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Abstract: In this paper, we give a formula for the number of Z3 -equivariant homeomorphism classes of small covers
over a product of simplices. We also give an upper bound for the number of small covers over a product of simplices up

to homeomorphism.
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1. Introduction

A small cover is a smooth closed manifold M"™ that admits a locally standard Z7-action whose orbit space
is a simple convex polytope. The notion of a small cover was introduced by Davis and Januszkiewicz [5] as a
generalization of real toric manifolds. In [5], it was shown that every small cover over a simple convex polytope
P can be obtained from a characteristic function on the set of facets of P™. There is a free action of the general
linear group GL(n,Zs) on the set of characteristic functions and the orbit space of this action is in one-to-one
correspondence with the Davis-Januszkiewicz equivalence classes of small covers. Recently, several studies have
been done to calculate the number of Davis—Januszkiewicz equivalence classes of small covers over a specific
polytope (see [1, 3, 6]). In [6], Garrison and Scott used a computer program to find the number of small covers
over a dodecahedron up to Davis-Januszkiewicz equivalence. In [3], Choi constructed a bijection between the
set of Davis—Januszkiewicz equivalence classes of small covers over an n-cube and the set of acyclic digraphs
with n-labeled nodes. He also gave a formula for the number of small covers over a product of simplices up to
Davis—Januszkiewicz equivalence in terms of acyclic digraphs with labeled nodes.

There is a standard action of the automorphism group of the face poset of P™ on the set of characteristic
functions on P™. Lii and Masuda [7] showed that there is a bijection between the set of orbits of this action and
the set of Z% -equivariant homeomorphism classes of small covers over P"”. By Burnside’s lemma, the number
of orbits of an action is the average number of the points fixed by an element of the group. Therefore, one can
find the number of Z% -equivariant homeomorphism classes of small covers over P™ by enumerating the number
of fixed points of elements of the automorphism group. Using the Burnside lemma, Choi [3] gave a formula
for the number of Z7 -equivariant homeomorphism classes of small covers over a cube, which is the product of
1-simplices. When P"™ is a product of simplices of dimension greater than 1, the action of the automorphism
group of the face poset is free. Therefore, the number of equivariant small covers over a product of simplices of

dimension greater than 1 is the quotient of the number of the small covers and the order of the automorphism
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group of the face poset. In [2], Chen and Wang directly counted the number of equivariant homeomorphism
classes of small covers over Al x A™ x A™ and A; x A", where A™ is an n;-simplex with n; > 1 for
1 < i < 3. In this paper, we use Choi’s argument to generalize these formulas to an arbitrary product of
simplices.

The paper is organized as follows. In Section 2 we recall the basic theory about the small covers over
a simple polytope and vector matrices. In Section 3 we obtain a formula for the number of Z% -equivariant
homeomorphism classes over a product of simplices. In Section 4 we give an upper bound for the number of

small covers over a product of equidimensional simplices up to homeomorphism.

2. Preliminaries
An n-dimensional convex polytope P is said to be simple if every vertex of P is the intersection of precisely
n facets. A small cover over P is a smooth closed n-manifold M"™ that admits a Z%-action that is locally
isomorphic to a standard action of Z5 on R™ and the orbit space of the action is P.

Given a simple convex polytope P of dimension n, let F(P) = {Fi,..., F;,} be the set of facets of P.
A function A : F(P) — Z% is called a characteristic function if it satisfies the nonsingularity condition that
is nonempty, the set {\(F},),..., A(F;,)} forms a basis for Z% . For
a given point p € P, let Z%(p) be the subgroup of Z% generated by A(F;,),...,A(F;,) where the intersection

whenever the intersection F;, N--- N F;

k
‘ﬂlFij is the minimal face containing p in its relative interior. Then the manifold M (\) = (P x Z%)/ ~ where
j=

(p.g) ~ (¢, h) if p=qand g~'h € Z3(p)
is a small cover over P.

Theorem 2.1 (/5]) For every small cover M over P, there is a characteristic function X with Z% -homeomorphism
M(X\) = M covering the identity on P.

Two small covers My and My over P are said to be DJ-equivalent (Davis-Januszkiewicz equivalent)
if there is a weakly Z%-homeomorphism f : M; — My covering the identity on P. Following [7], let A(P)
be the set of all characteristic functions on P. There is a free action of GL(n,Zz) on A(P) defined by
g- A= go\. By the above theorem, DJ-equivalence classes of small covers over P bijectively correspond to the
coset GL(n,Z2)\A(P). In particular, |A(P)| is equal to the product of |GL(n,Z2)\A(P)| and |GL(n,Zs)| =

H (2n _ 2k—1)_
k=1

On the other hand, the equivariant classes of small covers over P are characterized by the action of the
automorphism group of the face poset of P. More precisely, let Aut(F(P)) be the group of bijections from the
set of faces of P to itself, which preserves the poset structure. Then Aut(F(P)) acts on A(P) on the right by
A-h=2MXoh. In [7], Lu and Masuda proved the following theorem.

Theorem 2.2 The set of Z5-homeomorphism classes of small covers over P corresponds bijectively to the
coset A(P)/Aut(F(P)).

By the above theorem, to find the number of equivariant classes of small covers over P, we need to find
the number of orbits of A(P) under the action of Aut(F(P)). The Burnside lemma reduces this problem to
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the enumeration of fixed points
AP)p ={X € A(P) | A(h(F)) = X(F) for all F € F(P)}
by elements h € Aut(F(P)).

Lemma 2.3 (Burnside lemma) Let G be a finite group acting on a set X . Then the number of G -orbits of
X is equal to ﬁdeG | X9, where X9 ={x € X | gr =x}.

Therefore, one can find the number of ZZ%-equivariant homeomorphism classes of small covers over P™ by
enumerating A(P)y, for all h € Aut(F(P)).

As a combination of the above theorems, we have the following result.

Theorem 2.4 The number of weakly Z3 -homeomorphism classes of small covers over P is the size of the
double coset GL(n,Zy)\A(P)/Aut(F(P)).

3. The number of Z7-equivariant homeomorphism classes

Let P=A" x ... x A" where A™ is the standard n;-simplex. Let G,, be the set of acyclic digraphs with
m labeled nodes with labeled vertex set V(G) = {v1,...,v,,}. Here, a digraph is a graph with at most one
edge directed from vertex v; to v;. A directed graph is said to be acyclic if there is no directed cycle. The
outdegree outdeg(v) (the indegree indeg(v)) of a vertex v is the number of edges directed from (to) v. In [3],

Choi gave the following formula for the number of small covers over P.

Theorem 3.1 (Theorem 2.8, [3]) The number of DJ-equivalence classes of small covers over P = A™ x --. X

m
A"mowith > n; =mn is
i=1

3

|GL(’I’L,ZQ)\A(P)| — Z H (2711 _ 1)outdeg(vi)'

GEGm v; EV(G)

It is well known that the automorphism group of the face poset of A™ is the group of permutations on
the set of facets, i.e. Aut(F(A™)) = S,,4+1, where S,41 is the symmetric group of degree n+ 1. To understand
the automorphism group of F(P), we need to take the number of A™ occurring in P into account. For this

reason, we write
l
P:HPi, where P; = A" X - x AT
i=1
l

with 1 <my <ng <---<mn; and > n;m; =n. Then the set of facets of P? is
i=1

i AT n; s n; n;
e = AT X o XA X i X AT X AT

0<k<mn;, 1<j<m}
where { f;,o’ cey f;m} is the set of facets of the simplex A’. Therefore, we have
FP)={Fi,|0<k<m, 1<j<m; 1<i<l}
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4 , 1
where F}, = Py x -+ X Pjq X fi; X Pipq x --- x P Note that there are (n + m)-facets, where m = > m;.
i=1

Since Aut(F(A™)) = Sp41, Aut(F(F;)) is the wreath product of S,,,, with S,,,, where p € Sy, sends f;’k

i+1

to f/i(j),k‘ More precisely, Aut(F(P;)) = Sn,+1 0 Sm, is equal to Sy, 41 X -+ X Sp, 41 XSp,, as a set where the

m;

group multiplication is defined by
(017 e 70mia/u')(all7 T 30—;717;7 M/) = (0—10;—1(1)’ T 70'mz‘0—:¢—1(mi)7 :u:u/)
for any 04,0} € Sp,+1 and p, ' € Sy, . Since ny < ng < --- < ng, we have the following.

Lemma 3.2 Aut(F(P)) = ﬁl (SmH ZS'mi) .
i=
By the nonsingularity condition, a characteristic function must send any set obtained by taking n;-many
elements from {F;k|0 <k<mn;} foreach 1 <j<m; and 1 <i <] toabasis of Z5. When 1 < n;, more than
one element is arbitrarily chosen from each set. However, for every nontrivial element g of Aut(F(P)), there
exist 1 < j <m; and 1 < ¢ <[ for which at least two elements from the set {F;k|0 < k <mn;} are not fixed by
g. Therefore, g cannot fix any characteristic function. This means that the action of Aut(F(P)) on F(P) is

free and hence the number of equivariant homeomorphism classes of small covers over P with n; > 1 is

AP JAP)
Aut(F(P))

;1[(”1‘ + Dl (my;)!

Since |GL(n,Zs)| = [1f—,(2" — 2*~1), by the above theorem we have:

1 l
Corollary 3.3 Let P = [[A}* x --- x A with ) m; = m and
i=1 =1

l
n;m; = n. Define a function n :
i=1

{1,...,m} = {ny,...,n} by n(s) = n; whenever ky+---+k;_1+1<s<ky+---+m;. Then the number of

equivariant homeomorphism classes of small covers over P with ny > 1 is

A(P) (HZ:I(Qn - 2k—1)) (ZGGQ,” HvSEV(G)(Qn(S) _ 1)outdeg(vs))

|Aut(F(P))| B ﬁ [(ni + 1)1 (my)!

When n; =1, the only elements of Aut(F(P)) that have a fixed point are the ones of the form
XXy, € € Zo

where x1,---,Xm, are the reflections in Aut(F(I™)). To count the number of elements in A(P)

emy

X1t Xm
first note that it is a GL(n,Zy)-invariant subset of A(P). Since the action of GL(n,Zs) is free, we have

€1 €my |.
X1' Xy

IAP) e yemi | = [GL(n, Z2)| X |GL(n, Z2)\A(P)

X1
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To find |GL(n,Zg)\A(P)Xq_erml| we use the correspondence given by Choi [3]. By the nonsingularity
1 my

condition, for any A € A(P), the vectors

AFL), .. (P

ml,l

)7>‘(F12,1)’)‘(F12,2)a c '7)‘(F12,n2)7>‘(F22,1)’ A A(le 1)7 c '7>‘(F7lnl,nl) (1)

)

form a basis for ZJ. For each coset in GL(n,Z2)\A(P) em; , choose a representative A for which the
m

X1h X

vectors in (1) correspond to the standard basis elements
er =(1,0,...,0), --- ,e, =(0,...,0,1),

respectively. More precisely, we have

% —
/\( j,k) = Cming+-4mi_ini—1+(—ni+k

for 1 <i<l,1<j<m;and 1<k <n;. Let A(e1,...,€mn,) be the set of such representatives. For the

remaining facets, we write FJZ0 = Fo4eogmy;_145 for 1 <i <l and 1 < j <m;. Then we have

AMFp) = Z AqpCq-
g=1

We can view the corresponding (n x m)-matrix A = [a,,] as an (m x m)-vector matrix [vpq] whose entries in

) where n(p) is defined as in Corollary 3.3. We refer reader to [4] for details. Let

the pth row are vectors in Zg(p
A81 st S

condition if and only if every principal minor of Ag,.

be the (m xm)-submatrix of A whose ith row is the s;th row of [vpq]. Then A satisfies the singularity
is 1 forany 1 <s; <n(l), -, 1 < s, <n(m).

m
Sm

Theorem 3.4 |A(P)XE1X;7L'{1 = (H(2n _ 2]9*1))( Z H (27741 _ l)outdeg(vi)>

k=1 GEGm(€1,emnsemy) v EV(G)

where G (€1,...,€m,) is the set of acyclic digraphs with m labeled nodes {v1,...,vm} such that indeg(v;) =0

whenever ¢, =1 for 1 <i<mj.

Proof Without loss of generality, we assume that ¢, =1 for 1 < i<t <mp and ¢, =0 for t < i < m;.
Let A= A(1,...,1,0,---,0). For A € A, let A = [v;] be the (m x m)-vector matrix corresponding to A.
——
¢
Let B(A) =: [b;;] be the Zy-matrix whose (7,7)th entry is 1 if vj; is nonzero and 0 otherwise. By Lemma 5.1

in [4], A is conjugate to a unipotent upper triangular vector matrix. Therefore, B(A) — I,,,, where I, is the
(m x m) identity matrix, is an adjacency matrix of an acyclic digraph. Define ¢ from A to G,, by ¢(A\) =G
where the adjacency matrix of G is B(A) — Iy, .

Since A € A, bj; =0 for i # j where 1 < j <t and 1 < ¢ < n. Therefore, the image of ¢ is indeed

Gm(€l, ... €m,). For G € Gy ler,...,€m,), we have

|¢71(G)‘ _ H (2711 o 1)outdeg(vi)’

v, €V (G)

as shown in the proof of Theorem 2.8 in [3]. O

Therefore, by the Burnside lemma, we have the following result.
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Theorem 3.5 The number of Z3 -equivariant homeomorphism classes of small covers over P with n1 =1 s

Z Z H (2n1 _ 1)outdeg(vi) .
((61 ..... €my)€{0,1}™1 GEG (€1,....6m, Vi€V (G) ) ) H(2n . 2k—1)

,ljl[(m + 1)l]mi (my)! k=1

where G (€1, ..., €m,) is the set of acyclic digraphs with m labeled nodes {vy,...,vm} such that indeg(v;) =0

whenever €, =1 for 1 <i<mj.

Let A, be the number of acyclic digraphs with m labeled nodes and r edges where the labeled vertex
set is {v1,...,0m}. For a C {v1, -+ ,vm}, let A% be the number of acyclic digraphs with m labeled nodes
{v1,...,vm} such that indeg(v) = 0 for all v € a and A%, be the number of such acyclic digraphs with r
edges.

Corollary 3.6 (Theorem 3.3, [3]) If P = I™ then the number of ZY -equivariant homeomorphism classes of

small covers over P 1is

2nn)

(Z?:o (?)Qi(”_i)Ai) T (2" — 2k,

o
_

Proof Let a(er, - ,€,) = {vile =1}. Then

By (4) in [S]a for any o C {vl"" avn}a

Therefore, we have

DRTLEUETID VIIRTEIED DD 9 ol (LGl Vs

(€1, ,en)€{0,1}" aC{vy,,on} aC{vi, -, vn} 720 k=0

as desired. O
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Let P =1 x A™ with n > 2. There are three acyclic digraphs with 2 labeled nodes {v;,v2}:

Gi: e o Go:eo — @ and G3:e<— o.

Since my = 1 in the formula of Theorem 3.5, we have G(0) = {G1,G2,G3} and G(1) = {G1,G2}. Thus, we

obtain:

Corollary 3.7 (Theorem 4.2, [2]) If P =1 x A™ with n > 2, the number of ZY -equivariant homeomorphism

classes of small covers over P is
n+1

(2?21?)!) [T =27,

t=1

In a similar way, by listing the acyclic digraphs of 3 vertices, one can obtain the following result due to
Chen and Wang.

Corollary 3.8 (Theorem 4.1, [2]) If P = I x A™ x A™ then the number of ZY -equivariant homeomorphism
classes of small covers over P is
n+m+1(2n+m+1 _ 21‘/71)

L f:é(nJrl)!(erl)!

(22n+m + 2n+2m + 22n + 22m +3. 2n+1 +3- 2m+1 _ 2n+m _ 7) Zf l<n< m,

n+m+1 /qn+m —
2 t:+1 i (2 Fml _2t 1)
’ 4(n+ 1)I(m + 1)!

(23n+1+22n+3.2n+2—7) Zf1<n:m;

n+2 ran —
t:+1 (2 22 1)
8(m +1)!

(3-22m+3-2m+2+8) if 1=n<m.

4. The number of weakly equivariant homeomorphism classes

By Theorem 2.4 the number of weakly Z% -equivariant homeomorphism classes of small covers over a simple

polytope P is equal to the size of the double coset on A(P) by GL(n,Zs) and Aut(F(P)). Therefore,

!
the number of weakly Z%-equivariant homeomorphism classes of small covers over P = [[P;, where P, =
i=1

! l
AT x - x AP with 1<ny <ng <---<mnyg, > m;=m and ) nym; =n, is
i=1 i=1

l

i=1

where A(P) = A(0,---,0).

!
Consider the subgroup H = [[S,, < Aut(F(P)). Note that an element p € S,,, acts on A(P)

i=1
by A-p = A, where A\, € A(P) corresponds to a class represented by the characteristic function that
sends F?, to )\(Fi(q) ,) if p =i and to A(F},) otherwise. Let 7z € S, be the permutation that sends

14
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m1n1++ml_1n1_1+(jfl)nl+k to m1n1++mz_1nz_1+(u(])71)nz+k for 1 S]Sml, 1 S kgnl

and fixes other elements. Then the matrix A, corresponding to A, is

P(m)~ AP (1)

where P(o) denotes the permutation matrix corresponding to a permutation o. This is the conjugation action

l
of H= []Sm, < Sm on the set of (m x m)-vector matrices. It corresponds to an action of H < S, on the
i=1

acyclic digraph with m-labeled nodes {v1,--- ,v,,} given by

e = Gy M H LS <my ey
et Ujs otherwise

for any u € Sy, . Therefore, when [ = 1, we have the following generalization of Theorem 4.1 in [3].

Theorem 4.1 The number of weakly 7% -equivariant homeomorphism classes of small covers over P = A¥F x

oo x AR with mk = n is less than or equal to

Z (2F — 1)|E(G)\

GEG,

where G,, is the set of acyclic digraphs with m unlabeled nodes and E(G) is the set of edges of the graph G

Corollary 4.2 The number of homeomorphism classes of small covers over P = A¥ x -+ x AF with mk =n

is less than or equal to

Z (Qk _ 1)|E(G)\

GEG

where G, is the set of acyclic digraphs with m unlabeled nodes.
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