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Abstract: In this work, we consider two types of second-order neutral differential equations and we obtain sufficient

conditions for the existence of positive ω -periodic solutions for these equations. We employ Krasnoselskii’s fixed point

theorem for the sum of a completely continuous and a contraction mapping. An example is included to illustrate our

results.
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1. Introduction

In the present article, we investigate the existence of positive ω -periodic solutions of the following second-order

neutral differential equations:

[x(t)− c(t)x(t− τ)]
′′
= a(t)x(t)− f(t, x(t− τ)) (1)

and

[x(t)− c(t)x(t− τ)]
′′
= −a(t)x(t) + f(t, x(t− τ)), (2)

where c ∈ C(R,R), a ∈ C(R, (0,∞)), f ∈ C(R × R,R), τ > 0, and a, c are ω -periodic functions and f is

ω -periodic in the first variable, ω > 0. These equations or their variations appear in a number of fields such

as biology, physics, and mechanics; see [7, 8, 11]. In order to show that we have positive ω -periodic solutions

of (1) and (2), we transform (1) and (2) into equivalent integral equations and we apply Krasnoselskii’s fixed

point theorem.

Recently, the existence of positive periodic solutions of first- and second-order neutral differential equa-

tions have been investigated by many authors, see; [2–6, 9, 10, 12] and references therein. In [5], existence of

positive periodic solutions of

[x(t)− cx(t− τ(t))]
′′
= a(t)x(t)− f(t, x(t− τ(t)))

and

[x(t)− cx(t− τ(t))]
′′
= −a(t)x(t) + f(t, x(t− τ(t))),
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where τ(t) ∈ C(R,R), a ∈ C(R, (0,∞)), f ∈ C(R × [0,∞), [0,∞)), and a, τ are ω -periodic functions and f

is ω -periodic in the first variable, were investigated with 0 ⩽ c < 1 and −1 < c < 0. In the present paper, we

consider 1 < c(t) < ∞ , −∞ < c(t) < −1, 0 ⩽ c(t) < 1, and −1 < c(t) ⩽ 0 as four different ranges for variable

coefficient c(t), which makes the results in this current paper more general than that of [5].

The rest of this paper is organized as follows. In Section 2, we introduce some notations and we state

and modify some lemmas from [5]. Section 3 contains our main results on existence of positive ω -periodic

solutions of (1) and (2), respectively, and an example.

2. Preliminaries

Let Φ = {x(t) : x(t) ∈ C(R,R), x(t) = x(t + ω), t ∈ R} with the sup norm ∥x∥ = sup
t∈[0,ω]

|x(t)| . It is clear

that Φ is a Banach space. Define

C+
ω = {x(t) : x(t) ∈ C(R, (0,∞)), x(t) = x(t+ ω)},

C−
ω = {x(t) : x(t) ∈ C(R, (−∞, 0)), x(t) = x(t+ ω)}.

Let

M = max{a(t) : t ∈ [0, ω]}, m = min{a(t) : t ∈ [0, ω]} and β =
√
M.

Lemma 2.1 ([5]) The equation

y′′(t)−My(t) = h(t), h ∈ C−
ω

has a unique ω -periodic solution

y(t) =

∫ t+ω

t

G1(t, s)(−h(s))ds,

where

G1(t, s) =
exp(−β(s− t)) + exp(β(s− t− ω))

2β(1− exp(−βω))
, s ∈ [t, t+ ω].

Lemma 2.2 ([5]) G1(t, s) > 0 and
∫ t+ω

t
G1(t, s)ds =

1
M for all t ∈ [0, ω] and s ∈ [t, t+ ω].

Lemma 2.3 The equation

y′′(t)− a(t+ τ)y(t) = h(t), h ∈ C−
ω (3)

has a unique positive ω -periodic solution

y(t) = (P1h)(t) = (I − T1B1)
−1(T1h)(t),

where T1, B1 : Φ → Φ defined such that

(T1h)(t) =

∫ t+ω

t

G1(t, s)(−h(s))ds, (B1y)(t) = [−M + a(t+ τ)]y(t)
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and P1 is completely continuous and satisfies

0 < (T1h)(t) ⩽ (P1h)(t) ⩽
M

m
∥T1h∥, h ∈ C−

ω .

Proof Rewrite (3) as

y′′(t)−My = h(t) + [−M + a(t+ τ)]y(t).

Then, by Lemma 2.1,

y(t) = (T1h)(t) + (T1B1y)(t) (4)

is a solution of (3). It is obvious that (4) yields to

y(t) = (P1h)(t) = (I − T1B1)
−1(T1h)(t).

Moreover, it is clear that T1 , B1 are completely continuous and (T1h)(t) > 0. It can be shown that ∥T1∥ ⩽ 1
M

and ∥B1∥ ⩽ (M −m). Therefore,

∥T1B1∥ ⩽ ∥T1∥∥B1∥ ⩽ (M −m)

M
= 1− m

M
< 1. (5)

By Neumann expansion of P1, we have

P1 = (I − T1B1)
−1T1

= (I + T1B1 + (T1B1)
2 + . . .+ (T1B1)

n + . . .)T1

= T1 + T1B1T1 + (T1B1)
2T1 + . . .+ (T1B1)

nT1 + . . . . (6)

Since T1 and B1 are completely continuous, so is P1 . By using (5) and (6), we obtain

0 < (T1h)(t) ⩽ (P1h)(t) ⩽
M

m
∥T1h∥, h ∈ C−

ω .

2

Lemma 2.4 ([5]) The equation

y′′(t) +My(t) = h(t), h ∈ C+
ω

has a unique ω -periodic solution

y(t) =

∫ t+ω

t

G2(t, s)h(s)ds,

where

G2(t, s) =
cos(β(ω2 + t− s))

2β sin(βω2 )
, s ∈ [t, t+ ω].
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Lemma 2.5 ([5])
∫ t+ω

t
G2(t, s)ds = 1

M . Furthermore, if M < (πω )
2 , then G2(t, s) > 0 for all t ∈ [0, ω] and

s ∈ [t, t+ ω] .

Lemma 2.6 Let M < (πω )
2 . The equation

y′′(t) + a(t+ τ)y(t) = h(t), h ∈ C+
ω

has a unique positive ω -periodic solution

y(t) = (P2h)(t) = (I − T2B2)
−1(T2h)(t),

where T2, B2 : Φ → Φ defined such that

(T2h)(t) =

∫ t+ω

t

G2(t, s)h(s)ds, (B2y)(t) = [M − a(t+ τ)]y(t)

and P2 is completely continuous and satisfies

0 < (T2h)(t) ⩽ (P2h)(t) ⩽
M

m
∥T2h∥, h ∈ C+

ω .

Proof The proof is similar to that of Lemma 2.3, so it is omitted. 2

Lemma 2.7 (Krasnoselskii’s fixed point theorem [1]). Let X be a Banach space, let Ω be a bounded closed and

convex subset of X , and let S1, S2 be maps of Ω into X such that S1x+ S2y ∈ Ω for every pair x, y ∈ Ω . If

S1 is contractive and S2 is completely continuous, then the equation

S1x+ S2x = x

has a solution in Ω .

3. Main results

Theorem 3.1 Suppose that 1 < c0 ⩽ c(t) ⩽ c1 < ∞ and there exist positive constants M1 and M2 with

0 < M1 < M2 such that

(c1 − 1)MM1 ⩽ c(t)a(t)x− f(t, x) ⩽ (c0 − 1)mM2, ∀(t, x) ∈ [0, ω]× [M1,M2]. (7)

Then (1) has at least one positive ω -periodic solution x(t) such that M1 ⩽ x(t) ⩽ M2 .

Proof Let Ω = {x ∈ Φ : M1 ⩽ x(t) ⩽ M2, t ∈ [0, ω]}. One can see that Ω is a bounded, closed, and convex

subset of Φ. We show that

x(t) =
1

c(t+ τ)

[
P1 [−c(t+ τ)a(t+ τ)x(t) + f(t+ τ, x(t))] + x(t+ τ)

]
(8)

is a solution of (1). The equation

[c(t+ τ)x(t)− x(t+ τ)]
′′
= −a(t+ τ)x(t+ τ) + f(t+ τ, x(t))
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or

[c(t+ τ)x(t)− x(t+ τ)]
′′ − a(t+ τ) [c(t+ τ)x(t)− x(t+ τ)]

= −c(t+ τ)a(t+ τ)x(t) + f(t+ τ, x(t)) (9)

is equivalent to (1). Let y(t) = c(t+ τ)x(t)− x(t+ τ) in the the equation (9), and then we have

y′′(t)− a(t+ τ)y(t) = −c(t+ τ)a(t+ τ)x(t) + f(t+ τ, x(t)).

Then, by Lemma 2.3, we have

y(t) = P1(−c(t+ τ)a(t+ τ)x(t) + f(t+ τ, x(t))),

which is the same as (8).

We define two mappings S1 and S2 on Ω as follows:

(S1x)(t) =
1

c(t+ τ)
P1 [−c(t+ τ)a(t+ τ)x(t) + f(t+ τ, x(t))] and

(S2x)(t) =
x(t+ τ)

c(t+ τ)
.

It is obvious that S1x and S2x are continuous and ω -periodic, i.e we have S1(Ω) ⊂ Φ and S2(Ω) ⊂ Φ. For all

x1, x2 ∈ Ω and t ∈ R , from (7), Lemma 2.2, and Lemma 2.3, we get

(S1x1)(t) + (S2x2)(t) =
1

c(t+ τ)

[
P1 [−c(t+ τ)a(t+ τ)x1(t) + f(t+ τ, x1(t))] + x2(t+ τ)

]

⩽ M

mc0
∥T1(−c(t+ τ)a(t+ τ)x1(t) + f(t+ τ, x1(t)))∥+

M2

c0

=
M

mc0
sup

t∈[0,ω]

∣∣∣∣ ∫ t+ω

t

G1(t, s)(c(s+ τ)a(s+ τ)x1(s)− f(s+ τ, x1(s)))ds

∣∣∣∣+ M2

c0

⩽ M

mc0

∫ t+ω

t

G1(t, s)(c0 − 1)mM2ds+
M2

c0
= M2

and

(S1x1)(t) + (S2x2)(t) =
1

c(t+ τ)

[
P1 [−c(t+ τ)a(t+ τ)x1(t) + f(t+ τ, x1(t))] + x2(t+ τ)

]

⩾ 1

c1

[
T1 [−c(t+ τ)a(t+ τ)x1(t) + f(t+ τ, x1(t))]

]
+

x2(t+ τ)

c1

⩾ 1

c1

∫ t+ω

t

G1(t, s)(c(s+ τ)a(s+ τ)x1(s)− f(s+ τ, x1(s)))ds+
M1

c1

⩾ 1

c1

∫ t+ω

t

G1(t, s)(c1 − 1)MM1ds+
M1

c1
= M1,
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from which we conclude that M1 ⩽ (S1x1)(t) + (S2x2)(t) ⩽ M2 for all x1, x2 ∈ Ω and t ∈ R, i.e. we have

S1x1 + S2x2 ∈ Ω. For x1, x2 ∈ Ω, we have

|(S2x1)(t)− (S2x2)(t))| =
∣∣∣∣x1(t+ τ)

c(t+ τ)
− x2(t+ τ)

c(t+ τ)

∣∣∣∣ ⩽ 1

c0

∣∣∣∣x1(t+ τ)− x2(t+ τ)

∣∣∣∣ ⩽ 1

c0
∥x1 − x2∥,

which implies that

∥S2x1 − S2x2∥ ⩽ 1

c0
∥x1 − x2∥.

Since 0 < 1
c0

< 1, S2 is a contraction mapping on Ω.

From Lemma 2.3, we know that P1 is completely continuous, and so is S1 . By Lemma 2.7, there is

an x ∈ Ω such that S1x + S2x = x. It is easy to see that x(t) is a positive ω -periodic solution of (1). This

completes the proof. 2

Theorem 3.2 Suppose that −∞ < c0 ⩽ c(t) ⩽ c1 < −1 , c0
c1
M < −c1m , and there exist positive constants M1

and M2 with 0 < M1 < M2 such that

(−c0M1 +
c0
c1

M2)M ⩽ f(t, x)− c(t)a(t)x ⩽ −c1mM2, ∀(t, x) ∈ [0, ω]× [M1,M2].

Then (1) has at least one positive ω -periodic solution x(t) such that M1 ⩽ x(t) ⩽ M2 .

Proof Let Ω be as in the proof of Theorem 3.1. We define S1, S2 : Ω → Φ as follows:

(S1x)(t) =
−1

c(t+ τ)
P1 [c(t+ τ)a(t+ τ)x(t)− f(t+ τ, x(t))] and

(S2x)(t) =
x(t+ τ)

c(t+ τ)
.

The rest of the proof is similar to that of Theorem 3.1, so it is omitted. 2

Theorem 3.3 Suppose that 0 ⩽ c(t) ⩽ c1 < 1 and there exist positive constants M1 and M2 with 0 < M1 <

M2 such that

M1M ⩽ f(t, x)− c(t)a(t)x ⩽ (1− c1)M2m, ∀(t, x) ∈ [0, ω]× [M1,M2].

Then (1) has at least one positive ω -periodic solution x(t) such that M1 ⩽ x(t) ⩽ M2 .

Proof Let Ω be as in the proof of Theorem 3.1. We define the mappings S1, S2 : Ω → Φ as follows:

(S1x)(t) = P1 [c(t)a(t)x(t− τ)− f(t, x(t− τ))] and

(S2x)(t) = c(t)x(t− τ).

The remaining part of the proof is similar to that of Theorem 3.1, so it is omitted. 2
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Theorem 3.4 Suppose that −1 < c0 ⩽ c(t) < 0 , −c0M < m and there exist positive constants M1 and M2

with 0 < M1 < M2 such that

(M1 − c0M2)M ⩽ f(t, x)− c(t)a(t)x ⩽ mM2, ∀(t, x) ∈ [0, ω]× [M1,M2].

Then (1) has at least one positive ω -periodic solution x(t) such that M1 ⩽ x(t) ⩽ M2 .

Proof The proof is similar to that of Theorem 3.3, so it is omitted. 2

Theorem 3.5 Let M < (πω )
2 . Suppose that 1 < c0 ⩽ c(t) ⩽ c1 < ∞ and there exist positive constants M1

and M2 with 0 < M1 < M2 such that

(c1 − 1)MM1 ⩽ c(t)a(t)x− f(t, x) ⩽ (c0 − 1)mM2, ∀(t, x) ∈ [0, ω]× [M1,M2]. (10)

Then (2) has at least one positive ω -periodic solution x(t) such that M1 ⩽ x(t) ⩽ M2 .

Proof Let Ω = {x ∈ Φ : M1 ⩽ x(t) ⩽ M2, t ∈ [0, ω]}. One can see that Ω is a bounded, closed, and convex

subset of Φ. We show that

x(t) =
1

c(t+ τ)

[
P2 [c(t+ τ)a(t+ τ)x(t)− f(t+ τ, x(t))] + x(t+ τ)

]
(11)

is a solution of (2). The equation

[c(t+ τ)x(t)− x(t+ τ)]
′′
= a(t+ τ)x(t+ τ)− f(t+ τ, x(t))

or

[c(t+ τ)x(t)− x(t+ τ)]
′′

+ a(t+ τ) [c(t+ τ)x(t)− x(t+ τ)]

= c(t+ τ)a(t+ τ)x(t)− f(t+ τ, x(t)) (12)

is equivalent to (2). Let y(t) = c(t+ τ)x(t)− x(t+ τ) in equation (12), and then we have

y′′(t) + a(t+ τ)y(t) = c(t+ τ)a(t+ τ)x(t)− f(t+ τ, x(t)).

Then, by Lemma 2.6, we have

y(t) = P2(c(t+ τ)a(t+ τ)x(t)− f(t+ τ, x(t))),

which is the same as (11).

We define two mappings S1 and S2 on Ω as follows:

(S1x)(t) =
1

c(t+ τ)
P2 [c(t+ τ)a(t+ τ)x(t)− f(t+ τ, x(t))] and

(S2x)(t) =
x(t+ τ)

c(t+ τ)
.
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It is clear that S1x , S2x are continuous and ω -periodic, i.e we have S1(Ω) ⊂ Φ and S2(Ω) ⊂ Φ. For all

x1, x2 ∈ Ω and t ∈ R , from (10), Lemma 2.5, and Lemma 2.6, we get

(S1x1)(t) + (S2x2)(t) =
1

c(t+ τ)

[
P2 [c(t+ τ)a(t+ τ)x1(t)− f(t+ τ, x1(t))] + x2(t+ τ)

]

⩽ M

mc0
∥T2(c(t+ τ)a(t+ τ)x1(t)− f(t+ τ, x1(t)))∥+

M2

c0

=
M

mc0
sup

t∈[0,ω]

∣∣∣∣ ∫ t+ω

t

G2(t, s)(c(s+ τ)a(s+ τ)x1(s)− f(s+ τ, x1(s)))ds

∣∣∣∣+ M2

c0

⩽ M

mc0

∫ t+ω

t

G2(t, s)(c0 − 1)mM2ds+
M2

c0
= M2

and

(S1x1)(t) + (S2x2)(t) =
1

c(t+ τ)

[
P2 [c(t+ τ)a(t+ τ)x1(t)− f(t+ τ, x1(t))] + x2(t+ τ)

]

⩾ 1

c1

[
T2 [c(t+ τ)a(t+ τ)x1(t)− f(t+ τ, x1(t))]

]
+

x2(t+ τ)

c1

⩾ 1

c1

∫ t+ω

t

G2(t, s)(c(s+ τ)a(s+ τ)x1(s)− f(s+ τ, x1(s)))ds+
M1

c1

⩾ 1

c1

∫ t+ω

t

G2(t, s)(c1 − 1)MM1ds+
M1

c1
= M1,

from which we conclude that M1 ⩽ (S1x1)(t) + (S2x2)(t) ⩽ M2 for all x1, x2 ∈ Ω and t ∈ R, i.e. we have

S1x1 + S2x2 ∈ Ω. For x1, x2 ∈ Ω, we obtain

|(S2x1)(t)− (S2x2)(t))| =
∣∣∣∣x1(t+ τ)

c(t+ τ)
− x2(t+ τ)

c(t+ τ)

∣∣∣∣ ⩽ 1

c0

∣∣∣∣x1(t+ τ)− x2(t+ τ)

∣∣∣∣ ⩽ 1

c0
∥x1 − x2∥,

which implies that

∥S2x1 − S2x2∥ ⩽ 1

c0
∥x1 − x2∥.

Since 0 < 1
c0

< 1, S2 is a contraction mapping on Ω.

From Lemma 2.6, we know that P2 is completely continuous, and so is S1 . By Lemma 2.7, there is

an x ∈ Ω such that S1x + S2x = x. It is easy to see that x(t) is a positive ω -periodic solution of (2). This

completes the proof. 2

The proofs of the next three theorems are similar to that of Theorem 3.2–Theorem 3.4, respectively, so

they are omitted.

Theorem 3.6 Let M < (πω )
2 . Suppose that −∞ < c0 ⩽ c(t) ⩽ c1 < −1 , c0

c1
M < −c1m , and there exist

positive constants M1 and M2 with 0 < M1 < M2 such that

(−c0M1 +
c0
c1

M2)M ⩽ f(t, x)− c(t)a(t)x ⩽ −c1mM2, ∀(t, x) ∈ [0, ω]× [M1,M2].
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Then (2) has at least one positive ω -periodic solution x(t) such that M1 ⩽ x(t) ⩽ M2 .

Theorem 3.7 Let M < (πω )
2 . Suppose that 0 ⩽ c(t) ⩽ c1 < 1 and there exist positive constants M1 and M2

with 0 < M1 < M2 such that

M1M ⩽ f(t, x)− c(t)a(t)x ⩽ (1− c1)M2m, ∀(t, x) ∈ [0, ω]× [M1,M2].

Then (2) has at least one positive ω -periodic solution x(t) such that M1 ⩽ x(t) ⩽ M2 .

Theorem 3.8 Let M < (πω )
2 . Suppose that −1 < c0 ⩽ c(t) < 0 , −c0M < m and there exist positive constants

M1 and M2 with 0 < M1 < M2 such that

(M1 − c0M2)M ⩽ f(t, x)− c(t)a(t)x ⩽ mM2, ∀(t, x) ∈ [0, ω]× [M1,M2].

Then (2) has at least one positive ω -periodic solution x(t) such that M1 ⩽ x(t) ⩽ M2 .

Example 3.1 Consider the first-order neutral differential equation

[x(t)− 3 exp(cos t/10)x(t− 6π)]
′′

= (3 + sin t)x(t)− 3 exp(cos t/10)(3 + sin t)x(t− 6π)

+ 5− exp(sin t)− sin(x3(t− 6π)). (13)

Note that (13) of the form (1) with ω = 2π , c(t) = 3 exp(cos t/10) , a(t) = 3+sin t , f(t, x) = 3 exp(cos t/10)(3+

sin t)x− 5+ exp(sin t)+ sinx3 , and τ = 6π . It is easy to verify that the conditions of Theorem 3.1 are satisfied

with M1 = 0.1 , M2 = 2 . Thus, (13) has at least one positive ω -periodic solution.

Remark 3.1 Since c(t) = 3 exp(cos t/10) in Example 3.1 is not constant and c(t) > 1 , we can not apply the

results in [5].
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