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Abstract: In this paper, on one hand, we propose a new type of symmetric function to interpret the bisnomial coefficients

and their analogs. On other hand, according to this function, we give an interpretation of these coefficients by lattice

paths and tiling. Some identities of these coefficients are also established. This work is an extension of the results of

Belbachir and Benmezai’s “A q -analogue for bi s nomial coefficients and generalized Fibonacci sequences”.
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1. Introduction

There are many generalization possibilities of the Pascal triangle, such as:

• Pascal-pyramids. Let r ≥ 2 denote an integer (the dimension) and consider the map p : Nr → N ,

(n1, . . . , nr) 7→
(
n1 + · · ·+ nr

n1, . . . , nr

)
.

The map p provides the number of ways of splitting a set of n1 + · · · + nr distinguishable objects into

pairwise disjoint subsets Si of cardinality ni, i = 1, . . . , r . When r = 2, the map returns the usual

binomial coefficients in the Pascal triangle (for more details, see [6, 7]).

• Arithmetic triangles with Pascal’s rule. It is the term that was used for the original triangle by Pascal

himself. Now let the real sequences an and bn be given with a0 = b0 . Ensley [8] defined the object of

the generalized arithmetic triangle for an and bn as follows. Let G(n, 0) = an, G(n, n) = bn , and

G(n, k) = G(n− 1, k − 1) +G(n− 1, k) if 1 ≤ k ≤ n− 1.

Belbachir and Szalay [5] established a more general concept of generalized arithmetic triangles.

• Hyperbolic Pascal triangles. Belbachir et al. [4] introduced a new generalization of the Pascal triangle. It is

called the hyperbolic Pascal triangle since the mathematical background goes back to regular mosaics on
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the hyperbolic plane. They described precisely the procedure of how to obtain a given type of hyperbolic

Pascal triangle from a mosaic. Németh [11] introduced this type in Pascal pyramids.

• s -Pascal triangles. The elements
(
n
k

)
s
of this triangle have the following combinatorial interpretation. The

term
(
n
k

)
s
assigns the number of different ways of distributing k uniform objects among n boxes, where

each box may contain at most s objects, 0 ≤ k ≤ sn (see, for instance, [3, 6, 7]).

A natural extension of the binomial coefficient is the q -binomial coefficient

[
n

k

]
q

=
[n]q!

[n− k]q! [k]q!
, (1.1)

where [m]q! = [1]q[2]q ··· [m]q and [i]q = 1 + q+ ···+qi−1 .

A further generalization of the binomial coefficient is the p, q -binomial

[
n

k

]
p,q

=
[n]p,q!

[n− k]p,q! [k]p,q!
, (1.2)

where [m]p,q! = [1]p,q[2]p,q ··· [m]p,q and [i]p,q = pi−1 + pi−2q+ ···+qi−1 .

Clearly, the p, q -binomial coefficient reduces to the q -binomial coefficient when p = 1.

The s -Pascal triangle is the triangle given by the ordinary multinomials or the bisnomial coefficients

(see, for instance, [1, 6, 15]): let s ≥ 1 and n ≥ 0 be two integers. For k = 0, 1, ..., sn, the bisnomial coefficient(
n
k

)
s
is defined as the k th coefficient in the development

(1 + x+ x2 + · · ·+ xs)n =
∑
k∈Z

(
n

k

)
s

xk, (1.3)

with
(
n
k

)
s
= 0 for k > sn or k < 0.

Some readily well-known established properties are:

• the symmetry relation

(
n

k

)
s

=

(
n

sn− k

)
s

, (1.4)

• the longitudinal recurrence relation

(
n

k

)
s

=
s∑

j=0

(
n− 1

k − j

)
s

. (1.5)

These coefficients, as for usual binomial coefficients, are built as for the Pascal triangle, known as an

“s -Pascal triangle”. One can find the first values of the s -Pascal triangle in the work of Sloane [14] as A027907

for s = 2.
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Table 1. Triangle of trinomial coefficients: s = 2.

n\k 0 1 2 3 4 5 6 7 8 9 10 11 12
0 1
1 1 1 1
2 1 2 3 2 1
3 1 3 6 7 6 3 1
4 1 4 10 16 19 16 10 4 1
5 1 5 15 30 45 51 45 30 15 5 1
6 1 6 21 50 90 126 141 126 90 50 21 6 1
7 1 7 28 77 161 266 357 393 357 266 161 77 · · ·

There are at least two different definitions of q -analogues for bisnomial coefficients. The first one was

suggested by Andrews and Baxter [1], while the second one was given by Belbachir and Benmezai [2]. The

latter authors proposed the q -bisnomial coefficient of the k th term of the product.

n−1∏
j=0

(
1 + qjz + · · ·+ (qjz)s

)
=

sn∑
k=0

[
n

k

](s)
zk. (1.6)

The Young diagram (sometimes just called the diagram) of a partition λ is a left-justified array of squares,

with λi squares in the ith row. For instance, the Young diagram of (5, 3, 1) is as shown in Figure 1a.

(a) The Young diagram. (b) The Ferrer diagram.

Figure 1. The Young diagram and Ferrer diagram.

If dots are used instead of boxes, then the resulting diagram is called a Ferrer diagram. Thus, the Ferrer

diagram of (5, 3, 1) is as shown in Figure 1b. For more details, we refer the reader to [12, 16].

Let X = {x1, x2, . . .} be a countably infinite set of variables. The elementary homogeneous symmetric

function of degree k in x1, x2, . . . , xn is defined by

ek(n) := ek(x1, x2, . . . , xn) =
∑

1≤i1<i2<···<ik≤n

xi1xi2 · · ·xik ,

where e0(n) = 1 and ek(n) = 0 for k > n. Set ek(n) = 0 unless k, n ≤ 0, and ek(0) = δ0,k where δ0,k is the

Kronecker delta. Then for n ≥ 1 and k ∈ Z,

ek(n) = ek(n− 1) + xnek−1(n− 1). (1.7)

For more details, see, for instance, [10, 13].
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The q -binomial coefficients and p, q -binomial coefficients can be expressed respectively as specializations

of symmetric function: [
n

k

]
q

= q−(
k
2)ek(1, q, . . . , q

n−1),

[
n

k

]
p,q

= p−(
k
2)q−(

k
2)ek(p

n−1, pn−2q, . . . , qn−1).

The object of this paper is to interpret the bisnomial coefficients and their analogues by symmetric

functions, lattice paths, and tiling. In Section 2, we define a new symmetric function so that these coefficients

can be expressed as specializations of this function. In Section 3, we interpret these coefficients by lattice path.

In Section 4, we get some identities for q -bisnomial coefficients with simple proofs using lattices paths. In the

last section, we give a tilling interpretation of q -bisnomial coefficients.

2. Connection between bisnomial coefficients and symmetric function

Several extensions and commentaries about these coefficients have been investigated in the literature; for

example, Bondarenko [7] gave a combinatorial interpretation of the bisnomial coeffcients
(
n
k

)
s
as the number

of different ways of distributing “k” balls among “n” cells where each cell contains at most “s” balls.

If we denote by xi the number of balls in a cell, the previous combinatorial interpretation given by

Bondarenko is equivalent to evaluating the number of solutions of the system

{
α1 + α2 + · · ·+ αn = k,
0 ≤ α1, α2, . . . , αn ≤ s;

(2.1)

see also [3].

Using (2.1) a new type of symmetric function is given to interpret the bisnomial coefficients and their

analogues as follows.

Definition 2.1 Let s ≥ 1 be a positive integer. We define the generalized elementary symmetric function by

E
(s)
k (n) := E

(s)
k (x1, x2, . . . , xn) =

∑
α1+α2+···+αn=k
0≤α1,α2,...,αn≤s

xα1
1 xα2

2 · · ·xαn
n , (2.2)

where E
(s)
0 (n) = 1 , E

(s)
k (n) = 0 unless 0 ≤ k ≤ sn .

Example 2.2 We take s = 2.

1. For n = 1, we have:

E
(2)
0 (1) = 1, E

(2)
1 (1) = x1, E

(2)
2 (1) = x2

1.

2. For n = 2 , we obtain:

E
(2)
0 (2) = 1, E

(2)
1 (2) = x1 + x2, E

(2)
2 (2) = x2

1 + x2
2 + x1x2,

E
(2)
3 (2) = x2

1x2 + x1x
2
2, E

(2)
4 (2) = x2

1x
2
2.
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It is easy to see from Definition 2.1 that the generalized elementary symmetric function satisfies the following

recurrence relation and boundary condition:

Proposition 2.3

E
(s)
k (n) =

s∑
j=0

xj
nE

(s)
k−j(n− 1). (2.3)

Proof By (2.2). 2

Comparing this proposition with the definition of the bisnomial coefficients, q -bisnomial coefficients,

and p, q -bisnomial coefficients as simple induction proves:

Corollary 2.4 1. E
(s)
k (1, 1, . . . , 1) =

(
n
k

)
s
,

2. E
(s)
k (1, q, . . . , qn−1) =

[
n
k

](s)
q

,

3. E
(s)
k (pn−1, pn−2q, . . . , qn−1). =

[
n
k

](s)
p,q

.

Relation (2.3) is a restatement of the longitudinal relation

(
n

k

)
s

=
s∑

j=0

(
n− 1

k − j

)
s

.

Taking (x1, x2, . . . , xn) = (1, q, . . . , qn−1) in Proposition 2.3, we obtain the result of Belbachir and

Benmezai [2] (Theorem 2.5, Relation (13)).

Corollary 2.5 The q -bisnomial coefficients satisfy the following recursion:

[
n

k

](s)
q

=
s∑

j=0

q(n−1)j

[
n− 1

k − j

](s)
q

. (2.4)

These coefficients, as for usual bisnomial coefficients, are built through the s -Pascal triangle, known as

the “q -analogue of the s -Pascal triangle”.

As an illustration of recurrence relation (2.4), we establish the triangle of q -trinomial coefficients.

Table 2. Table values of q -trinomial coefficients.

n/k 0 1 2 3 4
0 1
1 1 1 1
2 1 1 + q 1 + q + q2 q + q2 q2

3 1 1 + q + q2 1 + q + 2q2 + q3 + q4 · · · · · ·
4 1 1 + q + q2 + q3 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6 · · ·

By setting (x1, x2, . . . , xn) = (pn−1, pn−2q, . . . , qn−1) in Proposition 2.3, we obtain the following result.
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Corollary 2.6 The p, q -bisnomial coefficients satisfy the following recursion

[
n

k

](s)
p,q

=

s∑
j=0

pk−jq(n−1)j

[
n− 1

k − j

](s)
p,q

. (2.5)

These coefficients, as for usual bisnomial coefficients, are built through the s -Pascal triangle, known as

the “p, q -analogue of the s -Pascal triangle”.

As an illustration of recurrence relation (2.5), we establish the triangle of p, q -trinomial coefficients.

Table 3. Table values of p, q -trinomial coefficients.

n/k 0 1 2 3 4
0 1
1 1 1 1
2 1 p+ q p2 + pq + q2 p2q + pq2 p2q2

3 1 p2 + pq + q2 p4 + p3q + 2p2q2 + pq3 + q4 · · · · · ·
4 1 p3 + p2q + pq2 + q3 · · ·

Remark 2.7 By setting s = 1 in Definition 2.1 we obtain immediately the elementary homogeneous symmetric

function ek(n) = ek(x1, x2, . . . , xn), which gives the binomial coefficients and their analogues.

3. Interpretation of bisnomial coefficients and their analogues by lattice paths

In this section, we first interpret the bisnomial coefficient
(
n
k

)
s
using the number of lattice paths between two

points as follows.

Theorem 3.1 For 0 ≤ k ≤ sn, let u1 = (0, 0) and v1 = (k, n− 1) be two points. The number of lattice paths

from u1 to v1 taking at most s vertices in the eastern direction (east-north) is exactly the bisnomial coefficient(
n
k

)
s
.

Proof We know that the bisnomial coefficients are specializations of the generalized elementary symmetric

function. Thus, it suffices to interpret this function by lattice paths.

It is easy to see that the generalized elementary symmetric function is a weight-generating function of

lattice paths between two points. For each unit variable xi in E
(s)
k (n) we associate one unit horizontal (east)

vertex, and if we suppose that each lattice path starting in u1 = (0, 0) then it ends in v1 = (k, n − 1) with

at most s vertices in the eastern direction. Hence, the bisnomial coefficient is the number of lattice paths

associated to E
(s)
k (n). Figure 2 shows the lattice path interpretation for n = 3, s = 2, and k = 4. 2

By setting s = 1 in Theorem 3.1, we will have the following result.

Corollary 3.2 The number of paths from u1 to v1 taking at most s = 1 vertices in the eastern direction is

exactly the binomial coefficient
(
n
k

)
.

Knuth [9] proved that the q -binomial coefficient is the polynomial in q obtained by q -counting partitions

whose Ferrers diagram fits in a k × (n− k) box. That is,
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v1

u1

x1 x1

x2 x2

v1

u1

x1 x1

x2

x3

v1

u1

x1 x1

x3 x3

v1

u1

x1

x2 x2

x3

v1

u1

x1

x2

x3 x3

v1

u1

x2 x2

x3 x3

Figure 2. The six paths from (0, 0) to (4, 2). Note that these paths are associated to E
(2)
4 (3) = x2

1x
2
2+x2

1x2x3+x2
1x

2
3+

x1x
2
2x3 + x1x2x

2
3 + x2

2x
2
3 .

[
n

k

]
q

=
∑

λ⊂(n−k)k

q|λ|, (3.1)

where λ = (λ1, λ2, . . . , λk) with n− k ≥ λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0, and | λ |=
∑

λi.

Now suppose we have to place unit squares below (above, respectively) and to the right (left, respectively)

in the lattice paths defined by Theorem 3.1. We establish two results as follows.

Proposition 3.3 Let the nonnegative integers n, k , and s ≥ 1 . The q -bisnomial (resp. p, q -bisnomial)

number is the generating function in the variable q (resp. in the two variables p and q ) for the number of

integer partitions with at most k parts of which there are at most s successive parts equal, the largest part at

most n− 1 and with into k × (n− 1) boxes. That is,

[
n

k

](s)
q

=
∑

λ⊂(n−1)k

q|λ| (3.2)

and [
n

k

](s)
p,q

=
∑

λ⊂(n−1)k

p|λ
c|q|λ|, (3.3)

respectively, where λ = (λ1, λ2, . . . , λk) with 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λk ≤ n − 1 , λi ̸= λi+s for i ≥ 1 ,

λc
i = (n− 1)− λi , and | λ |=

∑
λi.

Proof We use an associated lattice path interpretation. Each partition that fits into a box of size k× (n− 1)

is uniquely determined by a lattice path from (0, 0) to (k, n − 1) defined in Theorem 3.1 and we simply take

the weight of the lattice path to be the weight of its associated partition. Figure 3 shows the partition/lattice

path interpretation for n = 3, s = 2, and k = 4. 2

Hence, we obtain a new interpretation for the q -binomial (p, q -binomial respectively) coefficients as

follows.
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v1

u1

λ = (0, 0, 1, 1)
λc = (2, 2, 1, 1)

v1

u1

λ = (0, 0, 1, 2)
λc = (2, 2, 1, 0)

v1

u1

λ = (0, 0, 2, 2)
λc = (2, 2, 0, 0)

v1

u1

λ = (0, 1, 1, 2)
λc = (2, 1, 1, 0)

v1

u1

λ = (0, 1, 2, 2)
λc = (2, 1, 0, 0)

v1

u1

λ = (1, 1, 2, 2)
λc = (1, 1, 0, 0)

Figure 3. The six lattice paths from (0, 0) to (4, 2). The exponent on q (on p , respectively) in the weight of each

path is given by counting the number of boxes that fit below (above, respectively) and to the right (left, respectively) of

the lattice path.

Corollary 3.4 The q -binomial (p, q -binomial respectively) number is the generating function for the number

of integer partitions with at most k parts, the largest part at most n− 1 and with into k× (n− 1) boxes. That

is, [
n

k

]
q

= q−(
k
2)

∑
λ⊂(n−1)k

q|λ|, (3.4)

[
n

k

]
p,q

= p−(
k
2)q−(

k
2)

∑
λ⊂(n−1)k

p|λ
c|q|λ|, (3.5)

where λ = (λ1, λ2, . . . , λk) with 0 ≤ λ1 < λ2 < · · · < λk ≤ n− 1, λc
i = (n− 1)− λi and | λ |=

∑
λi .

4. Some identities of q -bisnomial coefficients with simple proofs

In this section, we give two identities for the q -bisnomial coefficients whose proofs are straightforward using

the lattice paths and Relation (1.6) for the first and the second identity, respectively.

Proposition 4.1 For n ≥ 0 and s ≥ 1 we have[
n

k

](s)
q

= q(n−1)k− sn(n−1)
2

[
n

sn− k

](s)
q

. (4.1)

Proof Let [
n

k

](s)
q

=
∑
P

qw(P ), (4.2)

[
n

sn− k

](s)
q

=
∑
P ′

qw(P ′), (4.3)

where:
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• w(P ) is the weight of each path P from point (0, 0) to point (k, n − 1) with at most s steps in the

eastern direction,

• w(P ′) is the weight of each path P ′ from point (0, 0) to point (sn − k, n − 1) with at most s steps in

the eastern direction.

Assume that:

• the highest weight is associated to path starting in (0, 0) and ending in (sn, n− 1), i.e. q
sn(n−1)

2 ;

• the total weight of the grid between point (0, 0) and point (k, n− 1) is q(n−1)k .

Hence, for each path P there exists only path P ′ where

qw(P ′) = q
sn(n−1)

2 −((n−1)k−w(P )).

Since
∑

P =
∑

P ′ , by Theorem 3.1 and relation (1.4), one gets

[
n

sn− k

](s)
q

=
∑
P ′

qw(P ′) =
∑
P

q
sn(n−1)

2 −((n−1)k−w(P ))

= q
sn(n−1)

2 −(n−1)k
∑
P

qw(P )

= q
sn(n−1)

2 −(n−1)k

[
n

k

](s)
q

,

and thus [
n

k

](s)
q

= q(n−1)k− sn(n−1)
2

[
n

sn− k

](s)
q

.

2

The q -Chu–Vandermonde identity can be extended to the q -analogue of the bisnomial coefficients as

follows.

Proposition 4.2 We have [
n+m

k

](s)
q

=
k∑

j=0

[
n

j

](s)
q

[
m

k − j

](s)
q

qn(k−j), (4.4)

or [
n+m

k

](s)
q

=

k∑
j=0

[
n

k − j

](s)
q

[
m

j

](s)
q

qnj . (4.5)
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Proof Consider the coefficient polynomial of xk in the product∏n+m−1
j=0

(
1 + qjz + · · ·+

(
qjz
)s)

.

By relation (2.4) this coefficient polynomial is
[
n+m
k

](s)
q

. We also have

n+m−1∏
j=0

(
1 + qjz + · · ·+

(
qjz
)s)

=
n−1∏
j=0

(
1 + qjz + · · ·+

(
qjz
)s)

(m−1)∏
j=0

(
1 + qn+jz + · · ·+

(
qn+jz

)s)
,

and by applying relation (2.4) twice, on the right-hand side, we find

n+m−1∏
j=0

(
1 + qjz + · · ·+

(
qjz
)s)

=
n−1∏
j=0

(
1 + qjz + · · ·+

(
qjz
)s)

m−1∏
j=0

(
1 + qn+jz + · · ·+

(
qn+jz

)s)

=
ns∑
k=0

[
n

k

](s)
q

zk
ms∑
j=0

[
m

j

](s)
q

(zqn)
j

=

2(n+m)s∑
k=0

zk
k∑

j=0

[
n

j

](s)
q

[
m

k − j

](s)
q

qn(k−j),

or

n+m−1∏
j=0

(
1 + qjz + · · ·+

(
qjz
)s)

=

2(n+m)s∑
k=0

zk
k∑

j=0

[
m

j

](s)
q

[
n

k − j

](s)
q

qnj .

Hence, we find [
n+m

k

](s)
q

=
k∑

j=0

[
n

j

](s)
q

[
m

k − j

](s)
q

qn(k−j),

or [
n+m

k

](s)
q

=
k∑

j=0

[
n

k − j

](s)
q

[
m

j

](s)
qnj .

2

Corollary 4.3 For n ≥ 0 and s ≥ 1 , we have

[
2n

sn

](s)
q

= q
sn(n−1)

2

sn∑
k=0

([
n

k

](s)
q

)2

qk. (4.6)
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Proof By Proposition 4.2 and Proposition 4.1, we have

[
2n

sn

](s)
q

=
sn∑
k=0

[
n

sn− k

](s)
q

[
n

k

](s)
qnk = q

sn(n−1)
2

sn∑
k=0

([
n

k

](s)
q

)2

qk.

2

5. A tiling interpretation of q -bisnomial coefficients

Let T s
n,k be the set of all tilings of an (n+ k − 1)-board using exactly k red squares and n− 1 green squares

with at most s red squares successively. Also let qwT be the weight of tiling T. For each T ∈ T s
n,k , we calculate

wT as follows:

1. Assign a weight to each individual square in the tiling. A green square always receives a weight of 1. A

red square has weight qm where m is equal to the number of green squares to the left of that red square

in the tiling.

2. Calculate wT by multiplying the weight qm of all the red squares.

Theorem 5.1 The q -bisnomial coefficient is created by summing the weights of all tilings of T s
n,k . That is,

[
n

k

](s)
q

=
∑

T∈T s
n,k

qwT . (5.1)

Proof Note that there is an obvious bijection between this tiling interpretation and the boxed partition

interpretation of the q -bisnomial coefficients. To each (n+ k − 1)-tiling using k red squares and n− 1 green

squares with at most s red squares successively, create an associated lattice path from (0, 0) to (k, n−1). Each

green tile represents a move of one unit up and each red square represents a move of one unit right (see Figure

4).

= q
2

= q
2

Figure 4. Here we see a sample tiling and its associated lattice path. Note that the tiling receives weight q2 and the

lattice path corresponds to a partition of the number 2.

This bijection clearly gives the same number of tilings and boxed partitions. It just remains to show that

the weight of the tiling and its associated lattice path are the same. To see this, note that we can calculate

the weight of the lattice path by summing one column at a time. That is, since each column corresponds to a

right move, for each right move, the weight of that column is given by the number of preceding up moves in the

path. This is precisely how we calculate the weight of our tilings, since the weight of each red tile is determined
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by the number of green tiles before it. Therefore, the bijection between partitions/lattice paths and tilings is

weight-preserving.

Hence, since
[
n
k

](s)
q

counts the number of partitions that will fit into a box of size k × (n− 1) weighted

by the size of the partition, it also counts the number of (n+ k− 1)-tilings with k red squares and n− 1 green

squares weighted as described above. 2

For example, the weight of the tiling rrgrrg is q0+0+1+1 = q2 , as shown in Figure 4.

Corollary 5.2 The bisnomial coefficient
(
n
k

)
s
counts the number of ways to tile a board of length n + k − 1

using k red squares and n− 1 green squares with at most s red squares successively.
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