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Abstract: We prove that Gadjieva’s conjecture holds true as stated in her PhD thesis. The positive solution of this
conjecture allows us to obtain improved versions of the Jackson—Stechkin type inequalities obtained in her thesis and some
others. As an application, an equivalence of the modulus of smoothness with the realization functional is established.
We obtain a characterization class for the modulus of smoothness.
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1. Introduction and results

Let 7, be the class of real trigonometric polynomials of degree not greater than n and v be a weight (a.e.
positive measurable function) on 7 := [0,27]. Among other weights we will consider Muckenhoupt weights.
These weights have many applications in the theory of integral operators, harmonic analysis, and the theory of
function spaces (see, for example, [13, 14]). We refer to the monograph of Garcia-Cuerva and Rubio de Francia
[13] for the theory of Muckenhoupt weights. A 2m-periodic weight function v : T'— (0,00) belongs to the
Muckenhoupt class A,, p € (1,00), if

p—1

ﬁ/v@)dﬂﬂ ﬁ/y‘ﬁ(m)dm <cC (1)
J J

with a finite constant C' independent of J, where J is any subinterval of T and |J| denotes the length
of J. The least constant C satisfying (1) is called the A, constant of v and is denoted by [7] a,- Let f

be in the weighted Lebesgue space LY, p € (1,00), of measurable functions f : T— R having the norm

£l s o= {7 1F @) () dx}l/p < oo and B, (f), , = inf {llf ~Ul,,:Ue 7;}. In 1986 in her PhD thesis

[12], Gadjieva obtained, among other results, the so-called Jackson type inequality in L?, p € (1,00), with
weights v € A4,:

Theorem 1 ([12, p.50, Theorem 1.4]) If p € (1,00), v € Ay, and f € LE, then there is positive constant c
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depending only on r,p and Muckenhoupt’s A, constant MAp of v such that

1
Eu (g < crmi, W (10557 ) ®
b,y

holds for r,n € N ={1,2,3,...} where

Py

I is the identity operator, and

x+h
onf (z) = %/_h f(6)dt, zeT (4)

(2) was the first result in the literature for the Jackson type inequality for f € LE with p € (1,00)
and v € A,. This estimate (2) yielded several further investigations in theory. See, for example, the papers
[2, 3,5, 16,19-21, 29, 30, 33, 43]. The formulation (3) of the Butzer-Wehrens type [9, 42] modulus of smoothness
W (f,"), uses the Steklov mean (4) because the class of function L% is not necessarily translation invariant,
in general, with respect to the usual shift f (z) — f(x 4+ a) where a € R.

On the other hand, in the literature [11, 16, 20-28, 30, 32, 36-38, 41] there is the following type of

formulation for the modulus of smoothness:

QT (f? 5)p7'y = 021;1126 ||(I - Jh)r f”p,fy ? re N (5)

Note that the formulation (5) is also included in her thesis [12, p. 35]. Furthermore, the conjecture of Gadjieva
is related to (5) and Peetre’s K -functional, that is,

K (1.6p2) =it {1 = gl + 0" 5

M:g,g(’”) € L?;} (6)
for reN, pe (1,00), y€ Ay, 6>0,and f e LL.

Conjecture 2 (Conjecture of Gadjieva) ([12, p. 35]) If p € (1,00), v € Ay, n €N, and f € LE, then

there is constant Cly > 0 depending only on r,p and [’y]Ap such that

Ap sTP

K2T‘ (f7 57pa 7) S O[V]APWVPQT ('f’ 5)177’)’ (7)

holds for r € N.

In this work we prove that the conjecture of Gadjieva holds true as stated in [12] for functions f € L
with p € (1,00) and v € A,. The main result of this paper is the following theorem consisting of an equivalence
of the modulus of smoothness €2, and Peetre’s K-functional Kj,., which gives a positive solution to Gadjieva’s

conjecture (7):
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Theorem 3 Ifre N, fe b, pe (1,00), and v € A, then the equivalence

Qr (fv t)pﬂ ~ K2r (fa t7pa IY) (8)

holds for t > 0, where the equivalence constants depend only on r,p, and [’y]Ap .

As a corollary we can obtain a Jackson—Stechkin type inequality, which improves (for r > 2) the Jackson—
Stechkin type inequalities obtained in [2, 3, 16, 20, 29, 30, 43].

Theorem 4 If p € (1,00), y € A,, r, n €N, and f € LY, then there is a positive constant depending only
on r,p and [y], ~such that

1
En (f)p’ry < cr,p,['y]Ap QT (f7 n+ 1>
P,y

holds.

We note that
1 (f )y = Wi )y and Qe (f),, S Wi (), 9)

for » > 2. Thus, the inequality in Theorem 4 improves the inequality (2) for r > 2.

In several particular cases there were some results of the Jackson type inequality: when v = 1 and
p € [1,00) (5) and (7) in LP were considered in [11] and an equivalence of modulus of smoothness with Peetre’s
K -functional was proved. When v =1 and p = 2 in L? Abilov and Abilova [1] obtained Theorem 4 thanks
to the Parseval equality. When r =1, p € (1,00), and v € A,, Theorem 4 was investigated in some papers
[2, 16, 21, 29, 43].

On the other hand, a different method of trigonometric approximation in Lebesgue spaces with Muck-
enhoupt weights was developed by Ky ([31, 32]). He also defined a suitable weighted modulus of smoothness
(see the definition of Q, below). Independently of Gadjieva, Ky proved the direct and inverse theorems of
trigonometric approximation in Lebesgue spaces with Muckenhoupt weights: let =t € T, r € N and set

T

r r
Apf @)=Y (<) (D) Fe k), felLl, (10)
k=0
where (7) = "L b g k> 1 and (7)== 1. Taking r € NU{0}, p € (1,00), v € A,, f € LP we

consider the mean Ajf () := %f05|A”t"f(~)|dt, reT. Let r e NU{0}, p € (1,00), v € 4y, f € LY and
define ([32])

Py’

Q. (f,h), = Sup. ([ A5 /]

By equivalence with the K -functional, we obtain that €2, and o, are equivalent in the sense g, ~ Q, where
r € N. Hence, Theorem 4 is equivalent to Theorem 2 of [32, (25) with 2r].

Another part of the work concentrates on the main properties of (5). For example, we obtain that (5)

has the following properties:
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Theorem 5 Let p € (1,00), y€ Ay, f,g€ Lb, § >0, and r,k € N. Then

613& Q. (f, 5)%7 =0, (11)
QT-HC (f7 6)10,7 < C’r,k,p,['y]AP Qk (f7 6)p,»y ) (12)

and for any 0 <t <1
Qi (fit)pny < Cr.k.p, V4, tZer(f(%)at)p,'v (13)

where constants are dependent only on r,k,p, and ['y}Ap.

It is well known from Theorems 6.5 and 7.4 of [11] that
QT‘ (f’t)p,l ~ KQT (f7t7pa 1)3 t Z O (14)

also holds for 1 <p < oo, f € LP.
(8) implies the following further properties of (5).

Corollary 6 IfreN, fe L, pe(1,00), and v € Ay, then

Q (£,20),, < C(L+ M) (f8),,, §A>0, (15)

Y
and
Q. (f, 5)p7,y 57 < 0Q, (f, 51)17,7 5;2’”, 0<d1 <6,

where |z] :=max{y € Z:y < z}.

It is well known that the basic property of moduli smoothness €, (-, d)
Q (,0)
describe the rate (11). The class ®, (a € R) consists of functions 1 satisfying the following conditions:
a) ¥ (t) > 0 bounded on (0, 0),
) Y (t) — 0 as t—0,
c) ¥

oy 18 the decreasing to zero of
:

as 0 — 0. Using an equivalence between 2, (-,0) _ and a function ¢ from some class ®, one can

Py Py

)

b
(t) is nondecreasing,
d) t~% (t) is nonincreasing.

(
(
(
(

The characterization class of (5) is given in the following theorem.

Theorem 7 Let § e RT, n,r €N, p € (1,00), and v € A,.
(a) If f € LY then there exists a i € ®a such that

Q- (f,8),, = (1) (16)

holds for all t € (0,00) with equivalence constants depending only on r,p, and [’y]AP.

(b) If ¥ € ®g,. then there exists a f € LY and a positive real number to such that
Q. (f,9),., =¥ (0) (17)

holds for all 6 € (0,tg) with equivalence constants dependent only on r,p, and ['y]Ap .
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This type of characterization theorem was proved in [40] for the spaces LP, p € [1,00), with classical
moduli of smoothness of fractional order. The class ®, completely describes the class of all majorants for the
moduli of smoothness w,. (-, 6)p in the space LP, p € [1,00). For w, (-, é)p, r € N the characterization problem
was investigated by Besov and Stechkin [7]; for w, (-, 6)p, r > 0 the characterization theorem was obtained by
Tikhonov [40].

Theorem 4 has a weak inverse and the following estimate is a corollary of (9) and Theorem 1.5 of [12].

Corollary 8 If pe (1,00), y€ A,, n €N, and f € LY, then there is a positive constant c¢ depending only
on r,p, and [’y]Ap such that

2

n
Crop,1
Qe (foh), S — et Z z+1 (Fpry (18)

=1

holds for r € N.

As a corollary of Theorem 4 and Corollary 8, we have the following Marchaud type inequality.

Corollary 9 Ifpe (1,00), vy €Ay, fELL, v, L€ RY, r <1, and 0 <t < 1/2, then there exists a positive

constant ¢ depending only on r,l,p and [y ]A,, such that

Q(fu),., du

2
Q () < Cr, al T/t ot

From Theorem 1.1 of [12, 5 = 0] and Theorem 8 we get:

Corollary 10 Let p€ (1,00), v € Ay, f€ LY, r €N and,

o0
Va

E —E, (f < 00
14

v=1

for some a > 0. In this case, for n € N, there exists constant Ca,r,p,[*/],q > 0, dependent only on o, r, p, and
p

V4, such that

() 1 )a+2r — °
0 (104), <t {5 w0, S P,

holds.

Realization functional R, (f,d,p,v) is defined as

()

RT” (fv 6ap77) = ||f - T”p,y + 8" (19)

Py

where r € N, T' € T, is a near best approximating polynomial for f € LY, p € (1,00), and vy € 4.
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Theorem 11 If r €N, fe€ LE, pe (1,00), and v € Ay, then the equivalence

Q (f,1/n),, = Rar (f,1/n,p.7) (20)
holds for n € N, where the equivalence constants depend only on r,p, and ['y]Ap

The rest of the work is organized as follows. In Section 2 we give some preliminary properties of weights
and the modulus of smoothness (5). In Section 3 we give the proof of Gadjieva’s conjecture. In Section 4 we
give some properties of the modulus of smoothness (5). In Section 5 we obtain an equivalence of the modulus of
smoothness (5) with Peetre’s K -functional (6). In Section 6 we find a characterization class of functions for (5).
Section 7 contains the proof of an equivalence of the modulus of smoothness (5) with the realization functional
(19). In the final section, we consider the modulus of smoothness €. (f,-), . of fractional order r > 0. We note
that fractional smoothness is required in the literature to obtain Ul’yanov type inequalities.

Here, and in what follows, A < B will mean that there exists a positive constant C, ..., dependent only

yees

on the parameters u,v,... and it can be different in different places, such that the inequality A < C'B holds.
If AS B and B < A we will write A~ B.

2. Preliminaries
We give some details for the definition of moduli of smoothness (5). If p € (1,00), f € LY, and v € A, then

the Hardy—Littlewood maximal function

Mf(xz):= sup / f@®)|dt
(x) P |f (0]
is bounded [34] in LY. If p € (1,00), f € LE, and v € Ap, then there exists a constant C), Dl > 0,
independent of h and f, such that
lonfllpy <IMIl,, < Copy, 171, (21)
and
”(I - O—h)rf|‘p7'y < Cp,r,['y]Ap (22)

Now we can define the weighted modulus of smoothness as in (5): if 7 € N, p € (1,00), f € L5, and v € A,

we define

Q (£:6) 5= 81 N =00)" Fllpys Qo (£18)y = Il

In this case,

QT' (f7 6);0,7 < Cp,r,['y]Ap ”f (23)

by

for some constant ¢ > 0 dependent only on p,r and [7] A, - Hence, the modulus of smoothness .. (-, 6)p) , isa

well-defined, nonnegative, nondecreasing function of § on (0, 00) and satisfies the usual property Q. (f + g, -) oy S

Q’r‘ (f7 .)p,ry + Qr (g’ .)p,'y *

1489



AKGUN/Turk J Math

If p e (1,00) and v € Ay, then there exists (see Lemma 2 of [18]) a real number a > 1 such that
embeddings
L=, C[T] — LE — L°, (24)
namely
-l S e S Ty S M-llso s ey, (25)
hold where C'[T] denotes the collection of continuous functions f : T — R having the finite norm || f| ¢ :=

max {|f (z)| : 2 € T}. Hence, for p € (1,00), f € L?, and v € A, we have L? C L'. Let

£ @)~ OIS (0 () conkr + by (Psinka) =t 3 A (. £) (26)
= k=0

k=1

and

f(m) “ Z (ak (f)sinkx — by (f) coskzx) =: ZAk (x,f) (27)
- k=1

k=1

be the Fourier and the conjugate Fourier series of f € L where
1 1 .
ar (f) = f/ f(x)coskxdz, by (f)= f/ f(x)sinkzdz (k=0,1,2,...).
™ Jr T Jr

The partial sum of Fourier series (26) of f is defined as S, (f) := Sy, (z, f) := > Ag (z, f) for n € NU{0}.
k=0

Using Fourier series (26) of f € LE with p € (1,00), v € Ay, and (4) we find, with (sin0)/0 =1,

ohf(x)

1 (S“;}’:h> Ap(z,f), reEN (28)

k=

From the relations (4) and (28) we obtain

(I o) fl2) (1 - Siz:h> Ap(z,f), reN.

k=0

3. Properties of the modulus of smoothness Q,.(f,-),~
The following weighted Marcinkiewicz multiplier theorem was proved in [6, Theorem 4.4]:
Lemma 12 Let a sequence {\,} of real numbers satisfy
271
|)‘M| < A, Z |)‘u - )‘u+1‘ <A (29)

M=2m—1

for all m € N, p e NU{0}. If p€ (1,00), v € Ap, and f € LE with the Fourier series (26), then there is a
Junction G € LE such that the series > heo MeAy (z, f) is Fourier series for F and

Gl S Al A (30)

where the constant does not depend on f.
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For the proof of Theorem 5, we need the following lemma.

Lemma 13 Let p € (1,00), vy € A,, n€ N, U, € Ty, and r,k € NU{0}. Then for any 0 <t < 1/n there

exists a constant C), > 0 depending only on p,r,k, and [’y]AP such that

:T7k7[’Y]AP
Qr+k(Un7 t)p,’y < Cp,r,h[v]Ap t%Qr(Uﬁfk‘), t)p,’v

holds.

Proof of Lemma 13 (i) For k¥ = 0, Lemma 13 is obvious. (i7) For r = 0 and k € N we set U, (z) =

G+ >0 (ajcos jo + bysinjz) = 330 Aj (v,U,) with ag,a;,b; € R, j € N. Then

n

UP(z) = >4 (a: Uf”) = i:jz’”Aj (x + T;TU>
j=1

Jj=1

n

_ ijr (cos rmAj (x,Uy) —sinrmA; (:v, ﬁ;))

j=1
and
Aj (2, Up) = ajcosj ($+m - m) + bjsinj <x+m - m)
J J J J
= A <x+ M.T7Un) cosrm + A; (x + m,ﬁ;> sinrm.
J J
Setting

sint
. t>0
. t ’
sinct := { 1 =0

we have the obvious inequality
1 —sinct < ¢2 for t > 0.

We get for 0 < § <t that

(I —05)" Unll,, = Z (1 —sincjd)" A (z,U,)
7=0 Py
" [ 1—sincjé " Cor
= D2 (2]) (j6)" A; (z,Uy)
=\ o)
Py
= [ 1 —sincjo ' 2
< Y <2‘7> 72 A (2,Uy)
=\ (9) -
We define
(l—sinc%)r . .
h] = (%)27‘ ,177]‘727 7n7
0 ,J>n.
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For j =1,2,3,..., {h;} satisfies (29) with A = (0,17)". Now using Lemma 12 we obtain

n
(I = 08)" Unll,,, < et® || 5% Aj (2,Uy)
j=1

by

= ct?" Zj%' [Aj (x + 27 Un) cosrm + A; (:lc + T—.ﬂ7 [7;) sinrw}
- J J
j=1
Py

n

n
<t 1> 574, (z + T]—ﬂ Un> +11 574 (m + % Un>
j=1

j=1

b,y by

Note that [20, p.161]
A, (m U7(12r)> = 2 A, (x + ’”Jl Un> , jEN.

Using [17, Theorem 1] we find

—

2r
) SCP,T,[W]AP U

Py by

Also, (27) and (31) imply that
—en _ o

U =Un

Summing up, we find

Q (Uns1), .,

su I—05)"U
Ogégtl\( 5)" Unll,.-

< o <HU7(12T) n ' ﬁ;(?r) )
P Py
R (HU’?T) I HUT(LQT) > < at? ||uen
Py D,y Py
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(#i) Let both r and k not be equal to zero. Using Lemma 12 we have for 0 < h <t

n

H(I —o) U, = Z (1 —sincjh) ™" A, (z,U,)

Py o -
n
< ch?* Z (1 —sincjh)" j?* A; (2, U,,)
=0 Py
2 ||\ i b\ 32k km
< (1 —sincjh)" j="A;j | = + o U, | cos Bm
=0

Py

n
kr —~
+ct?* (1-— sincjh)rjzkAj <x + TW, Un) sin B
=0 Py

Since the conjugate operator is linear and bounded [17] in L for p € (1,00) and v € A,, we have

Qi Unst),, = sup ||(I—ap) U,
0<h<t Py
2k - 2k K
< ct*® sup Z(l —sincjh)" j7FA; v+ —, U,
0<h<t |15 J
Py
2k - 2k kr
+ct*® sup Z (1 —sincjh)" j2"Aj 2+ —, U,
0<h<t |52 J
Py
= a?*Q, (U(%) t) + Ct?* sup [(I —op)" U,(L%)}N
Py 0<h<t Py
< ct?0Q, (U,(fk),t) + Ct% sup H(I —op)" U,Szk)H
Py 0<h<t Py
< t?*Q, (U(%),t)

O

Proof of Theorem 5 The proof of (11) follows from (23). The proof of (12) is a consequence of (22) and the
property

o) P f=U—on)*UT—an) f,

which can be proved easily. Now we prove (13). Since 0 < ¢t < 1 there exists some n € N so that
(1/n) <t <(2/n) holds. Then we have

QT+k (f’ t)p,’y g QT+k (Un’ t)pv'y + Q”"f’k (f - UTL? t)p,fy

< an,p,[fy]Ap tQer (Ur(sz)v t) + 07‘7k7177[7]Ap By (f)p v

Py ’
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On the other hand, using Theorem 1 of [4] and Theorem 4 we get

Crp.vl Croke,p,[]
Pl 2k Pl 2k
En(f)p, < TEn (f( )) S—— O (f( ), 1/”)

Py n? Y

and

Q (UE1) < (U - f@01) a, (Fo00)
vy

P, Py Py

< Or,k,zn[v]/;p E, (f(Zk)) +Q, (f(2k), t) -

+Q, (f(%),t)pw.

Py

< Crkphls, SO (f(%)’ 1/n)

Py
Thus, we have

r.k,p,

+ C%Q (f@’f), 1/n)

DY n

Qr+kr (f, t>p,’y S Cr*kvpv[’Y]Ap tQkQT ([Jr(fk)7 t)

P,y

< Crkpil, {t%ﬂr (79, 5) e (F2.0) 4, (f<2k>,;)]
? Py

by

+12Q, (£, 1) }
by

Py

< an’p’m% [tszT (f(?k)7t) 4 i2kQ, (f(Zk)7t>

P,y by

= r,k,p,[’y]AP tszr (f(2k)v t) .
Py

4. Proof of the conjecture of Gadjieva

(1.20) of [12, p. 37] and (9) give the following:

Lemma 14 Let p € (1,00), v € A, f € L, and v € N. Then for any 0 < t < 1, the following inequality

v

holds:
Qr(fa t)Pa’Y S Cr,p,[’y]Ap tZTHf(QT) ||P,"/7

with some constant depending only on r,p and MAP .
We can start with the following Bernstein—Nikolski inequality.
Lemma 15 Let r,n €N, pe (1,00), y€ Ap, and U, € T,,. Then

h2r U7(12T)

5 [—O’h TU
Py H( ) n||p,’y

holds for any h € (0,7 /n] with some constant depending only on r,p and [’y]Ap,
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Proof of Lemma 15 Let U, (z) = % + > (arcoskx + by sinkx) with ag,ar,bpy € R, k € N, h € (0,7/n].
k=1

n

Then

n

= w2 Sk, (x n % Un)

k=1

h2r UngT)

Py
Py

n

— 2 Z 2T (cos rrAy (z,U,) — sinrm Ay (Cm ﬁ;))

k=1 Py
< B Z E*" cosrm Ay (z,U,)
k=1 Py
n —
+h2" Z k2" sinrw Ay, (a:, Un)
k=1 Py
n 2 r
. (kh) . .
= ; COS 1T <(1—Slnckh) (1 — blnckh) Ak (Z‘, Un)
= Py
n 2 r
kh ~
+ Z sinrm ((1—(3130/%)) (1 — sinckh)" Ay, (x, Un>
k=1 Py
We will use Lemma A once more. Let
()" for 1< j <
T~ sfor1 <j<m,
vt 5D
0 , for 7 > n.

For j =1,2,3,..., {)\;} satisfies (29) with A = (1 —sin1) ". Using the Marcinkiewicz multiplier theorem [6]

for Lebesgue spaces with Muckenhoupt weight, we have

pr ||U ) < Z (1 —sinckh)” Ax (z,U,)|| + (1 — sinckh)" Ay, (:E, ﬁ;)
" py k=0 Py
= Z (1 —sinckh)” Ay, (z,U,)|| + (Z (1 — sinckh)" Ay, (x, Un)>
k=0 Py k=0 Py

In the last step we used the linear property of the conjugate operator. Thus, from the boundedness of

the conjugate (see, e.g., [17]) operator, we get

n

R UCI <D (1 = sinckh)” Ay, (2, Uy)
k=0

Py

= (I =on)" Unll,,, -
Py

O

Proof of Theorem 3 From (9) and the right-hand side of inequality (1.27) in [12, p. 46] we get Q. (f,4), ., <
Cropin, Kor (6, f,p,y). If § > 0 there exists n € N such that 2 < 1/6 < 22. Let U, be the near best
P
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approximating trigonometric polynomial to f. From Theorem 4,

™

— < < _
I1F = Ul S Bu (D S0 (£17) -

Thus, using Lemma 15,

52T U7(l2r) Py 5 ||(I - 0.6)7” Un”p,'y S QT‘ (UTU 7.r/’n')p7'y
fs QT (Un - f’ 7T/n)p,ry + QT (f? Tr/n)p,'y
S ||f - Un”p,’y + QT (f’ ﬂ-/n)p,'y S QT (f? W/n)p7'y
and
If = Unll,, + 6% {|US" - S Qe (f,m/n), - (32)
Now
K2r (67 f»]% 7) S Hf - Unllp,»y + 5270 UT(LQT) Py S Qr (f7 a)p,ry .
Thus, (8) is proved. O

5. Proof of the Jackson type inequality

Below we give a lemma required for the proof of Theorem 4.

Lemma 16 Let p € (1,00), v € Ay, F € LY, and r € N. Then there exists a number 6 € (0,1), depending

only on p and [’y]AP such that

T mr r+1
(I = 0n)" Fllpyy S CO™||Fllp +C (m) Crpy, |11 =00)"" Fllpyy

Ap

holds for any h € (0,1) and m € N where the constants C > 0, Crpy, depending only on r,p and ['y]Ap

and the constant C (m) satisfy C (m) = Y"" (67)".
Proof For any h > 0 there exists (see, e.g., (21)) a constant € > 1 such that
lonE llpy < €[ Fp-
We set 6 := €/(1 4 €). Now, for any h € (0,1), we prove
(2 =0n)" Fllpy <671 (I = 07)" Fllpsy + Qs (F 1), (33)

To prove (33) we observe
T—on=2" (I =) (I +0) + 271 (1 — on)’
and

on(I—op)=2" T —0op) (I +03) — 27 (I —a3)°.
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Hence, for g € LY

2
I =0on)gllpr +llon (T =on)gllpy < 1 =0n) (L +0n)gllpsy + (L =0n)"gllpy:

On the other hand,

IN

<

Taking g := (I —op,)"

lon (I = 03)" Fllpsy + 1 (I =0n) Fllpy < | (L= 03)" (0n + 1) Fllpy + | (L = 03) Fllpy

and, using this in (35),

1T =) Fllpey < 5 (lon (I = 0n)” Fllpey + 1 (T = 00 Fllpey + (T = 02)" Fll.)

Repeating r times the

(I = on)" Fllpy

Hence,

1T =00 Fllpsy <8711 (1= 0) Fllpy +C (rp b, ) 1 (T = on) ' F

AKGUN/Turk J Math

(I =0on)" Fllpy =0 (/&) [ (I = 0n)" Fllpy + 1 (1 = 08)" Fllp.~)

ST =on)" Fllpy + 11 (I =0n)" Fllp~)

(1 =) (T =)™ Fllpy + 11 (= 02)" Fll.)
(

6 (llon (1= on) (T = o) ™" Fllpey + 1 (I = 02)* (I = 04)" ™" Fllps )

Ol (I —op) F

[«

5 (I (on (1 = on) + (1= 0)*) (I =)™ Fllpy 17 = 00)" Fll)

b

g 1
5 (Jlon (I = o) Fllpsy + (I = 00)™* Fllpy + [ (T = 08)" Flps)

“'F in (34) we have

IN

6 (I = 00)" (o1 + 1) Fllpey + 11 (1 = o) Fll.)

"‘5H (I - Uh)r+1 FHP;’Y

r r+1
< I =on) (on+ 1) Fllpsy + 26| (I = 08)" " Fllps

last inequality we have

< (T —on) (on + 1) Fllps + 28] (I = on) " Fllps

< EN U =0n) (on+1)° Fllpy + 28| (I = 03)" " (0 + 1) Fllp
+26] (I = on)"" Fllpy

< SO o) (on + 1) Flps

+2Z NI =) o + 1) F

= 0 (I - 0121)?” Fllpy + 2Zk:1 5k|| (I - Uh)TH (on + I)ki1 Fllp.-

o

(34)

(35)
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and the proof of (33) is finished. Using the last inequality recursively we obtain

(I =0n)" Fllpey <571 (I = 03)" Fllpy + C (.04, ) 1T = 0)" " Fllpy
P

< (T=0f)" Fllpy + (" +1)C (rp b, ) I (T = 00) Fly sy <

<N =0R) Fllps + (57 +6"+1) € (1,06, ) (T = 00)™ Fllpy < -

m—1
< <o (1= 0f") Pl + € (rpla,) | 2 87 | 1T =)™ Pl (37)
3=0

Using
IMF|crr < I1F|lepr

([15, p. 78]) we have

I (I - Ulem) Fllem =

> (7)ot ()

T

r T
<3| |1l < 2 1F o
k=0

o[r) k=0

From this and a transference result we get that

1 (1=0") Fllper < Cpiat,, 1Fllps:
The last inequality and (37) gives

T mr r+1
1T = 0n)" Fllpsy < Cropirty, 6™ I Flpey + C (1) Crpy, 1T = 08)" Fllp,y

Ap

O

Proof of Theorem 4 First we prove inequality for r = 1,2,3,4,.... Following the idea of [10], for this purpose

we will use induction on r. We know from Theorems 1 and 4 that

1
En(f)y, < Cp,m% O <f7 n)

Py
We suppose that the inequality

En(f)pny <CQ;y (f, 71L> , "eN (38)
P
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holds for any f € L? with some constant C > 0. We set u(-) := f(-) — Snf(-). First we will show that

|p,v < Cpm['y]A r+1 ( ) (39)

Su(f = Snf)() = (Su(f) = Sn(Snf)) ()
= (Su(f) =Su(H) () = 0.

Then (39) will give (38). We have

Sn(u)(-)

Since S, f is the near best approximant for f, using induction hypothesis (38),

1
[l = = 8,0l < Cof, Eolihp < CCpnio O (we7)
N py
We know from Lemma 16 that for m € N
| (I— Uh)Tqum/ < Cl eI 5mr‘|u”p,v +C(m )O;/;I,r, || (I - Uh)r+1 ullp,y

and thus

mnr 1
[wllp,y < CCyp,y (V] 4, Cz/:,r,[»y]Ap(s ullpy +CC(m) Cp,T,[’y]AP C;/)I,r,[»y]Ap Qg <Ua n) .
DY

3

Choosing m so big that CC,, (), C 0™ < 1/2, from the last inequality we obtain

P,T»[’Y]Ap

1
||U||pv < Cpr mVa, Qr i1 (u7 n) .
DY

s

From boundedness [17] of operator f ~—— S, f in L} for p € (1,00) and v € A, we have

1 1
Qr+1 (U, ) < Cp,n[’y] Qr—i—l <f7 )
n by ar n by

and the result

En(fpy < I =Sufllpny = llu

1
oy < Cp,rrf M a, Qi1 <U7 n)
Py

Cp,r,['y] 7“+1 (fv >
by

)

IN

holds. Then (38) holds for any r € N. O

6. Characterization class of Q,(f,"),.

Let w, (-, 5)p, (1 <p < o0), be the usual nonweighted modulus of smoothness:

wy (g,9),, = S (I —=Tw)" gll,, g€LP,
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where Trg (+) := g(- + h). By (1.31) of [12, p. 50], (8), and (14) there exist positive constants depending only
on r,p such that

wr (9,0),, ~ L (9,0),,; (40)
holds for 1 <p < oo and g € LP.
Proof of Theorem 7 (i) Note that if F' € C'[T] then
1T =00 Flly < Copot 1T =00 Fller. (41)
Using Theorem 2.5 (A) of [40], (40), (14), (8), and (41) there exists 1) € ®q, such that

Q. (Fv 5)177’7 < CPv['Y]Ap & (F7 6)0071 = Cp’[’Y]przr (F7 6)00 = CTVPV[’Y]APw (6) .

If pe(1,00), vy € Ay, f €L, by Lemma 4 of [20, M(x) = 2P|, for any € > 0 there exists a ' € C'[T] such
that ||f — F||p,y < e. Thus,

IN

Qr (fa 5)1),7 Qr (f - Fa 5)1;,7 + Q’!‘ (Fa (S)p),y

Cr,p,[’v},lp 1f = Fllp~ + Cr,p,[’y]pr (6).

IN

Letting € — 0 we get
Qr (f7 5)1)77 < Or,p,['y]Apd} (5) :

On the other hand, from (8) and Theorem 2.5 (A) of [40],
d) (5) S C’r‘,p,['y}Ap Wor (f7 5)1 S C’r,p,['y]Ap QT’ (fﬂ 5)1)77

and equivalence (16) is established.

(i) For the equivalence (17) let ¢ € ®3,. By Theorem 2.5 (B) and Remark 2.7 (1) of [40] there exist

f € L and a positive real number ¢y such that
w2’r(f75)p%w(5)7 pzl,OO
holds for all ¢ € (0,ty) with equivalence constants depending only on 7. Then by (8), (40), and (24) we get

’(/} (5) < CTWQT (f7 5)1 < CT’Q’I“ (f7 5)111 < Cr,p,[fy]Ap QT (f7 5);0,7

< Cr,p,['y]Ap QT‘ (fv 5)0071 < Cr,p,['y]Ap wWor (f7 5)00 < Or,p,['y]pr (5)

for all 6 € (0,t0). O

7. Realization functional

Proof of Theorem 11 Let U, be the near best approximating trigonometric polynomial to f. By (32) and
(15)

||f - Uan(y + n]ér UT(L2T)

- S Qe (fym/n), ., S Qe (f, 1),
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and hence Ro. (f,1/n,p,v) < Q- (f,1/n), . For the reverse inequality we use (23) and Lemma 15 (with

h=1/n):

v

QT (f? 1/n)p7’y é QT‘ (f - Un? 1/n)p,'y + QT (U’n7 1/n)p7’y

U7(12r)

5 ||f - Un”p7'y + néT

= RQT (fa 1/n7p37) .
Py

8. Fractional order modulus of smoothness
Fractional order modulus of smoothness is not a new concept. Classical nonweighted fractional smoothness
wr (f,"),, 7> 0, was defined by Butzer et al. [8] and Taberski [39]. See also [35]. Here we consider fractional

smoothness Q,. (-,9) r > 0, suitable for some weighted spaces. Letting z € T, r,t >0, N € N, p € (1,00),

pyY?
v € Ap, and f € LP, we define the quantity

5f@ : =U-o) f@)=Y () V'olf (@) (42)
k

=0
Ny
- 0k k
= Jm 30 () G0 e @
where = DY) for k> 1 and () := 7 and () := 1 are Binom coefficients. Note that when
here (1) := "=kt D) g > 1 and (] d(})=1areB ffi Note that wh

r € N (42) turns into (5).
If F € C[T] then we know that [|ovF||qir < [[Fllgr and [|EfF oy < 27 [[Fllopry- From the last

inequality and a transference result we can obtain that there exists a constant C' independent of ¢ such that

1 fllpy < Coima, o 1514 (43)

holds for > 0 with p € (1,00), v € Ay, and f € L2.
Now we can define the weighted fractional modulus of smoothness: if r € RT, p € (1,00), f € L, and

v € A, we define
Q’I‘ (f’ 6)1)’7 = 02“’;26 ||E:pr7'y ? QO (f7 6)1},7 = Hf”p)’y °

In this case,

QT' (f7 6);0,7 < Cp,r,['y]Ap ”f (44)

by

for some constant ¢ > 0 dependent only on p,r and [7] A, - Hence, the modulus of smoothness Q.. (-, d) by IS @

well-defined, nonnegative, nondecreasing function of § on (0, 00) and satisfies the usual property Q.. (f + g, -)

QT (f7 ')p,y + Qr (g, ')p,’y .

<
Py —

Remark 17 (/4) implies that all the results given in the introduction above also hold for replacement of r € N
by r € RY. Indeed, (i) for Theorem 4 see Proposition 1 of [2]. For other theorems see the results given in [3].
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