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Abstract: Let G ⊂ C be a bounded Jordan domain with a rectifiable Dini-smooth boundary Γ and let G− := ext Γ. In

terms of the higher order modulus of smoothness the direct and inverse problems of approximation theory in the variable

exponent Smirnov classes Ep(·)(G) and Ep(·)(G−) are investigated. Moreover, the Marcinkiewicz and Littlewood–Paley

type theorems are proved. As a corollary some results on the constructive characterization problems in the generalized

Lipschitz classes are presented.
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1. Introduction

Let G ⊂ C be a bounded Jordan domain, bounded by a rectifiable Jordan curve Γ, and let G− := Ext Γ. Let

also T := {w ∈ C : |w| = 1} , D := Int T and D− := Ext T .

The variable exponent Lebesgue space Lp(·)(Γ) for a given Lebesgue measurable variable exponent

p(z) ≥ 1 on Γ is defined as the set of the Lebesgue measurable functions f , such that
∫
Γ
|f(z)|p(z) |dz| < ∞ .

If p+ := ess supz∈Γ p(z) <∞ , then it becomes a Banach space, equipped with the norm

∥f∥Lp(·)(Γ) := inf

λ > 0 :

∫
Γ

|f(z)/λ|p(z) |dz| ≤ 1

 <∞.

In the case of p(·) ≡ p it turns to the classical Lebesgue space Lp (Γ).

If Γ := T , then we obtain the space Lp(·)(T) with the norm

∥f∥Lp(·)(T) := inf

λ > 0 :

2π∫
0

∣∣f(eit)/λ∣∣p(eit) dt ≤ 1

 .

A function f analytic in G is said to be of the Smirnov class Ep (G) if there exists a sequence of rectifiable

Jordan curves (γn) in G , tending to the boundary Γ in the sense that γn eventually surrounds each compact
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subdomain of G , such that ∫
γn

|f (z)|p |dz| ≤M <∞, 1 ≤ p <∞.

Each function f ∈ Ep (G) has [8, pp. 419–438] nontangential boundary values almost everywhere (a.e.) on Γ

and the boundary function belongs to Lp(Γ). The Smirnov class Ep (G−) is defined similarly. The sets

Ep(·)(G) :=
{
f ∈ E1(G) : f ∈ Lp(·)(Γ)

}
,

Ep(·)(G−) :=
{
f ∈ E1(G−) : f ∈ Lp(·)(Γ)

}
are called the variable exponent Smirnov classes of analytic functions in G and G− , respectively. Equipped

with the norm
∥f∥Ep(·)(G) := ∥f∥Lp(·)(Γ) , ∥f∥Ep(·)(G−) := ∥f∥Lp(·)(Γ)

we make Ep(·)(G) and Ep (G−) into the Banach spaces.

Throughout this work we suppose that f (∞) = 0 as soon as f ∈ Ep(·)(G−).

Let E be the segment [0, 2π] or a Jordan rectifiable curve Γ and let p (·) : E → R+ := [0,∞) be a

Lebesgue measurable function, which is defined on E such that

1 ≤ p− := ess inf
z∈E

p(z) ≤ ess sup
z∈E

p(z) =: p+ <∞. (1)

Definition 1 We say that p (·) ∈ P(E) , if p (·) satisfies the conditions (1) and the inequality

|p(z1)− p(z2)| ln
(

|E|
|z1 − z2|

)
≤ c(p), ∀z1, z2 ∈ E , z1 ̸= z2

with a positive constant c(p) , where |E| is the Lebesgue measure of E .
If p (·) ∈ P(E) and p− > 1 , Then we say that p (·) ∈ P0(E) .

Let g be a continuous function and let

ω (g, t) := sup
|t1−t2|≤t

|g (t1)− g (t2)| , t > 0

be its modulus of continuity.

Definition 2 Let Γ be a smooth Jordan curve and let θ (s) be the angle between the tangent and the positive real

axis expressed as a function of arclength s . If θ has a modulus of continuity ω (θ, s) , satisfying the Dini-smooth

condition ∫ δ

0

[ω (θ, s) /s] ds <∞, δ > 0,

Then we say that Γ is a Dini-smooth curve.

The set of Dini-smooth curves is denoted by D .
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We suppose that φ and φ1 are the conformal mappings of G−and G onto D− , respectively, and

normalized by the following conditions:

φ (∞) = ∞, lim
z→∞

φ (z) /z > 0 and φ1 (0) = ∞, lim
z→0

zφ1 (z) > 0.

Let ψ and ψ1 be the inverse mappings of φ and φ1 , respectively. The pairs (φ,φ1) and (ψ,ψ1)

have continuous extensions to Γ and T , respectively. Their derivatives (φ
′
, φ

′

1) and (ψ′, ψ
′

1) have definite

nontangential boundary values a.e. on Γ and T , which are integrable on Γ and T , respectively [8, p. 419–438].

For f ∈ Lp(·)(Γ), p ∈ P(Γ), we set f0 := f ◦ ψ , p0 := p ◦ ψ , f1 := f ◦ ψ1 , and p1 : = p ◦ ψ1 . If Γ ∈ D ,

then as was proved in [17, Lemma 1], the following relations hold:

f1 ∈ Lp1(·)(T) ⇔ f ∈ Lp(·)(Γ) ⇔ f0 ∈ Lp0(·)(T),

p0 ∈ P(T) ⇔ p ∈ P(Γ) ⇔ p1 ∈ P(T).

For f ∈ Lp(·) (Γ) we define the Cauchy type integrals

f+0 (w) :=
1

2πi

∫
T

f0 (τ)

τ − w
dτ , w ∈ D and f+1 (w) :=

1

2πi

∫
T

f1 (τ)

τ − w
dτ, w ∈ D,

which are analytic in D .

Definition 3 For f ∈ Lp(·)(T) , p (·) ∈ P(T), and t > 0 we set

∆r
tf (w) : =

r∑
s=0

(−1)
r+s

(
r

s

)
f
(
weist

)
, r = 1, 2, 3, ...

and define the rth modulus of smoothness by

Ωr (f, δ)T,p(·) : = sup
0<|h|≤δ

∥∥∥∥∥∥ 1h
h∫

0

∆r
tf (w) dt

∥∥∥∥∥∥
Lp(·)(T)

.

We also define the moduli of smoothness for f ∈ Ep(·)(G) and f ∈ Ep(·)(G−) as follows:

Ωr (f, δ)G,p(·) : = Ωr

(
f+0 , δ

)
T,p0(·)

,

Ωr (f, δ)G−,p(·) : = Ωr

(
f+1 , δ

)
T,p1(·)

, δ > 0.

The approximation aggregates used by us are constructed via the Faber polynomials Fk (z) and F̃k (1/z)

with respect to z and 1/z , respectively. These polynomials can be defined in particular by the following series

representations [17] (see also [29]):

ψ′ (w)

ψ (w)− z
=

∞∑
k=0

Fk (z)

wk+1
, w ∈ D−, z ∈ G, (2)
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ψ′
1 (w)

ψ1 (w)− z
=

∞∑
k=1

− F̃k (1/z)

wk+1
, w ∈ D− z ∈ G−. (3)

Using (2) and Cauchy’s integral formulae

f(z) =

∫
Γ

f(ζ)

ζ − z
dζ =

1

2πi

∫
|w|=1

f0(w)ψ
′ (w)

ψ (w)− z
dw, z ∈ G,

which hold for every f ∈ Ep(·)(G) ⊂ E1(G), we have

f (z) ∼
∞∑
k=0

akFk (z) , z ∈ G, (4)

where

ak = ak (f) : =
1

2πi

∫
T

f0 (w)

wk+1
dw, k = 0, 1, 2, ... . (5)

Using (3) and the integral representation

f(z) =

∫
Γ

f(ζ)

ζ − z
dζ =

1

2πi

∫
|w|=1

f1(w)ψ
′
1 (w)

ψ1 (w)− z
dw, z ∈ G−,

which holds for every f ∈ Ep(·)(G−) ⊂ E1(G−), we also have

f (z) ∼
∞∑
k=1

ãkF̃k (1/z) , z ∈ G−, (6)

with the coefficients

ãk = ãk (f) : = − 1

2πi

∫
T

f1 (w)

wk+1
dw, k = 1, 2, ... . (7)

In this work, in terms of the higher order modulus of smoothness, the direct and inverse theorems of

approximation theory in the variable exponent Smirnov classes Ep(·)(G) and Ep(·)(G−) are proved. Moreover,

the Marcinkiewicz and Littlewood–Paley type theorems are obtained. As a corollary some results on the

constructive characterization problems in the generalized Lipschitz classes are represented.

By c (·), c1 (·), c2 (·), and c (·, ·), c1 (·, ·), c2 (·, ·), ... we denote the constants, depending in general only

on the parameters, given in the corresponding brackets and independent of n .

Let Πn be the class of algebraic polynomials of degree not exceeding n and let

En (f)G,p(·) : = inf
{
∥f − Pn∥Lp(·)(Γ) : Pn ∈ Πn

}
, n = 1, 2, ...

be the best approximation number of f ∈ Ep(·)(G) in Πn .

Our new results are presented as follows:
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Theorem 4 Let Γ ∈ D . If f ∈ Ep(·) (G) , p(·) ∈ P0(Γ) , Then there is a positive constant c (p, r) such that the

inequality

En (f)G,p(·) ≤ c (p, r)Ωr (f, 1/n)G,p(·) , n = 1, 2, 3, ...

holds.

Theorem 5 Let Γ ∈ D . If f ∈ Ep(·) (G) , p(·) ∈ P0(Γ) , Then there is a positive constant c (p, r) such that the

inequality

Ωr (f, 1/n)G,p(·) ≤
c (p, r)

nr

n∑
k=0

(k + 1)
r−1

Ek (f)G,p(·) , n = 1, 2, 3, ...

holds.

Theorems 4 and 5 in the case of r = 1 were proved in [16] (see also [17]). In the variable exponent

Lebesgue spaces Lp(·)([0, 2π]) these theorems in the case of r=1 and p(·) ∈ P0([0, 2π]) , using some other

modulus of smoothness, were proved in [1–3,10,20,21]. For a wider class of the exponents p(·), namely when

p(·) ∈ P([0, 2π]) ⊃ P0([0, 2π]) , the direct and inverse theorems in Lp(·)([0, 2π]) in term of the first modulus of

smoothness were obtained in the papers [16, 25–28].

Note that in the classical Smirnov classes the direct and inverse problems of approximation theory were

investigated adequately. Detailed information about these investigations can be found in [4,5,11–13,22,30] and

the references given therein. In the variable exponent Smirnov classes some approximation problems were also

investigated in [14, 16, 18].

Corollary 6 If En (f)G,p(·) = O (n−α) , α > 0 , Then under the conditions of Theorem 5,

Ωr (f, δ)G,p(·) =

 O (δα) , r > α
O (δr log 1/δ) , r = α

O (δr) , r < α.

If we define the generalized Lipschitz class Lip (G, p (·) , α) with α > 0 and r := [α]+ 1, where [α] is the

integer part of α , by

Lip (G, p (·) , α) :=
{
f ∈ Ep(·) (G) : Ωr (f, δ)G,p(·) = O (δα) , δ > 0

}
,

then from Corollary 6 we obtain:

Corollary 7 If En (f)G,p(·) = O (n−α) , α > 0 , Then under the conditions of Theorem 5 we have that

f ∈ Lip (G, p (·) , α) .

On the other hand, from Theorem 4 we have:

Corollary 8 If f ∈ Lip (G, p (·) , α) , α > 0 , Then En (f)G,p(·) = O (n−α) .

Combining Corollaries 7 and 8 we obtain the following constructive characterization of the generalized

Lipschitz class Lip (G, p (·) , α) :
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Theorem 9 Let Γ ∈ D and p(·) ∈ P0(Γ) . Then for α > 0 the following statements are equivalent:

i)f ∈ Lip (G, p (·) , α) , ii)En (f)G,p(·) = O
(
n−α

)
n = 1, 2, 3, ...

Let {λk}∞0 be a sequence of complex numbers, satisfying for every natural numbers k and m the

conditions

|λk| ≤ c,
2m−1∑

k=2m−1

|λk − λk+1| ≤ c (8)

with some positive constant c > 0.

Theorem 10 Let Γ ∈ D and p(·) ∈ P0(Γ) . If f ∈ Ep(·) (G) with the Faber series (4) and {λk}∞0 is a

sequence of complex numbers satisfying the condition (8) , then there exist a function F ∈ Ep(·) (G) and a

positive constant c(p) such that

F (z) ∼
∞∑
k=0

λkak (f)Fk (z) , z ∈ G

and ∥F∥Lp(·)(Γ) ≤ c ∥f∥Lp(·)(Γ) .

Let

∆k(f)(z) :=
2k−1∑

j=2k−1

aj (f)Fj (z) , k = 1, 2, ...

be the lacunary partial sums of Faber series of f ∈ Ep(·) (G). The following Littlewood–Paley type theorem

holds:

Theorem 11 Let Γ ∈ D and p(·) ∈ P0(Γ) . If f ∈ Ep(·) (G) , Then there exist the constants c1(p) and c2(p)

such that the inequalities

c1(p) ∥f∥Lp(·)(Γ) ≤

∥∥∥∥∥∥
( ∞∑

k=0

|∆k(f)|2
)1/2

∥∥∥∥∥∥
Lp(·)(Γ)

≤ c2(p) ∥f∥Lp(·)(Γ)

hold.

The results, similar to Theorems 10 and 11 in the classical Lebesgue spaces Lp([0, 2π]) , were first proved

by Littlewood and Paley in [24]. They play an important role in the various problems of approximation theory,

especially for the improvements of the direct and inverse theorems. In the classical Smirnov classes, Theorems

10 and 11 were obtained in [9].

All of the results formulated above can be formulated also in the classes Ep(·) (G−).

Let

En (f)G−,p(·) := inf
{
∥f − P ∗

n∥Lp(·)(Γ) : P
∗
n ∈ Π∗

n

}
, n = 1, 2, ...

be the best approximation number of f ∈ Ep(·)(G−) in the class Π∗
n , of the algebraic polynomials with respect

to 1/z , of degree not exceeding n .
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Theorem 12 Let Γ ∈ D . If f ∈ Ep(·) (G−) , p(·) ∈ P0(Γ) , Then there exists a positive constant c (p, r) such

that the inequality

En (f)G−,p(·) ≤ c (p, r)Ωr (f, 1/n)G−,p(·) , n = 1, 2, 3, ...

holds.

Theorem 13 Let Γ ∈ D . If f ∈ Ep(·) (G−) with p(·) ∈ P0(Γ) , Then there exists a positive constant c (p, r)

such that the inequality

Ωr (f, 1/n)G−,p(·) ≤
c (p, r)

nr

n∑
k=1

(k + 1)
r−1

Ek (f)G−,p(·) , n = 1, 2, 3, ...

holds.

Corollary 14 If En (f)G−,p(·) = O (n−α) for some α > 0 , Then under the conditions of Theorem 13

Ωr (f, δ)G−,p(·) =

 O (δα) , r > α
O (δr log (1/δ)) , r = α

O (δr) , r < α.

Similarly, if we define the generalized Lipschitz class Lip (G−, p (·) , α) with α > 0 and r := [α] + 1 by

Lip
(
G−, p (·) , α

)
:=
{
f ∈ Ep(·) (G−) : Ωr (f, δ)G−,p(·) = O (δα) , δ > 0

}
,

then we have:

Corollary 15 If En (f)G−,p(·) = O (n−α) , α > 0 , Then under the conditions of Theorem 13 we have f ∈

Lip (G−, p (·) , α) .

On the other hand, Theorem 12 implies:

Corollary 16 If f ∈ Lip (G−, p (·) , α) for some α > 0 , Then En (f)G−,p(·) = O (n−α) .

Hence, by means of Corollaries 15 and 16, we can formulate the following theorem, which gives a

constructive characterization of the generalized Lipschitz class Lip (G−, p (·) , α) :

Theorem 17 Let Γ ∈ D , p(·) ∈ P0(Γ) and let α > 0 . The following statements are equivalent:

i) f ∈ Lip
(
G−, p (·) , α

)
, ii) En (f)G−,p(·) = O

(
n−α

)
, n = 1, 2, 3, ...

Theorem 18 Let Γ ∈ D and p(·) ∈ P0(Γ) . If f ∈ Ep(·) (G−) with the Faber series (6) and {λk}∞0 is a

sequence of complex numbers, satisfying the condition (8) , then there exists a function F ∈ Ep(·) (G−) such

that

F (z) ∼
∞∑
k=1

λkãk (f) F̃k (1/z) , z ∈ G−

and ∥F∥Lp(·)(Γ) ≤ c ∥f∥Lp(·)(Γ) .
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Denoting the lacunary partial sums of Faber series of f ∈ Ep(·) (G−) by

∆̃k(f)(z) :=

2k−1∑
j=2k−1

ãj (f) F̃j (1/z) ,

we have the following Littlewood–Paley type theorem in the classes Ep(·) (G−):

Theorem 19 Let Γ ∈ D and p(·) ∈ P0(Γ) . If f ∈ Ep(·) (G−) , Then there exist the positive constants c3(p)

and c4(p) such that the inequalities

c3(p) ∥f∥Lp(·)(Γ) ≤

∥∥∥∥∥∥
( ∞∑

k=1

∣∣∣∆̃k(f)
∣∣∣2)1/2

∥∥∥∥∥∥
Lp(·)(Γ)

≤ c4(p) ∥f∥Lp(·)(Γ)

hold.

2. Auxiliary results

Let Tn be the class of the trigonometric polynomials of degree not exceeding n . The best approximation number

of f ∈ Lp(·) (T) in Tn is defined by

En (f)p(·) := inf
{
∥f − Tn∥Lp(·)(T) : Tn ∈ Tn

}
, n = 0, 1, 2, ... .

We will use the following direct and inverse results proved in [19]:

Theorem A [19] Let f ∈ Lp(·) (T) , p(·) ∈ P(T) , and let r ∈ N . Then there exists a positive constant c (p, r)

such that for every n ∈ N The inequality

En (f)p(·) ≤ c (p, r)Ωr (f, 1/n)T,p(·)

holds.

Theorem B [19] Let f ∈ Lp(·) (T) , p(·) ∈ P(T) , and let r ∈ N . Then there exists a positive constant c (p, r)

such that for every n ∈ N The inequality

Ωr (f, 1/n)T,p(·) ≤
c (p, r)

nr

n∑
k=0

(k + 1)
r−1

Ek (f)p(·)

holds.

Let

SΓ (f) (z) := lim
ε→0

1

2πi

∫
Γ\{ζ∈Γ: |ζ−z|<ε}

f (ζ)

ζ − z
dζ

be the Cauchy singular integral of f ∈ Lp(·) (Γ). By Privalov’s theorem, the Cauchy type integrals

f+ (z) : =
1

2πi

∫
Γ

f (ζ)

ζ − z
dζ =

1

2πi

∫
T

[ψ′ (w)]

ψ (w)− z
f0 (w) dw, z ∈ G
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f− (z) : =
1

2πi

∫
Γ

f (ζ)

ζ − z
dζ =

1

2πi

∫
T

[ψ′ (w)]

ψ (w)− z
f1 (w) dw, z ∈ G−

have the nontangential inside and outside limits f+ and f− , respectively a.e. on Γ. Furthermore, the formulas

f+ (z) = SΓ (f) (z) +
1

2
f (z) and f− (z) = SΓ (f) (z)−

1

2
f (z) (9)

are valid a.e. on Γ, which implies that

f (z) = f+ (z)− f− (z) (10)

a.e. on Γ.

The following theorem is a special case of the more general result on the boundedness of Cauchy’s singular

operator SΓ (f) in Lp(·) (Γ) , proved in [23, p. 59, Theorem 2.45].

Theorem C Let Γ ∈ D and p ∈ P0 (Γ) . Then the Cauchy singular operator SΓ (f) is bounded in Lp(·) (Γ) .

Lemma 20 [16] Let Γ ∈ D . If f ∈ Lp(·) (Γ) , p ∈ P0(Γ) , Then f+ ∈ Ep(·)(G) and f− ∈ Ep(·)(G−) .

Now we consider the operators

T (f) (z) : =
1

2πi

∫
T

f (w)ψ′ (w)

ψ (w)− z
dw, f ∈ Ep0(·)(D), z ∈ G,

T̃ (f) (z) : =
1

2πi

∫
T

f (w)ψ′
1 (w)

ψ1 (w)− z
dw, f ∈ Ep1(·)(D), z ∈ G−,

defined on the classes Ep0(·)(D) and Ep1(·)(D), respectively.
The following lemma holds.

Lemma 21 Let Γ ∈ D and p(·) ∈ P0(Γ) . Then:

i) The operator T : Ep0(·) (D) → Ep(·) (G) is linear, bounded, one-to-one, and onto. Moreover, T
(
f+0
)
= f

for every f ∈ Ep(·)(G) ,

ii) The operator T̃ : Ep1(·) (D) → Ep(·) (G−) is linear, bounded, one-to-one, and onto. Moreover, T̃
(
f+1
)
= f

for every f ∈ Ep(·)(G−) .

Note that assertion i) was proved in [16]. Assertion ii) can be proved using the same techniques.

Lemma 22 Let Γ ∈ D and p(·) ∈ P0(Γ) . Then there exist the positive constants c i (p), i=5,6,7,8, such that

the following assertions hold:

i)if f ∈ Ep(·) (G) , Then En

(
f+0
)
p0(·)

≤ c5(p)En (f)G,p(·) ≤ c6(p)En

(
f+0
)
p0(·)

;

ii)if f ∈ Ep(·) (G−) , Then En

(
f+1
)
p1(·)

≤ c7(p)En (f)G−,p(·) ≤ c8(p)En

(
f+1
)
p1(·)

.
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Proof Assertion i) was proved in [16]. We will prove ii). Since the operator T̃ : Ep1(·) (D) → Ep(·) (G−) is

linear, bounded, one-to-one, and onto, it has the inverse operator T̃−1 : Ep(·) (G−) → Ep1(·) (D), which is also

linear, bounded, one-to-one, and onto. If f ∈ Ep(·) (G−), then T̃−1 (f) = f+1 ∈ Ep1(·) (D). If P ∗
n is the

polynomial of the best approximation to f in Ep(·) (G−) with respect to 1/z and degree not exceeding n , then

T̃−1 (P ∗
n) is a polynomial with respect to w and degree not exceeding n . Therefore, denoting c7(p) :=

∥∥∥T̃−1
∥∥∥ ,

we get

En

(
f+1
)
p1(·)

≤
∥∥∥f+1 − T̃−1 (P ∗

n)
∥∥∥
Lp1(·)(T)

≤
∥∥∥T̃−1 (f)− T̃−1 (P ∗

n)
∥∥∥
Lp1(·)(T)

≤
∥∥∥T̃−1

∥∥∥ ∥f − P ∗
n∥Lp(·)(Γ) = c7(p)En (f)G−,p(·) .

On the other hand, by Lemma 21 we have that T̃
(
f+1
)
= f ∈ Ep(·)(G−) and then by boundedness of T̃

En (f)G−,p(·) ≤
∥∥∥f − T̃ (P ∗

n)
∥∥∥
Lp(·)(Γ)

≤
∥∥∥T̃ (f+1 )− T̃ (P ∗

n)
∥∥∥
Lp(·)(Γ)

≤
∥∥∥T̃∥∥∥ ∥∥f+1 − P ∗

n

∥∥
Lp1(·)(T) = c8(p)En

(
f+1
)
p1(·)

.

2

Lemma 23 Let p(·) ∈ P0(Γ) and let {λk}∞0 be a sequence of complex numbers satisfying the condition (8) . If

g ∈ Ep(·) (D) has the Taylor series

g (w) =

∞∑
k=0

βk (g)w
k , w ∈ D

Then there exists a function g∗ ∈ Ep(·) (D) that has the Taylor series

g∗ (w) =
∞∑
k=0

λkβk (g)w
k , w ∈ D

and ∥g∗∥Lp(·)(T) ≤ c(p) ∥g∥Lp(·)(T) .

Proof Let g ∈ Ep(·) (D) and ck (g) (k = ...,−1, 0, 1, ...) be the Fourier coefficients of the boundary function

of g . Then (Theorem 3.4 in [7, p. 38]) we have

ck (g) =

{
βk (g) , k ≥ 0

0, k < 0.

By the Marcinkiewicz type theorem [23, p. 120, Theorem 2.103], there is a function h ∈ Lp(·) (T) with the

Fourier coefficients ck (h) = λkck (g) such that ∥h∥Lp(·)(T) ≤ c(p) ∥g∥Lp(·)(T) , for some positive constant c(p).
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Since g∗ := h+ ∈ Ep(·) (D), for the Taylor coefficients βk (g
∗), k = 0, 1, 2, ..., of g∗ , by (10) we have

βk (g
∗) = βk

(
h+
)
=

1

2πi

∫
T

h+ (w)

wk+1
dw =

1

2πi

∫
T

h (w)

wk+1
dw +

1

2πi

∫
T

h− (w)

wk+1
dw

=
1

2πi

∫
T

h (w)

wk+1
dw = ck (h) = λkck (g) = λkβk (g)

and

∥g∗∥Lp(·)(T) ≤
∥∥h+∥∥

Lp(·)(T) ≤ c9 (p) ∥h∥Lp(·)(T) ≤ c10(p) ∥g∥Lp(·)(T) .

2

3. Proofs of main results

Proof of Theorem 4 If f ∈ Ep(·) (G), then f+0 = T−1(f) ∈ Ep0(·) (D). Hence, applying the second inequality

of assertion i) in Lemma 22 and Theorem A, we have

En (f)G,p(·) ≤ c6(p)En

(
f+0
)
p0(·)

≤ c6(p)c (p, r)Ωr

(
f+0 , 1/n

)
T,p0(·)

= c1 (p, r)Ωr (f, 1/n)G,p(·) .

2

Proof of Theorem 5 If f ∈ Ep(·) (G), then by Lemma 21 we have that f+0 ∈ Ep0(·) (D). Applying Theorem

B for the boundary values of f+0 and the first inequality of assertion i) in Lemma 22, we obtain the desired

inequality:

Ωr (f, 1/n)G,p(·) = Ωr

(
f+0 , 1/n

)
T,p0(·)

≤ c (p, r)

nr

n∑
k=0

(k + 1)
r−1

Ek

(
f+0
)
p0(·)

≤ c (p, r) c5(p)

nr

n∑
k=0

(k + 1)
r−1

En (f)G,p(·)

≤ c2 (p, r)

nr

n∑
k=0

(k + 1)
r−1

En (f)G,p(·)

2

Proof of Theorem 10 Let f ∈ Ep(·) (G). Then by (5) and (10) we have

ak (f) =
1

2πi

∫
T

f0 (w)

wk+1
dw =

1

2πi

∫
T

f+0 (w)

wk+1
dw − 1

2πi

∫
T

f−0 (w)

wk+1
dw

=
1

2πi

∫
T

f+0 (w)

wk+1
dw = βk

(
f+0
)
, k = 0, 1, 2, ... .
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This means that the Faber coefficients of f are also the Taylor coefficients of f+0 at the origin; that is,

f+0 (w) =
∞∑
k=0

ak (f)w
k, w ∈ D.

Since f ∈ Ep(·) (G) we have f+0 ∈ Ep0(·) (D) and then by Lemma 23 there is a function F0 ∈ Ep0(·) (D) with

the Taylor coefficients βk (F0) = λkβk
(
f+0
)
= λkak (f), k = 0, 1, 2, ..., such that

∥F0∥Lp0(·)(T) ≤ c(p)
∥∥f+0 ∥∥Lp0(·)(T) .

At the same time, by Lemma 21, F := T (F0) ∈ Ep(·) (G) and has the Faber coefficients βk (F0) = λkak (f),

k = 0, 1, 2, ... . Hence,

F (z) = T (F0) (z) ∼
∞∑
k=0

λkak (f)Fk (z) , z ∈ G.

Now using the boundedness of T , (9) , and Theorem C, we have

∥F∥Lp(·)(Γ) = ∥T (F0)∥Lp(·)(Γ) ≤ ∥T∥ ∥F0∥Lp0(·)(T)

≤ c(p)
∥∥f+0 ∥∥Lp0(·)(T) ≤ c11(p) ∥f0∥Lp0(·)(T) ≤ c12(p) ∥f∥Lp(·)(Γ) .

2

Let ω be a weight on Γ, i.e. an almost everywhere nonnegative integrable function on Γ, and let

Br(z) := {t : |t− z| < r, z ∈ Γ} , r > 0. ω is said to satisfy Muckenhoupt’s Ap(Γ), 1 < p <∞ , condition if

sup
z∈Γ

sup
r>0

1

r

∫
Γ∩Br(z)

ω (z) |dz|


1

r

∫
Γ∩Br(z)

ω (z)
1−p

′

|dz|


p−1

<∞,
1

p
+

1

p′
= 1.

Let also Mf be the maximal function, defined as

Mf (z) := sup
γ∋z

 1

|γ|

∫
γ

|f (z)| |dz|

 , f ∈ L(Γ),

where the supremum is taken over all rectifiable arcs γ ⊂ Γ that contain z and |γ| is a Lebesgue measure of γ .

Proof of Theorem 11 Let ω ∈ Ap(Γ), Γ ∈ D , and 1 < p < ∞ . In [9, Theorem 3] it was proved that if f

∈ Ep (G,ω), then there exist the positive constants c13(p) and c14(p) such that

c13(p) ∥f∥Lp(Γ,ω) ≤

∥∥∥∥∥∥
( ∞∑

k=0

|∆k(f)|2
)1/2

∥∥∥∥∥∥
Lp(Γ,ω)

≤ c14(p) ∥f∥Lp(Γ,ω) . (11)

Considering the operator A : f →
( ∞∑

k=0

|∆k(f)|2
)1/2

, we see that by the second inequality of (11), it is

bounded in Lp (Γ,ω). On the other hand, the maximal operator M is bounded (see [23, p. 50, Theorem 2.29])

1453



ISRAFILOV and TESTICI/Turk J Math

in Lp(·) (Γ), p(·) ∈ P0(Γ). Hence, all of the conditions of Corollary 5.32 of extrapolation Theorem 5.28, proved

in [6, pp. 209–211], are fulfilled. Then∥∥∥∥∥∥
( ∞∑

k=0

|∆k(f)|2
)1/2

∥∥∥∥∥∥
Lp(·) (Γ)

≤ c15(p) ∥f∥Lp(·) (Γ) ,

and therefore, the second inequality of Theorem 11 is proved. The proof of the first inequality goes similarly.

2

Proof of Theorem 12 If f ∈ Ep(·) (G−), then by assertion ii) of Lemma 21, we get f+1 ∈ Ep1(·) (D). Applying

the second inequality of assertion ii) in Lemma 22 and Theorem A for f+1 we have that

En (f)G−,p(·) ≤ c (p)En

(
f+1
)
p1(·)

≤ c (p, r) Ωr

(
f+1 , 1/n

)
T,p1(·)

= c (p, r)Ωr (f, 1/n)G−,p(·) .

2

Proof of Theorem 13 If f ∈ Ep(·) (G−), then by assertion ii) of Lemma 21 we have f+1 ∈ Ep1(·) (D). Hence,

applying Theorem B for the boundary values of f+1 and the first inequality of assertion ii) in Lemma 22, we

get

Ωr (f, 1/n)G−,p(·) = Ωr

(
f+1 , 1/n

)
T,p1(·)

≤ c (p, r)

nr

n∑
k=0

(k + 1)
r−1

Ek

(
f+1
)
p1(·)

≤ c (p, r) c7(p)

nr

n∑
k=0

(k + 1)
r−1

En (f)G−,p(·)

≤ c3 (p, r)

nr

n∑
k=0

(k + 1)
r−1

En (f)G−,p(·) .

2

Proof of Theorem 18 Let f ∈ Ep(·) (G−) . By (7) and (10)

ãk (f) =
1

2πi

∫
T

f1 (w)

wk+1
dw =

1

2πi

∫
T

f+1 (w)

wk+1
dw − 1

2πi

∫
T

f−1 (w)

wk+1
dw

=
1

2πi

∫
T

f+1 (w)

wk+1
dw = βk

(
f+1
)
,

where βk
(
f+1
)
, k = 0, 1, 2, ... , are the Taylor coefficients of f+1 ∈ Ep1(·) (D). This means that the Faber

coefficients ãk (f) of f are the Taylor coefficients of f+1 at the origin; that is,

f+1 (w) =
∞∑
k=0

ãk (f)w
k, w ∈ D.
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Since f ∈ Ep(·) (G−) by assertion ii) of Lemma 21, we have f+1 ∈ Ep1(·) (D) and then by Lemma 23 there is a

function F1 ∈ Ep1(·) (D) with the Taylor coefficients βk (F1) = λkβk
(
f+1
)
= λkãk (f), k = 0, 1, 2, ..., such that

∥F1∥Lp1(·)(T) ≤ c(p)
∥∥f+1 ∥∥Lp1(·)(T) .

Since T̃ (F1) ∈ Ep(·) (G−), its Faber coefficients are βk (F1) = λkãk (f) and hence

T̃ (F1) (z) ∼
∞∑
k=0

λkãk (f) F̃k (1/z) , z ∈ G−.

Now denoting F := T̃ (F1), using the boundedness of T̃ in Ep1(·) (D) and the relation (9), and applying

Theorem C, we have

∥F∥Lp(·)(Γ) =
∥∥∥T̃ (F1)

∥∥∥
Lp(·)(Γ)

≤
∥∥∥T̃∥∥∥ ∥F1∥Lp1(·)(T)

≤ c16(p)
∥∥f+1 ∥∥Lp1(·)(T) ≤ c17(p) ∥f1∥Lp1(·)(T) ≤ c(p) ∥f∥Lp(·)(Γ) .

2

Proof of Theorem 19 The proof can be realized similarly to the proof of Theorem 11. We just need to apply

the relation

c ∥f∥Lp(Γ,ω) ≤

∥∥∥∥∥∥
( ∞∑

k=1

∣∣∣∆̃k(f)
∣∣∣2)1/2

∥∥∥∥∥∥
Lp((Γ,ω)

≤ c ∥f∥Lp((Γ,ω) ,

proved in [9, Theorem 4], instead of (11). 2
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