Multiplier and approximation theorems in Smirnov classes with variable exponent

Daniyal ISRAFILOV*, Ahmet TESTICI

Department of Mathematics, Faculty of Arts and Sciences, Balıkesir University, Balıkesir, Turkey
Received: 06.07.2017 • Accepted/Published Online: 05.01.2018 \quad • Final Version: 08.05 .2018

Abstract

Let $G \subset \mathbb{C}$ be a bounded Jordan domain with a rectifiable Dini-smooth boundary Γ and let $G^{-}:=e x t \Gamma$. In terms of the higher order modulus of smoothness the direct and inverse problems of approximation theory in the variable exponent Smirnov classes $E^{p(\cdot)}(G)$ and $E^{p(\cdot)}\left(G^{-}\right)$are investigated. Moreover, the Marcinkiewicz and Littlewood-Paley type theorems are proved. As a corollary some results on the constructive characterization problems in the generalized Lipschitz classes are presented.

Key words: Variable exponent Smirnov classes, direct and inverse theorems, Faber series, Lipschitz classes, LittlewoodPaley theorems, Marcinkiewicz theorems

1. Introduction

Let $G \subset \mathbb{C}$ be a bounded Jordan domain, bounded by a rectifiable Jordan curve Γ, and let $G^{-}:=E x t \Gamma$. Let also $\mathbb{T}:=\{w \in \mathbb{C}:|w|=1\}, \mathbb{D}:=$ Int \mathbb{T} and $\mathbb{D}^{-}:=$Ext \mathbb{T}.

The variable exponent Lebesgue space $L^{p(\cdot)}(\Gamma)$ for a given Lebesgue measurable variable exponent $p(z) \geq 1$ on Γ is defined as the set of the Lebesgue measurable functions f, such that $\int_{\Gamma}|f(z)|^{p(z)}|d z|<\infty$. If $p^{+}:=e s s \sup _{z \in \Gamma} p(z)<\infty$, then it becomes a Banach space, equipped with the norm

$$
\|f\|_{L^{p(\cdot)}(\Gamma)}:=\inf \left\{\lambda>0: \int_{\Gamma}|f(z) / \lambda|^{p(z)}|d z| \leq 1\right\}<\infty
$$

In the case of $p(\cdot) \equiv p$ it turns to the classical Lebesgue space $L^{p}(\Gamma)$.
If $\Gamma:=\mathbb{T}$, then we obtain the space $L^{p(\cdot)}(\mathbb{T})$ with the norm

$$
\|f\|_{L^{p(\cdot)}(\mathbb{T})}:=\inf \left\{\lambda>0: \int_{0}^{2 \pi}\left|f\left(e^{i t}\right) / \lambda\right|^{p\left(e^{i t}\right)} d t \leq 1\right\}
$$

A function f analytic in G is said to be of the Smirnov class $E^{p}(G)$ if there exists a sequence of rectifiable Jordan curves $\left(\gamma_{n}\right)$ in G, tending to the boundary Γ in the sense that γ_{n} eventually surrounds each compact

[^0]subdomain of G, such that
$$
\int_{\gamma_{n}}|f(z)|^{p}|d z| \leq M<\infty, \quad 1 \leq p<\infty .
$$

Each function $f \in E^{p}(G)$ has [8, pp. 419-438] nontangential boundary values almost everywhere (a.e.) on Γ and the boundary function belongs to $L^{p}(\Gamma)$. The Smirnov class $E^{p}\left(G^{-}\right)$is defined similarly. The sets

$$
\begin{aligned}
E^{p(\cdot)}(G) & :=\left\{f \in E^{1}(G): f \in L^{p(\cdot)}(\Gamma)\right\}, \\
E^{p(\cdot)}\left(G^{-}\right) & :=\left\{f \in E^{1}\left(G^{-}\right): f \in L^{p(\cdot)}(\Gamma)\right\}
\end{aligned}
$$

are called the variable exponent Smirnov classes of analytic functions in G and G^{-}, respectively. Equipped with the norm

$$
\|f\|_{E^{p(\cdot)}(G)}:=\|f\|_{L^{p(\cdot)}(\Gamma)}, \quad\|f\|_{E^{p(\cdot)}\left(G^{-}\right)}:=\|f\|_{L^{p(\cdot)}(\Gamma)}
$$

we make $E^{p(\cdot)}(G)$ and $E^{p}\left(G^{-}\right)$into the Banach spaces.
Throughout this work we suppose that $f(\infty)=0$ as soon as $f \in E^{p(\cdot)}\left(G^{-}\right)$.
Let \mathcal{E} be the segment $[0,2 \pi]$ or a Jordan rectifiable curve Γ and let $p(\cdot): \mathcal{E} \rightarrow \mathbb{R}^{+}:=[0, \infty)$ be a Lebesgue measurable function, which is defined on \mathcal{E} such that

$$
\begin{equation*}
1 \leq p_{-}:=e s s \inf _{z \in \mathcal{E}} p(z) \leq e s s \sup _{z \in \mathcal{E}} p(z)=: p^{+}<\infty . \tag{1}
\end{equation*}
$$

Definition 1 We say that $p(\cdot) \in \mathcal{P}(\mathcal{E})$, if $p(\cdot)$ satisfies the conditions (1) and the inequality

$$
\left|p\left(z_{1}\right)-p\left(z_{2}\right)\right| \ln \left(\frac{|\mathcal{E}|}{\left|z_{1}-z_{2}\right|}\right) \leq c(p), \quad \forall z_{1}, z_{2} \in \mathcal{E}, \quad z_{1} \neq z_{2}
$$

with a positive constant $c(p)$, where $|\mathcal{E}|$ is the Lebesgue measure of \mathcal{E}.
If $p(\cdot) \in \mathcal{P}(\mathcal{E})$ and $p_{-}>1$, Then we say that $p(\cdot) \in \mathcal{P}_{0}(\mathcal{E})$.
Let g be a continuous function and let

$$
\omega(g, t):=\sup _{\left|t_{1}-t_{2}\right| \leq t}\left|g\left(t_{1}\right)-g\left(t_{2}\right)\right|, \quad t>0
$$

be its modulus of continuity.
Definition 2 Let Γ be a smooth Jordan curve and let $\theta(s)$ be the angle between the tangent and the positive real axis expressed as a function of arclength s. If θ has a modulus of continuity $\omega(\theta, s)$, satisfying the Dini-smooth condition

$$
\int_{0}^{\delta}[\omega(\theta, s) / s] d s<\infty, \delta>0
$$

Then we say that Γ is a Dini-smooth curve.
The set of Dini-smooth curves is denoted by \mathfrak{D}.

We suppose that φ and φ_{1} are the conformal mappings of G^{-}and G onto \mathbb{D}^{-}, respectively, and normalized by the following conditions:

$$
\varphi(\infty)=\infty, \lim _{z \rightarrow \infty} \varphi(z) / z>0 \quad \text { and } \quad \varphi_{1}(0)=\infty, \lim _{z \rightarrow 0} z \varphi_{1}(z)>0
$$

Let ψ and ψ_{1} be the inverse mappings of φ and φ_{1}, respectively. The pairs $\left(\varphi, \varphi_{1}\right)$ and $\left(\psi, \psi_{1}\right)$ have continuous extensions to Γ and \mathbb{T}, respectively. Their derivatives $\left(\varphi^{\prime}, \varphi_{1}^{\prime}\right)$ and $\left(\psi^{\prime}, \psi_{1}^{\prime}\right)$ have definite nontangential boundary values a.e. on Γ and \mathbb{T}, which are integrable on Γ and \mathbb{T}, respectively [8, p. 419-438].

For $f \in L^{p(\cdot)}(\Gamma), p \in \mathcal{P}(\Gamma)$, we set $f_{0}:=f \circ \psi, p_{0}:=p \circ \psi, f_{1}:=f \circ \psi_{1}$, and $p_{1}:=p \circ \psi_{1}$. If $\Gamma \in \mathfrak{D}$, then as was proved in [17, Lemma 1], the following relations hold:

$$
\begin{aligned}
& f_{1} \in L^{p_{1}(\cdot)}(\mathbb{T}) \Leftrightarrow f \in L^{p(\cdot)}(\Gamma) \Leftrightarrow f_{0} \in L^{p_{0}(\cdot)}(\mathbb{T}) \\
& p_{0} \in \mathcal{P}(\mathbb{T}) \Leftrightarrow p \in \mathcal{P}(\Gamma) \Leftrightarrow p_{1} \in \mathcal{P}(\mathbb{T})
\end{aligned}
$$

For $f \in L^{p(\cdot)}(\Gamma)$ we define the Cauchy type integrals

$$
f_{0}^{+}(w):=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{f_{0}(\tau)}{\tau-w} d \tau, w \in \mathbb{D} \quad \text { and } f_{1}^{+}(w):=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{f_{1}(\tau)}{\tau-w} d \tau, \quad w \in \mathbb{D}
$$

which are analytic in \mathbb{D}.

Definition 3 For $f \in L^{p(\cdot)}(\mathbb{T}), p(\cdot) \in \mathcal{P}(\mathbb{T})$, and $t>0$ we set

$$
\Delta_{t}^{r} f(w):=\sum_{s=0}^{r}(-1)^{r+s}\binom{r}{s} f\left(w e^{i s t}\right), \quad r=1,2,3, \ldots
$$

and define the rth modulus of smoothness by

$$
\Omega_{r}(f, \delta)_{\mathbb{T}, p(\cdot)}:=\sup _{0<|h| \leq \delta}\left\|\frac{1}{h} \int_{0}^{h} \Delta_{t}^{r} f(w) d t\right\|_{L^{p(\cdot)}(\mathbb{T})}
$$

We also define the moduli of smoothness for $f \in E^{p(\cdot)}(G)$ and $f \in E^{p(\cdot)}\left(G^{-}\right)$as follows:

$$
\begin{aligned}
\Omega_{r}(f, \delta)_{G, p(\cdot)} & :=\Omega_{r}\left(f_{0}^{+}, \delta\right)_{\mathbb{T}, p_{0}(\cdot)} \\
\Omega_{r}(f, \delta)_{G^{-}, p(\cdot)} & :=\Omega_{r}\left(f_{1}^{+}, \delta\right)_{\mathbb{T}, p_{1}(\cdot)}, \quad \delta>0
\end{aligned}
$$

The approximation aggregates used by us are constructed via the Faber polynomials $F_{k}(z)$ and $\widetilde{F}_{k}(1 / z)$ with respect to z and $1 / z$, respectively. These polynomials can be defined in particular by the following series representations [17] (see also [29]):

$$
\begin{equation*}
\frac{\psi^{\prime}(w)}{\psi(w)-z}=\sum_{k=0}^{\infty} \frac{F_{k}(z)}{w^{k+1}}, \quad w \in \mathbb{D}^{-}, \quad z \in G \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\psi_{1}^{\prime}(w)}{\psi_{1}(w)-z}=\sum_{k=1}^{\infty}-\frac{\widetilde{F}_{k}(1 / z)}{w^{k+1}}, \quad w \in \mathbb{D}^{-} \quad z \in G^{-} . \tag{3}
\end{equation*}
$$

Using (2) and Cauchy's integral formulae

$$
f(z)=\int_{\Gamma} \frac{f(\zeta)}{\zeta-z} d \zeta=\frac{1}{2 \pi i} \int_{|w|=1} \frac{f_{0}(w) \psi^{\prime}(w)}{\psi(w)-z} d w, \quad z \in G
$$

which hold for every $f \in E^{p(\cdot)}(G) \subset E^{1}(G)$, we have

$$
\begin{equation*}
f(z) \sim \sum_{k=0}^{\infty} a_{k} F_{k}(z), z \in G \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{k}=a_{k}(f):=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{f_{0}(w)}{w^{k+1}} d w, \quad k=0,1,2, \ldots \tag{5}
\end{equation*}
$$

Using (3) and the integral representation

$$
f(z)=\int_{\Gamma} \frac{f(\zeta)}{\zeta-z} d \zeta=\frac{1}{2 \pi i} \int_{|w|=1} \frac{f_{1}(w) \psi_{1}^{\prime}(w)}{\psi_{1}(w)-z} d w, z \in G^{-}
$$

which holds for every $f \in E^{p(\cdot)}\left(G^{-}\right) \subset E^{1}\left(G^{-}\right)$, we also have

$$
\begin{equation*}
f(z) \sim \sum_{k=1}^{\infty} \widetilde{a}_{k} \widetilde{F}_{k}(1 / z), \quad z \in G^{-} \tag{6}
\end{equation*}
$$

with the coefficients

$$
\begin{equation*}
\widetilde{a}_{k}=\widetilde{a}_{k}(f):=-\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{f_{1}(w)}{w^{k+1}} d w, \quad k=1,2, \ldots \tag{7}
\end{equation*}
$$

In this work, in terms of the higher order modulus of smoothness, the direct and inverse theorems of approximation theory in the variable exponent Smirnov classes $E^{p(\cdot)}(G)$ and $E^{p(\cdot)}\left(G^{-}\right)$are proved. Moreover, the Marcinkiewicz and Littlewood-Paley type theorems are obtained. As a corollary some results on the constructive characterization problems in the generalized Lipschitz classes are represented.

By $c(\cdot), c_{1}(\cdot), c_{2}(\cdot)$, and $c(\cdot, \cdot), c_{1}(\cdot, \cdot), c_{2}(\cdot, \cdot), \ldots$ we denote the constants, depending in general only on the parameters, given in the corresponding brackets and independent of n.

Let Π_{n} be the class of algebraic polynomials of degree not exceeding n and let

$$
E_{n}(f)_{G, p(\cdot)}:=\inf \left\{\left\|f-P_{n}\right\|_{L^{p(\cdot)}(\Gamma)}: \quad P_{n} \in \Pi_{n}\right\}, n=1,2, \ldots
$$

be the best approximation number of $f \in E^{p(\cdot)}(G)$ in Π_{n}.
Our new results are presented as follows:

Theorem 4 Let $\Gamma \in \mathfrak{D}$. If $f \in E^{p(\cdot)}(G), p(\cdot) \in \mathcal{P}_{0}(\Gamma)$, Then there is a positive constant $c(p, r)$ such that the inequality

$$
E_{n}(f)_{G, p(\cdot)} \leq c(p, r) \Omega_{r}(f, 1 / n)_{G, p(\cdot)}, n=1,2,3, \ldots
$$

holds.

Theorem 5 Let $\Gamma \in \mathfrak{D}$. If $f \in E^{p(\cdot)}(G), p(\cdot) \in \mathcal{P}_{0}(\Gamma)$, Then there is a positive constant $c(p, r)$ such that the inequality

$$
\Omega_{r}(f, 1 / n)_{G, p(\cdot)} \leq \frac{c(p, r)}{n^{r}} \sum_{k=0}^{n}(k+1)^{r-1} E_{k}(f)_{G, p(\cdot)}, n=1,2,3, \ldots
$$

holds.
Theorems 4 and 5 in the case of $r=1$ were proved in [16] (see also [17]). In the variable exponent Lebesgue spaces $L^{p(\cdot)}([0,2 \pi])$ these theorems in the case of $r=1$ and $p(\cdot) \in \mathcal{P}_{0}([0,2 \pi])$, using some other modulus of smoothness, were proved in $[1-3,10,20,21]$. For a wider class of the exponents $p(\cdot)$, namely when $p(\cdot) \in \mathcal{P}([0,2 \pi]) \supset \mathcal{P}_{0}([0,2 \pi])$, the direct and inverse theorems in $L^{p(\cdot)}([0,2 \pi])$ in term of the first modulus of smoothness were obtained in the papers [16, 25-28].

Note that in the classical Smirnov classes the direct and inverse problems of approximation theory were investigated adequately. Detailed information about these investigations can be found in $[4,5,11-13,22,30]$ and the references given therein. In the variable exponent Smirnov classes some approximation problems were also investigated in $[14,16,18]$.

Corollary 6 If $E_{n}(f)_{G, p(\cdot)}=\mathcal{O}\left(n^{-\alpha}\right), \alpha>0$, Then under the conditions of Theorem 5,

$$
\Omega_{r}(f, \delta)_{G, p(\cdot)}=\left\{\begin{array}{cc}
\mathcal{O}\left(\delta^{\alpha}\right), & r>\alpha \\
\mathcal{O}\left(\delta^{r} \log 1 / \delta\right), & r=\alpha \\
\mathcal{O}\left(\delta^{r}\right), & r<\alpha
\end{array}\right.
$$

If we define the generalized Lipschitz class $\operatorname{Lip}(G, p(\cdot), \alpha)$ with $\alpha>0$ and $r:=[\alpha]+1$, where $[\alpha]$ is the integer part of α, by

$$
\operatorname{Lip}(G, p(\cdot), \alpha):=\left\{f \in E^{p(\cdot)}(G): \Omega_{r}(f, \delta)_{G, p(\cdot)}=\mathcal{O}\left(\delta^{\alpha}\right), \delta>0\right\}
$$

then from Corollary 6 we obtain:

Corollary 7 If $E_{n}(f)_{G, p(\cdot)}=\mathcal{O}\left(n^{-\alpha}\right), \alpha>0$, Then under the conditions of Theorem 5 we have that $f \in \operatorname{Lip}(G, p(\cdot), \alpha)$.

On the other hand, from Theorem 4 we have:

Corollary 8 If $f \in \operatorname{Lip}(G, p(\cdot), \alpha), \alpha>0$, Then $E_{n}(f)_{G, p(\cdot)}=\mathcal{O}\left(n^{-\alpha}\right)$.
Combining Corollaries 7 and 8 we obtain the following constructive characterization of the generalized Lipschitz class $\operatorname{Lip}(G, p(\cdot), \alpha)$:

Theorem 9 Let $\Gamma \in \mathfrak{D}$ and $p(\cdot) \in \mathcal{P}_{0}(\Gamma)$. Then for $\alpha>0$ the following statements are equivalent:

$$
i) f \in \operatorname{Lip}(G, p(\cdot), \alpha), \quad i i) E_{n}(f)_{G, p(\cdot)}=\mathcal{O}\left(n^{-\alpha}\right) \quad n=1,2,3, \ldots
$$

Let $\left\{\lambda_{k}\right\}_{0}^{\infty}$ be a sequence of complex numbers, satisfying for every natural numbers k and m the conditions

$$
\begin{equation*}
\left|\lambda_{k}\right| \leq c, \quad \sum_{k=2^{m-1}}^{2^{m}-1}\left|\lambda_{k}-\lambda_{k+1}\right| \leq c \tag{8}
\end{equation*}
$$

with some positive constant $c>0$.

Theorem 10 Let $\Gamma \in \mathfrak{D}$ and $p(\cdot) \in \mathcal{P}_{0}(\Gamma)$. If $f \in E^{p(\cdot)}(G)$ with the Faber series (4) and $\left\{\lambda_{k}\right\}_{0}^{\infty}$ is a sequence of complex numbers satisfying the condition (8), then there exist a function $F \in E^{p(\cdot)}(G)$ and a positive constant $c(p)$ such that

$$
F(z) \sim \sum_{k=0}^{\infty} \lambda_{k} a_{k}(f) F_{k}(z), \quad z \in G
$$

and $\|F\|_{L^{p(\cdot)}(\Gamma)} \leq c\|f\|_{L^{p(\cdot)}(\Gamma)}$.
Let

$$
\Delta_{k}(f)(z):=\sum_{j=2^{k-1}}^{2^{k}-1} a_{j}(f) F_{j}(z), k=1,2, \ldots
$$

be the lacunary partial sums of Faber series of $f \in E^{p(\cdot)}(G)$. The following Littlewood-Paley type theorem holds:

Theorem 11 Let $\Gamma \in \mathfrak{D}$ and $p(\cdot) \in \mathcal{P}_{0}(\Gamma)$. If $f \in E^{p(\cdot)}(G)$, Then there exist the constants $c_{1}(p)$ and $c_{2}(p)$ such that the inequalities

$$
c_{1}(p)\|f\|_{L^{p(\cdot)}(\Gamma)} \leq\left\|\left(\sum_{k=0}^{\infty}\left|\Delta_{k}(f)\right|^{2}\right)^{1 / 2}\right\|_{L^{p(\cdot)}(\Gamma)} \leq c_{2}(p)\|f\|_{L^{p(\cdot)}(\Gamma)}
$$

hold.
The results, similar to Theorems 10 and 11 in the classical Lebesgue spaces $L^{p}([0,2 \pi])$, were first proved by Littlewood and Paley in [24]. They play an important role in the various problems of approximation theory, especially for the improvements of the direct and inverse theorems. In the classical Smirnov classes, Theorems 10 and 11 were obtained in [9].

All of the results formulated above can be formulated also in the classes $E^{p(\cdot)}\left(G^{-}\right)$.
Let

$$
E_{n}(f)_{G^{-}, p(\cdot)}:=\inf \left\{\left\|f-P_{n}^{*}\right\|_{L^{p(\cdot)}(\Gamma)}: P_{n}^{*} \in \Pi_{n}^{*}\right\}, n=1,2, \ldots
$$

be the best approximation number of $f \in E^{p(\cdot)}\left(G^{-}\right)$in the class Π_{n}^{*}, of the algebraic polynomials with respect to $1 / z$, of degree not exceeding n.

ISRAFILOV and TESTICI/Turk J Math

Theorem 12 Let $\Gamma \in \mathfrak{D}$. If $f \in E^{p(\cdot)}\left(G^{-}\right), p(\cdot) \in \mathcal{P}_{0}(\Gamma)$, Then there exists a positive constant $c(p, r)$ such that the inequality

$$
E_{n}(f)_{G^{-}, p(\cdot)} \leq c(p, r) \Omega_{r}(f, 1 / n)_{G^{-}, p(\cdot)}, n=1,2,3, \ldots
$$

holds.
Theorem 13 Let $\Gamma \in \mathfrak{D}$. If $f \in E^{p(\cdot)}\left(G^{-}\right)$with $p(\cdot) \in \mathcal{P}_{0}(\Gamma)$, Then there exists a positive constant $c(p, r)$ such that the inequality

$$
\Omega_{r}(f, 1 / n)_{G^{-}, p(\cdot)} \leq \frac{c(p, r)}{n^{r}} \sum_{k=1}^{n}(k+1)^{r-1} E_{k}(f)_{G^{-}, p(\cdot)}, n=1,2,3, \ldots
$$

holds.
Corollary 14 If $E_{n}(f)_{G^{-}, p(\cdot)}=\mathcal{O}\left(n^{-\alpha}\right)$ for some $\alpha>0$, Then under the conditions of Theorem 13

$$
\Omega_{r}(f, \delta)_{G^{-}, p(\cdot)}=\left\{\begin{array}{cc}
\mathcal{O}\left(\delta^{\alpha}\right), & r>\alpha \\
\mathcal{O}\left(\delta^{r} \log (1 / \delta)\right), & r=\alpha \\
\mathcal{O}\left(\delta^{r}\right), & r<\alpha .
\end{array}\right.
$$

Similarly, if we define the generalized Lipschitz class Lip $\left(G^{-}, p(\cdot), \alpha\right)$ with $\alpha>0$ and $r:=[\alpha]+1$ by

$$
\operatorname{Lip}\left(G^{-}, p(\cdot), \alpha\right):=\left\{f \in E^{p(\cdot)}\left(G^{-}\right): \Omega_{r}(f, \delta)_{G^{-}, p(\cdot)}=\mathcal{O}\left(\delta^{\alpha}\right), \delta>0\right\}
$$

then we have:
Corollary 15 If $E_{n}(f)_{G^{-}, p(\cdot)}=\mathcal{O}\left(n^{-\alpha}\right), \alpha>0$, Then under the conditions of Theorem 13 we have $f \in$ $\operatorname{Lip}\left(G^{-}, p(\cdot), \alpha\right)$.

On the other hand, Theorem 12 implies:
Corollary 16 If $f \in \operatorname{Lip}\left(G^{-}, p(\cdot), \alpha\right)$ for some $\alpha>0$, Then $E_{n}(f)_{G^{-}, p(\cdot)}=\mathcal{O}\left(n^{-\alpha}\right)$.
Hence, by means of Corollaries 15 and 16, we can formulate the following theorem, which gives a constructive characterization of the generalized Lipschitz class $\operatorname{Lip}\left(G^{-}, p(\cdot), \alpha\right)$:

Theorem 17 Let $\Gamma \in \mathfrak{D}, p(\cdot) \in \mathcal{P}_{0}(\Gamma)$ and let $\alpha>0$. The following statements are equivalent:

$$
\text { i) } f \in \operatorname{Lip}\left(G^{-}, p(\cdot), \alpha\right), \quad \text { ii) } E_{n}(f)_{G^{-}, p(\cdot)}=\mathcal{O}\left(n^{-\alpha}\right), \quad n=1,2,3, \ldots
$$

Theorem 18 Let $\Gamma \in \mathfrak{D}$ and $p(\cdot) \in \mathcal{P}_{0}(\Gamma)$. If $f \in E^{p(\cdot)}\left(G^{-}\right)$with the Faber series (6) and $\left\{\lambda_{k}\right\}_{0}^{\infty}$ is a sequence of complex numbers, satisfying the condition (8), then there exists a function $F \in E^{p(\cdot)}\left(G^{-}\right)$such that

$$
F(z) \sim \sum_{k=1}^{\infty} \lambda_{k} \widetilde{a}_{k}(f) \widetilde{F}_{k}(1 / z), \quad z \in G^{-}
$$

and $\|F\|_{L^{p(\cdot)}(\Gamma)} \leq c\|f\|_{L^{p(\cdot)}(\Gamma)}$.

ISRAFILOV and TESTICI/Turk J Math

Denoting the lacunary partial sums of Faber series of $f \in E^{p(\cdot)}\left(G^{-}\right)$by

$$
\widetilde{\Delta}_{k}(f)(z):=\sum_{j=2^{k-1}}^{2^{k}-1} \widetilde{a}_{j}(f) \widetilde{F}_{j}(1 / z)
$$

we have the following Littlewood-Paley type theorem in the classes $E^{p(\cdot)}\left(G^{-}\right)$:

Theorem 19 Let $\Gamma \in \mathfrak{D}$ and $p(\cdot) \in \mathcal{P}_{0}(\Gamma)$. If $f \in E^{p(\cdot)}\left(G^{-}\right)$, Then there exist the positive constants $c_{3}(p)$ and $c_{4}(p)$ such that the inequalities

$$
c_{3}(p)\|f\|_{L^{p(\cdot)}(\Gamma)} \leq\left\|\left(\sum_{k=1}^{\infty}\left|\widetilde{\Delta}_{k}(f)\right|^{2}\right)^{1 / 2}\right\|_{L^{p(\cdot)}(\Gamma)} \leq c_{4}(p)\|f\|_{L^{p(\cdot)}(\Gamma)}
$$

hold.

2. Auxiliary results

Let \mathcal{T}_{n} be the class of the trigonometric polynomials of degree not exceeding n. The best approximation number of $f \in L^{p(\cdot)}(\mathbb{T})$ in \mathcal{T}_{n} is defined by

$$
E_{n}(f)_{p(\cdot)}:=\inf \left\{\left\|f-T_{n}\right\|_{L^{p(\cdot)}(\mathbb{T})}: T_{n} \in \mathcal{T}_{n}\right\}, \quad n=0,1,2, \ldots
$$

We will use the following direct and inverse results proved in [19]:
Theorem A [19] Let $f \in L^{p(\cdot)}(\mathbb{T}), p(\cdot) \in \mathcal{P}(\mathbb{T})$, and let $r \in \mathbb{N}$. Then there exists a positive constant $c(p, r)$ such that for every $n \in \mathbb{N}$ The inequality

$$
E_{n}(f)_{p(\cdot)} \leq c(p, r) \Omega_{r}(f, 1 / n)_{\mathbb{T}, p(\cdot)}
$$

holds.

Theorem B [19] Let $f \in L^{p(\cdot)}(\mathbb{T}), p(\cdot) \in \mathcal{P}(\mathbb{T})$, and let $r \in \mathbb{N}$. Then there exists a positive constant $c(p, r)$ such that for every $n \in \mathbb{N}$ The inequality

$$
\Omega_{r}(f, 1 / n)_{\mathbb{T}, p(\cdot)} \leq \frac{c(p, r)}{n^{r}} \sum_{k=0}^{n}(k+1)^{r-1} E_{k}(f)_{p(\cdot)}
$$

holds.
Let

$$
S_{\Gamma}(f)(z):=\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \pi i} \int_{\Gamma \backslash\{\zeta \in \Gamma:|\zeta-z|<\varepsilon\}} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

be the Cauchy singular integral of $f \in L^{p(\cdot)}(\Gamma)$. By Privalov's theorem, the Cauchy type integrals

$$
f^{+}(z):=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta-z} d \zeta=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{\left[\psi^{\prime}(w)\right]}{\psi(w)-z} f_{0}(w) d w, \quad z \in G
$$

$$
f^{-}(z):=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta-z} d \zeta=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{\left[\psi^{\prime}(w)\right]}{\psi(w)-z} f_{1}(w) d w, \quad z \in G^{-}
$$

have the nontangential inside and outside limits f^{+}and f^{-}, respectively a.e. on Γ. Furthermore, the formulas

$$
\begin{equation*}
f^{+}(z)=S_{\Gamma}(f)(z)+\frac{1}{2} f(z) \quad \text { and } \quad f^{-}(z)=S_{\Gamma}(f)(z)-\frac{1}{2} f(z) \tag{9}
\end{equation*}
$$

are valid a.e. on Γ, which implies that

$$
\begin{equation*}
f(z)=f^{+}(z)-f^{-}(z) \tag{10}
\end{equation*}
$$

a.e. on Γ.

The following theorem is a special case of the more general result on the boundedness of Cauchy's singular operator $S_{\Gamma}(f)$ in $L^{p(\cdot)}(\Gamma)$, proved in [23, p. 59, Theorem 2.45].

Theorem C Let $\Gamma \in \mathfrak{D}$ and $p \in \mathcal{P}_{0}(\Gamma)$. Then the Cauchy singular operator $S_{\Gamma}(f)$ is bounded in $L^{p(\cdot)}(\Gamma)$.

Lemma 20 [16] Let $\Gamma \in \mathfrak{D}$. If $f \in L^{p(\cdot)}(\Gamma)$, $p \in \mathcal{P}_{0}(\Gamma)$, Then $f^{+} \in E^{p(\cdot)}(G)$ and $f^{-} \in E^{p(\cdot)}\left(G^{-}\right)$.
Now we consider the operators

$$
\begin{aligned}
& T(f)(z):=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{f(w) \psi^{\prime}(w)}{\psi(w)-z} d w, \quad f \in E^{p_{0}(\cdot)}(\mathbb{D}), \quad z \in G \\
& \widetilde{T}(f)(z):=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{f(w) \psi_{1}^{\prime}(w)}{\psi_{1}(w)-z} d w, \quad f \in E^{p_{1}(\cdot)}(\mathbb{D}), \quad z \in G^{-}
\end{aligned}
$$

defined on the classes $E^{p_{0}(\cdot)}(\mathbb{D})$ and $E^{p_{1}(\cdot)}(\mathbb{D})$, respectively.
The following lemma holds.

Lemma 21 Let $\Gamma \in \mathfrak{D}$ and $p(\cdot) \in \mathcal{P}_{0}(\Gamma)$. Then:
i) The operator $T: E^{p_{0}(\cdot)}(\mathbb{D}) \rightarrow E^{p(\cdot)}(G)$ is linear, bounded, one-to-one, and onto. Moreover, $T\left(f_{0}^{+}\right)=f$ for every $f \in E^{p(\cdot)}(G)$,
ii) The operator $\widetilde{T}: E^{p_{1}(\cdot)}(\mathbb{D}) \rightarrow E^{p(\cdot)}\left(G^{-}\right)$is linear, bounded, one-to-one, and onto. Moreover, $\widetilde{T}\left(f_{1}^{+}\right)=f$ for every $f \in E^{p(\cdot)}\left(G^{-}\right)$.

Note that assertion i) was proved in [16]. Assertion $i i)$ can be proved using the same techniques.

Lemma 22 Let $\Gamma \in \mathfrak{D}$ and $p(\cdot) \in \mathcal{P}_{0}(\Gamma)$. Then there exist the positive constants $c_{i}(p)$, $i=5,6,7,8$, such that the following assertions hold:

$$
\begin{aligned}
& \text { i)if } f \in E^{p(\cdot)}(G) \text {, Then } E_{n}\left(f_{0}^{+}\right)_{p_{0}(\cdot)} \leq c_{5}(p) E_{n}(f)_{G, p(\cdot)} \leq c_{6}(p) E_{n}\left(f_{0}^{+}\right)_{p_{0}(\cdot)} \\
& \text { ii) if } f \in E^{p(\cdot)}\left(G^{-}\right) \text {, Then } E_{n}\left(f_{1}^{+}\right)_{p_{1}(\cdot)} \leq c_{7}(p) E_{n}(f)_{G^{-}, p(\cdot)} \leq c_{8}(p) E_{n}\left(f_{1}^{+}\right)_{p_{1}(\cdot)}
\end{aligned}
$$

ISRAFILOV and TESTICI/Turk J Math

Proof Assertion i) was proved in [16]. We will prove $i i)$. Since the operator $\widetilde{T}: E^{p_{1}(\cdot)}(\mathbb{D}) \rightarrow E^{p(\cdot)}\left(G^{-}\right)$is linear, bounded, one-to-one, and onto, it has the inverse operator $\widetilde{T}^{-1}: E^{p(\cdot)}\left(G^{-}\right) \rightarrow E^{p_{1}(\cdot)}(\mathbb{D})$, which is also linear, bounded, one-to-one, and onto. If $f \in E^{p(\cdot)}\left(G^{-}\right)$, then $\widetilde{T}^{-1}(f)=f_{1}^{+} \in E^{p_{1}(\cdot)}(\mathbb{D})$. If P_{n}^{*} is the polynomial of the best approximation to f in $E^{p(\cdot)}\left(G^{-}\right)$with respect to $1 / z$ and degree not exceeding n, then $\widetilde{T}^{-1}\left(P_{n}^{*}\right)$ is a polynomial with respect to w and degree not exceeding n. Therefore, denoting $c_{7}(p):=\left\|\widetilde{T}^{-1}\right\|$, we get

$$
\begin{aligned}
E_{n}\left(f_{1}^{+}\right)_{p_{1}(\cdot)} & \leq\left\|f_{1}^{+}-\widetilde{T}^{-1}\left(P_{n}^{*}\right)\right\|_{L^{p_{1}(\cdot)}(\mathbb{T})} \\
& \leq\left\|\widetilde{T}^{-1}(f)-\widetilde{T}^{-1}\left(P_{n}^{*}\right)\right\|_{L^{p_{1}(\cdot)}(\mathbb{T})} \\
& \leq\left\|\widetilde{T}^{-1}\right\|\left\|f-P_{n}^{*}\right\|_{L^{p(\cdot)}(\Gamma)}=c_{7}(p) E_{n}(f)_{G^{-}, p(\cdot)}
\end{aligned}
$$

On the other hand, by Lemma 21 we have that $\widetilde{T}\left(f_{1}^{+}\right)=f \in E^{p(\cdot)}\left(G^{-}\right)$and then by boundedness of \widetilde{T}

$$
\begin{aligned}
E_{n}(f)_{G^{-}, p(\cdot)} & \leq\left\|f-\widetilde{T}\left(P_{n}^{*}\right)\right\|_{L^{p(\cdot)}(\Gamma)} \\
& \leq\left\|\widetilde{T}\left(f_{1}^{+}\right)-\widetilde{T}\left(P_{n}^{*}\right)\right\|_{L^{p(\cdot)}(\Gamma)} \\
& \leq\|\widetilde{T}\|\left\|f_{1}^{+}-P_{n}^{*}\right\|_{L^{p_{1}(\cdot)}(\mathbb{T})}=c_{8}(p) E_{n}\left(f_{1}^{+}\right)_{p_{1}(\cdot)}
\end{aligned}
$$

Lemma 23 Let $p(\cdot) \in \mathcal{P}_{0}(\Gamma)$ and let $\left\{\lambda_{k}\right\}_{0}^{\infty}$ be a sequence of complex numbers satisfying the condition (8). If $g \in E^{p(\cdot)}(\mathbb{D})$ has the Taylor series

$$
g(w)=\sum_{k=0}^{\infty} \beta_{k}(g) w^{k} \quad, \quad w \in \mathbb{D}
$$

Then there exists a function $g^{*} \in E^{p(\cdot)}(\mathbb{D})$ that has the Taylor series

$$
g^{*}(w)=\sum_{k=0}^{\infty} \lambda_{k} \beta_{k}(g) w^{k} \quad, \quad w \in \mathbb{D}
$$

and $\left\|g^{*}\right\|_{L^{p(\cdot)}(\mathbb{T})} \leq c(p)\|g\|_{L^{p(\cdot)}(\mathbb{T})}$.
Proof Let $g \in E^{p(\cdot)}(\mathbb{D})$ and $c_{k}(g)(k=\ldots,-1,0,1, \ldots)$ be the Fourier coefficients of the boundary function of g. Then (Theorem 3.4 in [7, p. 38]) we have

$$
c_{k}(g)=\left\{\begin{array}{c}
\beta_{k}(g), \quad k \geq 0 \\
0, \quad k<0
\end{array}\right.
$$

By the Marcinkiewicz type theorem [23, p. 120, Theorem 2.103], there is a function $h \in L^{p(\cdot)}$ (\mathbb{T}) with the Fourier coefficients $c_{k}(h)=\lambda_{k} c_{k}(g)$ such that $\|h\|_{L^{p(\cdot)}(\mathbb{T})} \leq c(p)\|g\|_{L^{p(\cdot)}(\mathbb{T})}$, for some positive constant $c(p)$.

Since $g^{*}:=h^{+} \in E^{p(\cdot)}(\mathbb{D})$, for the Taylor coefficients $\beta_{k}\left(g^{*}\right), k=0,1,2, \ldots$, of g^{*}, by (10) we have

$$
\begin{gathered}
\beta_{k}\left(g^{*}\right)=\beta_{k}\left(h^{+}\right)=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{h^{+}(w)}{w^{k+1}} d w=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{h(w)}{w^{k+1}} d w+\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{h^{-}(w)}{w^{k+1}} d w \\
=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{h(w)}{w^{k+1}} d w=c_{k}(h)=\lambda_{k} c_{k}(g)=\lambda_{k} \beta_{k}(g)
\end{gathered}
$$

and

$$
\left\|g^{*}\right\|_{L^{p(\cdot)}(\mathbb{T})} \leq\left\|h^{+}\right\|_{L^{p(\cdot)}(\mathbb{T})} \leq c_{9}(p)\|h\|_{L^{p(\cdot)}(\mathbb{T})} \leq c_{10}(p)\|g\|_{L^{p(\cdot)}(\mathbb{T})}
$$

3. Proofs of main results

Proof of Theorem 4 If $f \in E^{p(\cdot)}(G)$, then $f_{0}^{+}=T^{-1}(f) \in E^{p_{0}(\cdot)}(\mathbb{D})$. Hence, applying the second inequality of assertion i) in Lemma 22 and Theorem A, we have

$$
\begin{aligned}
E_{n}(f)_{G, p(\cdot)} & \leq c_{6}(p) E_{n}\left(f_{0}^{+}\right)_{p_{0}(\cdot)} \\
& \leq c_{6}(p) c(p, r) \Omega_{r}\left(f_{0}^{+}, 1 / n\right)_{\mathbb{T}, p_{0}(\cdot)}=c_{1}(p, r) \Omega_{r}(f, 1 / n)_{G, p(\cdot)}
\end{aligned}
$$

Proof of Theorem 5 If $f \in E^{p(\cdot)}(G)$, then by Lemma 21 we have that $f_{0}^{+} \in E^{p_{0}(\cdot)}(\mathbb{D})$. Applying Theorem B for the boundary values of f_{0}^{+}and the first inequality of assertion i) in Lemma 22, we obtain the desired inequality:

$$
\begin{aligned}
\Omega_{r}(f, 1 / n)_{G, p(\cdot)} & =\Omega_{r}\left(f_{0}^{+}, 1 / n\right)_{\mathbb{T}, p_{0}(\cdot)} \leq \frac{c(p, r)}{n^{r}} \sum_{k=0}^{n}(k+1)^{r-1} E_{k}\left(f_{0}^{+}\right)_{p_{0}(\cdot)} \\
& \leq \frac{c(p, r) c_{5}(p)}{n^{r}} \sum_{k=0}^{n}(k+1)^{r-1} E_{n}(f)_{G, p(\cdot)} \\
& \leq \frac{c_{2}(p, r)}{n^{r}} \sum_{k=0}^{n}(k+1)^{r-1} E_{n}(f)_{G, p(\cdot)}
\end{aligned}
$$

Proof of Theorem 10 Let $f \in E^{p(\cdot)}(G)$. Then by (5) and (10) we have

$$
\begin{aligned}
& a_{k}(f)=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{f_{0}(w)}{w^{k+1}} d w=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{f_{0}^{+}(w)}{w^{k+1}} d w-\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{f_{0}^{-}(w)}{w^{k+1}} d w \\
& =\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{f_{0}^{+}(w)}{w^{k+1}} d w=\beta_{k}\left(f_{0}^{+}\right),
\end{aligned} \quad k=0,1,2, \ldots . .
$$

This means that the Faber coefficients of f are also the Taylor coefficients of f_{0}^{+}at the origin; that is,

$$
f_{0}^{+}(w)=\sum_{k=0}^{\infty} a_{k}(f) w^{k}, \quad w \in \mathbb{D}
$$

Since $f \in E^{p(\cdot)}(G)$ we have $f_{0}^{+} \in E^{p_{0}(\cdot)}(\mathbb{D})$ and then by Lemma 23 there is a function $F_{0} \in E^{p_{0}(\cdot)}(\mathbb{D})$ with the Taylor coefficients $\beta_{k}\left(F_{0}\right)=\lambda_{k} \beta_{k}\left(f_{0}^{+}\right)=\lambda_{k} a_{k}(f), k=0,1,2, \ldots$, such that

$$
\left\|F_{0}\right\|_{L^{p_{0}(\cdot)}(\mathbb{T})} \leq c(p)\left\|f_{0}^{+}\right\|_{L^{p_{0}(\cdot)}(\mathbb{T})}
$$

At the same time, by Lemma 21, $F:=T\left(F_{0}\right) \in E^{p(\cdot)}(G)$ and has the Faber coefficients $\beta_{k}\left(F_{0}\right)=\lambda_{k} a_{k}(f)$, $k=0,1,2, \ldots$. Hence,

$$
F(z)=T\left(F_{0}\right)(z) \sim \sum_{k=0}^{\infty} \lambda_{k} a_{k}(f) F_{k}(z), \quad z \in G
$$

Now using the boundedness of T, (9), and Theorem C, we have

$$
\begin{aligned}
\|F\|_{L^{p(\cdot)}(\Gamma)} & =\left\|T\left(F_{0}\right)\right\|_{L^{p(\cdot)}(\Gamma)} \leq\|T\|\left\|F_{0}\right\|_{L^{p_{0}(\cdot)}(\mathbb{T})} \\
& \leq c(p)\left\|f_{0}^{+}\right\|_{L^{p_{0}(\cdot)}(\mathbb{T})} \leq c_{11}(p)\left\|f_{0}\right\|_{L^{p_{0}(\cdot)}(\mathbb{T})} \leq c_{12}(p)\|f\|_{L^{p(\cdot)}(\Gamma)}
\end{aligned}
$$

Let ω be a weight on Γ, i.e. an almost everywhere nonnegative integrable function on Γ, and let $B_{r}(z):=\{t:|t-z|<r, z \in \Gamma\}, r>0 . \omega$ is said to satisfy Muckenhoupt's $A_{p}(\Gamma), 1<p<\infty$, condition if

$$
\sup _{z \in \Gamma} \sup _{r>0}\left(\frac{1}{r} \int_{\Gamma \cap B_{r}(z)} \omega(z)|d z|\right)\left(\frac{1}{r} \int_{\Gamma \cap B_{r}(z)} \omega(z)^{1-p^{\prime}}|d z|\right)^{p-1}<\infty, \frac{1}{p}+\frac{1}{p^{\prime}}=1
$$

Let also $\mathcal{M} f$ be the maximal function, defined as

$$
\mathcal{M} f(z):=\sup _{\gamma \ni z}\left(\frac{1}{|\gamma|} \int_{\gamma}|f(z)||d z|\right), f \in L(\Gamma)
$$

where the supremum is taken over all rectifiable $\operatorname{arcs} \gamma \subset \Gamma$ that contain z and $|\gamma|$ is a Lebesgue measure of γ.
Proof of Theorem 11 Let $\omega \in A_{p}(\Gamma), \Gamma \in \mathfrak{D}$, and $1<p<\infty$. In [9, Theorem 3] it was proved that if f $\in E^{p}(G, \omega)$, then there exist the positive constants $c_{13}(p)$ and $c_{14}(p)$ such that

$$
\begin{equation*}
c_{13}(p)\|f\|_{L^{p}(\Gamma, \omega)} \leq\left\|\left(\sum_{k=0}^{\infty}\left|\Delta_{k}(f)\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(\Gamma, \omega)} \leq c_{14}(p)\|f\|_{L^{p}(\Gamma, \omega)} \tag{11}
\end{equation*}
$$

Considering the operator $\mathcal{A}: f \rightarrow\left(\sum_{k=0}^{\infty}\left|\Delta_{k}(f)\right|^{2}\right)^{1 / 2}$, we see that by the second inequality of (11), it is bounded in $L^{p}(\Gamma, \omega)$. On the other hand, the maximal operator \mathcal{M} is bounded (see [23, p. 50, Theorem 2.29])

ISRAFILOV and TESTICI/Turk J Math

in $L^{p(\cdot)}(\Gamma), p(\cdot) \in \mathcal{P}_{0}(\Gamma)$. Hence, all of the conditions of Corollary 5.32 of extrapolation Theorem 5.28, proved in $[6, \mathrm{pp} .209-211]$, are fulfilled. Then

$$
\left\|\left(\sum_{k=0}^{\infty}\left|\Delta_{k}(f)\right|^{2}\right)^{1 / 2}\right\|_{L^{p(\cdot)}(\Gamma)} \leq c_{15}(p)\|f\|_{L^{p(\cdot)}(\Gamma)}
$$

and therefore, the second inequality of Theorem 11 is proved. The proof of the first inequality goes similarly.

Proof of Theorem 12 If $f \in E^{p(\cdot)}\left(G^{-}\right)$, then by assertion $\left.i i\right)$ of Lemma 21, we get $f_{1}^{+} \in E^{p_{1}(\cdot)}(\mathbb{D})$. Applying the second inequality of assertion $i i$) in Lemma 22 and Theorem A for f_{1}^{+}we have that

$$
\begin{aligned}
E_{n}(f)_{G^{-}, p(\cdot)} & \leq c(p) E_{n}\left(f_{1}^{+}\right)_{p_{1}(\cdot)} \\
& \leq c(p, r) \Omega_{r}\left(f_{1}^{+}, 1 / n\right)_{\mathbb{T}, p_{1}(\cdot)}=c(p, r) \Omega_{r}(f, 1 / n)_{G^{-}, p(\cdot)}
\end{aligned}
$$

Proof of Theorem 13 If $f \in E^{p(\cdot)}\left(G^{-}\right)$, then by assertion ii) of Lemma 21 we have $f_{1}^{+} \in E^{p_{1}(\cdot)}(\mathbb{D})$. Hence, applying Theorem B for the boundary values of f_{1}^{+}and the first inequality of assertion $i i$) in Lemma 22, we get

$$
\begin{aligned}
\Omega_{r}(f, 1 / n)_{G^{-}, p(\cdot)} & =\Omega_{r}\left(f_{1}^{+}, 1 / n\right)_{\mathbb{T}, p_{1}(\cdot)} \leq \frac{c(p, r)}{n^{r}} \sum_{k=0}^{n}(k+1)^{r-1} E_{k}\left(f_{1}^{+}\right)_{p_{1}(\cdot)} \\
& \leq \frac{c(p, r) c_{7}(p)}{n^{r}} \sum_{k=0}^{n}(k+1)^{r-1} E_{n}(f)_{G^{-}, p(\cdot)} \\
& \leq \frac{c_{3}(p, r)}{n^{r}} \sum_{k=0}^{n}(k+1)^{r-1} E_{n}(f)_{G^{-}, p(\cdot)}
\end{aligned}
$$

Proof of Theorem 18 Let $f \in E^{p(\cdot)}\left(G^{-}\right)$. By (7) and (10)

$$
\begin{gathered}
\widetilde{a}_{k}(f)=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{f_{1}(w)}{w^{k+1}} d w=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{f_{1}^{+}(w)}{w^{k+1}} d w-\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{f_{1}^{-}(w)}{w^{k+1}} d w \\
=\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{f_{1}^{+}(w)}{w^{k+1}} d w=\beta_{k}\left(f_{1}^{+}\right)
\end{gathered}
$$

where $\beta_{k}\left(f_{1}^{+}\right), k=0,1,2, \ldots$, are the Taylor coefficients of $f_{1}^{+} \in E^{p_{1}(\cdot)}(\mathbb{D})$. This means that the Faber coefficients $\widetilde{a}_{k}(f)$ of f are the Taylor coefficients of f_{1}^{+}at the origin; that is,

$$
f_{1}^{+}(w)=\sum_{k=0}^{\infty} \widetilde{a}_{k}(f) w^{k}, w \in \mathbb{D}
$$

Since $f \in E^{p(\cdot)}\left(G^{-}\right)$by assertion $\left.i i\right)$ of Lemma 21 , we have $f_{1}^{+} \in E^{p_{1}(\cdot)}(\mathbb{D})$ and then by Lemma 23 there is a function $F_{1} \in E^{p_{1}(\cdot)}(\mathbb{D})$ with the Taylor coefficients $\beta_{k}\left(F_{1}\right)=\lambda_{k} \beta_{k}\left(f_{1}^{+}\right)=\lambda_{k} \widetilde{a}_{k}(f), k=0,1,2, \ldots$, such that

$$
\left\|F_{1}\right\|_{L^{p_{1}(\cdot)}(\mathbb{T})} \leq c(p)\left\|f_{1}^{+}\right\|_{L^{p_{1}(\cdot)}(\mathbb{T})}
$$

Since $\widetilde{T}\left(F_{1}\right) \in E^{p(\cdot)}\left(G^{-}\right)$, its Faber coefficients are $\beta_{k}\left(F_{1}\right)=\lambda_{k} \widetilde{a_{k}}(f)$ and hence

$$
\widetilde{T}\left(F_{1}\right)(z) \sim \sum_{k=0}^{\infty} \lambda_{k} \widetilde{a}_{k}(f) \widetilde{F}_{k}(1 / z), \quad z \in G^{-}
$$

Now denoting $F:=\widetilde{T}\left(F_{1}\right)$, using the boundedness of \widetilde{T} in $E^{p_{1}(\cdot)}(\mathbb{D})$ and the relation (9), and applying Theorem C, we have

$$
\begin{aligned}
\|F\|_{L^{p(\cdot)}(\Gamma)} & =\left\|\widetilde{T}\left(F_{1}\right)\right\|_{L^{p(\cdot)}(\Gamma)} \leq\|\widetilde{T}\|\left\|F_{1}\right\|_{L^{p_{1}(\cdot)}(\mathbb{T})} \\
& \leq c_{16}(p)\left\|f_{1}^{+}\right\|_{L^{p_{1}(\cdot)}(\mathbb{T})} \leq c_{17}(p)\left\|f_{1}\right\|_{L^{p_{1}(\cdot)}(\mathbb{T})} \leq c(p)\|f\|_{L^{p(\cdot)}(\Gamma)}
\end{aligned}
$$

Proof of Theorem 19 The proof can be realized similarly to the proof of Theorem 11. We just need to apply the relation

$$
c\|f\|_{L^{p}(\Gamma, \omega)} \leq\left\|\left(\sum_{k=1}^{\infty}\left|\widetilde{\Delta}_{k}(f)\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(\Gamma, \omega)} \leq c\|f\|_{L^{p}(\Gamma, \omega)},
$$

proved in [9, Theorem 4], instead of (11).

Acknowledgment

The authors are grateful to the referees for constructive suggestions. This work was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK), Grant No: 114F422, "Approximation Problems in the Variable Exponent Lebesgue Space".

References

[1] Akgun R. Trigonometric approximation of functions in generalized Lebesgue spaces with variable exponent. Ukr Math J 2011; 63: 3-23.
[2] Akgun R. Polynomial approximation of functions in weighted Lebesgue and Smirnov spaces with nonstandard growth. Georgian Math J 2011; 18: 203-235.
[3] Akgun R, Kokilashvili VM. The refined direct and converse inequalities of trigonometric approximation in weighted variable exponent Lebesgue spaces. Georgian Math J 2011; 18: 399-423.
[4] Alper SJ. Approximation in the mean of analytic functions of class Ep. In: Markushevich AI, editor. Investigations on the Modern Problems of the Function Theory of a Complex Variable. Moscow, USSR: Fizmatgiz, 1960, pp. 273-286 (in Russian).
[5] Andersson JE. On the degree of polynomial approximation in $\mathrm{E}^{p}(D)$. J Approx Theory 1977; 19: 61-68.
[6] Cruz-Uribe DV, Fiorenza A. Variable Lebesgue Spaces Foundations and Harmonic Analysis. Basel, Switzerland: Birkhäsuser, 2013.
[7] Duren PL. Theory of H^{p} Spaces. Mineola, NY, USA: Academic Press, 1970.
[8] Goluzin GM. Geometric Theory of Functions of a Complex Variable. Providence, RI, USA: American Mathematical Society, 1969.
[9] Guven A, Israfilov DM. Multiplier theorems in weighted Smirnov spaces. J Korean Math Soc 2008; 45: 1535-1548.
[10] Guven A, Israfilov DM. Trigonometric approximation in generalized Lebesgue spaces $L^{p(x)}$. J Math Inequal 2010; 4: 285-299.
[11] Ibragimov II, Mamedkhanov DI. A constructive characterization of a some class of functions. Sov Math Dokl 1976; 4: 820-823.
[12] Israfilov DM. Approximation by p-Faber polynomials in the weighted Smirnov class $E^{p}(G, \omega)$ and the Bieberbach polynomials. Constr Approx 2001; 17: 335-351
[13] Israfilov DM, Guven A. Approximation in weighted Smirnov classes. East J Approx 2005; 11: 91-102.
[14] Israfilov DM, Kokilashvili VM, Samko S. Approximation in weighted Lebesgue and Smirnov spaces with variable exponents. Proc A Razmadze Math Inst 2007; 143: 25-35.
[15] Israfilov DM, Testici A. Approximation in weighted Smirnov spaces. Complex Var Elliptic 2015; 60: 45-58.
[16] Israfilov DM, Testici A. Approximation in Smirnov classes with variable exponent. Complex Var Elliptic 2015; 60: 1243-1253.
[17] Israfilov DM, Testici A. Approximation by Faber-Laurent rational functions in Lebesgue spaces with variable exponent. Indagat Math New Ser 2016; 27: 914-922.
[18] Israfilov DM, Testici A. Approximation properties of some summation methods in the Smirnov classes with variable exponent. In: Allaberen A, Lukashov A, editors. International Conference on Analysis and Applied Mathematics; 7-10 September 2016, Almaty, Kazakhstan. College Park, MD, USA: American Institute of Physics, 2016, pp. 0200101-0200104.
[19] Israfilov DM, Testici A. Approximation problems in Lebesgue space with variable exponent. J Math Anal Appl 2018; 459: 112-123.
[20] Jafarov SZ. Linear method for summing Fourier series and approximation in weighted Lebesgue spaces with variable exponents. Ukr Math J 2015; 66: 1509-1518.
[21] Jafarov SZ. Approximation by trigonometric polynomials in subspace of variable exponent grand Lebesgue spaces. Global J Math 2016; 8: 836-843.
[22] Kokilashvili V. A direct theorem on mean approximation of analytic functions by polynomials. Sov Math Dokl 1969; 10: 411-414.
[23] Kokilashvili V, Meskhi A, Rafeiro H, Samko S. Integral Operators in Non-standard Function Spaces, Volume 1. Basel, Switzerland: Birkhäsuser, 2016.
[24] Littlewood JE, Paley R. Theorems on Fourier series and power series. P Lond Math Soc 1936; 42: 52-89.
[25] Sharapudinov II. Some Questions of Approximation Theory in the Lebesgue Spaces with Variable Exponent. Vladikavkaz, Russia: Itogi Nauki Yug Rossi Seria Mathematicheskaya Monografia, 2012 (in Russian).
[26] Sharapudinov II. Approximation of functions in $L_{2 \pi}^{p(x)}$ by trigonometric polynomials. Izv Math 2013; 77: 407-434.
[27] Sharapudinov II. On direct and inverse theorems of approximation theory in variable Lebesgue space and Sobolev spaces. Azerb J Math 2014; 4: 55-72.
[28] Sharapudinov II. Approximation of functions in variable exponent Lebesgue and Sobolev spaces by de la VallėePoussin means. Sb Math 2016; 207: 1010-1036.
[29] Suetin PK. Series of Faber Polynomials. New York, NY, USA: Gordon and Breach Science Publishers, 1998.
[30] Walsh JL, Russel HG. Integrated continuity conditions and degree of approximation by polynomials or by bounded analytic functions. T Am Math Soc 1959; 92: 355-370.

[^0]: *Correspondence: mdaniyal@balikesir.edu.tr
 2010 AMS Mathematics Subject Classification: 30E10, 41A10, 41A30

