Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
тӥвітак

Turk J Math
(2018) 42: 1528 - 1535
(c) TÜBİTAK
doi:10.3906/mat-1706-40

On small covers over a product of simplices

Murat ALTUNBULAK, Aslı GÜÇLÜKAN İLHAN*
Department of Mathematics, Faculty of Science, Dokuz Eylül University, Buca, İzmir, Turkey

| Received: 12.06 .2017 | Accepted/Published Online: $22.01 .2018 \quad \bullet$ | Final Version: 08.05 .2018 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

In this paper, we give a formula for the number of \mathbb{Z}_{2}^{n}-equivariant homeomorphism classes of small covers over a product of simplices. We also give an upper bound for the number of small covers over a product of simplices up to homeomorphism.

Key words: Small cover, equivariant homeomorphism, polytope, acyclic digraph

1. Introduction

A small cover is a smooth closed manifold M^{n} that admits a locally standard \mathbb{Z}_{2}^{n}-action whose orbit space is a simple convex polytope. The notion of a small cover was introduced by Davis and Januszkiewicz [5] as a generalization of real toric manifolds. In [5], it was shown that every small cover over a simple convex polytope P^{n} can be obtained from a characteristic function on the set of facets of P^{n}. There is a free action of the general linear group $G L\left(n, \mathbb{Z}_{2}\right)$ on the set of characteristic functions and the orbit space of this action is in one-to-one correspondence with the Davis-Januszkiewicz equivalence classes of small covers. Recently, several studies have been done to calculate the number of Davis-Januszkiewicz equivalence classes of small covers over a specific polytope (see $[1,3,6]$). In [6], Garrison and Scott used a computer program to find the number of small covers over a dodecahedron up to Davis-Januszkiewicz equivalence. In [3], Choi constructed a bijection between the set of Davis-Januszkiewicz equivalence classes of small covers over an n-cube and the set of acyclic digraphs with n-labeled nodes. He also gave a formula for the number of small covers over a product of simplices up to Davis-Januszkiewicz equivalence in terms of acyclic digraphs with labeled nodes.

There is a standard action of the automorphism group of the face poset of P^{n} on the set of characteristic functions on P^{n}. Lü and Masuda [7] showed that there is a bijection between the set of orbits of this action and the set of \mathbb{Z}_{2}^{n}-equivariant homeomorphism classes of small covers over P^{n}. By Burnside's lemma, the number of orbits of an action is the average number of the points fixed by an element of the group. Therefore, one can find the number of \mathbb{Z}_{2}^{n}-equivariant homeomorphism classes of small covers over P^{n} by enumerating the number of fixed points of elements of the automorphism group. Using the Burnside lemma, Choi [3] gave a formula for the number of \mathbb{Z}_{2}^{n}-equivariant homeomorphism classes of small covers over a cube, which is the product of 1 -simplices. When P^{n} is a product of simplices of dimension greater than 1 , the action of the automorphism group of the face poset is free. Therefore, the number of equivariant small covers over a product of simplices of dimension greater than 1 is the quotient of the number of the small covers and the order of the automorphism

[^0]
ALTUNBULAK and GÜÇLÜKAN İLHAN/Turk J Math

group of the face poset. In [2], Chen and Wang directly counted the number of equivariant homeomorphism classes of small covers over $\Delta^{1} \times \Delta^{n_{1}} \times \Delta^{n_{2}}$ and $\Delta_{1} \times \Delta^{n_{3}}$, where $\Delta^{n_{i}}$ is an n_{i}-simplex with $n_{i} \geq 1$ for $1 \leq i \leq 3$. In this paper, we use Choi's argument to generalize these formulas to an arbitrary product of simplices.

The paper is organized as follows. In Section 2 we recall the basic theory about the small covers over a simple polytope and vector matrices. In Section 3 we obtain a formula for the number of \mathbb{Z}_{2}^{n}-equivariant homeomorphism classes over a product of simplices. In Section 4 we give an upper bound for the number of small covers over a product of equidimensional simplices up to homeomorphism.

2. Preliminaries

An n-dimensional convex polytope P is said to be simple if every vertex of P is the intersection of precisely n facets. A small cover over P is a smooth closed n-manifold M^{n} that admits a \mathbb{Z}_{2}^{n}-action that is locally isomorphic to a standard action of \mathbb{Z}_{2}^{n} on \mathbb{R}^{n} and the orbit space of the action is P.

Given a simple convex polytope P of dimension n, let $\mathcal{F}(P)=\left\{F_{1}, \ldots, F_{m}\right\}$ be the set of facets of P. A function $\lambda: \mathcal{F}(P) \rightarrow \mathbb{Z}_{2}^{n}$ is called a characteristic function if it satisfies the nonsingularity condition that whenever the intersection $F_{i_{1}} \cap \cdots \cap F_{i_{n}}$ is nonempty, the set $\left\{\lambda\left(F_{i_{1}}\right), \ldots, \lambda\left(F_{i_{n}}\right)\right\}$ forms a basis for \mathbb{Z}_{2}^{n}. For a given point $p \in P$, let $\mathbb{Z}_{2}^{n}(p)$ be the subgroup of \mathbb{Z}_{2}^{n} generated by $\lambda\left(F_{i_{1}}\right), \ldots, \lambda\left(F_{i_{k}}\right)$ where the intersection $\bigcap_{j=1}^{k} F_{i_{j}}$ is the minimal face containing p in its relative interior. Then the manifold $M(\lambda)=\left(P \times \mathbb{Z}_{2}^{n}\right) / \sim$ where

$$
(p, g) \sim(q, h) \text { if } p=q \text { and } g^{-1} h \in \mathbb{Z}_{2}^{n}(p)
$$

is a small cover over P.
Theorem 2.1 ([5]) For every small cover M over P, there is a characteristic function λ with \mathbb{Z}_{2}^{n}-homeomorphism $M(\lambda) \rightarrow M$ covering the identity on P.

Two small covers M_{1} and M_{2} over P are said to be DJ-equivalent (Davis-Januszkiewicz equivalent) if there is a weakly \mathbb{Z}_{2}^{n}-homeomorphism $f: M_{1} \rightarrow M_{2}$ covering the identity on P. Following [7], let $\Lambda(P)$ be the set of all characteristic functions on P. There is a free action of $G L\left(n, \mathbb{Z}_{2}\right)$ on $\Lambda(P)$ defined by $g \cdot \lambda=g \circ \lambda$. By the above theorem, DJ-equivalence classes of small covers over P bijectively correspond to the coset $G L\left(n, \mathbb{Z}_{2}\right) \backslash \Lambda(P)$. In particular, $|\Lambda(P)|$ is equal to the product of $\left|G L\left(n, \mathbb{Z}_{2}\right) \backslash \Lambda(P)\right|$ and $\left|G L\left(n, \mathbb{Z}_{2}\right)\right|=$ $\prod_{k=1}^{n}\left(2^{n}-2^{k-1}\right)$.

On the other hand, the equivariant classes of small covers over P are characterized by the action of the automorphism group of the face poset of P. More precisely, let $\operatorname{Aut}(\mathcal{F}(P))$ be the group of bijections from the set of faces of P to itself, which preserves the poset structure. Then $\operatorname{Aut}(\mathcal{F}(P))$ acts on $\Lambda(P)$ on the right by $\lambda \cdot h=\lambda \circ h$. In [7], Lu and Masuda proved the following theorem.

Theorem 2.2 The set of \mathbb{Z}_{2}^{n}-homeomorphism classes of small covers over P corresponds bijectively to the $\operatorname{coset} \Lambda(P) / \operatorname{Aut}(\mathcal{F}(P))$.

By the above theorem, to find the number of equivariant classes of small covers over P, we need to find the number of orbits of $\Lambda(P)$ under the action of $\operatorname{Aut}(\mathcal{F}(P))$. The Burnside lemma reduces this problem to
the enumeration of fixed points

$$
\Lambda(P)_{h}=\{\lambda \in \Lambda(P) \mid \lambda(h(F))=\lambda(F) \text { for all } F \in \mathcal{F}(P)\}
$$

by elements $h \in \operatorname{Aut}(\mathcal{F}(P))$.

Lemma 2.3 (Burnside lemma) Let G be a finite group acting on a set X. Then the number of G-orbits of X is equal to $\frac{1}{|G|} \sum_{g \in G}\left|X^{g}\right|$, where $X^{g}=\{x \in X \mid g x=x\}$.

Therefore, one can find the number of \mathbb{Z}_{2}^{n}-equivariant homeomorphism classes of small covers over P^{n} by enumerating $\Lambda(P)_{h}$ for all $h \in \operatorname{Aut}(\mathcal{F}(P))$.

As a combination of the above theorems, we have the following result.

Theorem 2.4 The number of weakly \mathbb{Z}_{2}^{n}-homeomorphism classes of small covers over P is the size of the double coset $G L\left(n, \mathbb{Z}_{2}\right) \backslash \Lambda(P) / \operatorname{Aut}(\mathcal{F}(P))$.

3. The number of \mathbb{Z}_{2}^{n}-equivariant homeomorphism classes

Let $P=\Delta^{n_{1}} \times \cdots \times \Delta^{n_{m}}$, where $\Delta^{n_{i}}$ is the standard n_{i}-simplex. Let \mathcal{G}_{m} be the set of acyclic digraphs with m labeled nodes with labeled vertex set $V(G)=\left\{v_{1}, \ldots, v_{m}\right\}$. Here, a digraph is a graph with at most one edge directed from vertex v_{i} to v_{j}. A directed graph is said to be acyclic if there is no directed cycle. The outdegree outdeg (v) (the indegree $\operatorname{indeg}(v)$) of a vertex v is the number of edges directed from (to) v. In [3], Choi gave the following formula for the number of small covers over P.

Theorem 3.1 (Theorem 2.8, [3]) The number of DJ-equivalence classes of small covers over $P=\Delta^{n_{1}} \times \cdots \times$ $\Delta^{n_{m}}$ with $\sum_{i=1}^{m} n_{i}=n$ is

$$
\left|G L\left(n, \mathbb{Z}_{2}\right) \backslash \Lambda(P)\right|=\sum_{G \in \mathcal{G}_{m}} \prod_{v_{i} \in V(G)}\left(2^{n_{i}}-1\right)^{\operatorname{outdeg}\left(v_{i}\right)}
$$

It is well known that the automorphism group of the face poset of Δ^{n} is the group of permutations on the set of facets, i.e. $\operatorname{Aut}\left(\mathcal{F}\left(\Delta^{n}\right)\right) \cong S_{n+1}$, where S_{n+1} is the symmetric group of degree $n+1$. To understand the automorphism group of $\mathcal{F}(P)$, we need to take the number of Δ^{n} occurring in P into account. For this reason, we write

$$
P=\prod_{i=1}^{l} P_{i}, \text { where } P_{i}=\Delta_{1}^{n_{i}} \times \cdots \times \Delta_{m_{i}}^{n_{i}},
$$

with $1 \leq n_{1}<n_{2}<\cdots<n_{l}$ and $\sum_{i=1}^{l} n_{i} m_{i}=n$. Then the set of facets of P^{i} is

$$
\left\{f_{j, k}^{i}=\Delta_{1}^{n_{i}} \times \cdots \times \Delta_{j-1}^{n_{i}} \times \tilde{f}_{j, k}^{i} \times \Delta_{j+1}^{n_{i}} \times \cdots \times \Delta_{m_{i}}^{n_{i}} \mid 0 \leq k \leq n_{i}, 1 \leq j \leq m_{i}\right\}
$$

where $\left\{\tilde{f}_{j, 0}^{i}, \ldots, \tilde{f}_{j, n_{i}}^{i}\right\}$ is the set of facets of the simplex $\Delta_{j}^{n_{i}}$. Therefore, we have

$$
\mathcal{F}(P)=\left\{F_{j, k}^{i} \mid 0 \leq k \leq n_{i}, 1 \leq j \leq m_{i}, 1 \leq i \leq l\right\}
$$

where $F_{j, k}^{i}=P_{1} \times \cdots \times P_{i-1} \times f_{j, k}^{i} \times P_{i+1} \times \cdots \times P_{l}$. Note that there are $(n+m)$-facets, where $m=\sum_{i=1}^{l} m_{i}$. Since $\operatorname{Aut}\left(\mathcal{F}\left(\Delta^{n}\right)\right) \cong S_{n+1}, \operatorname{Aut}\left(\mathcal{F}\left(P_{i}\right)\right)$ is the wreath product of $S_{n_{i+1}}$ with $S_{m_{i}}$, where $\mu \in S_{m_{i}}$ sends $f_{j, k}^{i}$ to $f_{\mu(j), k}^{i}$. More precisely, $\operatorname{Aut}\left(\mathcal{F}\left(P_{i}\right)\right)=S_{n_{i}+1} \backslash S_{m_{i}}$ is equal to $\underbrace{S_{n_{i}+1} \times \cdots \times S_{n_{i}+1}}_{m_{i}} \times S_{m_{i}}$ as a set where the group multiplication is defined by

$$
\left(\sigma_{1}, \cdots, \sigma_{m_{i}}, \mu\right)\left(\sigma_{1}^{\prime}, \cdots, \sigma_{m_{i}}^{\prime}, \mu^{\prime}\right)=\left(\sigma_{1} \sigma_{\mu^{-1}(1)}^{\prime}, \cdots, \sigma_{m_{i}} \sigma_{\mu^{-1}\left(m_{i}\right)}^{\prime}, \mu \mu^{\prime}\right)
$$

for any $\sigma_{i}, \sigma_{i}^{\prime} \in S_{n_{i}+1}$ and $\mu, \mu^{\prime} \in S_{m_{i}}$. Since $n_{1}<n_{2}<\cdots<n_{l}$, we have the following.
Lemma 3.2 $\operatorname{Aut}(\mathcal{F}(P)) \cong \prod_{i=1}^{l}\left(S_{n_{i}+1} \backslash S_{m_{i}}\right)$.
By the nonsingularity condition, a characteristic function must send any set obtained by taking n_{i}-many elements from $\left\{F_{j, k}^{i} \mid 0 \leq k \leq n_{i}\right\}$ for each $1 \leq j \leq m_{i}$ and $1 \leq i \leq l$ to a basis of \mathbb{Z}_{2}^{n}. When $1<n_{1}$, more than one element is arbitrarily chosen from each set. However, for every nontrivial element g of $\operatorname{Aut}(\mathcal{F}(P))$, there exist $1 \leq j \leq m_{i}$ and $1 \leq i \leq l$ for which at least two elements from the set $\left\{F_{j, k}^{i} \mid 0 \leq k \leq n_{i}\right\}$ are not fixed by g. Therefore, g cannot fix any characteristic function. This means that the action of $\operatorname{Aut}(\mathcal{F}(P))$ on $\mathcal{F}(P)$ is free and hence the number of equivariant homeomorphism classes of small covers over P with $n_{1}>1$ is

$$
\frac{|\Lambda(P)|}{|\operatorname{Aut}(\mathcal{F}(P))|}=\frac{|\Lambda(P)|}{\prod_{i=1}^{l}\left[\left(n_{i}+1\right)!\right]^{m_{i}}\left(m_{i}\right)!}
$$

Since $\left|G L\left(n, \mathbb{Z}_{2}\right)\right|=\prod_{k=1}^{n}\left(2^{n}-2^{k-1}\right)$, by the above theorem we have:
Corollary 3.3 Let $P=\prod_{i=1}^{l} \Delta_{1}^{n_{i}} \times \cdots \times \Delta_{m_{i}}^{n_{i}}$ with $\sum_{i=1}^{l} m_{i}=m$ and $\sum_{i=1}^{l} n_{i} m_{i}=n$. Define a function n : $\{1, \ldots, m\} \rightarrow\left\{n_{1}, \ldots, n_{l}\right\}$ by $n(s)=n_{i}$ whenever $k_{1}+\cdots+k_{i-1}+1 \leq s \leq k_{1}+\cdots+m_{i}$. Then the number of equivariant homeomorphism classes of small covers over P with $n_{1}>1$ is

$$
\frac{|\Lambda(P)|}{|\operatorname{Aut}(\mathcal{F}(P))|}=\frac{\left(\prod_{k=1}^{n}\left(2^{n}-2^{k-1}\right)\right)\left(\sum_{G \in \mathcal{G}_{m}} \prod_{v_{s} \in V(G)}\left(2^{n(s)}-1\right)^{\operatorname{outdeg}\left(v_{s}\right)}\right)}{\prod_{i=1}^{l}\left[\left(n_{i}+1\right)!\right]^{m_{i}}\left(m_{i}\right)!}
$$

When $n_{1}=1$, the only elements of $\operatorname{Aut}(\mathcal{F}(P))$ that have a fixed point are the ones of the form

$$
\chi_{1}^{\epsilon_{1}} \cdots \chi_{m_{1}}^{\epsilon_{m_{1}}}, \quad \epsilon_{i} \in \mathbb{Z}_{2}
$$

where $\chi_{1}, \cdots, \chi_{m_{1}}$ are the reflections in $\operatorname{Aut}\left(\mathcal{F}\left(I^{m_{1}}\right)\right)$. To count the number of elements in $\Lambda(P)_{\chi_{1}^{\epsilon_{1}} \ldots \chi_{m_{1}}^{\epsilon_{m}}}$, first note that it is a $G L\left(n, \mathbb{Z}_{2}\right)$-invariant subset of $\Lambda(P)$. Since the action of $G L\left(n, \mathbb{Z}_{2}\right)$ is free, we have

$$
\left|\Lambda(P)_{\chi_{1}^{\epsilon_{1} \cdots \chi_{m_{1}}^{\epsilon_{m}}}}\right|=\left|G L\left(n, \mathbb{Z}_{2}\right)\right| \times\left|G L\left(n, \mathbb{Z}_{2}\right) \backslash \Lambda(P)_{\chi_{1}^{\epsilon_{1} \cdots \chi_{m_{1}}}}{ }_{\epsilon_{m_{1}}}\right|
$$

To find $\left|G L\left(n, \mathbb{Z}_{2}\right) \backslash \Lambda(P)_{\chi_{1}^{\epsilon_{1}} \ldots \chi_{m_{1}}^{\epsilon_{m}}}\right|$ we use the correspondence given by Choi [3]. By the nonsingularity condition, for any $\lambda \in \Lambda(P)$, the vectors

$$
\begin{equation*}
\lambda\left(F_{1,1}^{1}\right), \ldots, \lambda\left(F_{m_{1}, 1}^{1}\right), \lambda\left(F_{1,1}^{2}\right), \lambda\left(F_{1,2}^{2}\right), \ldots, \lambda\left(F_{1, n_{2}}^{2}\right), \lambda\left(F_{2,1}^{2}\right), \ldots, \lambda\left(F_{m_{l}, 1}^{l}\right), \ldots, \lambda\left(F_{m_{l}, n_{l}}^{l}\right) \tag{1}
\end{equation*}
$$

form a basis for \mathbb{Z}_{2}^{n}. For each coset in $G L\left(n, \mathbb{Z}_{2}\right) \backslash \Lambda(P)_{\chi_{1}^{e_{1}} \ldots \chi_{m_{1}}^{e_{m_{1}}}}$, choose a representative λ for which the vectors in (1) correspond to the standard basis elements

$$
e_{1}=(1,0, \ldots, 0), \cdots, e_{n}=(0, \ldots, 0,1)
$$

respectively. More precisely, we have

$$
\lambda\left(F_{j, k}^{i}\right)=e_{m_{1} n_{1}+\cdots+m_{i-1} n_{i-1}+(j-1) n_{i}+k}
$$

for $1 \leq i \leq l, 1 \leq j \leq m_{i}$ and $1 \leq k \leq n_{i}$. Let $A\left(\epsilon_{1}, \ldots, \epsilon_{m_{1}}\right)$ be the set of such representatives. For the remaining facets, we write $F_{j, 0}^{i}=: F_{m_{1}+\cdots+m_{i-1}+j}$ for $1 \leq i \leq l$ and $1 \leq j \leq m_{i}$. Then we have

$$
\lambda\left(F_{p}\right)=\sum_{q=1}^{n} a_{q p} e_{q}
$$

We can view the corresponding $(n \times m)$-matrix $\Lambda=\left[a_{p q}\right]$ as an $(m \times m)$-vector matrix $\left[\mathbf{v}_{\mathbf{p q}}\right]$ whose entries in the p th row are vectors in $\mathbb{Z}_{2}^{n(p)}$ where $n(p)$ is defined as in Corollary 3.3. We refer reader to [4] for details. Let $\Lambda_{s_{1} \cdots s_{m}}$ be the $(m \times m)$-submatrix of Λ whose i th row is the s_{i} th row of [$\left.\mathbf{v}_{\mathbf{p q}}\right]$. Then λ satisfies the singularity condition if and only if every principal minor of $\Lambda_{s_{1} \cdots s_{m}}$ is 1 for any $1 \leq s_{1} \leq n(1), \cdots, 1 \leq s_{m} \leq n(m)$.
Theorem $3.4\left|\Lambda(P)_{\chi_{1}^{\epsilon_{1}} \cdots \chi_{m_{1}}^{\epsilon_{m}}}\right|=\left(\prod_{k=1}^{n}\left(2^{n}-2^{k-1}\right)\right)\left(\sum_{G \in \mathcal{G}_{m}\left(\epsilon_{1}, \ldots, \epsilon_{m_{1}}\right)} \prod_{v_{i} \in V(G)}\left(2^{n_{i}}-1\right)^{\operatorname{outdeg}\left(v_{i}\right)}\right)$
where $\mathcal{G}_{m}\left(\epsilon_{1}, \ldots, \epsilon_{m_{1}}\right)$ is the set of acyclic digraphs with m labeled nodes $\left\{v_{1}, \ldots, v_{m}\right\}$ such that indeg $\left(v_{i}\right)=0$ whenever $\epsilon_{i}=1$ for $1 \leq i \leq m_{1}$.

Proof Without loss of generality, we assume that $\epsilon_{i}=1$ for $1 \leq i \leq t \leq m_{1}$ and $\epsilon_{i}=0$ for $t<i \leq m_{1}$. Let $A=A(\underbrace{1, \ldots, 1}_{t}, 0, \cdots, 0)$. For $\lambda \in A$, let $\Lambda=\left[\mathbf{v}_{\mathbf{i} \mathbf{j}}\right]$ be the $(m \times m)$-vector matrix corresponding to λ.
Let $B(\Lambda)=:\left[b_{i j}\right]$ be the \mathbb{Z}_{2}-matrix whose (i, j) th entry is 1 if $\mathbf{v}_{\mathbf{i j}}$ is nonzero and 0 otherwise. By Lemma 5.1 in [4], Λ is conjugate to a unipotent upper triangular vector matrix. Therefore, $B(\Lambda)-I_{m}$, where I_{m} is the $(m \times m)$ identity matrix, is an adjacency matrix of an acyclic digraph. Define ϕ from A to \mathcal{G}_{m} by $\phi(\lambda)=G$ where the adjacency matrix of G is $B(\Lambda)-I_{m}$.

Since $\lambda \in A, b_{i j}=0$ for $i \neq j$ where $1 \leq j \leq t$ and $1 \leq i \leq n$. Therefore, the image of ϕ is indeed $\mathcal{G}_{m}\left(\epsilon_{1}, \ldots, \epsilon_{m_{1}}\right)$. For $G \in \mathcal{G}_{m}\left(\epsilon_{1}, \ldots, \epsilon_{m_{1}}\right)$, we have

$$
\left|\phi^{-1}(G)\right|=\prod_{v_{i} \in V(G)}\left(2^{n_{i}}-1\right)^{\operatorname{outdeg}\left(v_{i}\right)}
$$

as shown in the proof of Theorem 2.8 in [3].
Therefore, by the Burnside lemma, we have the following result.

Theorem 3.5 The number of \mathbb{Z}_{2}^{n}-equivariant homeomorphism classes of small covers over P with $n_{1}=1$ is

$$
\left(\frac{\sum_{\left(\epsilon_{1}, \ldots, \epsilon_{m_{1}}\right) \in\{0,1\}^{m_{1}}} \sum_{G \in \mathcal{G}_{m}} \prod_{\left(\epsilon_{1}, \ldots, \epsilon_{m_{1}}\right)} \prod_{v_{i} \in V(G)}\left(2^{n_{i}}-1\right)^{\operatorname{outdeg}\left(v_{i}\right)}}{\prod_{i=1}^{l}\left[\left(n_{i}+1\right)!\right]^{m_{i}}\left(m_{i}\right)!}\right) \cdot \prod_{k=1}^{n}\left(2^{n}-2^{k-1}\right)
$$

where $\mathcal{G}_{m}\left(\epsilon_{1}, \ldots, \epsilon_{m_{1}}\right)$ is the set of acyclic digraphs with m labeled nodes $\left\{v_{1}, \ldots, v_{m}\right\}$ such that indeg $\left(v_{i}\right)=0$ whenever $\epsilon_{i}=1$ for $1 \leq i \leq m_{1}$.

Let $A_{m r}$ be the number of acyclic digraphs with m labeled nodes and r edges where the labeled vertex set is $\left\{v_{1}, \ldots, v_{m}\right\}$. For $\alpha \subseteq\left\{v_{1}, \cdots, v_{m}\right\}$, let A_{m}^{α} be the number of acyclic digraphs with m labeled nodes $\left\{v_{1}, \ldots, v_{m}\right\}$ such that $\operatorname{indeg}(v)=0$ for all $v \in \alpha$ and $A_{m r}^{\alpha}$ be the number of such acyclic digraphs with r edges.

Corollary 3.6 (Theorem 3.3, [3]) If $P=I^{n}$ then the number of \mathbb{Z}_{2}^{n}-equivariant homeomorphism classes of small covers over P is

$$
\left(\frac{\sum_{i=0}^{n}\binom{n}{i} 2^{i(n-i)} A_{i}}{2^{n} n!}\right) \cdot \prod_{k=1}^{n}\left(2^{n}-2^{k-1}\right)
$$

Proof Let $\alpha\left(\epsilon_{1}, \cdots, \epsilon_{n}\right)=\left\{v_{i} \mid \epsilon_{i}=1\right\}$. Then

$$
\left|\Lambda(P)_{\chi_{1}^{\epsilon_{1} \cdots} \chi_{n}^{\epsilon_{n}}}\right|=\left(\prod_{k=1}^{n}\left(2^{n}-2^{k-1}\right)\right) A_{n}^{\alpha\left(\epsilon_{1}, \cdots, \epsilon_{n}\right)}
$$

By (4) in [8], for any $\alpha \subseteq\left\{v_{1}, \cdots, v_{n}\right\}$,

$$
A_{n}^{\alpha}=\sum_{r \geq 0} \sum_{k=0}^{r}\binom{|\alpha|(n-|\alpha|)}{r-k} A_{n-|\alpha|, k}
$$

Therefore, we have

$$
\begin{aligned}
\sum_{\left(\epsilon_{1}, \cdots, \epsilon_{n}\right) \in\{0,1\}^{n}} A_{n}^{\alpha\left(\epsilon_{1}, \cdots, \epsilon_{n}\right)} & =\sum_{\alpha \subseteq\left\{v_{1}, \cdots, v_{n}\right\}} A_{n}^{\alpha}=\sum_{\alpha \subseteq\left\{v_{1}, \cdots, v_{n}\right\}} \sum_{r \geq 0} \sum_{k=0}^{r}\binom{|\alpha|(n-|\alpha|)}{r-k} A_{n-|\alpha|, k} \\
& =\sum_{i=0}^{n}\binom{n}{i} \sum_{r \geq 0} \sum_{k=0}^{r}\binom{i(n-i)}{r-k} A_{i, k} \\
& =\sum_{i=0}^{n}\binom{n}{i} \sum_{k \geq 0}\left(\sum_{r \geq k}\binom{i(n-i)}{r-k}\right) A_{i, k} \\
& =\sum_{i=0}^{n}\binom{n}{i} \sum_{k \geq 0} 2^{i(n-i)} A_{i, k}=\sum_{i=0}^{n}\binom{n}{i} 2^{i(n-i)} A_{i}
\end{aligned}
$$

as desired.

Let $P=I \times \Delta^{n}$ with $n \geq 2$. There are three acyclic digraphs with 2 labeled nodes $\left\{v_{1}, v_{2}\right\}$:

$$
G_{1}: \underset{v_{1}}{\bullet} \quad \stackrel{\bullet}{v_{2}}, \quad G_{2}: \underset{v_{1}}{\bullet} \longrightarrow \underset{v_{2}}{\bullet}, \quad \text { and } \quad G_{3}: \underset{v_{1}}{\bullet} \longleftarrow \stackrel{\bullet}{v_{2}}
$$

Since $m_{1}=1$ in the formula of Theorem 3.5, we have $\mathcal{G}(0)=\left\{G_{1}, G_{2}, G_{3}\right\}$ and $\mathcal{G}(1)=\left\{G_{1}, G_{2}\right\}$. Thus, we obtain:

Corollary 3.7 (Theorem 4.2, [2]) If $P=I \times \Delta^{n}$ with $n \geq 2$, the number of \mathbb{Z}_{2}^{n}-equivariant homeomorphism classes of small covers over P is

$$
\left(\frac{2^{n}+3}{2(n+1)!}\right) \prod_{t=1}^{n+1}\left(2^{n+1}-2^{t-1}\right)
$$

In a similar way, by listing the acyclic digraphs of 3 vertices, one can obtain the following result due to Chen and Wang.

Corollary 3.8 (Theorem 4.1, [2]) If $P=I \times \Delta^{n} \times \Delta^{m}$ then the number of \mathbb{Z}_{2}^{n}-equivariant homeomorphism classes of small covers over P is

1. $\frac{\prod_{t=1}^{n+m+1}\left(2^{n+m+1}-2^{t-1}\right)}{2(n+1)!(m+1)!}\left(2^{2 n+m}+2^{n+2 m}+2^{2 n}+2^{2 m}+3 \cdot 2^{n+1}+3 \cdot 2^{m+1}-2^{n+m}-7\right)$ if $1<n<m$,
2. $\frac{\prod_{t=1}^{n+m+1}\left(2^{n+m+1}-2^{t-1}\right)}{4(n+1)!(m+1)!}\left(2^{3 n+1}+2^{2 n}+3 \cdot 2^{n+2}-7\right)$ if $1<n=m$,
3. $\frac{\prod_{t=1}^{n+2}\left(2^{n+2}-2^{t-1}\right)}{8(m+1)!}\left(3 \cdot 2^{2 m}+3 \cdot 2^{m+2}+8\right)$ if $1=n<m$.

4. The number of weakly equivariant homeomorphism classes

By Theorem 2.4 the number of weakly \mathbb{Z}_{2}^{n}-equivariant homeomorphism classes of small covers over a simple polytope P is equal to the size of the double coset on $\Lambda(P)$ by $G L\left(n, \mathbb{Z}_{2}\right)$ and $\operatorname{Aut}(\mathcal{F}(P))$. Therefore, the number of weakly \mathbb{Z}_{2}^{n}-equivariant homeomorphism classes of small covers over $P=\prod_{i=1}^{l} P_{i}$, where $P_{i}=$ $\Delta_{1}^{n_{i}} \times \cdots \times \Delta_{m_{i}}^{n_{i}}$ with $1 \leq n_{1}<n_{2}<\cdots<n_{l}, \sum_{i=1}^{l} m_{i}=m$ and $\sum_{i=1}^{l} n_{i} m_{i}=n$, is

$$
\left|A(P) / \prod_{i=1}^{l}\left(S_{n_{i}+1} \imath S_{m_{i}}\right)\right|
$$

where $A(P)=A(0, \cdots, 0)$.
Consider the subgroup $H=\prod_{i=1}^{l} S_{m_{i}} \leq \operatorname{Aut}(\mathcal{F}(P))$. Note that an element $\mu \in S_{m_{i}}$ acts on $A(P)$ by $\lambda \cdot \mu=\lambda_{\mu}$ where $\lambda_{\mu} \in A(P)$ corresponds to a class represented by the characteristic function that sends $F_{q, r}^{p}$ to $\lambda\left(F_{\mu(q), r}^{i}\right)$ if $p=i$ and to $\lambda\left(F_{q, r}^{p}\right)$ otherwise. Let $\bar{\mu} \in S_{n}$ be the permutation that sends
$m_{1} n_{1}+\cdots+m_{i-1} n_{i-1}+(j-1) n_{i}+k$ to $m_{1} n_{1}+\cdots+m_{i-1} n_{i-1}+(\mu(j)-1) n_{i}+k$ for $1 \leq j \leq m_{i}, 1 \leq k \leq n_{i}$ and fixes other elements. Then the matrix Λ_{μ} corresponding to λ_{μ} is

$$
P(\bar{\mu})^{-1} \Lambda P(\mu)
$$

where $P(\sigma)$ denotes the permutation matrix corresponding to a permutation σ. This is the conjugation action of $H=\prod_{i=1}^{l} S_{m_{i}} \leq S_{m}$ on the set of $(m \times m)$-vector matrices. It corresponds to an action of $H \leq S_{m}$ on the acyclic digraph with m-labeled nodes $\left\{v_{1}, \cdots, v_{m}\right\}$ given by

$$
\mu \cdot v_{j}=\left\{\begin{array}{lr}
v_{\mu(j)}, & \text { if } m_{1}+\cdots+m_{i-1}+1 \leq j \leq m_{1}+\cdots+m_{i} \\
v_{j}, & \text { otherwise }
\end{array}\right.
$$

for any $\mu \in S_{m_{i}}$. Therefore, when $l=1$, we have the following generalization of Theorem 4.1 in [3].

Theorem 4.1 The number of weakly \mathbb{Z}_{2}^{n}-equivariant homeomorphism classes of small covers over $P=\Delta_{1}^{k} \times$ $\cdots \times \Delta_{m}^{k}$ with $m k=n$ is less than or equal to

$$
\sum_{G \in \overline{\mathcal{G}}_{m}}\left(2^{k}-1\right)^{|E(G)|}
$$

where $\overline{\mathcal{G}}_{m}$ is the set of acyclic digraphs with m unlabeled nodes and $E(G)$ is the set of edges of the graph G.
Corollary 4.2 The number of homeomorphism classes of small covers over $P=\Delta_{1}^{k} \times \cdots \times \Delta_{m}^{k}$ with $m k=n$ is less than or equal to

$$
\sum_{G \in \overline{\mathcal{G}}_{m}}\left(2^{k}-1\right)^{|E(G)|}
$$

where $\overline{\mathcal{G}}_{m}$ is the set of acyclic digraphs with m unlabeled nodes.

References

[1] Cai M, Chen X, L Z. Small covers over prisms. Topol Appl 2007; 154: 2228-2234.
[2] Chen Y, Wang Y. Small covers over a product of simplices. Filomat 2013; 27: 777-787.
[3] Choi S. The number of small covers over cubes. Algebr Geom Topol 2008; 8: 2391-2399.
[4] Choi S, Masuda M, Suh DY. Quasitoric manifolds over a product of simplices. Osaka J Math 2010; 47: 109-129.
[5] Davis MW, Januszkiewicz T. Convex polytopes, Coxeter orbifolds and torus action. Duke Math J 1971; 62: 417-451.
[6] Garrison A, Scott R. Small covers over the dodecahedron and the 120-cell. P Am Math Soc 2003; 131: 963-971.
[7] L Z, Masuda M. Equivariant classification of 2-torus manifolds. Colloq Math 2009; 115: 171-188.
[8] Rodinov VI. On the number of labeled acyclic digraphs. Discrete Math 1992; 105: 319-321.

[^0]: *Correspondence: asli.ilhan@deu.edu.tr
 2010 AMS Mathematics Subject Classification: 37F20, 57S10

