/3 and Ωc := Q4(D) . Assume that 1/3 ≤ a ≤ 3 and

ra =

{
(3a− 1)/3, 1/3 < a ≤ 5/3;
3 − a, 5/3 ≤ a < 3.

Then {w ∈ C : |w − a| < ra} ⊂ Ωc.

Lemma 3.12 [7] Let Q5(z) = z +
√

1 + z2 and Ωq := Q5(D) . Assume that
√

2 − 1 < a ≤
√

2 + 1 and

ra = 1 − |
√

2 − a| . Then {w ∈ C : |w − a| < ra} ⊂ Ωq.

Theorem 3.13 Sharp S∗
L,S∗

RL,S∗
e ,S∗

c , and S∗
q -radii for the class BS∗(α) are:

1. RS∗
L

(BS∗(α)) = 2

(
√
2+1)((1+(12−8

√
2)α)

1/2
+1)

.

2. RS∗
RL

(BS∗(α)) = 2(
4

(√
2(

√
2−1)−2

√
2+2

)
α+1

)1/2

+1

.

3. RS∗
e
(BS∗(α)) = e−1

e+
√

(4−8e+4e2)α+e2
.

4. RS∗
c
(BS∗(α)) = 4√

16α+9+3
.

5. RS∗
q
(BS∗(α)) = 2(2−

√
2)(

(8(3−2
√
2)α+1)

1/2
+1

) .

Proof (1) Let f ∈ BS∗(α). Then for |z| = r , we have∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ ≤ r

1 − αr2
. (3.4)

Therefore, the function f ∈ S∗
L , if

r

1 − αr2
≤

√
2 − 1.
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Therefore, from Lemma 3.8, we see that S∗
L -radius for the class BS∗(α) is the root r0 of the equation

(
√

2 − 1)αr2 + r + 1 −
√

2 = 0,

which is given by

r0 =

√
1 + (12 − 8

√
2)α− 1

2
(√

2 − 1
)
α

.

To check sharpness, we consider the function defined in (3.1). From the definition of F , we see that, at

z0 = RS∗
L

(BS∗(α)),

z0F
′(z0)

F (z0)
= 1 +

z0
1 − αz20

=
√

2.

Therefore, the result is the best possible.

(2) Letting f ∈ BS∗(α) and proceeding as in the proof of part (1) of Theorem 3.13, we have (3.4). Therefore,

in view of Lemma 3.9, we conclude that f ∈ S∗
RL , if

r

1 − αr2
≤
(

(2
√

2 − 2)1/2 −
(

2
√

2 − 2
))1/2

,

or equivalently if the following inequality holds:

(
(2
√

2 − 2)1/2 −
(

2
√

2 − 2
))1/2

αr2 + r −
(

(2
√

2 − 2)1/2 −
(

2
√

2 − 2
))1/2

≤ 0.

Therefore, the S∗
RL -radius for the class BS∗(α) is the smallest positive root

RS∗
RL

(BS∗(α)) =

(
4

(√
2
(√

2 − 1
)
− 2

√
2 + 2

)
α+ 1

)1/2

− 1

2

(√
2
(√

2 − 1
)
− 2

√
2 + 2

)1/2

α

of the equation

(
(2
√

2 − 2)1/2 −
(

2
√

2 − 2
))1/2

αr2 + r −
(

(2
√

2 − 2)1/2 −
(

2
√

2 − 2
))1/2

= 0.

Now we check for sharpness of the result. For this, we consider the function defined by (3.1). From the

definition of F , at z1 = RS∗
RL

(BS∗(α)), we have

z1F
′(z1)

F (z1)
− 1 =

(
(2
√

2 − 2)1/2 −
(

2
√

2 − 2
))1/2

.

This indicates that the result is the best possible.

(3) Let f ∈ BS∗(α). As in the above cases, from (3.4) and Lemma 3.10, we see that the function f ∈ S∗
e if

r

1 − αr2
≤ 1 − 1

e
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or

α(e− 1)r2 + er + 1 − e ≤ 0.

Therefore, the S∗
e -radius of the function f ∈ BS∗(α) is the smallest positive root

RS∗
e
(BS∗(α)) =

e−
√

(4 − 8e+ 4e2)α+ e2

2(1 − e)α

of the equation α(e− 1)r2 + er + 1 − e = 0.

The result is sharp since for the function F defined in (3.1), we see that

z2F
′(z2)

F (z2)
− 1 = −1

e
,

for z2 = RS∗
e
(BS∗(α)).

(4) Letting f ∈ BS∗(α) and proceeding as in the proof of part (1), we have (3.4). Now from Lemma 3.11 it is

easy to see that the function f ∈ S∗
c if r/(1 − αr2) ≤ 2/3 or equivalently if the inequality 2αr2 + 3r − 2 ≤ 0

holds. Therefore, the S∗
c -radius of the function f ∈ BS∗(α) is the smallest positive root RS∗

c
(BS∗(α)) =

(
√

16α+ 9 − 3)/(4α) of the equation 2αr2 + 3r − 2 = 0.

For the function F defined in (3.1), we see that

z3F
′(z3)

F (z3)
− 1 =

2

3
,

where z3 = RS∗
c
(BS∗(α)). The result is sharp

(5) Proceeding as in the above cases from (3.4), in view of Lemma 3.12, we see that the function f ∈ S∗
q if

r/(1 − αr2) ≤ 2 −
√

2, or equivalently if (2 −
√

2)αr2 + r +
√

2 − 2 ≤ 0. Thus, the S∗
q -radius of the function

f ∈ BS∗(α) is the smallest positive root

RS∗
q
(BS∗(α)) =

(
2 +

√
2
) ((

8
(
3 − 2

√
2
)
α+ 1

)1/2 − 1
)

4α

of the equation (2 −
√

2)αr2 + r +
√

2 − 2 = 0. Sharpness can be verified in the case of the function defined in

(3.1). 2

Theorem 3.14 The sharp BS∗(α)-radius for the class S∗
s is RBS∗(α)(S∗

s ) = sinh−1
(

1
α+1

)
.

Proof Let f ∈ S∗
s . Then

zf ′(z)

f(z)
≺ 1 + sin z

and so we can write ∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ = | sin z| ≤ sinh r, |z| = r.
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Thus, for function f ∈ BS∗(α), in view of Lemma 3.4, we must have sinh r ≤ 1/(α + 1), which holds for

r ≤ arcsinh(1/(α+ 1)) = RBS∗(α)(S∗
s ).

The result is sharp as the equality holds in the case of the function defined by

f0(z) = z exp

(∫ z

0

i sinh t

t
dt

)
.

Thus, we have ∣∣∣∣zf ′0(z)

f0(z)
− 1

∣∣∣∣ = | sinh z| =
1

α+ 1
for z = RBS∗(α)(S∗

s ).
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[22] Nunokawa M, Obradović M, Owa S. One criterion for univalency. P Am Math Soc 1989; 106: 1035-1037.

[23] Padmanabhan KS, Parvatham R. Some applications of differential subordination. Bull Austral Math Soc 1985; 32:

321-330.
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