

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2018) 42: 1528 – 1535 © TÜBİTAK doi:10.3906/mat-1706-40

Research Article

On small covers over a product of simplices

Murat ALTUNBULAK, Aslı GÜÇLÜKAN İLHAN*

Department of Mathematics, Faculty of Science, Dokuz Eylül University, Buca, İzmir, Turkey

Received: 12.06.2017	•	Accepted/Published Online: 22.01.2018	•	Final Version: 08.05.2018
----------------------	---	---------------------------------------	---	----------------------------------

Abstract: In this paper, we give a formula for the number of \mathbb{Z}_2^n -equivariant homeomorphism classes of small covers over a product of simplices. We also give an upper bound for the number of small covers over a product of simplices up to homeomorphism.

Key words: Small cover, equivariant homeomorphism, polytope, acyclic digraph

1. Introduction

A small cover is a smooth closed manifold M^n that admits a locally standard \mathbb{Z}_2^n -action whose orbit space is a simple convex polytope. The notion of a small cover was introduced by Davis and Januszkiewicz [5] as a generalization of real toric manifolds. In [5], it was shown that every small cover over a simple convex polytope P^n can be obtained from a characteristic function on the set of facets of P^n . There is a free action of the general linear group $GL(n,\mathbb{Z}_2)$ on the set of characteristic functions and the orbit space of this action is in one-to-one correspondence with the Davis–Januszkiewicz equivalence classes of small covers. Recently, several studies have been done to calculate the number of Davis–Januszkiewicz equivalence classes of small covers over a specific polytope (see [1, 3, 6]). In [6], Garrison and Scott used a computer program to find the number of small covers over a dodecahedron up to Davis–Januszkiewicz equivalence. In [3], Choi constructed a bijection between the set of Davis–Januszkiewicz equivalence classes of small covers over a product digraphs with *n*-labeled nodes. He also gave a formula for the number of small covers over a product of simplices up to Davis–Januszkiewicz equivalence in terms of acyclic digraphs with labeled nodes.

There is a standard action of the automorphism group of the face poset of P^n on the set of characteristic functions on P^n . Lü and Masuda [7] showed that there is a bijection between the set of orbits of this action and the set of \mathbb{Z}_2^n -equivariant homeomorphism classes of small covers over P^n . By Burnside's lemma, the number of orbits of an action is the average number of the points fixed by an element of the group. Therefore, one can find the number of \mathbb{Z}_2^n -equivariant homeomorphism classes of small covers over P^n by enumerating the number of fixed points of elements of the automorphism group. Using the Burnside lemma, Choi [3] gave a formula for the number of \mathbb{Z}_2^n -equivariant homeomorphism classes of small covers over a cube, which is the product of 1-simplices. When P^n is a product of simplices of dimension greater than 1, the action of the automorphism group of the face poset is free. Therefore, the number of equivariant small covers over a product of simplices of dimension greater than 1 is the quotient of the number of the small covers and the order of the automorphism

^{*}Correspondence: asli.ilhan@deu.edu.tr

²⁰¹⁰ AMS Mathematics Subject Classification: 37F20, 57S10

group of the face poset. In [2], Chen and Wang directly counted the number of equivariant homeomorphism classes of small covers over $\Delta^1 \times \Delta^{n_1} \times \Delta^{n_2}$ and $\Delta_1 \times \Delta^{n_3}$, where Δ^{n_i} is an n_i -simplex with $n_i \ge 1$ for $1 \le i \le 3$. In this paper, we use Choi's argument to generalize these formulas to an arbitrary product of simplices.

The paper is organized as follows. In Section 2 we recall the basic theory about the small covers over a simple polytope and vector matrices. In Section 3 we obtain a formula for the number of \mathbb{Z}_2^n -equivariant homeomorphism classes over a product of simplices. In Section 4 we give an upper bound for the number of small covers over a product of equidimensional simplices up to homeomorphism.

2. Preliminaries

An *n*-dimensional convex polytope P is said to be simple if every vertex of P is the intersection of precisely n facets. A small cover over P is a smooth closed *n*-manifold M^n that admits a \mathbb{Z}_2^n -action that is locally isomorphic to a standard action of \mathbb{Z}_2^n on \mathbb{R}^n and the orbit space of the action is P.

Given a simple convex polytope P of dimension n, let $\mathcal{F}(P) = \{F_1, \ldots, F_m\}$ be the set of facets of P. A function $\lambda : \mathcal{F}(P) \to \mathbb{Z}_2^n$ is called a characteristic function if it satisfies the nonsingularity condition that whenever the intersection $F_{i_1} \cap \cdots \cap F_{i_n}$ is nonempty, the set $\{\lambda(F_{i_1}), \ldots, \lambda(F_{i_n})\}$ forms a basis for \mathbb{Z}_2^n . For a given point $p \in P$, let $\mathbb{Z}_2^n(p)$ be the subgroup of \mathbb{Z}_2^n generated by $\lambda(F_{i_1}), \ldots, \lambda(F_{i_k})$ where the intersection $\bigcap_{j=1}^k F_{i_j}$ is the minimal face containing p in its relative interior. Then the manifold $M(\lambda) = (P \times \mathbb{Z}_2^n)/\sim$ where

$$(p,g) \sim (q,h)$$
 if $p = q$ and $g^{-1}h \in \mathbb{Z}_2^n(p)$

is a small cover over P.

Theorem 2.1 ([5]) For every small cover M over P, there is a characteristic function λ with \mathbb{Z}_2^n -homeomorphism $M(\lambda) \to M$ covering the identity on P.

Two small covers M_1 and M_2 over P are said to be DJ-equivalent (Davis–Januszkiewicz equivalent) if there is a weakly \mathbb{Z}_2^n -homeomorphism $f: M_1 \to M_2$ covering the identity on P. Following [7], let $\Lambda(P)$ be the set of all characteristic functions on P. There is a free action of $GL(n, \mathbb{Z}_2)$ on $\Lambda(P)$ defined by $g \cdot \lambda = g \circ \lambda$. By the above theorem, DJ-equivalence classes of small covers over P bijectively correspond to the coset $GL(n, \mathbb{Z}_2) \setminus \Lambda(P)$. In particular, $|\Lambda(P)|$ is equal to the product of $|GL(n, \mathbb{Z}_2) \setminus \Lambda(P)|$ and $|GL(n, \mathbb{Z}_2)| =$ $\prod_{k=1}^{n} (2^n - 2^{k-1})$.

On the other hand, the equivariant classes of small covers over P are characterized by the action of the automorphism group of the face poset of P. More precisely, let $\operatorname{Aut}(\mathcal{F}(P))$ be the group of bijections from the set of faces of P to itself, which preserves the poset structure. Then $\operatorname{Aut}(\mathcal{F}(P))$ acts on $\Lambda(P)$ on the right by $\lambda \cdot h = \lambda \circ h$. In [7], Lu and Masuda proved the following theorem.

Theorem 2.2 The set of \mathbb{Z}_2^n -homeomorphism classes of small covers over P corresponds bijectively to the coset $\Lambda(P)/\operatorname{Aut}(\mathcal{F}(P))$.

By the above theorem, to find the number of equivariant classes of small covers over P, we need to find the number of orbits of $\Lambda(P)$ under the action of $\operatorname{Aut}(\mathcal{F}(P))$. The Burnside lemma reduces this problem to the enumeration of fixed points

$$\Lambda(P)_h = \{\lambda \in \Lambda(P) \mid \lambda(h(F)) = \lambda(F) \text{ for all } F \in \mathcal{F}(P)\}$$

by elements $h \in \operatorname{Aut}(\mathcal{F}(P))$.

Lemma 2.3 (Burnside lemma) Let G be a finite group acting on a set X. Then the number of G-orbits of X is equal to $\frac{1}{|G|} \sum_{g \in G} |X^g|$, where $X^g = \{x \in X \mid gx = x\}$.

Therefore, one can find the number of \mathbb{Z}_2^n -equivariant homeomorphism classes of small covers over P^n by enumerating $\Lambda(P)_h$ for all $h \in \operatorname{Aut}(\mathcal{F}(P))$.

As a combination of the above theorems, we have the following result.

Theorem 2.4 The number of weakly \mathbb{Z}_2^n -homeomorphism classes of small covers over P is the size of the double coset $GL(n,\mathbb{Z}_2)\backslash\Lambda(P)/\operatorname{Aut}(\mathcal{F}(P))$.

3. The number of \mathbb{Z}_2^n -equivariant homeomorphism classes

Let $P = \Delta^{n_1} \times \cdots \times \Delta^{n_m}$, where Δ^{n_i} is the standard n_i -simplex. Let \mathcal{G}_m be the set of acyclic digraphs with m labeled nodes with labeled vertex set $V(G) = \{v_1, \ldots, v_m\}$. Here, a digraph is a graph with at most one edge directed from vertex v_i to v_j . A directed graph is said to be acyclic if there is no directed cycle. The outdegree outdeg(v) (the indegree indeg(v)) of a vertex v is the number of edges directed from (to) v. In [3], Choi gave the following formula for the number of small covers over P.

Theorem 3.1 (Theorem 2.8, [3]) The number of DJ-equivalence classes of small covers over $P = \Delta^{n_1} \times \cdots \times \Delta^{n_m}$ with $\sum_{i=1}^m n_i = n$ is

$$|GL(n,\mathbb{Z}_2)\backslash \Lambda(P)| = \sum_{G\in\mathcal{G}_m} \prod_{v_i\in V(G)} (2^{n_i} - 1)^{\operatorname{outdeg}(v_i)}.$$

It is well known that the automorphism group of the face poset of Δ^n is the group of permutations on the set of facets, i.e. $\operatorname{Aut}(\mathcal{F}(\Delta^n)) \cong S_{n+1}$, where S_{n+1} is the symmetric group of degree n+1. To understand the automorphism group of $\mathcal{F}(P)$, we need to take the number of Δ^n occurring in P into account. For this reason, we write

$$P = \prod_{i=1}^{l} P_i, \text{ where } P_i = \Delta_1^{n_i} \times \dots \times \Delta_{m_i}^{n_i},$$

with $1 \le n_1 < n_2 < \cdots < n_l$ and $\sum_{i=1}^l n_i m_i = n$. Then the set of facets of P^i is

$$\{f_{j,k}^i = \Delta_1^{n_i} \times \dots \times \Delta_{j-1}^{n_i} \times \tilde{f}_{j,k}^i \times \Delta_{j+1}^{n_i} \times \dots \times \Delta_{m_i}^{n_i} | \ 0 \le k \le n_i, \ 1 \le j \le m_i\}$$

where $\{\tilde{f}^i_{j,0},\ldots,\tilde{f}^i_{j,n_i}\}$ is the set of facets of the simplex $\Delta^{n_i}_j$. Therefore, we have

$$\mathcal{F}(P) = \{F_{j,k}^i \mid 0 \le k \le n_i, \ 1 \le j \le m_i, \ 1 \le i \le l\}$$

1530

where $F_{j,k}^i = P_1 \times \cdots \times P_{i-1} \times f_{j,k}^i \times P_{i+1} \times \cdots \times P_l$. Note that there are (n+m)-facets, where $m = \sum_{i=1}^l m_i$. Since $\operatorname{Aut}(\mathcal{F}(\Delta^n)) \cong S_{n+1}$, $\operatorname{Aut}(\mathcal{F}(P_i))$ is the wreath product of $S_{n_{i+1}}$ with S_{m_i} , where $\mu \in S_{m_i}$ sends $f_{j,k}^i$ to $f_{\mu(j),k}^i$. More precisely, $\operatorname{Aut}(\mathcal{F}(P_i)) = S_{n_i+1} \wr S_{m_i}$ is equal to $\underbrace{S_{n_i+1} \times \cdots \times S_{n_i+1}}_{m_i} \times S_{m_i}$ as a set where the

group multiplication is defined by

$$(\sigma_1, \cdots, \sigma_{m_i}, \mu)(\sigma'_1, \cdots, \sigma'_{m_i}, \mu') = (\sigma_1 \sigma'_{\mu^{-1}(1)}, \cdots, \sigma_{m_i} \sigma'_{\mu^{-1}(m_i)}, \mu\mu')$$

for any $\sigma_i, \sigma'_i \in S_{n_i+1}$ and $\mu, \mu' \in S_{m_i}$. Since $n_1 < n_2 < \cdots < n_l$, we have the following.

Lemma 3.2 Aut
$$(\mathcal{F}(P)) \cong \prod_{i=1}^{l} \left(S_{n_i+1} \wr S_{m_i} \right).$$

By the nonsingularity condition, a characteristic function must send any set obtained by taking n_i -many elements from $\{F_{j,k}^i|0 \le k \le n_i\}$ for each $1 \le j \le m_i$ and $1 \le i \le l$ to a basis of \mathbb{Z}_2^n . When $1 < n_1$, more than one element is arbitrarily chosen from each set. However, for every nontrivial element g of $\operatorname{Aut}(\mathcal{F}(P))$, there exist $1 \le j \le m_i$ and $1 \le i \le l$ for which at least two elements from the set $\{F_{j,k}^i|0 \le k \le n_i\}$ are not fixed by g. Therefore, g cannot fix any characteristic function. This means that the action of $\operatorname{Aut}(\mathcal{F}(P))$ on $\mathcal{F}(P)$ is free and hence the number of equivariant homeomorphism classes of small covers over P with $n_1 > 1$ is

$$\frac{|\Lambda(P)|}{|\operatorname{Aut}(\mathcal{F}(P))|} = \frac{|\Lambda(P)|}{\prod\limits_{i=1}^{l} [(n_i+1)!]^{m_i}(m_i)!}$$

Since $|GL(n,\mathbb{Z}_2)| = \prod_{k=1}^n (2^n - 2^{k-1})$, by the above theorem we have:

Corollary 3.3 Let $P = \prod_{i=1}^{l} \Delta_1^{n_i} \times \cdots \times \Delta_{m_i}^{n_i}$ with $\sum_{i=1}^{l} m_i = m$ and $\sum_{i=1}^{l} n_i m_i = n$. Define a function $n : \{1, \ldots, m\} \rightarrow \{n_1, \ldots, n_l\}$ by $n(s) = n_i$ whenever $k_1 + \cdots + k_{i-1} + 1 \le s \le k_1 + \cdots + m_i$. Then the number of equivariant homeomorphism classes of small covers over P with $n_1 > 1$ is

$$\frac{|\Lambda(P)|}{|\operatorname{Aut}(\mathcal{F}(P))|} = \frac{\left(\prod_{k=1}^{n} (2^{n} - 2^{k-1})\right) \left(\sum_{G \in \mathcal{G}_{m}} \prod_{v_{s} \in V(G)} (2^{n(s)} - 1)^{\operatorname{outdeg}(v_{s})}\right)}{\prod_{i=1}^{l} [(n_{i} + 1)!]^{m_{i}}(m_{i})!}$$

When $n_1 = 1$, the only elements of Aut($\mathcal{F}(P)$) that have a fixed point are the ones of the form

$$\chi_1^{\epsilon_1} \cdots \chi_{m_1}^{\epsilon_{m_1}}, \ \epsilon_i \in \mathbb{Z}_2$$

where $\chi_1, \dots, \chi_{m_1}$ are the reflections in Aut $(\mathcal{F}(I^{m_1}))$. To count the number of elements in $\Lambda(P)_{\chi_1^{\epsilon_1}\dots\chi_{m_1}^{\epsilon_{m_1}}}$, first note that it is a $GL(n,\mathbb{Z}_2)$ -invariant subset of $\Lambda(P)$. Since the action of $GL(n,\mathbb{Z}_2)$ is free, we have

$$|\Lambda(P)_{\chi_1^{\epsilon_1}\cdots\chi_{m_1}^{\epsilon_{m_1}}}| = |GL(n,\mathbb{Z}_2)| \times |GL(n,\mathbb{Z}_2) \setminus \Lambda(P)_{\chi_1^{\epsilon_1}\cdots\chi_{m_1}^{\epsilon_{m_1}}}|.$$

1531

To find $|GL(n,\mathbb{Z}_2)\setminus \Lambda(P)_{\chi_1^{\epsilon_1}\cdots\chi_{m_1}^{\epsilon_{m_1}}}|$ we use the correspondence given by Choi [3]. By the nonsingularity condition, for any $\lambda \in \Lambda(P)$, the vectors

$$\lambda(F_{1,1}^1), \dots, \lambda(F_{m_1,1}^1), \lambda(F_{1,1}^2), \lambda(F_{1,2}^2), \dots, \lambda(F_{1,n_2}^2), \lambda(F_{2,1}^2), \dots, \lambda(F_{m_l,1}^l), \dots, \lambda(F_{m_l,n_l}^l)$$
(1)

form a basis for \mathbb{Z}_2^n . For each coset in $GL(n,\mathbb{Z}_2)\setminus \Lambda(P)_{\chi_1^{e_1}\cdots\chi_{m_1}^{e_{m_1}}}$, choose a representative λ for which the vectors in (1) correspond to the standard basis elements

$$e_1 = (1, 0, \dots, 0), \dots, e_n = (0, \dots, 0, 1),$$

respectively. More precisely, we have

$$\lambda(F_{j,k}^{i}) = e_{m_{1}n_{1} + \dots + m_{i-1}n_{i-1} + (j-1)n_{i} + k}$$

for $1 \leq i \leq l$, $1 \leq j \leq m_i$ and $1 \leq k \leq n_i$. Let $A(\epsilon_1, \ldots, \epsilon_{m_1})$ be the set of such representatives. For the remaining facets, we write $F_{j,0}^i =: F_{m_1+\cdots+m_{i-1}+j}$ for $1 \leq i \leq l$ and $1 \leq j \leq m_i$. Then we have

$$\lambda(F_p) = \sum_{q=1}^n a_{qp} e_q.$$

We can view the corresponding $(n \times m)$ -matrix $\Lambda = [a_{pq}]$ as an $(m \times m)$ -vector matrix $[\mathbf{v}_{\mathbf{pq}}]$ whose entries in the *p*th row are vectors in $\mathbb{Z}_2^{n(p)}$ where n(p) is defined as in Corollary 3.3. We refer reader to [4] for details. Let $\Lambda_{s_1 \cdots s_m}$ be the $(m \times m)$ -submatrix of Λ whose *i*th row is the s_i th row of $[\mathbf{v}_{\mathbf{pq}}]$. Then λ satisfies the singularity condition if and only if every principal minor of $\Lambda_{s_1 \cdots s_m}$ is 1 for any $1 \leq s_1 \leq n(1), \dots, 1 \leq s_m \leq n(m)$.

Theorem 3.4
$$|\Lambda(P)_{\chi_1^{\epsilon_1} \dots \chi_{m_1}^{\epsilon_{m_1}}}| = \Big(\prod_{k=1}^n (2^n - 2^{k-1})\Big)\Big(\sum_{G \in \mathcal{G}_m(\epsilon_1, \dots, \epsilon_{m_1})} \prod_{v_i \in V(G)} (2^{n_i} - 1)^{\operatorname{outdeg}(v_i)}\Big)$$

where $\mathcal{G}_m(\epsilon_1, \ldots, \epsilon_{m_1})$ is the set of acyclic digraphs with m labeled nodes $\{v_1, \ldots, v_m\}$ such that $indeg(v_i) = 0$ whenever $\epsilon_i = 1$ for $1 \le i \le m_1$.

Proof Without loss of generality, we assume that $\epsilon_i = 1$ for $1 \le i \le t \le m_1$ and $\epsilon_i = 0$ for $t < i \le m_1$. Let $A = A(\underbrace{1, \dots, 1}_{t}, 0, \dots, 0)$. For $\lambda \in A$, let $\Lambda = [\mathbf{v_{ij}}]$ be the $(m \times m)$ -vector matrix corresponding to λ .

Let $B(\Lambda) =: [b_{ij}]$ be the \mathbb{Z}_2 -matrix whose (i, j) th entry is 1 if \mathbf{v}_{ij} is nonzero and 0 otherwise. By Lemma 5.1 in [4], Λ is conjugate to a unipotent upper triangular vector matrix. Therefore, $B(\Lambda) - I_m$, where I_m is the $(m \times m)$ identity matrix, is an adjacency matrix of an acyclic digraph. Define ϕ from A to \mathcal{G}_m by $\phi(\lambda) = G$ where the adjacency matrix of G is $B(\Lambda) - I_m$.

Since $\lambda \in A$, $b_{ij} = 0$ for $i \neq j$ where $1 \leq j \leq t$ and $1 \leq i \leq n$. Therefore, the image of ϕ is indeed $\mathcal{G}_m(\epsilon_1, \ldots, \epsilon_{m_1})$. For $G \in \mathcal{G}_m(\epsilon_1, \ldots, \epsilon_{m_1})$, we have

$$|\phi^{-1}(G)| = \prod_{v_i \in V(G)} (2^{n_i} - 1)^{\operatorname{outdeg}(v_i)},$$

as shown in the proof of Theorem 2.8 in [3].

Therefore, by the Burnside lemma, we have the following result.

Theorem 3.5 The number of \mathbb{Z}_2^n -equivariant homeomorphism classes of small covers over P with $n_1 = 1$ is

$$\left(\frac{\sum\limits_{(\epsilon_1,\dots,\epsilon_{m_1})\in\{0,1\}^{m_1}G\in\mathcal{G}_m(\epsilon_1,\dots,\epsilon_{m_1})v_i\in V(G)}\prod\limits_{i=1}^{n} (2^{n_i}-1)^{\mathrm{outdeg}(v_i)}}{\prod\limits_{i=1}^{l} [(n_i+1)!]^{m_i}(m_i)!}\right)\cdot\prod\limits_{k=1}^{n} (2^n-2^{k-1})$$

where $\mathcal{G}_m(\epsilon_1, \ldots, \epsilon_{m_1})$ is the set of acyclic digraphs with m labeled nodes $\{v_1, \ldots, v_m\}$ such that $indeg(v_i) = 0$ whenever $\epsilon_i = 1$ for $1 \le i \le m_1$.

Let A_{mr} be the number of acyclic digraphs with m labeled nodes and r edges where the labeled vertex set is $\{v_1, \ldots, v_m\}$. For $\alpha \subseteq \{v_1, \cdots, v_m\}$, let A_m^{α} be the number of acyclic digraphs with m labeled nodes $\{v_1, \ldots, v_m\}$ such that indeg(v) = 0 for all $v \in \alpha$ and A_{mr}^{α} be the number of such acyclic digraphs with redges.

Corollary 3.6 (Theorem 3.3, [3]) If $P = I^n$ then the number of \mathbb{Z}_2^n -equivariant homeomorphism classes of small covers over P is

$$\left(\frac{\sum_{i=0}^{n} \binom{n}{i} 2^{i(n-i)} A_{i}}{2^{n} n!}\right) \cdot \prod_{k=1}^{n} (2^{n} - 2^{k-1}).$$

Proof Let $\alpha(\epsilon_1, \cdots, \epsilon_n) = \{v_i | \epsilon_i = 1\}$. Then

$$|\Lambda(P)_{\chi_1^{\epsilon_1}\cdots\chi_n^{\epsilon_n}}| = \Big(\prod_{k=1}^n (2^n - 2^{k-1})\Big)A_n^{\alpha(\epsilon_1,\cdots,\epsilon_n)}.$$

By (4) in [8], for any $\alpha \subseteq \{v_1, \cdots, v_n\},\$

$$A_n^{\alpha} = \sum_{r \ge 0} \sum_{k=0}^r \binom{|\alpha|(n-|\alpha|)}{r-k} A_{n-|\alpha|,k}.$$

Therefore, we have

$$\sum_{(\epsilon_{1},\dots,\epsilon_{n})\in\{0,1\}^{n}} A_{n}^{\alpha(\epsilon_{1},\dots,\epsilon_{n})} = \sum_{\alpha\subseteq\{v_{1},\dots,v_{n}\}} A_{n}^{\alpha} = \sum_{\alpha\subseteq\{v_{1},\dots,v_{n}\}} \sum_{r\geq0} \sum_{k=0}^{r} \binom{|\alpha|(n-|\alpha|)}{r-k} A_{n-|\alpha|,k}$$
$$= \sum_{i=0}^{n} \binom{n}{i} \sum_{r\geq0} \sum_{k=0}^{r} \binom{i(n-i)}{r-k} A_{i,k}$$
$$= \sum_{i=0}^{n} \binom{n}{i} \sum_{k\geq0} \left(\sum_{r\geq k} \binom{i(n-i)}{r-k}\right) A_{i,k}$$
$$= \sum_{i=0}^{n} \binom{n}{i} \sum_{k\geq0} 2^{i(n-i)} A_{i,k} = \sum_{i=0}^{n} \binom{n}{i} 2^{i(n-i)} A_{i}$$

as desired.

Let $P = I \times \Delta^n$ with $n \ge 2$. There are three acyclic digraphs with 2 labeled nodes $\{v_1, v_2\}$:

$$G_1: \underset{v_1}{\bullet} \quad \underset{v_2}{\bullet}, \quad G_2: \underset{v_1}{\bullet} \longrightarrow \underset{v_2}{\bullet}, \quad \text{and} \quad G_3: \underset{v_1}{\bullet} \longleftarrow \underset{v_2}{\bullet}.$$

Since $m_1 = 1$ in the formula of Theorem 3.5, we have $\mathcal{G}(0) = \{G_1, G_2, G_3\}$ and $\mathcal{G}(1) = \{G_1, G_2\}$. Thus, we obtain:

Corollary 3.7 (Theorem 4.2, [2]) If $P = I \times \Delta^n$ with $n \ge 2$, the number of \mathbb{Z}_2^n -equivariant homeomorphism classes of small covers over P is

$$\left(\frac{2^n+3}{2(n+1)!}\right)\prod_{t=1}^{n+1}(2^{n+1}-2^{t-1}).$$

In a similar way, by listing the acyclic digraphs of 3 vertices, one can obtain the following result due to Chen and Wang.

Corollary 3.8 (Theorem 4.1, [2]) If $P = I \times \Delta^n \times \Delta^m$ then the number of \mathbb{Z}_2^n -equivariant homeomorphism classes of small covers over P is

$$1. \quad \frac{\prod_{t=1}^{n+m+1} (2^{n+m+1} - 2^{t-1})}{2(n+1)!(m+1)!} \left(2^{2n+m} + 2^{n+2m} + 2^{2n} + 2^{2m} + 3 \cdot 2^{n+1} + 3 \cdot 2^{m+1} - 2^{n+m} - 7 \right) \text{ if } 1 < n < m \,,$$

2.
$$\frac{\prod_{t=1}^{n+m+1}(2^{n+m+1}-2^{t-1})}{4(n+1)!(m+1)!} \left(2^{3n+1}+2^{2n}+3\cdot 2^{n+2}-7\right) \text{ if } 1 < n=m,$$

3.
$$\frac{\prod_{t=1}^{n+2} (2^{n+2} - 2^{t-1})}{8(m+1)!} \left(3 \cdot 2^{2m} + 3 \cdot 2^{m+2} + 8 \right) \text{ if } 1 = n < m.$$

4. The number of weakly equivariant homeomorphism classes

By Theorem 2.4 the number of weakly \mathbb{Z}_2^n -equivariant homeomorphism classes of small covers over a simple polytope P is equal to the size of the double coset on $\Lambda(P)$ by $GL(n,\mathbb{Z}_2)$ and $\operatorname{Aut}(\mathcal{F}(P))$. Therefore, the number of weakly \mathbb{Z}_2^n -equivariant homeomorphism classes of small covers over $P = \prod_{i=1}^l P_i$, where $P_i =$

$$\Delta_1^{n_i} \times \dots \times \Delta_{m_i}^{n_i} \text{ with } 1 \le n_1 < n_2 < \dots < n_l, \sum_{i=1}^l m_i = m \text{ and } \sum_{i=1}^l n_i m_i = n, \text{ is}$$
$$|A(P) / \prod_{i=1}^l (S_{n_i+1} \wr S_{m_i})|$$

where $A(P) = A(0, \dots, 0)$.

Consider the subgroup $H = \prod_{i=1}^{l} S_{m_i} \leq \operatorname{Aut}(\mathcal{F}(P))$. Note that an element $\mu \in S_{m_i}$ acts on A(P)by $\lambda \cdot \mu = \lambda_{\mu}$ where $\lambda_{\mu} \in A(P)$ corresponds to a class represented by the characteristic function that sends $F_{q,r}^p$ to $\lambda(F_{\mu(q),r}^i)$ if p = i and to $\lambda(F_{q,r}^p)$ otherwise. Let $\overline{\mu} \in S_n$ be the permutation that sends $m_1n_1 + \cdots + m_{i-1}n_{i-1} + (j-1)n_i + k$ to $m_1n_1 + \cdots + m_{i-1}n_{i-1} + (\mu(j)-1)n_i + k$ for $1 \le j \le m_i$, $1 \le k \le n_i$ and fixes other elements. Then the matrix Λ_{μ} corresponding to λ_{μ} is

$$P(\overline{\mu})^{-1}\Lambda P(\mu)$$

where $P(\sigma)$ denotes the permutation matrix corresponding to a permutation σ . This is the conjugation action of $H = \prod_{i=1}^{l} S_{m_i} \leq S_m$ on the set of $(m \times m)$ -vector matrices. It corresponds to an action of $H \leq S_m$ on the acyclic digraph with *m*-labeled nodes $\{v_1, \dots, v_m\}$ given by

$$\mu \cdot v_j = \begin{cases} v_{\mu(j)}, & \text{if } m_1 + \dots + m_{i-1} + 1 \le j \le m_1 + \dots + m_i \\ v_j, & \text{otherwise} \end{cases}$$

for any $\mu \in S_{m_i}$. Therefore, when l = 1, we have the following generalization of Theorem 4.1 in [3].

Theorem 4.1 The number of weakly \mathbb{Z}_2^n -equivariant homeomorphism classes of small covers over $P = \Delta_1^k \times \cdots \times \Delta_m^k$ with mk = n is less than or equal to

$$\sum_{G\in\overline{\mathcal{G}}_m} (2^k - 1)^{|E(G)|}$$

where $\overline{\mathcal{G}}_m$ is the set of acyclic digraphs with m unlabeled nodes and E(G) is the set of edges of the graph G.

Corollary 4.2 The number of homeomorphism classes of small covers over $P = \Delta_1^k \times \cdots \times \Delta_m^k$ with mk = n is less than or equal to

$$\sum_{G\in\overline{\mathcal{G}}_m} (2^k - 1)^{|E(G)|}$$

where $\overline{\mathcal{G}}_m$ is the set of acyclic digraphs with m unlabeled nodes.

References

- [1] Cai M, Chen X, L Z. Small covers over prisms. Topol Appl 2007; 154: 2228-2234.
- [2] Chen Y, Wang Y. Small covers over a product of simplices. Filomat 2013; 27: 777-787.
- [3] Choi S. The number of small covers over cubes. Algebr Geom Topol 2008; 8: 2391-2399.
- [4] Choi S, Masuda M, Suh DY. Quasitoric manifolds over a product of simplices. Osaka J Math 2010; 47: 109-129.
- [5] Davis MW, Januszkiewicz T. Convex polytopes, Coxeter orbifolds and torus action. Duke Math J 1971; 62: 417-451.
- [6] Garrison A, Scott R. Small covers over the dodecahedron and the 120-cell. P Am Math Soc 2003; 131: 963-971.
- [7] L Z, Masuda M. Equivariant classification of 2-torus manifolds. Colloq Math 2009; 115: 171-188.
- [8] Rodinov VI. On the number of labeled acyclic digraphs. Discrete Math 1992; 105: 319-321.