Gadjieva's conjecture, K-functionals, and some applications in weighted Lebesgue spaces

Ramazan AKGÜN*
Department of Mathematics, Faculty of Science and Letters, Balıkesir University, Balıkesir, Turkey

| Received: 26.07 .2017 | Accepted/Published Online: 16.01 .2018 | • | Final Version: 08.06 .2018 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

We prove that Gadjieva's conjecture holds true as stated in her PhD thesis. The positive solution of this conjecture allows us to obtain improved versions of the Jackson-Stechkin type inequalities obtained in her thesis and some others. As an application, an equivalence of the modulus of smoothness with the realization functional is established. We obtain a characterization class for the modulus of smoothness.

Key words: Modulus of smoothness, Muckenhoupt weight, weighted Lebesgue spaces, characterization, K-functional

1. Introduction and results

Let \mathcal{T}_{n} be the class of real trigonometric polynomials of degree not greater than n and γ be a weight (a.e. positive measurable function) on $T:=[0,2 \pi]$. Among other weights we will consider Muckenhoupt weights. These weights have many applications in the theory of integral operators, harmonic analysis, and the theory of function spaces (see, for example, $[13,14]$). We refer to the monograph of García-Cuerva and Rubio de Francia [13] for the theory of Muckenhoupt weights. A 2π-periodic weight function $\gamma: T \rightarrow(0, \infty)$ belongs to the Muckenhoupt class $A_{p}, p \in(1, \infty)$, if

$$
\begin{equation*}
\left(\frac{1}{|J|} \int_{J} \gamma(x) d x\right)\left(\frac{1}{|J|} \int_{J} \gamma^{-\frac{1}{p-1}}(x) d x\right)^{p-1} \leq C \tag{1}
\end{equation*}
$$

with a finite constant C independent of J, where J is any subinterval of T and $|J|$ denotes the length of J. The least constant C satisfying (1) is called the A_{p} constant of γ and is denoted by $[\gamma]_{A_{p}}$. Let f be in the weighted Lebesgue space $L_{\gamma}^{p}, p \in(1, \infty)$, of measurable functions $f: T \rightarrow \mathbb{R}$ having the norm $\|f\|_{p, \gamma}:=\left\{\int_{T}|f(x)|^{p} \gamma(x) d x\right\}^{1 / p}<\infty$ and $E_{n}(f)_{p, \gamma}:=\inf \left\{\|f-U\|_{p, \gamma}: U \in \mathcal{T}_{n}\right\}$. In 1986 in her PhD thesis [12], Gadjieva obtained, among other results, the so-called Jackson type inequality in $L_{\gamma}^{p}, p \in(1, \infty)$, with weights $\gamma \in A_{p}$:

Theorem 1 ([12, p.50, Theorem 1.4]) If $p \in(1, \infty), \gamma \in A_{p}$, and $f \in L_{\gamma}^{p}$, then there is positive constant c

[^0]
AKGÜN/Turk J Math

depending only on r, p and Muckenhoupt's A_{p} constant $[\gamma]_{A_{p}}$ of γ such that

$$
\begin{equation*}
E_{n}(f)_{p, \gamma} \leq c_{r, p,[\gamma]_{A_{p}}} W_{r}\left(f, \frac{1}{n+1}\right)_{p, \gamma} \tag{2}
\end{equation*}
$$

holds for $r, n \in \mathbb{N}=\{1,2,3, \ldots\}$ where

$$
\begin{equation*}
W_{r}(f, \delta)_{p, \gamma}:=\sup _{0 \leq h_{i} \leq \delta}\left\|\prod_{i=1}^{r}\left(I-\sigma_{h_{i}}\right) f\right\|_{p, \gamma} \tag{3}
\end{equation*}
$$

I is the identity operator, and

$$
\begin{equation*}
\sigma_{h} f(x):=\frac{1}{2 h} \int_{x-h}^{x+h} f(t) d t, \quad x \in T \tag{4}
\end{equation*}
$$

(2) was the first result in the literature for the Jackson type inequality for $f \in L_{\gamma}^{p}$ with $p \in(1, \infty)$ and $\gamma \in A_{p}$. This estimate (2) yielded several further investigations in theory. See, for example, the papers $[2,3,5,16,19-21,29,30,33,43]$. The formulation (3) of the Butzer-Wehrens type [9, 42] modulus of smoothness $W_{r}(f, \cdot)_{p, \gamma}$ uses the Steklov mean (4) because the class of function L_{γ}^{p} is not necessarily translation invariant, in general, with respect to the usual shift $f(x) \rightarrow f(x+a)$ where $a \in \mathbb{R}$.

On the other hand, in the literature [11, 16, 20-28, 30, 32, 36-38, 41] there is the following type of formulation for the modulus of smoothness:

$$
\begin{equation*}
\Omega_{r}(f, \delta)_{p, \gamma}:=\sup _{0 \leq h \leq \delta}\left\|\left(I-\sigma_{h}\right)^{r} f\right\|_{p, \gamma}, \quad r \in \mathbb{N} . \tag{5}
\end{equation*}
$$

Note that the formulation (5) is also included in her thesis [12, p. 35]. Furthermore, the conjecture of Gadjieva is related to (5) and Peetre's K-functional, that is,

$$
\begin{equation*}
K_{r}(f, \delta, p, \gamma):=\inf _{g}\left\{\|f-g\|_{p, \gamma}+\delta^{r}\left\|g^{(r)}\right\|_{p, \gamma}: g, g^{(r)} \in L_{\gamma}^{p}\right\} \tag{6}
\end{equation*}
$$

for $r \in \mathbb{N}, p \in(1, \infty), \gamma \in A_{p}, \delta>0$, and $f \in L_{\gamma}^{p}$.

Conjecture 2 (Conjecture of Gadjieva) ([12, p. 35]) If $p \in(1, \infty), \gamma \in A_{p}, n \in \mathbb{N}$, and $f \in L_{\gamma}^{p}$, then there is constant $C_{[\gamma]_{A_{p}}, r, p}>0$ depending only on r, p and $[\gamma]_{A_{p}}$ such that

$$
\begin{equation*}
K_{2 r}(f, \delta, p, \gamma) \leq C_{[\gamma]_{A_{p}}, r, p} \Omega_{r}(f, \delta)_{p, \gamma} \tag{7}
\end{equation*}
$$

holds for $r \in \mathbb{N}$.
In this work we prove that the conjecture of Gadjieva holds true as stated in [12] for functions $f \in L_{\gamma}^{p}$ with $p \in(1, \infty)$ and $\gamma \in A_{p}$. The main result of this paper is the following theorem consisting of an equivalence of the modulus of smoothness Ω_{r} and Peetre's K-functional $K_{2 r}$, which gives a positive solution to Gadjieva's conjecture (7):

AKGÜN/Turk J Math

Theorem 3 If $r \in \mathbb{N}, f \in L_{\gamma}^{p}, p \in(1, \infty)$, and $\gamma \in A_{p}$, then the equivalence

$$
\begin{equation*}
\Omega_{r}(f, t)_{p, \gamma} \approx K_{2 r}(f, t, p, \gamma) \tag{8}
\end{equation*}
$$

holds for $t \geq 0$, where the equivalence constants depend only on r, p, and $[\gamma]_{A_{p}}$.

As a corollary we can obtain a Jackson-Stechkin type inequality, which improves (for $r \geq 2$) the JacksonStechkin type inequalities obtained in $[2,3,16,20,29,30,43]$.

Theorem 4 If $p \in(1, \infty), \gamma \in A_{p}, r, n \in \mathbb{N}$, and $f \in L_{\gamma}^{p}$, then there is a positive constant depending only on r, p and $[\gamma]_{A_{p}}$ such that

$$
E_{n}(f)_{p, \gamma} \leq c_{r, p,[\gamma]_{A_{p}}} \Omega_{r}\left(f, \frac{1}{n+1}\right)_{p, \gamma}
$$

holds.
We note that

$$
\begin{equation*}
\Omega_{1}(f, \cdot)_{p, \gamma}=W_{1}(f, \cdot)_{p, \gamma} \text { and } \Omega_{r}(f, \cdot)_{p, \gamma} \leq W_{r}(f, \cdot)_{p, \gamma} \tag{9}
\end{equation*}
$$

for $r \geq 2$. Thus, the inequality in Theorem 4 improves the inequality (2) for $r \geq 2$.
In several particular cases there were some results of the Jackson type inequality: when $\gamma \equiv 1$ and $p \in[1, \infty)(5)$ and (7) in L^{p} were considered in [11] and an equivalence of modulus of smoothness with Peetre's K-functional was proved. When $\gamma \equiv 1$ and $p=2$ in L^{2} Abilov and Abilova [1] obtained Theorem 4 thanks to the Parseval equality. When $r=1, p \in(1, \infty)$, and $\gamma \in A_{p}$, Theorem 4 was investigated in some papers [2, 16, 21, 29, 43].

On the other hand, a different method of trigonometric approximation in Lebesgue spaces with Muckenhoupt weights was developed by $\mathrm{Ky}([31,32])$. He also defined a suitable weighted modulus of smoothness (see the definition of $\bar{\Omega}_{r}$ below). Independently of Gadjieva, Ky proved the direct and inverse theorems of trigonometric approximation in Lebesgue spaces with Muckenhoupt weights: let $x, t \in T, r \in \mathbb{N}$ and set

$$
\begin{equation*}
\Delta_{t}^{r} f(x):=\sum_{k=0}^{r}(-1)^{r+k+1}\binom{r}{k} f(x+k t), \quad f \in L^{1} \tag{10}
\end{equation*}
$$

where $\binom{r}{k}:=\frac{r(r-1) \ldots(r-k+1)}{k!}$ for $k \geq 1$ and $\binom{r}{0}:=1$. Taking $r \in \mathbb{N} \cup\{0\}, p \in(1, \infty), \gamma \in A_{p}, f \in L_{\gamma}^{p}$ we consider the mean $\mathcal{A}_{\delta}^{r} f(\cdot):=\frac{1}{\delta} \int_{0}^{\delta}\left|\Delta_{t}^{r} f(\cdot)\right| d t, \quad x \in T$. Let $r \in \mathbb{N} \cup\{0\}, p \in(1, \infty), \gamma \in A_{p}, f \in L_{\gamma}^{p}$ and define ([32])

$$
\bar{\Omega}_{r}(f, h)_{p, \gamma}:=\sup _{|\delta| \leq h}\left\|\mathcal{A}_{\delta}^{r} f\right\|_{p, \gamma}
$$

By equivalence with the K-functional, we obtain that Ω_{r} and $\bar{\Omega}_{2 r}$ are equivalent in the sense $\bar{\Omega}_{2 r} \approx \Omega_{r}$ where $r \in \mathbb{N}$. Hence, Theorem 4 is equivalent to Theorem 2 of [32, (25) with $2 r]$.

Another part of the work concentrates on the main properties of (5). For example, we obtain that (5) has the following properties:

AKGÜN/Turk J Math

Theorem 5 Let $p \in(1, \infty), \gamma \in A_{p}, f, g \in L_{\gamma}^{p}, \delta \geq 0$, and $r, k \in \mathbb{N}$. Then

$$
\begin{gather*}
\lim _{\delta \rightarrow 0^{+}} \Omega_{r}(f, \delta)_{p, \gamma}=0 \tag{11}\\
\Omega_{r+k}(f, \delta)_{p, \gamma} \leq C_{r, k, p,[\gamma]_{A_{p}}} \Omega_{k}(f, \delta)_{p, \gamma} \tag{12}
\end{gather*}
$$

and for any $0<t<1$

$$
\begin{equation*}
\Omega_{r+k}(f, t)_{p, \gamma} \leq c_{r, k, p,[\gamma]_{A_{p}}} t^{2 k} \Omega_{r}\left(f^{(2 k)}, t\right)_{p, \gamma} \tag{13}
\end{equation*}
$$

where constants are dependent only on r, k, p, and $[\gamma]_{A_{p}}$.
It is well known from Theorems 6.5 and 7.4 of [11] that

$$
\begin{equation*}
\Omega_{r}(f, t)_{p, 1} \approx K_{2 r}(f, t, p, 1), \quad t \geq 0 \tag{14}
\end{equation*}
$$

also holds for $1 \leq p \leq \infty, f \in L^{p}$.
(8) implies the following further properties of (5).

Corollary 6 If $r \in \mathbb{N}, f \in L_{\gamma}^{p}, p \in(1, \infty)$, and $\gamma \in A_{p}$, then

$$
\begin{equation*}
\Omega_{r}(f, \lambda \delta)_{p, \gamma} \leq C(1+\lfloor\lambda\rfloor)^{2 r} \Omega_{r}(f, \delta)_{p, \gamma}, \quad \delta, \lambda>0 \tag{15}
\end{equation*}
$$

and

$$
\Omega_{r}(f, \delta)_{p, \gamma} \delta^{-2 r} \leq C \Omega_{r}\left(f, \delta_{1}\right)_{p, \gamma} \delta_{1}^{-2 r}, \quad 0<\delta_{1} \leq \delta
$$

where $\lfloor z\rfloor:=\max \{y \in \mathbb{Z}: y \leq z\}$.
It is well known that the basic property of moduli smoothness $\Omega_{r}(\cdot, \delta)_{p, \gamma}$ is the decreasing to zero of $\Omega_{r}(\cdot, \delta)_{p, \gamma}$ as $\delta \rightarrow 0$. Using an equivalence between $\Omega_{r}(\cdot, \delta)_{p, \gamma}$ and a function φ from some class Φ_{a} one can describe the rate (11). The class $\Phi_{a}(a \in \mathbb{R})$ consists of functions ψ satisfying the following conditions:
(a) $\psi(t) \geq 0$ bounded on $(0, \infty)$,
(b) $\psi(t) \rightarrow 0$ as $t \rightarrow 0$,
(c) $\psi(t)$ is nondecreasing,
(d) $t^{-a} \psi(t)$ is nonincreasing.

The characterization class of (5) is given in the following theorem.
Theorem 7 Let $\delta \in \mathbb{R}^{+}, n, r \in \mathbb{N}, p \in(1, \infty)$, and $\gamma \in A_{p}$.
(a) If $f \in L_{\gamma}^{p}$ then there exists a $\psi \in \Phi_{2 r}$ such that

$$
\begin{equation*}
\Omega_{r}(f, t)_{p, \gamma} \approx \psi(t) \tag{16}
\end{equation*}
$$

holds for all $t \in(0, \infty)$ with equivalence constants depending only on r, p, and $[\gamma]_{A_{p}}$.
(b) If $\psi \in \Phi_{2 r}$ then there exists a $f \in L_{\gamma}^{p}$ and a positive real number t_{0} such that

$$
\begin{equation*}
\Omega_{r}(f, \delta)_{p, \gamma} \approx \psi(\delta) \tag{17}
\end{equation*}
$$

holds for all $\delta \in\left(0, t_{0}\right)$ with equivalence constants dependent only on r, p, and $[\gamma]_{A_{p}}$.

AKGÜN/Turk J Math

This type of characterization theorem was proved in [40] for the spaces $L^{p}, p \in[1, \infty)$, with classical moduli of smoothness of fractional order. The class Φ_{ϱ} completely describes the class of all majorants for the moduli of smoothness $\omega_{r}(\cdot, \delta)_{p}$ in the space $L^{p}, p \in[1, \infty)$. For $\omega_{r}(\cdot, \delta)_{p}, r \in \mathbb{N}$ the characterization problem was investigated by Besov and Stechkin [7]; for $\omega_{r}(\cdot, \delta)_{p}, r>0$ the characterization theorem was obtained by Tikhonov [40].

Theorem 4 has a weak inverse and the following estimate is a corollary of (9) and Theorem 1.5 of [12].

Corollary 8 If $p \in(1, \infty), \gamma \in A_{p}, n \in \mathbb{N}$, and $f \in L_{\gamma}^{p}$, then there is a positive constant c depending only on r, p, and $[\gamma]_{A_{p}}$ such that
holds for $r \in \mathbb{N}$.
As a corollary of Theorem 4 and Corollary 8, we have the following Marchaud type inequality.

Corollary 9 If $p \in(1, \infty), \gamma \in A_{p}, f \in L_{\gamma}^{p}, r, l \in \mathbb{R}^{+}, r<l$, and $0<t \leq 1 / 2$, then there exists a positive constant c depending only on r, l, p and $[\gamma]_{A_{p}}$ such that

$$
\Omega_{r}(f, t)_{p, \gamma} \leq C_{r,[\gamma]_{A_{p}}, l, p} t^{2 r} \int_{t}^{1} \frac{\Omega_{l}(f, u)_{p, \gamma}}{u^{2 r}} \frac{d u}{u}
$$

From Theorem 1.1 of $[12, \beta=0]$ and Theorem 8 we get:

Corollary 10 Let $p \in(1, \infty), \gamma \in A_{p}, f \in L_{\gamma}^{p}, r \in \mathbb{N}$ and,

$$
\sum_{\nu=1}^{\infty} \frac{\nu^{\alpha}}{\nu} E_{\nu}(f)_{p, \gamma}<\infty
$$

for some $\alpha>0$. In this case, for $n \in \mathbb{N}$, there exists constant $C_{\alpha, r, p,[\gamma]_{A_{p}}}>0$, dependent only on α, r, p, and $[\gamma]_{A_{p}}$, such that

$$
\Omega_{r}\left(f^{(\alpha)}, \frac{1}{n}\right)_{p, \gamma} \leq C_{\alpha, r, p,[\gamma]_{A_{p}}}\left\{\frac{1}{n^{2 r}} \sum_{\nu=0}^{n} \frac{(\nu+1)^{\alpha+2 r}}{\nu+1} E_{\nu}(f)_{p, \gamma}+\sum_{\nu=n+1}^{\infty} \frac{\nu^{\alpha}}{\nu} E_{\nu}(f)_{p, \gamma}\right\}
$$

holds.
Realization functional $R_{r}(f, \delta, p, \gamma)$ is defined as

$$
\begin{equation*}
R_{r}(f, \delta, p, \gamma):=\|f-T\|_{p, \gamma}+\delta^{r}\left\|T^{(r)}\right\|_{p, \gamma} \tag{19}
\end{equation*}
$$

where $r \in \mathbb{N}, T \in \mathcal{T}_{n}$ is a near best approximating polynomial for $f \in L_{\gamma}^{p}, p \in(1, \infty)$, and $\gamma \in A_{p}$.

Theorem 11 If $r \in \mathbb{N}, f \in L_{\gamma}^{p}, p \in(1, \infty)$, and $\gamma \in A_{p}$, then the equivalence

$$
\begin{equation*}
\Omega_{r}(f, 1 / n)_{p, \gamma} \approx R_{2 r}(f, 1 / n, p, \gamma) \tag{20}
\end{equation*}
$$

holds for $n \in \mathbb{N}$, where the equivalence constants depend only on r, p, and $[\gamma]_{A_{p}}$.

The rest of the work is organized as follows. In Section 2 we give some preliminary properties of weights and the modulus of smoothness (5). In Section 3 we give the proof of Gadjieva's conjecture. In Section 4 we give some properties of the modulus of smoothness (5). In Section 5 we obtain an equivalence of the modulus of smoothness (5) with Peetre's K-functional (6). In Section 6 we find a characterization class of functions for (5). Section 7 contains the proof of an equivalence of the modulus of smoothness (5) with the realization functional (19). In the final section, we consider the modulus of smoothness $\Omega_{r}(f, \cdot)_{p, \gamma}$ of fractional order $r>0$. We note that fractional smoothness is required in the literature to obtain Ul'yanov type inequalities.

Here, and in what follows, $A \lesssim B$ will mean that there exists a positive constant $C_{u, v, \ldots}$, dependent only on the parameters u, v, \ldots and it can be different in different places, such that the inequality $A \leq C B$ holds. If $A \lesssim B$ and $B \lesssim A$ we will write $A \approx B$.

2. Preliminaries

We give some details for the definition of moduli of smoothness (5). If $p \in(1, \infty), f \in L_{\gamma}^{p}$, and $\gamma \in A_{p}$, then the Hardy-Littlewood maximal function

$$
M f(x):=\sup _{x \in(a, b)} \frac{1}{b-a} \int_{a}^{b}|f(t)| d t
$$

is bounded [34] in L_{γ}^{p}. If $p \in(1, \infty), f \in L_{\gamma}^{p}$, and $\gamma \in A_{p}$, then there exists a constant $C_{p,[\gamma]_{A_{p}}}>0$, independent of h and f, such that

$$
\begin{equation*}
\left\|\sigma_{h} f\right\|_{p, \gamma} \leq\|M f\|_{p, \gamma} \leq C_{p,[\gamma]_{A_{p}}}\|f\|_{p, \gamma} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\left(I-\sigma_{h}\right)^{r} f\right\|_{p, \gamma} \leq C_{p, r,[\gamma]_{A_{p}}}\|f\|_{p, \gamma} \tag{22}
\end{equation*}
$$

Now we can define the weighted modulus of smoothness as in (5): if $r \in \mathbb{N}, p \in(1, \infty), f \in L_{\gamma}^{p}$, and $\gamma \in A_{p}$, we define

$$
\Omega_{r}(f, \delta)_{p, \gamma}:=\sup _{0 \leq h \leq \delta}\left\|\left(I-\sigma_{h}\right)^{r} f\right\|_{p, \gamma}, \quad \Omega_{0}(f, \delta)_{p, \gamma}:=\|f\|_{p, \gamma}
$$

In this case,

$$
\begin{equation*}
\Omega_{r}(f, \delta)_{p, \gamma} \leq C_{p, r,[\gamma]_{A_{p}}}\|f\|_{p, \gamma} \tag{23}
\end{equation*}
$$

for some constant $c>0$ dependent only on p, r and $[\gamma]_{A_{p}}$. Hence, the modulus of smoothness $\Omega_{r}(\cdot, \delta)_{p, \gamma}$ is a well-defined, nonnegative, nondecreasing function of δ on $(0, \infty)$ and satisfies the usual property $\Omega_{r}(f+g, \cdot)_{p, \gamma} \leq$ $\Omega_{r}(f, \cdot)_{p, \gamma}+\Omega_{r}(g, \cdot)_{p, \gamma}$.

If $p \in(1, \infty)$ and $\gamma \in A_{p}$, then there exists (see Lemma 2 of [18]) a real number $a>1$ such that embeddings

$$
\begin{equation*}
L^{\infty}, C[T] \hookrightarrow L_{\gamma}^{p} \hookrightarrow L^{a} \tag{24}
\end{equation*}
$$

namely

$$
\begin{equation*}
\|\cdot\|_{1} \lesssim\|\cdot\|_{a} \lesssim\|\cdot\|_{p, \gamma} \lesssim\|\cdot\|_{\infty},\|\cdot\|_{C[T]} \tag{25}
\end{equation*}
$$

hold where $C[T]$ denotes the collection of continuous functions $f: T \rightarrow \mathbb{R}$ having the finite norm $\|f\|_{C[T]}:=$ $\max \{|f(x)|: x \in T\}$. Hence, for $p \in(1, \infty), f \in L_{\gamma}^{p}$, and $\gamma \in A_{p}$, we have $L_{\gamma}^{p} \subset L^{1}$. Let

$$
\begin{equation*}
f(x) \backsim \frac{a_{0}(f)}{2}+\sum_{k=1}^{\infty}\left(a_{k}(f) \cos k x+b_{k}(f) \sin k x\right)=: \sum_{k=0}^{\infty} A_{k}(x, f) \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{f}(x) \backsim \sum_{k=1}^{\infty}\left(a_{k}(f) \sin k x-b_{k}(f) \cos k x\right)=: \sum_{k=1}^{\infty} A_{k}(x, \tilde{f}) \tag{27}
\end{equation*}
$$

be the Fourier and the conjugate Fourier series of $f \in L_{\gamma}^{p}$ where

$$
a_{k}(f)=\frac{1}{\pi} \int_{T} f(x) \cos k x d x, \quad b_{k}(f)=\frac{1}{\pi} \int_{T} f(x) \sin k x d x \quad(k=0,1,2, \ldots) .
$$

The partial sum of Fourier series (26) of f is defined as $S_{n}(f):=S_{n}(x, f):=\sum_{k=0}^{n} A_{k}(x, f)$ for $n \in \mathbb{N} \cup\{0\}$. Using Fourier series (26) of $f \in L_{\gamma}^{p}$ with $p \in(1, \infty), \gamma \in A_{p}$, and (4) we find, with $(\sin 0) / 0=1$,

$$
\begin{equation*}
\sigma_{h}^{r} f(x) \backsim \sum_{k=1}^{\infty}\left(\frac{\sin k h}{k h}\right)^{r} A_{k}(x, f), \quad r \in \mathbb{N} . \tag{28}
\end{equation*}
$$

From the relations (4) and (28) we obtain

$$
\left(I-\sigma_{h}\right)^{r} f(x) \backsim \sum_{k=0}^{\infty}\left(1-\frac{\sin k h}{k h}\right)^{r} A_{k}(x, f), \quad r \in \mathbb{N} .
$$

3. Properties of the modulus of smoothness $\Omega_{r}(f, \cdot)_{p, \gamma}$

The following weighted Marcinkiewicz multiplier theorem was proved in [6, Theorem 4.4]:
Lemma 12 Let a sequence $\left\{\lambda_{\mu}\right\}$ of real numbers satisfy

$$
\begin{equation*}
\left|\lambda_{\mu}\right| \leq A, \quad \sum_{\mu=2^{m-1}}^{2^{m}-1}\left|\lambda_{\mu}-\lambda_{\mu+1}\right| \leq A \tag{29}
\end{equation*}
$$

for all $m \in \mathbb{N}, \mu \in \mathbb{N} \cup\{0\}$. If $p \in(1, \infty), \gamma \in A_{p}$, and $f \in L_{\gamma}^{p}$ with the Fourier series (26), then there is a function $G \in L_{\gamma}^{p}$ such that the series $\sum_{k=0}^{\infty} \lambda_{k} A_{k}(x, f)$ is Fourier series for F and

$$
\begin{equation*}
\|G\|_{p, \gamma} \lesssim A\|f\|_{p, \gamma} \tag{30}
\end{equation*}
$$

where the constant does not depend on f.

AKGÜN/Turk J Math

For the proof of Theorem 5, we need the following lemma.
Lemma 13 Let $p \in(1, \infty), \gamma \in A_{p}, n \in \mathbb{N}, U_{n} \in \mathcal{T}_{n}$, and $r, k \in \mathbb{N} \cup\{0\}$. Then for any $0<t<1 / n$ there exists a constant $C_{p, r, k,[\gamma]_{A_{p}}}>0$ depending only on p, r, k, and $[\gamma]_{A_{p}}$ such that

$$
\Omega_{r+k}\left(U_{n}, t\right)_{p, \gamma} \leq C_{p, r, k,[\gamma]_{A_{p}}} t^{2 k} \Omega_{r}\left(U_{n}^{(2 k)}, t\right)_{p, \gamma}
$$

holds.
Proof of Lemma $13(i)$ For $k=0$, Lemma 13 is obvious. (ii) For $r=0$ and $k \in \mathbb{N}$ we set $U_{n}(x)=$ $\frac{a_{0}}{2}+\sum_{j=1}^{n}\left(a_{j} \cos j x+b_{j} \sin j x\right)=\sum_{j=0}^{n} A_{j}\left(x, U_{n}\right)$ with $a_{0}, a_{j}, b_{j} \in \mathbb{R}, j \in \mathbb{N}$. Then

$$
\begin{align*}
U_{n}^{(2 r)}(x) & =\sum_{j=1}^{n} A_{j}\left(x, U_{n}^{(2 r)}\right)=\sum_{j=1}^{n} j^{2 r} A_{j}\left(x+\frac{r \pi}{j}, U_{n}\right) \\
& =\sum_{j=1}^{n} j^{2 r}\left(\cos r \pi A_{j}\left(x, U_{n}\right)-\sin r \pi A_{j}\left(x, \widetilde{U_{n}}\right)\right) \tag{31}
\end{align*}
$$

and

$$
\begin{aligned}
A_{j}\left(x, U_{n}\right) & =a_{j} \cos j\left(x+\frac{r \pi}{j}-\frac{r \pi}{j}\right)+b_{j} \sin j\left(x+\frac{r \pi}{j}-\frac{r \pi}{j}\right) \\
& =A_{j}\left(x+\frac{r \pi}{j}, U_{n}\right) \cos r \pi+A_{j}\left(x+\frac{r \pi}{j}, \widetilde{U_{n}}\right) \sin r \pi
\end{aligned}
$$

Setting

$$
\operatorname{sinct}:= \begin{cases}\frac{\sin t}{t} & , t>0 \\ 1 & , t=0\end{cases}
$$

we have the obvious inequality

$$
1-\operatorname{sinct} \leq t^{2} \text { for } t \geq 0
$$

We get for $0<\delta \leq t$ that

$$
\begin{aligned}
\left\|\left(I-\sigma_{\delta}\right)^{r} U_{n}\right\|_{p, \gamma} & =\left\|\sum_{j=0}^{n}(1-\operatorname{sinc} j \delta)^{r} A_{j}\left(x, U_{n}\right)\right\|_{p, \gamma} \\
& =\left\|\sum_{j=1}^{n}\left(\frac{1-\operatorname{sinc} j \delta}{(j \delta)^{2}}\right)^{r}(j \delta)^{2 r} A_{j}\left(x, U_{n}\right)\right\|_{p, \gamma} \\
& \leq t^{2 r}\left\|\sum_{j=1}^{n}\left(\frac{1-\operatorname{sinc} j \delta}{(j \delta)^{2}}\right)^{r} j^{2 r} A_{j}\left(x, U_{n}\right)\right\|_{p, \gamma}
\end{aligned}
$$

We define

$$
h_{j}:=\left\{\begin{array}{cc}
\frac{\left(1-\operatorname{sinc} \frac{j}{n}\right)^{r}}{\left(\frac{j}{n}\right)^{2 r}} & , j=1,2, \cdots, n \\
0 & , j>n
\end{array}\right.
$$

For $j=1,2,3, \ldots,\left\{h_{j}\right\}$ satisfies (29) with $A=(0,17)^{r}$. Now using Lemma 12 we obtain

$$
\begin{aligned}
\left\|\left(I-\sigma_{\delta}\right)^{r} U_{n}\right\|_{p, \gamma} & \leq c t^{2 r}\left\|\sum_{j=1}^{n} j^{2 r} A_{j}\left(x, U_{n}\right)\right\|_{p, \gamma} \\
& =c t^{2 r}\left\|\sum_{j=1}^{n} j^{2 r}\left[A_{j}\left(x+\frac{r \pi}{j}, U_{n}\right) \cos r \pi+A_{j}\left(x+\frac{r \pi}{j}, \widetilde{U_{n}}\right) \sin r \pi\right]\right\|_{p, \gamma} \\
& \leq c t^{2 r}\left(\left\|\sum_{j=1}^{n} j^{2 r} A_{j}\left(x+\frac{r \pi}{j}, U_{n}\right)\right\|_{p, \gamma}+\left\|\sum_{j=1}^{n} j^{2 r} A_{j}\left(x+\frac{r \pi}{j}, \widetilde{U_{n}}\right)\right\|_{p, \gamma}\right)
\end{aligned}
$$

Note that [20, p.161]

$$
A_{j}\left(x, U_{n}^{(2 r)}\right)=j^{2 r} A_{j}\left(x+\frac{r \pi}{j}, U_{n}\right), \quad j \in \mathbb{N}
$$

Using [17, Theorem 1] we find

$$
\left\|\widetilde{U_{n}^{(2 r)}}\right\|_{p, \gamma} \leq C_{p, r,[\gamma]_{A_{p}}}\left\|U_{n}^{(2 r)}\right\|_{p, \gamma}
$$

Also, (27) and (31) imply that

$$
{\widetilde{U_{n}}}^{(2 r)}=\widetilde{U_{n}^{(2 r)}}
$$

Summing up, we find

$$
\begin{aligned}
\Omega_{r}\left(U_{n}, t\right)_{p, \gamma} & =\sup _{0 \leq \delta \leq t}\left\|\left(I-\sigma_{\delta}\right)^{r} U_{n}\right\|_{p, \gamma} \\
& \leq c t^{2 r}\left(\left\|U_{n}^{(2 r)}\right\|_{p, \gamma}+\left\|{\widetilde{U_{n}}}^{(2 r)}\right\|_{p, \gamma}\right) \\
& =c t^{2 r}\left(\left\|U_{n}^{(2 r)}\right\|_{p, \gamma}+\left\|\widetilde{U_{n}^{(2 r)}}\right\|_{p, \gamma}\right) \leq c t^{2 r}\left\|U_{n}^{(2 r)}\right\|_{p, \gamma} .
\end{aligned}
$$

AKGÜN/Turk J Math

(iii) Let both r and k not be equal to zero. Using Lemma 12 we have for $0<h \leq t$

$$
\begin{aligned}
\left\|\left(I-\sigma_{h}\right)^{r+k} U_{n}\right\|_{p, \gamma}= & \left\|\sum_{j=0}^{n}(1-\operatorname{sinc} j h)^{r+k} A_{j}\left(x, U_{n}\right)\right\|_{p, \gamma} \\
\leq & c h^{2 k}\left\|\sum_{j=0}^{n}(1-\operatorname{sinc} j h)^{r} j^{2 k} A_{j}\left(x, U_{n}\right)\right\|_{p, \gamma} \\
\leq & c t^{2 k}\left\|\sum_{j=0}^{n}(1-\operatorname{sinc} j h)^{r} j^{2 k} A_{j}\left(x+\frac{k \pi}{j}, U_{n}\right) \cos \beta \pi\right\|_{p, \gamma} \\
& +c t^{2 k}\left\|\sum_{j=0}^{n}(1-\operatorname{sinc} j h)^{r} j^{2 k} A_{j}\left(x+\frac{k \pi}{j}, \widetilde{U_{n}}\right) \sin \beta \pi\right\|_{p, \gamma}
\end{aligned}
$$

Since the conjugate operator is linear and bounded [17] in L_{γ}^{p} for $p \in(1, \infty)$ and $\gamma \in A_{p}$, we have

$$
\begin{aligned}
\Omega_{r+k}\left(U_{n}, t\right)_{p, \gamma}= & \sup _{0 \leq h \leq t}\left\|\left(I-\sigma_{h}\right)^{r+k} U_{n}\right\|_{p, \gamma} \\
\leq & c t^{2 k} \sup _{0 \leq h \leq t}\left\|\sum_{j=0}^{n}(1-\operatorname{sinc} j h)^{r} j^{2 k} A_{j}\left(x+\frac{k \pi}{j}, U_{n}\right)\right\|_{p, \gamma} \\
& +c t^{2 k} \sup _{0 \leq h \leq t}\left\|\sum_{j=0}^{n}(1-\operatorname{sinc} j h)^{r} j^{2 k} A_{j}\left(x+\frac{k \pi}{j}, \widetilde{U_{n}}\right)\right\|_{p, \gamma} \\
= & c t^{2 k} \Omega_{r}\left(U_{n}^{(2 k)}, t\right)_{p, \gamma}+C t^{2 k} \sup _{0 \leq h \leq t}\left\|\left[\left(I-\sigma_{h}\right)^{r} U_{n}^{(2 k)}\right]^{\sim}\right\|_{p, \gamma} \\
\leq & c t^{2 k} \Omega_{r}\left(U_{n}^{(2 k)}, t\right)_{p, \gamma}+C t^{2 k} \sup _{0 \leq h \leq t}\left\|\left(I-\sigma_{h}\right)^{r} U_{n}^{(2 k)}\right\|_{p, \gamma} \\
\leq & c t^{2 k} \Omega_{r}\left(U_{n}^{(2 k)}, t\right)_{p, \gamma} .
\end{aligned}
$$

Proof of Theorem 5 The proof of (11) follows from (23). The proof of (12) is a consequence of (22) and the property

$$
\left(I-\sigma_{h}\right)^{\alpha+\beta} f=\left(I-\sigma_{h}\right)^{\alpha}\left(I-\sigma_{h}\right)^{\beta} f
$$

which can be proved easily. Now we prove (13). Since $0<t<1$ there exists some $n \in \mathbb{N}$ so that $(1 / n)<t \leq(2 / n)$ holds. Then we have

$$
\begin{aligned}
\Omega_{r+k}(f, t)_{p, \gamma} & \leq \Omega_{r+k}\left(U_{n}, t\right)_{p, \gamma}+\Omega_{r+k}\left(f-U_{n}, t\right)_{p, \gamma} \\
& \leq C_{r, k, p,[\gamma]_{A_{p}}} t^{2 k} \Omega_{r}\left(U_{n}^{(2 k)}, t\right)_{p, \gamma}+C_{r, k, p,[\gamma]_{A_{p}}} E_{n}(f)_{p, \gamma}
\end{aligned}
$$

AKGÜN/Turk J Math

On the other hand, using Theorem 1 of [4] and Theorem 4 we get

$$
E_{n}(f)_{p, \gamma} \leq \frac{C_{k, p,[\gamma]_{A_{p}}}}{n^{2 k}} E_{n}\left(f^{(2 k)}\right)_{p, \gamma} \leq \frac{C_{r, k, p,[\gamma]_{A_{p}}}}{n^{2 k}} \Omega_{r}\left(f^{(2 k)}, 1 / n\right)_{p, \gamma}
$$

and

$$
\begin{aligned}
\Omega_{r}\left(U_{n}^{(2 k)}, t\right)_{p, \gamma} & \leq \Omega_{r}\left(U_{n}^{(2 k)}-f^{(2 k)}, t\right)_{p, \gamma}+\Omega_{r}\left(f^{(2 k)}, t\right)_{p, \gamma} \\
& \leq C_{r, k, p,[\gamma]_{A_{p}}} E_{n}\left(f^{(2 k)}\right)_{p, \gamma}+\Omega_{r}\left(f^{(2 k)}, t\right)_{p, \gamma} \\
& \leq C_{r, k, p,[\gamma]_{A_{p}}} \Omega_{r}\left(f^{(2 k)}, 1 / n\right)_{p, \gamma}+\Omega_{r}\left(f^{(2 k)}, t\right)_{p, \gamma} .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
\Omega_{r+k}(f, t)_{p, \gamma} & \leq C_{r, k, p,[\gamma]_{A_{p}}} t^{2 k} \Omega_{r}\left(U_{n}^{(2 k)}, t\right)_{p, \gamma}+\frac{C_{r, k, p,[\gamma]_{A_{p}}}^{n^{2 k}} \Omega_{r}\left(f^{(2 k)}, 1 / n\right)_{p, \gamma}}{} \\
& \leq C_{r, k, p,[\gamma]_{A_{p}}}\left[t^{2 k} \Omega_{r}\left(f^{(2 k)}, \frac{1}{n}\right)_{p, \gamma}+t^{2 k} \Omega_{r}\left(f^{(2 k)}, t\right)_{p, \gamma}+\frac{1}{n^{2 k}} \Omega_{r}\left(f^{(2 k)}, \frac{1}{n}\right)\right]_{p, \gamma} \\
& \leq C_{r, k, p,[\gamma]_{A_{p}}}\left[t^{2 k} \Omega_{r}\left(f^{(2 k)}, t\right)_{p, \gamma}+t^{2 k} \Omega_{r}\left(f^{(2 k)}, t\right)_{p, \gamma}+t^{2 k} \Omega_{r}\left(f^{(2 k)}, t\right)_{p, \gamma}\right] \\
& =C_{r, k, p,[\gamma]_{A_{p}}} t^{2 k} \Omega_{r}\left(f^{(2 k)}, t\right)_{p, \gamma}
\end{aligned}
$$

4. Proof of the conjecture of Gadjieva

(1.20) of [12, p. 37] and (9) give the following:

Lemma 14 Let $p \in(1, \infty), \gamma \in A_{p}, f \in L_{\gamma}^{p}$, and $r \in \mathbb{N}$. Then for any $0<t<1$, the following inequality holds:

$$
\Omega_{r}(f, t)_{p, \gamma} \leq C_{r, p,[\gamma]_{A_{p}}} t^{2 r}\left\|f^{(2 r)}\right\|_{p, \gamma}
$$

with some constant depending only on r, p and $[\gamma]_{A_{p}}$.
We can start with the following Bernstein-Nikolski inequality.

Lemma 15 Let $r, n \in \mathbb{N}, p \in(1, \infty), \gamma \in A_{p}$, and $U_{n} \in \mathcal{T}_{n}$. Then

$$
h^{2 r}\left\|U_{n}^{(2 r)}\right\|_{p, \gamma} \lesssim\left\|\left(I-\sigma_{h}\right)^{r} U_{n}\right\|_{p, \gamma}
$$

holds for any $h \in(0, \pi / n]$ with some constant depending only on r, p and $[\gamma]_{A_{p}}$.

Proof of Lemma 15 Let $U_{n}(x)=\frac{a_{0}}{2}+\sum_{k=1}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right)$ with $a_{0}, a_{k}, b_{k} \in \mathbb{R}, k \in \mathbb{N}, h \in(0, \pi / n]$. Then

$$
\begin{aligned}
h^{2 r}\left\|U_{n}^{(2 r)}\right\|_{p, \gamma}= & h^{2 r}\left\|\sum_{k=1}^{n} k^{2 r} A_{k}\left(x+\frac{r \pi}{k}, U_{n}\right)\right\|_{p, \gamma} \\
= & h^{2 r}\left\|\sum_{k=1}^{n} k^{2 r}\left(\cos r \pi A_{k}\left(x, U_{n}\right)-\sin r \pi A_{k}\left(x, \widetilde{U_{n}}\right)\right)\right\|_{p, \gamma} \\
\leq & h^{2 r}\left\|\sum_{k=1}^{n} k^{2 r} \cos r \pi A_{k}\left(x, U_{n}\right)\right\|_{p, \gamma} \\
& +h^{2 r}\left\|\sum_{k=1}^{n} k^{2 r} \sin r \pi A_{k}\left(x, \widetilde{U_{n}}\right)\right\|_{p, \gamma} \\
= & \left\|\sum_{k=1}^{n} \cos r \pi\left(\frac{(k h)^{2}}{(1-\operatorname{sinckh})}\right)^{r}(1-\operatorname{sinc} k h)^{r} A_{k}\left(x, U_{n}\right)\right\|_{p, \gamma} \\
& +\left\|\sum_{k=1}^{n} \sin r \pi\left(\frac{(k h)^{2}}{(1-\operatorname{sinckh})}\right)^{r}(1-\operatorname{sinc} k h)^{r} A_{k}\left(x, \widetilde{U_{n}}\right)\right\|_{p, \gamma}
\end{aligned}
$$

We will use Lemma A once more. Let

$$
\lambda_{j}:= \begin{cases}\frac{\left(\frac{j}{n}\right)^{2 r}}{\left(1-\frac{\sin \frac{j}{n}}{\frac{j}{n}}\right)^{r}} & , \text { for } 1 \leq j \leq n \\ 0 & , \text { for } j>n\end{cases}
$$

For $j=1,2,3, \ldots,\left\{\lambda_{j}\right\}$ satisfies (29) with $A=(1-\sin 1)^{-r}$. Using the Marcinkiewicz multiplier theorem [6] for Lebesgue spaces with Muckenhoupt weight, we have

$$
\begin{aligned}
& h^{2 r}\left\|U_{n}^{(2 r)}\right\|_{p, \gamma} \lesssim\left\|\sum_{k=0}^{n}(1-\operatorname{sinc} k h)^{r} A_{k}\left(x, U_{n}\right)\right\|_{p, \gamma}+\left\|\sum_{k=0}^{n}(1-\operatorname{sinc} k h)^{r} A_{k}\left(x, \widetilde{U_{n}}\right)\right\|_{p, \gamma} \\
&=\left\|\sum_{k=0}^{n}(1-\operatorname{sinc} k h)^{r} A_{k}\left(x, U_{n}\right)\right\|_{p, \gamma}+\left\|\left(\sum_{k=0}^{n}(1-\operatorname{sinc} k h)^{r} A_{k}\left(x, U_{n}\right)\right)^{\sim}\right\|_{p, \gamma}
\end{aligned}
$$

In the last step we used the linear property of the conjugate operator. Thus, from the boundedness of the conjugate (see, e.g., [17]) operator, we get

$$
h^{2 r}\left\|U_{n}^{(2 r)}\right\|_{p, \gamma} \lesssim\left\|\sum_{k=0}^{n}(1-\operatorname{sinc} k h)^{r} A_{k}\left(x, U_{n}\right)\right\|_{p, \gamma}=\left\|\left(I-\sigma_{h}\right)^{r} U_{n}\right\|_{p, \gamma}
$$

Proof of Theorem 3 From (9) and the right-hand side of inequality (1.27) in [12, p. 46] we get $\Omega_{r}(f, \delta)_{p, \gamma} \leq$ $C_{r, p,[\gamma]_{A_{p}}} K_{2 r}(\delta, f, p, \gamma)$. If $\delta>0$ there exists $n \in N$ such that $\frac{n}{\pi} \leq 1 / \delta<2 \frac{n}{\pi}$. Let U_{n} be the near best

AKGÜN/Turk J Math

approximating trigonometric polynomial to f. From Theorem 4,

$$
\left\|f-U_{n}\right\|_{p, \gamma} \lesssim E_{n}(f)_{p, \gamma} \lesssim \Omega_{r}\left(f, \frac{\pi}{n}\right)_{p, \gamma}
$$

Thus, using Lemma 15,

$$
\begin{aligned}
\delta^{2 r}\left\|U_{n}^{(2 r)}\right\|_{p, \gamma} & \lesssim\left\|\left(I-\sigma_{\delta}\right)^{r} U_{n}\right\|_{p, \gamma} \lesssim \Omega_{r}\left(U_{n}, \pi / n\right)_{p, \gamma} \\
& \lesssim \Omega_{r}\left(U_{n}-f, \pi / n\right)_{p, \gamma}+\Omega_{r}(f, \pi / n)_{p, \gamma} \\
& \lesssim\left\|f-U_{n}\right\|_{p, \gamma}+\Omega_{r}(f, \pi / n)_{p, \gamma} \lesssim \Omega_{r}(f, \pi / n)_{p, \gamma}
\end{aligned}
$$

and

$$
\begin{equation*}
\left\|f-U_{n}\right\|_{p, \gamma}+\delta^{2 r}\left\|U_{n}^{(2 r)}\right\|_{p, \gamma} \lesssim \Omega_{r}(f, \pi / n)_{p, \gamma} \tag{32}
\end{equation*}
$$

Now

$$
K_{2 r}(\delta, f, p, \gamma) \leq\left\|f-U_{n}\right\|_{p, \gamma}+\delta^{2 r}\left\|U_{n}^{(2 r)}\right\|_{p, \gamma} \lesssim \Omega_{r}(f, \delta)_{p, \gamma}
$$

Thus, (8) is proved.

5. Proof of the Jackson type inequality

Below we give a lemma required for the proof of Theorem 4.

Lemma 16 Let $p \in(1, \infty), \gamma \in A_{p}, F \in L_{\gamma}^{p}$, and $r \in \mathbb{N}$. Then there exists a number $\delta \in(0,1)$, depending only on p and $[\gamma]_{A_{p}}$ such that

$$
\left\|\left(I-\sigma_{h}\right)^{r} F\right\|_{p, \gamma} \lesssim C \delta^{m r}\|F\|_{p, \gamma}+C(m) C_{r, p,[\gamma]_{A_{p}}}\left\|\left(I-\sigma_{h}\right)^{r+1} F\right\|_{p, \gamma}
$$

holds for any $h \in(0,1)$ and $m \in \mathbb{N}$ where the constants $C>0, C_{r, p,[\gamma]_{A_{p}}}$ depending only on r, p and $[\gamma]_{A_{p}}$ and the constant $C(m)$ satisfy $C(m)=\sum_{i=0}^{m-1}\left(\delta^{r}\right)^{i}$.

Proof For any $h>0$ there exists (see, e.g., (21)) a constant $\mathfrak{C}>1$ such that

$$
\left\|\sigma_{h} F\right\|_{p, \gamma} \leq \mathfrak{C}\|F\|_{p, \gamma}
$$

We set $\delta:=\mathfrak{C} /(1+\mathfrak{C})$. Now, for any $h \in(0,1)$, we prove

$$
\begin{equation*}
\left\|\left(I-\sigma_{h}\right)^{r} F\right\|_{p, \gamma} \leq \delta^{r}\left\|\left(I-\sigma_{h}^{2}\right)^{r} F\right\|_{p, \gamma}+c \Omega_{r+1}(F, h)_{p, \gamma} \tag{33}
\end{equation*}
$$

To prove (33) we observe

$$
I-\sigma_{h}=2^{-1}\left(I-\sigma_{h}\right)\left(I+\sigma_{h}\right)+2^{-1}\left(I-\sigma_{h}\right)^{2}
$$

and

$$
\sigma_{h}\left(I-\sigma_{h}\right)=2^{-1}\left(I-\sigma_{h}\right)\left(I+\sigma_{h}\right)-2^{-1}\left(I-\sigma_{h}\right)^{2}
$$

AKGÜN/Turk J Math

Hence, for $g \in L_{\gamma}^{p}$

$$
\begin{equation*}
\left\|\left(I-\sigma_{h}\right) g\right\|_{p, \gamma}+\left\|\sigma_{h}\left(I-\sigma_{h}\right) g\right\|_{p, \gamma} \leq\left\|\left(I-\sigma_{h}\right)\left(I+\sigma_{h}\right) g\right\|_{p, \gamma}+\left\|\left(I-\sigma_{h}\right)^{2} g\right\|_{p, \gamma} \tag{34}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
& \left\|\left(I-\sigma_{h}\right)^{r} F\right\|_{p, \gamma}=\delta\left((1 / \mathfrak{C})\left\|\left(I-\sigma_{h}\right)^{r} F\right\|_{p, \gamma}+\left\|\left(I-\sigma_{h}\right)^{r} F\right\|_{p, \gamma}\right) \\
\leq & \delta\left(\left\|\left(I-\sigma_{h}\right)^{r} F\right\|_{p, \gamma}+\left\|\left(I-\sigma_{h}\right)^{r} F\right\|_{p, \gamma}\right) \\
= & \delta\left(\left\|\left(I-\sigma_{h}\right)\left(I-\sigma_{h}\right)^{r-1} F\right\|_{p, \gamma}+\left\|\left(I-\sigma_{h}\right)^{r} F\right\|_{p, \gamma}\right) \\
= & \delta\left(\left\|\left(\sigma_{h}\left(I-\sigma_{h}\right)+\left(I-\sigma_{h}\right)^{2}\right)\left(I-\sigma_{h}\right)^{r-1} F\right\|_{p, \gamma}+\left\|\left(I-\sigma_{h}\right)^{r} F\right\|_{p, \gamma}\right) \\
\leq & \delta\left(\left\|\sigma_{h}\left(I-\sigma_{h}\right)\left(I-\sigma_{h}\right)^{r-1} F\right\|_{p, \gamma}+\left\|\left(I-\sigma_{h}\right)^{2}\left(I-\sigma_{h}\right)^{r-1} F\right\|_{p, \gamma}\right) \\
& +\delta\left\|\left(I-\sigma_{h}\right)^{r} F\right\|_{p, \gamma} \\
\leq & \delta\left(\left\|\sigma_{h}\left(I-\sigma_{h}\right)^{r} F\right\|_{p, \gamma}+\left\|\left(I-\sigma_{h}\right)^{r+1} F\right\|_{p, \gamma}+\left\|\left(I-\sigma_{h}\right)^{r} F\right\|_{p, \gamma}\right) . \tag{35}
\end{align*}
$$

Taking $g:=\left(I-\sigma_{h}\right)^{r-1} F$ in (34) we have

$$
\left\|\sigma_{h}\left(I-\sigma_{h}\right)^{r} F\right\|_{p, \gamma}+\left\|\left(I-\sigma_{h}\right)^{r} F\right\|_{p, \gamma} \leq\left\|\left(I-\sigma_{h}\right)^{r}\left(\sigma_{h}+I\right) F\right\|_{p, \gamma}+\left\|\left(I-\sigma_{h}\right)^{r+1} F\right\|_{p, \gamma}
$$

and, using this in (35),

$$
\begin{align*}
\left\|\left(I-\sigma_{h}\right)^{r} F\right\|_{p, \gamma} \leq & \delta\left(\left\|\sigma_{h}\left(I-\sigma_{h}\right)^{r} F\right\|_{p, \gamma}+\left\|\left(I-\sigma_{h}\right)^{r+1} F\right\|_{p, \gamma}+\left\|\left(I-\sigma_{h}\right)^{r} F\right\|_{p, \gamma}\right) \\
\leq & \delta\left(\left\|\left(I-\sigma_{h}\right)^{r}\left(\sigma_{h}+I\right) F\right\|_{p, \gamma}+\left\|\left(I-\sigma_{h}\right)^{r+1} F\right\|_{p, \gamma}\right) \\
& +\delta\left\|\left(I-\sigma_{h}\right)^{r+1} F\right\|_{p, \gamma} \\
\leq & \delta\left\|\left(I-\sigma_{h}\right)^{r}\left(\sigma_{h}+I\right) F\right\|_{p, \gamma}+2 \delta\left\|\left(I-\sigma_{h}\right)^{r+1} F\right\|_{p, \gamma} . \tag{36}
\end{align*}
$$

Repeating r times the last inequality we have

$$
\begin{aligned}
\left\|\left(I-\sigma_{h}\right)^{r} F\right\|_{p, \gamma} \leq & \delta\left\|\left(I-\sigma_{h}\right)^{r}\left(\sigma_{h}+I\right) F\right\|_{p, \gamma}+2 \delta\left\|\left(I-\sigma_{h}\right)^{r+1} F\right\|_{p, \gamma} \\
\leq & \delta^{2}\left\|\left(I-\sigma_{h}\right)^{r}\left(\sigma_{h}+I\right)^{2} F\right\|_{p, \gamma}+2 \delta^{2}\left\|\left(I-\sigma_{h}\right)^{r+1}\left(\sigma_{h}+I\right) F\right\|_{p, \gamma} \\
& +2 \delta\left\|\left(I-\sigma_{h}\right)^{r+1} F\right\|_{p, \gamma} \\
\leq & \cdots \leq \delta^{r}\left\|\left(I-\sigma_{h}\right)^{r}\left(\sigma_{h}+I\right)^{r} F\right\|_{p, \gamma} \\
& +2 \sum_{k=1}^{r} \delta^{k}\left\|\left(I-\sigma_{h}\right)^{r+1}\left(\sigma_{h}+I\right)^{k-1} F\right\|_{p, \gamma} \\
= & \delta^{r}\left\|\left(I-\sigma_{h}^{2}\right)^{r} F\right\|_{p, \gamma}+2 \sum_{k=1}^{r} \delta^{k}\left\|\left(I-\sigma_{h}\right)^{r+1}\left(\sigma_{h}+I\right)^{k-1} F\right\|_{p, \gamma}
\end{aligned}
$$

Hence,

$$
\left\|\left(I-\sigma_{h}\right)^{r} F\right\|_{p, \gamma} \leq \delta^{r}\left\|\left(I-\sigma_{h}^{2}\right)^{r} F\right\|_{p, \gamma}+C\left(r, p,[\gamma]_{A_{p}}\right)\left\|\left(I-\sigma_{h}\right)^{r+1} F\right\|_{p, \gamma}
$$

AKGÜN/Turk J Math

and the proof of (33) is finished. Using the last inequality recursively we obtain

$$
\begin{gather*}
\left\|\left(I-\sigma_{h}\right)^{r} F\right\|_{p, \gamma} \leq \delta^{r}\left\|\left(I-\sigma_{h}^{2}\right)^{r} F\right\|_{p, \gamma}+C\left(r, p,[\gamma]_{A_{p}}\right)\left\|\left(I-\sigma_{h}\right)^{r+1} F\right\|_{p, \gamma} \\
\leq \delta^{2 r}\left\|\left(I-\sigma_{h}^{4}\right)^{r} F\right\|_{p, \gamma}+\left(\delta^{r}+1\right) C\left(r, p,[\gamma]_{A_{p}}\right)\left\|\left(I-\sigma_{h}\right)^{r+1} F\right\|_{p, \gamma} \leq \\
\leq \delta^{4 r}\left\|\left(I-\sigma_{h}^{8}\right)^{r} F\right\|_{p, \gamma}+\left(\delta^{2 r}+\delta^{r}+1\right) C\left(r, p,[\gamma]_{A_{p}}\right)\left\|\left(I-\sigma_{h}\right)^{r+1} F\right\|_{p, \gamma} \leq \cdots \\
\leq \cdots \leq \delta^{m r}\left\|\left(I-\sigma_{h}^{2^{m}}\right)^{r} F\right\|_{p, \gamma}+C\left(r, p,[\gamma]_{A_{p}}\right)\left(\sum_{j=0}^{m-1} \delta^{r j}\right)\left\|\left(I-\sigma_{h}\right)^{r+1} F\right\|_{p, \gamma} \tag{37}
\end{gather*}
$$

Using

$$
\|M F\|_{C[T]} \leq\|F\|_{C[T]}
$$

([15, p. 78]) we have

$$
\begin{gathered}
\left\|\left(I-\sigma_{h}^{2^{m}}\right)^{r} F\right\|_{C[T]}=\left\|\sum_{k=0}^{r}\binom{r}{k}(-1)^{k}\left(\sigma_{h}^{2^{m}}\right)^{k}(F)\right\|_{C[T]} \\
\leq\left\|\sum_{k=0}^{r}\binom{r}{k}(-1)^{k}\left(M^{2^{m}}\right)^{k}(F)\right\|_{C[T]} \leq \sum_{k=0}^{r}\left|\binom{r}{k}\right|\left\|\left(M^{2^{m}}\right)^{k}(F)\right\|_{C[T]} \\
\leq \sum_{k=0}^{r}\left|\binom{r}{k}\right|\|F\|_{C[T]} \leq 2^{r}\|F\|_{C[T]}
\end{gathered}
$$

From this and a transference result we get that

$$
\left\|\left(I-\sigma_{h}^{2^{m}}\right)^{r} F\right\|_{p, \gamma} \leq C_{p, r,[\gamma]_{A_{p}}}\|F\|_{p, \gamma}
$$

The last inequality and (37) gives

$$
\left\|\left(I-\sigma_{h}\right)^{r} F\right\|_{p, \gamma} \lesssim C_{r, p,[\gamma]_{A_{p}}} \delta^{m r}\|F\|_{p, \gamma}+C(m) C_{r, p,[\gamma]_{A_{p}}}\left\|\left(I-\sigma_{h}\right)^{r+1} F\right\|_{p, \gamma}
$$

Proof of Theorem 4 First we prove inequality for $r=1,2,3,4, \ldots$. Following the idea of [10], for this purpose we will use induction on r. We know from Theorems 1 and 4 that

$$
E_{n}(f)_{p, \gamma} \leq C_{p,[\gamma]_{A_{p}}} \Omega_{1}\left(f, \frac{1}{n}\right)_{p, \gamma}
$$

We suppose that the inequality

$$
\begin{equation*}
E_{n}(f)_{p, \gamma} \leq \mathcal{C} \Omega_{r}\left(f, \frac{1}{n}\right)_{p, \gamma}, \quad r \in \mathbb{N} \tag{38}
\end{equation*}
$$

holds for any $f \in L_{\gamma}^{p}$ with some constant $\mathcal{C}>0$. We set $u(\cdot):=f(\cdot)-S_{n} f(\cdot)$. First we will show that

$$
\begin{equation*}
\left\|f-S_{n} f\right\|_{p, \gamma} \leq C_{p, r,[\gamma]_{A_{p}}} \Omega_{r+1}\left(f, \frac{1}{n}\right)_{p, \gamma} \tag{39}
\end{equation*}
$$

Then (39) will give (38). We have

$$
\begin{aligned}
S_{n}(u)(\cdot) & =S_{n}\left(f-S_{n} f\right)(\cdot)=\left(S_{n}(f)-S_{n}\left(S_{n} f\right)\right)(\cdot) \\
& =\left(S_{n}(f)-S_{n}(f)\right)(\cdot)=0
\end{aligned}
$$

Since $S_{n} f$ is the near best approximant for f, using induction hypothesis (38),

$$
\|u\|_{p, \gamma}=\left\|u-S_{n}(u)\right\|_{p, \gamma} \leq C_{p,[\gamma]_{A_{p}}} E_{n}(u)_{p, \gamma} \leq \mathcal{C} C_{p, r,[\gamma]_{A_{p}}} \Omega_{r}\left(u, \frac{1}{n}\right)_{p, \gamma}
$$

We know from Lemma 16 that for $m \in \mathbb{N}$

$$
\left\|\left(I-\sigma_{h}\right)^{r} u\right\|_{p, \gamma} \leq C_{p, r,[\gamma]_{A_{p}}^{\prime}}^{\prime} \delta^{m r}\|u\|_{p, \gamma}+C(m) C_{p, r,[\gamma]_{A_{p}}^{\prime \prime}}^{\prime \prime}\left\|\left(I-\sigma_{h}\right)^{r+1} u\right\|_{p, \gamma}
$$

and thus

$$
\|u\|_{p, \gamma} \leq \mathcal{C} C_{p, r,[\gamma]_{A_{p}}} C_{p, r,[\gamma]_{A_{p}}}^{\prime} \delta^{m r}\|u\|_{p, \gamma}+\mathcal{C} C(m) C_{p, r,[\gamma]_{A_{p}}} C_{p, r,[\gamma]_{A_{p}}}^{\prime \prime} \Omega_{r+1}\left(u, \frac{1}{n}\right)_{p, \gamma}
$$

Choosing m so big that $\mathcal{C} C_{p,[\gamma]_{A_{p}}} C_{p, r,[\gamma]_{A_{p}}}^{\prime} \delta^{m r} \leq 1 / 2$, from the last inequality we obtain

$$
\|u\|_{p, \gamma} \leq C_{p, r,[\gamma]_{A_{p}}} \Omega_{r+1}\left(u, \frac{1}{n}\right)_{p, \gamma}
$$

From boundedness [17] of operator $f \longmapsto S_{n} f$ in L_{γ}^{p} for $p \in(1, \infty)$ and $\gamma \in A_{p}$ we have

$$
\Omega_{r+1}\left(u, \frac{1}{n}\right)_{p, \gamma} \leq C_{p, r,[\gamma]} \Omega_{A_{p}} \Omega_{r+1}\left(f, \frac{1}{n}\right)_{p, \gamma}
$$

and the result

$$
\begin{aligned}
E_{n}(f)_{p, \gamma} & \leq\left\|f-S_{n} f\right\|_{p, \gamma}=\|u\|_{p, \gamma} \leq C_{p, r,[\gamma]_{A_{p}}} \Omega_{r+1}\left(u, \frac{1}{n}\right)_{p, \gamma} \\
& \leq C_{p, r,[\gamma]_{A_{p}}} \Omega_{r+1}\left(f, \frac{1}{n}\right)_{p, \gamma}
\end{aligned}
$$

holds. Then (38) holds for any $r \in \mathbb{N}$.

6. Characterization class of $\Omega_{r}(f, \cdot)_{p, \gamma}$

Let $\omega_{r}(\cdot, \delta)_{p},(1 \leq p \leq \infty)$, be the usual nonweighted modulus of smoothness:

$$
\omega_{r}(g, \delta)_{p}:=\sup _{0 \leq h \leq \delta}\left\|\left(I-T_{h}\right)^{r} g\right\|_{p}, \quad g \in L^{p}
$$

where $T_{h} g(\cdot):=g(\cdot+h)$. By (1.31) of [12, p. 50], (8), and (14) there exist positive constants depending only on r, p such that

$$
\begin{equation*}
\omega_{r}(g, \delta)_{p} \approx \Omega_{r}(g, \delta)_{p, 1} \tag{40}
\end{equation*}
$$

holds for $1 \leq p \leq \infty$ and $g \in L^{p}$.
Proof of Theorem 7 (i) Note that if $F \in C[T]$ then

$$
\begin{equation*}
\left\|\left(I-\sigma_{t}\right)^{r} F\right\|_{p, \gamma} \leq C_{p,[\gamma]_{A_{p}}}\left\|\left(I-\sigma_{t}\right)^{r} F\right\|_{C(T)} \tag{41}
\end{equation*}
$$

Using Theorem 2.5 (A) of [40], (40), (14), (8), and (41) there exists $\psi \in \Phi_{2 r}$ such that

$$
\Omega_{r}(F, \delta)_{p, \gamma} \leq C_{p,[\gamma]_{A_{p}}} \Omega_{r}(F, \delta)_{\infty, 1} \leq C_{p,[\gamma]_{A_{p}}} \omega_{2 r}(F, \delta)_{\infty} \leq C_{r, p,[\gamma]_{A_{p}}} \psi(\delta)
$$

If $p \in(1, \infty), \gamma \in A_{p}, f \in L_{\gamma}^{p}$, by Lemma 4 of $\left[20, M(x)=x^{p}\right]$, for any $\varepsilon>0$ there exists a $F \in C[T]$ such that $\|f-F\|_{p, \gamma}<\varepsilon$. Thus,

$$
\begin{aligned}
\Omega_{r}(f, \delta)_{p, \gamma} & \leq \Omega_{r}(f-F, \delta)_{p, \gamma}+\Omega_{r}(F, \delta)_{p, \gamma} \\
& \leq C_{r, p,[\gamma]_{A_{p}}}\|f-F\|_{p, \gamma}+C_{r, p,[\gamma]_{A_{p}}} \psi(\delta)
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0^{+}$we get

$$
\Omega_{r}(f, \delta)_{p, \gamma} \leq C_{r, p,[\gamma]_{A_{p}}} \psi(\delta)
$$

On the other hand, from (8) and Theorem 2.5 (A) of [40],

$$
\psi(\delta) \leq C_{r, p,[\gamma]_{A_{p}}} \omega_{2 r}(f, \delta)_{1} \leq C_{r, p,[\gamma]_{A_{p}}} \Omega_{r}(f, \delta)_{p, \gamma}
$$

and equivalence (16) is established.
(ii) For the equivalence (17) let $\psi \in \Phi_{2 r}$. By Theorem 2.5 (B) and Remark 2.7 (1) of [40] there exist $f \in L^{\infty}$ and a positive real number t_{0} such that

$$
\omega_{2 r}(f, \delta)_{p} \approx \psi(\delta), \quad p=1, \infty
$$

holds for all $\delta \in\left(0, t_{0}\right)$ with equivalence constants depending only on r. Then by (8), (40), and (24) we get

$$
\begin{aligned}
\psi(\delta) & \leq C_{r} \omega_{2 r}(f, \delta)_{1} \leq C_{r} \Omega_{r}(f, \delta)_{1,1} \leq C_{r, p,[\gamma]_{A_{p}}} \Omega_{r}(f, \delta)_{p, \gamma} \\
& \leq C_{r, p,[\gamma]_{A_{p}}} \Omega_{r}(f, \delta)_{\infty, 1} \leq C_{r, p,[\gamma]_{A_{p}}} \omega_{2 r}(f, \delta)_{\infty} \leq C_{r, p,[\gamma]_{A_{p}}} \psi(\delta)
\end{aligned}
$$

for all $\delta \in\left(0, t_{0}\right)$.

7. Realization functional

Proof of Theorem 11 Let U_{n} be the near best approximating trigonometric polynomial to f. By (32) and (15)

$$
\left\|f-U_{n}\right\|_{p, \gamma}+\frac{1}{n^{2 r}}\left\|U_{n}^{(2 r)}\right\|_{p, \gamma} \lesssim \Omega_{r}(f, \pi / n)_{p, \gamma} \lesssim \Omega_{r}(f, 1 / n)_{p, \gamma}
$$

AKGÜN/Turk J Math

and hence $R_{2 r}(f, 1 / n, p, \gamma) \lesssim \Omega_{r}(f, 1 / n)_{p, \gamma}$. For the reverse inequality we use (23) and Lemma 15 (with $h=1 / n)$:

$$
\begin{aligned}
\Omega_{r}(f, 1 / n)_{p, \gamma} & \leq \Omega_{r}\left(f-U_{n}, 1 / n\right)_{p, \gamma}+\Omega_{r}\left(U_{n}, 1 / n\right)_{p, \gamma} \\
& \lesssim\left\|f-U_{n}\right\|_{p, \gamma}+\frac{1}{n^{2 r}}\left\|U_{n}^{(2 r)}\right\|_{p, \gamma}=R_{2 r}(f, 1 / n, p, \gamma)
\end{aligned}
$$

8. Fractional order modulus of smoothness

Fractional order modulus of smoothness is not a new concept. Classical nonweighted fractional smoothness $\omega_{r}(f, \cdot)_{p}, r>0$, was defined by Butzer et al. [8] and Taberski [39]. See also [35]. Here we consider fractional smoothness $\Omega_{r}(\cdot, \delta)_{p, \gamma}, r>0$, suitable for some weighted spaces. Letting $x \in T, r, t>0, N \in \mathbb{N}, p \in(1, \infty)$, $\gamma \in A_{p}$, and $f \in L_{\gamma}^{p}$, we define the quantity

$$
\begin{align*}
\Xi_{t}^{r} f(x) & : \quad=\left(I-\sigma_{t}\right)^{r} f(x)=\sum_{k=0}^{\infty}\binom{r}{k}(-1)^{k} \sigma_{t}^{k} f(x) \tag{42}\\
& =\lim _{N \rightarrow \infty} \sum_{k=0}^{N}\binom{r}{k}(-1)^{k}\left(\sigma_{t} f\right)^{k}(x)
\end{align*}
$$

where $\binom{r}{k}:=\frac{r(r-1) \ldots(r-k+1)}{k!}$ for $k>1$ and $\binom{r}{1}:=r$ and $\binom{r}{0}:=1$ are Binom coefficients. Note that when $r \in \mathbb{N}$ (42) turns into (5).

If $F \in C[T]$ then we know that $\left\|\sigma_{t} F\right\|_{C[T]} \leq\|F\|_{C[T]}$ and $\left\|\Xi_{t}^{r} F\right\|_{C[T]} \leq 2^{r}\|F\|_{C[T]}$. From the last inequality and a transference result we can obtain that there exists a constant C independent of t such that

$$
\begin{equation*}
\left\|\Xi_{t}^{r} f\right\|_{p, \gamma} \leq C_{p,[\gamma]_{A_{p}}, r}\|f\|_{p, \gamma} \tag{43}
\end{equation*}
$$

holds for $r>0$ with $p \in(1, \infty), \gamma \in A_{p}$, and $f \in L_{\gamma}^{p}$.
Now we can define the weighted fractional modulus of smoothness: if $r \in \mathbb{R}^{+}, p \in(1, \infty), f \in L_{\gamma}^{p}$, and $\gamma \in A_{p}$ we define

$$
\Omega_{r}(f, \delta)_{p, \gamma}:=\sup _{0 \leq t \leq \delta}\left\|\Xi_{t}^{r} f\right\|_{p, \gamma}, \quad \Omega_{0}(f, \delta)_{p, \gamma}:=\|f\|_{p, \gamma}
$$

In this case,

$$
\begin{equation*}
\Omega_{r}(f, \delta)_{p, \gamma} \leq C_{p, r,[\gamma]_{A_{p}}}\|f\|_{p, \gamma} \tag{44}
\end{equation*}
$$

for some constant $c>0$ dependent only on p, r and $[\gamma]_{A_{p}}$. Hence, the modulus of smoothness $\Omega_{r}(\cdot, \delta)_{p, \gamma}$ is a well-defined, nonnegative, nondecreasing function of δ on $(0, \infty)$ and satisfies the usual property $\Omega_{r}(f+g, \cdot)_{p, \gamma} \leq$ $\Omega_{r}(f, \cdot)_{p, \gamma}+\Omega_{r}(g, \cdot)_{p, \gamma}$.

Remark 17 (44) implies that all the results given in the introduction above also hold for replacement of $r \in \mathbb{N}$ by $r \in \mathbb{R}^{+}$. Indeed, (i) for Theorem 4 see Proposition 1 of [2]. For other theorems see the results given in [3].

AKGÜN/Turk J Math

Acknowledgment

Author is indebted to referees for valuable suggestions and remarks. The author was supported by Balıkesir University Scientific Research Projects 2017/185 and 2018/001.

References

[1] Abilov VA, Abilova FV. Some problems of the approximation of 2π-periodic functions by Fourier sums in the space $L_{2}(2 \pi)$. Math Notes 2004; 76: 749-757.
[2] Akgün A. Sharp Jackson and converse theorems of trigonometric approximation in weighted Lebesgue spaces. Proc A Razmadze Math Inst 2010; 152: 1-18.
[3] Akgün A. Realization and characterization of modulus of smoothness in weighted Lebesgue spaces. St Petersburg Math J 2015; 26: 741-756.
[4] Akgün A, Israfilov DM. Approximation in weighted Orlicz spaces. Math Slovaca 2011; 61: 601-618.
[5] Akgün A, Israfilov DM. Simultaneous and converse approximation theorems in weighted Orlicz spaces. Bull Belg Math Soc Simon Stevin 2010; 17: 13-28.
[6] Berkson E, Gillespie TA. On restrictions of multipliers in weighted setting. Indiana U Math J 2003; 52: 927-961.
[7] Besov OV, Stechkin SB. A description of the moduli of continuity in L_{2}. Proc Steklov Inst Math 1977; 134: 27-30.
[8] Butzer PL, Dyckhoff H, Görlich E, Stens RL. Best trigonometric approximation, fractional order derivatives and Lipschitz classes. Canad J Math 1977; 29: 781-793.
[9] Butzer PL, Stens RL, Wehrens M. Approximation by algebraic convolution integrals. Approximation theory and functional analysis. In: Proceedings of the International Symposium on Approximation Theory, 1977, pp. 71-120.
[10] Dai F. Jackson-type inequality for doubling weights on the sphere. Constr Approx 2006; 24: 91-112.
[11] Ditzian Z, Ivanov KG. Strong converse inequalities. J Anal Math 1993; 61: 61-111.
[12] Gadjieva EA. Investigation of the properties of functions with quasimonotone Fourier coefficients in generalized Nikolskii-Besov spaces. PhD, Tbilisi State University, Tbilisi, Georgia, 1986 (in Russian).
[13] García-Cuerva J, Rubio de Francia JL. Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies. Amsterdam, the Netherlands: North-Holland Publishing Co., 1985.
[14] Genebashvili I, Gogatishvili A, Kokilashvili V, Krbec M. Weight Theory for Integral Transforms on Spaces of Homogeneous Type. Pitman Monographs and Surveys in Pure and Applied Mathematics, 92. Harlow, UK: Longman, 1998.
[15] Grafakos L. Classical Fourier Analysis. 2nd ed. Graduate Texts in Mathematics, Vol. 249. Berlin, Germany: Springer, 2008.
[16] Guven A, Israfilov DM. Improved inverse theorems in weighted Lebesgue and Smirnov spaces. Bull Belg Math Soc Simon Stevin 2007; 14: 681-692.
[17] Hunt R, Muckenhoupt B, Wheeden R. Weighted norm inequalities for the conjugate function and Hilbert transform. T Am Math Soc 1973; 176: 227-251.
[18] Israfilov DM. Approximation by p-Faber polynomials in the weighted Smirnov class $E^{p}(G, \omega)$ and the Bieberbach polynomials. Constr Approx 2001; 17: 335-351.
[19] Israfilov DM, Akgün R. Approximation by polynomials in weighted Smirnov-Orlicz space. J Math Kyoto Univ 2006; 46: 755-770.
[20] Israfilov DM, Guven A. Approximation by trigonometric polynomials in weighted Orlicz spaces. Stud Math 2006; 174: 147-168.
[21] Jafarov SZ. On moduli of smoothness in Orlicz classes. Proc Inst Math Mech Natl Acad Sci Azerb 2010; 33: 95-100.

AKGÜN/Turk J Math

[22] Jafarov SZ. Derivatives of a polynomial of best approximation and modulus of smoothness in generalized Lebesgue spaces with variable exponent. Demonstr Math 2017; 50: 245-251.
[23] Jafarov SZ. On moduli of smoothness and approximation by trigonometric polynomials in weighted Lorentz spaces. Hacet J Math Stat 2016; 45: 1675-1684.
[24] Jafarov SZ. Approximation of periodic functions by Zygmund means in Orlicz spaces. J Class Anal 2016; 9: 43-52.
[25] Jafarov SZ. Approximation of functions by de la Vallée-Poussin sums in weighted Orlicz spaces. Arab J Math 2016; 5: 125-137.
[26] Jafarov SZ. Approximation in weighted rearrangement invariant Smirnov spaces. Tbilisi Math J 2016; 9: 9-21.
[27] Jafarov SZ. Linear methods for summing Fourier series and approximation in weighted Lebesgue spaces with variable exponents. Ukrainian Math J 2015; 66: 1509-1518.
[28] Jafarov SZ. On approximation of functions by p-Faber-Laurent rational functions. Complex Var Elliptic Equ 2015; 60: 416-428.
[29] Khabazi M. The mean convergence of trigonometric Fourier series in weighted Orlicz classes. Proc A Razmadze Math Inst 2002; 129: 65-75.
[30] Kokilashvili V, Yildirir YE. On the approximation in weighted Lebesgue spaces. Proc A Razmadze Math Inst 2007; 143: 103-113.
[31] Ky NX. On approximation by trigonometric polynomials in L_{u}^{p}-spaces. Studia Sci Math Hungar 1993; 28: 183-188.
[32] Ky NX. Modulus of mean smoothness and approximation with A_{p}-weights. Ann Univ Sci Budapest Eötvös Sect Math 1997; 40: 37-48.
[33] Mastroianni G, Totik V. Jackson type inequalities for doubling and A_{p} weights. Rend Circ Mat Palermo (2) Suppl 1998; 52: 83-99.
[34] Muckenhoupt B. Weighted norm inequalities for the Hardy maximal function. T Am Math Soc 1972; 165: 207-226.
[35] Samko SG, Kilbas AA, Marichev OI. Fractional Integrals and Derivatives. Theory and Applications, Translated from the 1987 Russian Original. Yverdon-les-Bains, Switzerland: Gordon and Breach Science Publishers, 1993.
[36] Sharapudinov II. Some problems in approximation theory in the spaces $L^{p(x)}(E)$. Anal Math 2007; 33: 135-153 (in Russian).
[37] Sharapudinov II. Approximation of functions in $L_{2 \pi}^{p(\cdot)}$ by trigonometric polynomials. Izv RAN Ser Mat 2013; 77: 197-224.
[38] Sharapudinov II. On direct and inverse theorems of approximation theory in variable Lebesgue and Sobolev spaces. Azerbaijan J Math 2014; 4: 55-72.
[39] Taberski T. Differences, moduli and derivatives of fractional orders. Comment Math Prace Mat 1976/1977; 19: 389-400.
[40] Tikhonov S. On moduli of smoothness of fractional order. Real Analysis Exchange 2004/2005; 30: 1-12.
[41] Timan AF. Theory of Approximation of Functions of a Real Variable. International Series of Monographs on Pure and Applied Mathematics, Vol. 34. Oxford, UK : Pergamon Press, 1963.
[42] Wehrens M. Best approximation on the unit sphere in \mathbb{R}^{k}. In: Butzer PL, editor. Functional Analysis and Approximation: Proceedings. Berlin, Germany: Springer, 1980, pp. 233-245.
[43] Yildirir YE, Israfilov DM. Approximation theorems in weighted Lorentz spaces. Carpathian J Math 2010; 26: 108-119.

[^0]: *Correspondence: rakgun@balikesir.edu.tr
 2010 AMS Mathematics Subject Classification: 46E30, 42A10, 41A17, 41A20, 41A25, 41A27

